1
|
Popa IP, Clim A, Pînzariu AC, Lazăr CI, Popa Ș, Tudorancea IM, Moscalu M, Șerban DN, Șerban IL, Costache-Enache II, Tudorancea I. Arterial Hypertension: Novel Pharmacological Targets and Future Perspectives. J Clin Med 2024; 13:5927. [PMID: 39407987 PMCID: PMC11478071 DOI: 10.3390/jcm13195927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2024] [Revised: 09/29/2024] [Accepted: 10/02/2024] [Indexed: 10/20/2024] Open
Abstract
Arterial hypertension (HTN) is one of the major global contributors to cardiovascular diseases and premature mortality, particularly due to its impact on vital organs and the coexistence of various comorbidities such as chronic renal disease, diabetes, cerebrovascular diseases, and obesity. Regardless of the accessibility of several well-established pharmacological treatments, the percentage of patients achieving adequate blood pressure (BP) control is still significantly lower than recommended levels. Therefore, the pharmacological and non-pharmacological management of HTN is currently the major focus of healthcare systems. Various strategies are being applied, such as the development of new pharmacological agents that target different underlying physiopathological mechanisms or associated comorbidities. Additionally, a novel group of interventional techniques has emerged in recent years, specifically for situations when blood pressure is not properly controlled despite the use of multiple antihypertensives in maximum doses or when patients are unable to tolerate or desire not to receive antihypertensive medications. Nonetheless, reducing the focus on antihypertensive medication development by the pharmaceutical industry and increasing recognition of ineffective HTN control due to poor drug adherence demands ongoing research into alternative approaches to treatment. The aim of this review is to summarize the potential novel pharmacological targets for the treatment of arterial hypertension as well as the future perspectives of the treatment strategy.
Collapse
Affiliation(s)
- Irene Paula Popa
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Andreea Clim
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Alin Constantin Pînzariu
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Cristina Iuliana Lazăr
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ștefan Popa
- 2nd Department of Surgery–Pediatric Surgery and Orthopedics, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Ivona Maria Tudorancea
- Advanced Research and Development Center for Experimental Medicine (CEMEX), “Grigore T. Popa” University of Medicine and Pharmacy, 16 Universității Street, 700115 Iași, Romania
| | - Mihaela Moscalu
- Department of Preventive Medicine and Interdisciplinarity, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania
| | - Dragomir N. Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Ionela Lăcrămioara Șerban
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
| | - Irina-Iuliana Costache-Enache
- Department of Internal Medicine I, Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania;
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| | - Ionuț Tudorancea
- Department of Morpho-Functional Sciences II, Discipline of Physiology, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iași, Romania (D.N.Ș.)
- Cardiology Clinic, “St. Spiridon” County Clinical Emergency Hospital, 700111 Iași, Romania
| |
Collapse
|
2
|
Faienza S, Citterio L, Messaggio E, Zagato L, Lanzani C, Simonini M, Canciani B, Sanvito F, Rampoldi L, Pavlovic D, Manunta P. A novel mouse model recapitulates the effects of rs2254524 variant in the lanosterol synthase gene on salt sensitivity and organ damage. J Hypertens 2024:00004872-990000000-00523. [PMID: 39248148 DOI: 10.1097/hjh.0000000000003843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Accepted: 07/29/2024] [Indexed: 09/10/2024]
Abstract
OBJECTIVE The blood pressure (BP) response to salt intake (salt sensitivity) shows great variability among individuals and is more frequent in hypertensive patients. Elevated levels of the steroid hormone Endogenous Ouabain (EO) are associated with hypertension (HT) and salt sensitivity. The lanosterol synthase gene ( LSS ) plays a key role in the biosynthesis of steroids and its rs2254524 variant (Val642Leu) is linked to salt sensitivity in humans. This study aims to investigate the pathophysiological significance of the Lss missense variation in a new knock-in mouse model of salt-sensitive HT onset. METHODS We generated a mouse model carrying the murine homolog (Val643Leu) of the human LSS variant. C57BL/6N LssV643L/V643L mice were fed different NaCl diets (low-salt, LSD; normal-salt, NSD; high-salt, HSD) and were characterized at functional, histological, and molecular levels. RESULTS At baseline, mutant mice showed an enlarged kidney compared to the wild-type (WT) counterpart, but the Lss V643L variant did not affect EO biosynthesis nor systolic BP at 3 and 12 months. In HSD, we observed an increased systolic BP only in 12-month-old LssV643L/V643L mice, compared to NSD. Moreover, only the HSD LssV643L/V643L mice showed cardiac hypertrophy and a higher incidence of cardiac fibrosis compared to WT at 12 months. Finally, the Lss mRNA level was differentially regulated by HSD in the adrenal gland, liver, and heart of LssV643L/V643L mice compared to WT. CONCLUSIONS The novel Lss mouse model resembles the salt-sensitive HT phenotype observed in hypertensive patients and provides a good model of salt-sensitive HT and HT-mediated organ damage.
Collapse
Affiliation(s)
- Sipontina Faienza
- Genomics of Renal Diseases and Hypertension Unit, IRCCS Ospedale San Raffaele
- Università Vita-Salute San Raffaele
| | - Lorena Citterio
- Genomics of Renal Diseases and Hypertension Unit, IRCCS Ospedale San Raffaele
| | | | - Laura Zagato
- Genomics of Renal Diseases and Hypertension Unit, IRCCS Ospedale San Raffaele
| | - Chiara Lanzani
- Genomics of Renal Diseases and Hypertension Unit, IRCCS Ospedale San Raffaele
- Università Vita-Salute San Raffaele
| | - Marco Simonini
- Genomics of Renal Diseases and Hypertension Unit, IRCCS Ospedale San Raffaele
| | | | - Francesca Sanvito
- Pathology Unit, Department of Experimental Oncology, IRCCS Ospedale San Raffaele
| | - Luca Rampoldi
- Università Vita-Salute San Raffaele
- Molecular Genetics of Renal Disorders Unit, Division of Genetics and Cell Biology, IRCCS Ospedale San Raffaele, Milan, Italy
| | - Davor Pavlovic
- Institute of Cardiovascular Sciences, University of Birmingham, Edgbaston, Wolfson Drive, Birmingham, UK
| | - Paolo Manunta
- Genomics of Renal Diseases and Hypertension Unit, IRCCS Ospedale San Raffaele
- Università Vita-Salute San Raffaele
| |
Collapse
|
3
|
Blaustein MP, Hamlyn JM. Sensational site: the sodium pump ouabain-binding site and its ligands. Am J Physiol Cell Physiol 2024; 326:C1120-C1177. [PMID: 38223926 PMCID: PMC11193536 DOI: 10.1152/ajpcell.00273.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 12/22/2023] [Accepted: 01/10/2024] [Indexed: 01/16/2024]
Abstract
Cardiotonic steroids (CTS), used by certain insects, toads, and rats for protection from predators, became, thanks to Withering's trailblazing 1785 monograph, the mainstay of heart failure (HF) therapy. In the 1950s and 1960s, we learned that the CTS receptor was part of the sodium pump (NKA) and that the Na+/Ca2+ exchanger was critical for the acute cardiotonic effect of digoxin- and ouabain-related CTS. This "settled" view was upended by seven revolutionary observations. First, subnanomolar ouabain sometimes stimulates NKA while higher concentrations are invariably inhibitory. Second, endogenous ouabain (EO) was discovered in the human circulation. Third, in the DIG clinical trial, digoxin only marginally improved outcomes in patients with HF. Fourth, cloning of NKA in 1985 revealed multiple NKA α and β subunit isoforms that, in the rodent, differ in their sensitivities to CTS. Fifth, the NKA is a cation pump and a hormone receptor/signal transducer. EO binding to NKA activates, in a ligand- and cell-specific manner, several protein kinase and Ca2+-dependent signaling cascades that have widespread physiological effects and can contribute to hypertension and HF pathogenesis. Sixth, all CTS are not equivalent, e.g., ouabain induces hypertension in rodents while digoxin is antihypertensinogenic ("biased signaling"). Seventh, most common rodent hypertension models require a highly ouabain-sensitive α2 NKA and the elevated blood pressure is alleviated by EO immunoneutralization. These numerous phenomena are enabled by NKA's intricate structure. We have just begun to understand the endocrine role of the endogenous ligands and the broad impact of the ouabain-binding site on physiology and pathophysiology.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland, United States
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland, United States
| |
Collapse
|
4
|
Tomazelli CA, Ishikawa FM, Couto GK, Parente JM, Castro MMD, Xavier FE, Rossoni LV. Small artery remodeling and stiffening in deoxycorticosterone acetate-salt hypertensive rats involves the interaction between endogenous ouabain/Na + K + -ATPase/cSrc signaling. J Hypertens 2023; 41:1554-1564. [PMID: 37432904 DOI: 10.1097/hjh.0000000000003502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
OBJECTIVE Endogenous ouabain (EO) increases in some patients with hypertension and in rats with volume-dependent hypertension. When ouabain binds to Na + K + -ATPase, cSrc is activated, which leads to multieffector signaling activation and high blood pressure (BP). In mesenteric resistance arteries (MRA) from deoxycorticosterone acetate (DOCA)-salt rats, we have demonstrated that the EO antagonist rostafuroxin blocks downstream cSrc activation, enhancing endothelial function and lowering oxidative stress and BP. Here, we examined the possibility that EO is involved in the structural and mechanical alterations that occur in MRA from DOCA-salt rats. METHODS MRA were taken from control, vehicle-treated DOCA-salt or rostafuroxin (1 mg/kg per day, for 3 weeks)-treated DOCA-salt rats. Pressure myography and histology were used to evaluate the mechanics and structure of the MRA, and western blotting to assess protein expression. RESULTS DOCA-salt MRA exhibited signs of inward hypertrophic remodeling and increased stiffness, with a higher wall:lumen ratio, which were reduced by rostafuroxin treatment. The enhanced type I collagen, TGFβ1, pSmad2/3 Ser465/457 /Smad2/3 ratio, CTGF, p-Src Tyr418 , EGFR, c-Raf, ERK1/2 and p38MAPK protein expression in DOCA-salt MRA were all recovered by rostafuroxin. CONCLUSION A process combining Na + K + -ATPase/cSrc/EGFR/Raf/ERK1/2/p38MAPK activation and a Na + K + -ATPase/cSrc/TGF-1/Smad2/3/CTGF-dependent mechanism explains how EO contributes to small artery inward hypertrophic remodeling and stiffening in DOCA-salt rats. This result supports the significance of EO as a key mediator for end-organ damage in volume-dependent hypertension and the efficacy of rostafuroxin in avoiding remodeling and stiffening of small arteries.
Collapse
Affiliation(s)
| | | | | | | | | | - Fabiano Elias Xavier
- Department of Physiology and Pharmacology, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | | |
Collapse
|
5
|
Pereira‐Acácio A, Veloso‐Santos JPM, Alves‐Bezerra D, Costa‐Sarmento G, Muzi‐Filho H, Vieyra A. Different antihypertensive and metabolic responses to rostafuroxin in undernourished and normonourished male rats: Outcomes on bodily Na + handling. Physiol Rep 2023; 11:e15820. [PMID: 37667414 PMCID: PMC10477346 DOI: 10.14814/phy2.15820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 09/06/2023] Open
Abstract
Hypertension is a pandemic nowadays. We aimed to investigate whether chronic undernutrition modifies the response to the antihypertensive drug rostafuroxin in juvenile hypertensive rats. Chronic undernutrition was induced in male rats using a multideficient diet known as the Regional Basic Diet (RBD), mimicking alimentary habits in impoverished regions worldwide. Animals were given RBD-or a control/CTRL normal diet for rodents-from weaning to 90 days, and rostafuroxin (1 mg/kg body mass) was orally administered from day 60 onwards. For the last 2 days, the rats were hosted in metabolic cages to measure food/energy, water, Na+ ingestion, and urinary volume. Rostafuroxin increased food/energy/Na+ intake in CTRL and RBD rats but had opposite effects on Na+ balance (intake minus urinary excretion). The drug normalized the decreased plasma Na+ concentration in RBD rats, increased urinary volume in RBD but not in CTRL, and decreased and increased urinary Na+ concentration in the RBD and CTRL groups, respectively. Rostafuroxin decreased the ouabain-sensitive (Na+ +K+ )ATPase and increased the ouabain-resistant Na+ -ATPase from proximal tubule cells in both groups and normalized the systolic blood pressure in RBD without effect in CTRL rats. We conclude that chronic undernutrition modifies the response of blood pressure and metabolic responses to rostafuroxin.
Collapse
Affiliation(s)
- Amaury Pereira‐Acácio
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - João P. M. Veloso‐Santos
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Danilo Alves‐Bezerra
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Glória Costa‐Sarmento
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Humberto Muzi‐Filho
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| | - Adalberto Vieyra
- Graduate Program of Translational Biomedicine/BIOTRANSUniversity of Grande RioDuque de CaxiasBrazil
- Carlos Chagas Filho Institute of BiophysicsFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Center for Structural Biology and Bioimaging/CENABIOFederal University of Rio de JaneiroRio de JaneiroBrazil
- National Institute of Science and Technology for Regenerative Medicine/REGENERARio de JaneiroBrazil
| |
Collapse
|
6
|
Bulger DA, Griendling KK. Novel Mechanism by Which Extracellular Cyclic GMP Induces Natriuresis. Circ Res 2023; 132:1141-1143. [PMID: 37104563 PMCID: PMC10151062 DOI: 10.1161/circresaha.123.322778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/29/2023]
Affiliation(s)
- David A Bulger
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| | - Kathy K Griendling
- Division of Cardiology, Department of Medicine, Emory University, Atlanta, GA
| |
Collapse
|
7
|
The clinical impact of anti-hypertensive treatment drug-gene pairs in the asian population: a systematic review of publications in the past decade. J Hum Hypertens 2023; 37:170-180. [PMID: 36302845 DOI: 10.1038/s41371-022-00765-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2022] [Revised: 07/17/2022] [Accepted: 09/30/2022] [Indexed: 11/08/2022]
Abstract
Pharmacogenetics play an important role in determining the anti-hypertensive effects of blood pressure-lowering medications and have the potential to improve future patient care. Current literature on the topic, however, has a heavy focus on Caucasians and may not be generalisable to the Asian populations. Therefore, we have conducted this systematic review to summarise and evaluate the literature of the past decade. PubMed, Embase, and the Cochrane Register of Controlled Trials were searched for relevant studies from 1 January 2011 to 23 July 2021. The outcome of interest was the response to anti-hypertensive treatment in Asians according to each genetic polymorphism. A total of 26 studies with a total of 8837 patients were included in our review, covering five classes of anti-hypertensive agents-namely, angiotensin-converting enzyme inhibitors (ACEI), angiotensin II receptor blockers (ARB), beta-blockers (BB), calcium channel blockers (CCB), and thiazide-like diuretics. Response to ACEI therapy was most susceptible to genotypic variations, while the efficacy of ARB and CCB were affected by pharmacogenetic differences to varying extent. For BB, only variations in the ADRB1 genotype significantly affects therapeutic response, while the therapeutic efficacy of thiazide-like diuretics was correlated with genotypic variations in the REN and ACE. This systematic review evaluated the impact of pharmacogenetic variations on the therapeutic efficacy of anti-hypertensive treatment in Asians and has described numerous drug-gene pairs that are potentially clinically important. Future prospective studies with larger sample sizes and longer follow-up periods are needed to better elucidate the impact of these drug-gene pairs.
Collapse
|
8
|
Lai X, Wen H, Yang T, Qin F, Zhong X, Pan Y, Yu J, Huang J, Li J. Effects of renal denervation on endogenous ouabain in spontaneously hypertensive rats. Acta Cir Bras 2023; 37:e371102. [PMID: 36629529 PMCID: PMC9829196 DOI: 10.1590/acb371102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2022] [Accepted: 10/12/2022] [Indexed: 01/11/2023] Open
Abstract
PURPOSE To investigate the role of renal denervation (RDN) on endogenous ouabain (EO) secretion in spontaneously hypertensive rats (SHR). METHODS Sixteen 12-week-old male SHR were randomly separated into the renal denervation group (RDNX group) and sham operation group (sham group), and eight age-matched Wistar Kyoto rats (WKY) were served as control group. EO concentrations, the Na+- K+-ATPaseactivity, and the expression of Na+-K+-ATPase were assessed. RESULTS EO levels in serum, kidneys and hypothalamus of sham group were higher than in RDNX group (p < 0.05). Renal Na+-K+-ATPase activity subjected to denervation surgery showed significantly reduction when compared with the sham groups (p < 0.05). A positive correlation existed between norepinephrine (NE) content and Na+-K+-ATPase activity in the kidney (r2 = 0.579). Renal Na+-K+-ATPase α1 subunit mRNA expression was down-regulated in the RDNX group compared with the sham group (P < 0.05), while renal Na+-K+-ATPase α1 subunit mRNA expression was no statistical significance between the groups (P = 0.63). Immunohistochemical analysis showed that there were significant differences in the renal expression of Na+-K+-ATPasebetween the three groups (P < 0.05). CONCLUSIONS These experiments demonstrate that RDN exerted an anti-hypertensive effect with reduction of EO levels and Na+-K+-ATPase activity and Na+-K+-ATPase α1 subunit expression of kidney in SHR.
Collapse
Affiliation(s)
- Xiaomei Lai
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Hong Wen
- PhD. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Tingting Yang
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Fei Qin
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Xiaoge Zhong
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Yajin Pan
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jie Yu
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jing Huang
- Postgraduate. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China
| | - Jianling Li
- PhD, and Postdoctoral Mobile Station. Guangxi Medical University – First Affiliated Hospital – Department of Cardiology – Nanning, China.,Corresponding author:
- 13407710624
| |
Collapse
|
9
|
Chen Y, Han Y, Wu Y, Hui R, Yang Y, Zhong Y, Zhang S, Zhang W. Pharmacogenetic association of the NR1H3 promoter variant with antihypertensive response among patients with hypertension: A longitudinal study. Front Pharmacol 2023; 14:1083134. [PMID: 36950018 PMCID: PMC10025344 DOI: 10.3389/fphar.2023.1083134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/20/2023] [Indexed: 03/08/2023] Open
Abstract
Background: The genetic factors in assessing therapeutic efficacy and predicting antihypertensive drug response are unclear. Therefore, this study aims to identify the associations between variants and antihypertensive drug response. Methods: A longitudinal study including 1837 hypertensive patients was conducted in Northern China and followed up for a median 2.24 years. The associations of 11 candidate variants with blood pressure changes in response to antihypertensive drugs and with the risk of cardiovascular events during the follow-up were examined. The dual-luciferase assay was carried out to assess the effect of genetic variants on gene transcriptional activity. Results: The variant rs11039149A>G in the promoter of nuclear receptor subfamily 1 group H member 3 (NR1H3) was associated with the change in systolic blood pressure (ΔSBP) in response to calcium channel blockers (CCBs) monotherapy. Patients carrying rs11039149AG genotype showed a significant increase of systolic blood pressure (SBP) at follow-up compared with AA carriers, and the difference of ΔSBP between AG and AA carriers was 5.94 mm Hg (95%CI: 2.09-9.78, p = 0.002). In 1,184 patients with CCBs therapy, SBP levels decreased in AA carriers, but increased in AG carriers, the difference of ΔSBP between AG and AA carriers was 8.04 mm Hg (95%CI: 3.28-12.81, p = 0.001). Further analysis in 359 patients with CCBs monotherapy, the difference of ΔSBP between AG and AA carriers was 15.25 mm Hg (95%CI: 6.48-24.02, p = 0.001). However, there was no significant difference in ΔSBP between AG and AA carriers with CCBs multitherapy. The rs11039149A>G was not associated with the cardiovascular events incidence during the follow-up. Additionally, transcriptional factor forkhead box C1 (FOXC1) bound to the NR1H3 promoter containing rs11039149A and significantly increased the transcriptional activity, while rs11039149 A to G change led to a loss-of-function and disabled FOXC1 binding. For the other 10 variants, associations with blood pressure changes or risk of cardiovascular events were not observed. Conclusion: Hypertensive patients with rs11039149AG genotype in the NR1H3 gene have a significant worse SBP control in response to CCBs monotherapy compared with AA carriers. Our findings suggest that the NR1H3 gene might act as a promising genetic factor to affect individual sensitivity to antihypertensive drugs.
Collapse
Affiliation(s)
- Yu Chen
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Yuqing Han
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Yiyi Wu
- The First Affiliated Hospital of Anhui University of Science and Technology, The First People’s Hospital of Huainan City, Huainan, Anhui, China
| | - Rutai Hui
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Yunyun Yang
- Clinical Laboratory, Xiamen Key Laboratory of Genetic Testing, The First Affiliated Hospital of Xiamen University, Xiamen, Fujian, China
| | - Yixuan Zhong
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Shuyuan Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
| | - Weili Zhang
- National Clinical Research Center for Cardiovascular Diseases, State Key Laboratory of Cardiovascular Disease, Fuwai Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Center for Cardiovascular Diseases, Beijing, China
- Central-China Branch of National Center for Cardiovascular Diseases, Henan Cardiovascular Disease Center, Fuwai Central-China Hospital, Zhengzhou, China
- *Correspondence: Weili Zhang,
| |
Collapse
|
10
|
Niranjan PK, Bahadur S. Recent Developments in Drug Targets and Combination Therapy for the Clinical Management of Hypertension. Cardiovasc Hematol Disord Drug Targets 2023; 23:226-245. [PMID: 38038000 DOI: 10.2174/011871529x278907231120053559] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/02/2023]
Abstract
Raised blood pressure is the most common complication worldwide that may lead to atherosclerosis and ischemic heart disease. Unhealthy lifestyles, smoking, alcohol consumption, junk food, and genetic disorders are some of the causes of hypertension. To treat this condition, numerous antihypertensive medications are available, either alone or in combination, that work via various mechanisms of action. Combinational therapy provides a certain advantage over monotherapy in the sense that it acts in multi mechanism mode and minimal drug amount is required to elicit the desired therapeutic effect. Such therapy is given to patients with systolic blood pressure greater than 20 mmHg and/or diastolic blood pressure exceeding 10 mmHg beyond the normal range, as well as those suffering from severe cardiovascular disease. The selection of antihypertensive medications, such as calcium channel blockers, angiotensin-converting enzyme (ACE) inhibitors, angiotensin receptor blockers (ARBs), and low-dose diuretics, hinges on their ability to manage blood pressure effectively and reduce cardiovascular disease risks. This review provides insights into the diverse monotherapy and combination therapy approaches used for elevated blood pressure management. In addition, it offers an analysis of combination therapy versus monotherapy and discusses the current status of these therapies, from researchbased findings to clinical trials.
Collapse
Affiliation(s)
| | - Shiv Bahadur
- Institute of Pharmaceutical Research, GLA University, Mathura, Uttar Pradesh, India
| |
Collapse
|
11
|
Blaustein MP, Gottlieb SS, Hamlyn JM, Leenen FHH. Whither digitalis? What we can still learn from cardiotonic steroids about heart failure and hypertension. Am J Physiol Heart Circ Physiol 2022; 323:H1281-H1295. [PMID: 36367691 DOI: 10.1152/ajpheart.00362.2022] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Cloning of the "Na+ pump" (Na+,K+-ATPase or NKA) and identification of a circulating ligand, endogenous ouabain (EO), a cardiotonic steroid (CTS), triggered seminal discoveries regarding EO and its NKA receptor in cardiovascular function and the pathophysiology of heart failure (HF) and hypertension. Cardiotonic digitalis preparations were a preferred treatment for HF for two centuries, but digoxin was only marginally effective in a large clinical trial (1997). This led to diminished digoxin use. Missing from the trial, however, was any consideration that endogenous CTS might influence digitalis' efficacy. Digoxin, at therapeutic concentrations, acutely inhibits NKA but, remarkably, antagonizes ouabain's action. Prolonged treatment with ouabain, but not digoxin, causes hypertension in rodents; in this model, digoxin lowers blood pressure (BP). Furthermore, NKA-bound ouabain and digoxin modulate different protein kinase signaling pathways and have disparate long-term cardiovascular effects. Reports of "brain ouabain" led to the elucidation of a new, slow neuromodulatory pathway in the brain; locally generated EO and the α2 NKA isoform help regulate sympathetic drive to the heart and vasculature. The roles of EO and α2 NKA have been studied by EO assay, ouabain-resistant mutation of α2 NKA, and immunoneutralization of EO with ouabain-binding Fab fragments. The NKA α2 CTS binding site and its endogenous ligand are required for BP elevation in many common hypertension models and full expression of cardiac remodeling and dysfunction following pressure overload or myocardial infarction. Understanding how endogenous CTS impact hypertension and HF pathophysiology and therapy should foster reconsideration of digoxin's therapeutic utility.
Collapse
Affiliation(s)
- Mordecai P Blaustein
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland.,Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - Stephen S Gottlieb
- Department of Medicine, University of Maryland School of Medicine, Baltimore, Maryland
| | - John M Hamlyn
- Department of Physiology, University of Maryland School of Medicine, Baltimore, Maryland
| | - Frans H H Leenen
- Brain and Heart Research Group, University of Ottawa Heart Institute, Ottawa, Ontario, Canada
| |
Collapse
|
12
|
França-Neto AD, Couto GK, Xavier FE, Rossoni LV. Cyclooxygenase-2 is a critical determinant of angiotensin II-induced vascular remodeling and stiffness in resistance arteries of ouabain-treated rats. J Hypertens 2022; 40:2180-2191. [PMID: 35969208 DOI: 10.1097/hjh.0000000000003242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE To investigate the role of angiotensin II/AT 1 receptor signaling and/or cyclooxygenase-2 (COX-2) activation on vascular remodeling and stiffening of the mesenteric resistance arteries (MRA) of ouabain-treated rats. METHODS Ouabain-treated (OUA, 30 μg kg/day for 5 weeks) and vehicle (VEH)-treated Wistar rats were co-treated with losartan (LOS, AT 1 R antagonist), nimesulide (NIM, COX-2 inhibitor) or hydralazine hydrochloride plus hydrochlorothiazide. MRA structure and mechanics were assessed with pressure myography and histology. Picrosirius red staining was used to determine the total collagen content. Western blotting was used to detect the expression of collagen I/III, MMP-2, Src, NFκB, Bax, Bcl-2 and COX-2. Reactive oxygen species (ROS) and plasma angiotensin II levels were measured by fluorescence and ELISA, respectively. RESULTS Blockade of AT 1 R or inhibition of COX-2 prevented ouabain-induced blood pressure elevation. Plasma angiotensin II level was higher in OUA than in VEH. LOS, but not hydralazine hydrochloride with hydrochlorothiazide, prevented inward hypotrophic remodeling, increased collagen deposition and stiffness, and oxidative stress in OUA MRA. LOS prevented the reduction in the total number of nuclei in the media layer and the Bcl-2 expression induced by OUA in MRA. The higher pSrc/Src ratio, NFκB/IκB ratio, and COX-2 expression in OUA MRA were also prevented by LOS. Likewise, COX-2 inhibition prevented vascular remodeling, mechanical changes, oxidative stress and inflammation in OUA MRA. CONCLUSION The results suggest that, regardless of hemodynamic adjustments, the angiotensin II/AT 1 R/pSrc/ROS/NFκB/COX-2 pathway is involved in the development of MRA inward hypotrophic remodeling and stiffness in ouabain-treated rats.
Collapse
Affiliation(s)
- Aldair de França-Neto
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo
| | - Gisele Kruger Couto
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo
| | - Fabiano Elias Xavier
- Department of Physiology and Pharmacology, Biosciences Center, Federal University of Pernambuco, Recife, Brazil
| | - Luciana Venturini Rossoni
- Department of Physiology and Biophysics, Institute of Biomedical Science, University of Sao Paulo, Sao Paulo
| |
Collapse
|
13
|
Ren J, Gao X, Guo X, Wang N, Wang X. Research Progress in Pharmacological Activities and Applications of Cardiotonic Steroids. Front Pharmacol 2022; 13:902459. [PMID: 35721110 PMCID: PMC9205219 DOI: 10.3389/fphar.2022.902459] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 05/11/2022] [Indexed: 12/21/2022] Open
Abstract
Cardiotonic steroids (CTS) are a group of compounds existing in animals and plants. CTS are commonly referred to cardiac glycosides (CGs) which are composed of sugar residues, unsaturated lactone rings and steroid cores. Their traditional mechanism of action is to inhibit sodium-potassium ATPase to strengthen the heart and regulate heart rate, so it is currently widely used in the treatment of cardiovascular diseases such as heart failure and tachyarrhythmia. It is worth noticing that recent studies have found an avalanche of inestimable values of CTS applications in many fields such as anti-tumor, anti-virus, neuroprotection, and immune regulation through multi-molecular mechanisms. Thus, the pharmacological activities and applications of CTS have extensive prospects, which would provide a direction for new drug research and development. Here, we review the potential applications of CTS in cardiovascular system and other systems. We also provide suggestions for new clinical practical strategies of CTS, for many diseases. Four main themes will be discussed, in relation to the impact of CTS, on 1) tumors, 2) viral infections, 3) nervous system diseases and 4) immune-inflammation-related diseases.
Collapse
Affiliation(s)
- Junwei Ren
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xinyuan Gao
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xi Guo
- Thyroid Surgery, Affiliated Cancer Hospital, Harbin Medical University, Harbin, China
| | - Ning Wang
- Key Laboratory of Cardiovascular Medicine Research, Department of Pharmacology, Ministry of Education, Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Pharmacy, The Fourth Affiliated Hospital of Harbin Medical University, Harbin, China
| |
Collapse
|
14
|
Gonzalez-Fernandez E, Fan L, Wang S, Liu Y, Gao W, Thomas KN, Fan F, Roman RJ. The adducin saga: pleiotropic genomic targets for precision medicine in human hypertension-vascular, renal, and cognitive diseases. Physiol Genomics 2022; 54:58-70. [PMID: 34859687 PMCID: PMC8799388 DOI: 10.1152/physiolgenomics.00119.2021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 11/23/2021] [Accepted: 11/29/2021] [Indexed: 02/03/2023] Open
Abstract
Hypertension is a leading risk factor for stroke, heart disease, chronic kidney disease, vascular cognitive impairment, and Alzheimer's disease. Previous genetic studies have nominated hundreds of genes linked to hypertension, and renal and cognitive diseases. Some have been advanced as candidate genes by showing that they can alter blood pressure or renal and cerebral vascular function in knockout animals; however, final validation of the causal variants and underlying mechanisms has remained elusive. This review chronicles 40 years of work, from the initial identification of adducin (ADD) as an ACTIN-binding protein suggested to increase blood pressure in Milan hypertensive rats, to the discovery of a mutation in ADD1 as a candidate gene for hypertension in rats that were subsequently linked to hypertension in man. More recently, a recessive K572Q mutation in ADD3 was identified in Fawn-Hooded Hypertensive (FHH) and Milan Normotensive (MNS) rats that develop renal disease, which is absent in resistant strains. ADD3 dimerizes with ADD1 to form functional ADD protein. The mutation in ADD3 disrupts a critical ACTIN-binding site necessary for its interactions with actin and spectrin to regulate the cytoskeleton. Studies using Add3 KO and transgenic strains, as well as a genetic complementation study in FHH and MNS rats, confirmed that the K572Q mutation in ADD3 plays a causal role in altering the myogenic response and autoregulation of renal and cerebral blood flow, resulting in increased susceptibility to hypertension-induced renal disease and cerebral vascular and cognitive dysfunction.
Collapse
Affiliation(s)
- Ezekiel Gonzalez-Fernandez
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Letao Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Shaoxun Wang
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Yedan Liu
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Wenjun Gao
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Kirby N Thomas
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Fan Fan
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| | - Richard J Roman
- Department of Pharmacology and Toxicology, University of Mississippi Medical Center, Jackson, Mississippi
| |
Collapse
|