1
|
Cadot R, Gery P, Lenief V, Nicolas J, Vocanson M, Tauber M. Exploring recent advances in drugs severe cutaneous adverse reactions immunopathology. Allergy 2025; 80:47-62. [PMID: 39295209 PMCID: PMC11724259 DOI: 10.1111/all.16316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/13/2024] [Accepted: 09/03/2024] [Indexed: 09/21/2024]
Abstract
Severe cutaneous adverse reactions to drugs (SCARs) are rare but life-threatening delayed allergies. While they primarily affect the skin, they can also affect internal organs. Accordingly, they present with diverse clinical symptoms that vary not only between SCARs subtypes but also among patients. Despite the availability of topical and systemic treatments, these only address the symptoms and not the cause. To develop more effective therapies, it is necessary to elucidate the complexity of the pathophysiology of SCARs in relation to their severity. In line with the new type IV hypersensitivity reactions nomenclature proposed by the European Academy of Allergy and Clinical Immunology (EAACI), this review highlights the current insights into the intricate immune mechanisms engaged, the interplay between the culprit drug and genetic predisposition in drug presentation mechanisms, but also how external factors, such as viruses, are implicated in SCARs. Their relevance to the development of targeted medicine is also discussed.
Collapse
Affiliation(s)
- Romane Cadot
- CIRI‐Centre International de Recherche en InfectiologieLyonFrance
- INSERM, U1111LyonFrance
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
- CNRS, UMR 5308LyonFrance
| | - Perrine Gery
- CIRI‐Centre International de Recherche en InfectiologieLyonFrance
- INSERM, U1111LyonFrance
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
- CNRS, UMR 5308LyonFrance
| | - Vanina Lenief
- CIRI‐Centre International de Recherche en InfectiologieLyonFrance
- INSERM, U1111LyonFrance
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
- CNRS, UMR 5308LyonFrance
| | - Jean‐François Nicolas
- CIRI‐Centre International de Recherche en InfectiologieLyonFrance
- INSERM, U1111LyonFrance
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
- CNRS, UMR 5308LyonFrance
- Allergology and Clinical Immunology DepartmentLyon Sud University HospitalPierre BéniteFrance
| | - Marc Vocanson
- CIRI‐Centre International de Recherche en InfectiologieLyonFrance
- INSERM, U1111LyonFrance
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
- CNRS, UMR 5308LyonFrance
| | - Marie Tauber
- CIRI‐Centre International de Recherche en InfectiologieLyonFrance
- INSERM, U1111LyonFrance
- École Normale Supérieure de Lyon, Université Claude Bernard Lyon 1Université de LyonLyonFrance
- CNRS, UMR 5308LyonFrance
- Allergology and Clinical Immunology DepartmentLyon Sud University HospitalPierre BéniteFrance
- Reference center for toxic bullous dermatitis and severe cutaneous adverse reactionsHospices Civils de LyonLyonFrance
| |
Collapse
|
2
|
Piriyapongsa J, Chumnumwat S, Kaewprommal P, Triparn K, Suvichapanich S, Udomsinprasert W, Jittikoon J, Shaw PJ, Nakhonsri V, Ngamphiw C, Wangkumhang P, Pithukpakorn M, Roothumnong E, Wiboonthanasarn S, Kuptanon C, Jinawath N, Porntaveetus T, Suriyaphol P, Viprakasit V, Pisitkun P, Kantaputra P, Tim-Aroon T, Wattanasirichaigoon D, Sura T, Suphapeetiporn K, Sripichai O, Khongphatthanayothin A, Fucharoen S, Ngamphaiboon N, Shotelersuk V, Mahasirimongkol S, Tongsima S. Pharmacogenomic landscape of the Thai population from genome sequencing of 949 individuals. Sci Rep 2024; 14:30683. [PMID: 39730427 DOI: 10.1038/s41598-024-79018-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Accepted: 11/04/2024] [Indexed: 12/29/2024] Open
Abstract
Inter-individual variability in drug responses is significantly influenced by genetic factors, underscoring the importance of population-specific pharmacogenomic studies to optimize clinical outcomes. In this study, we analyzed whole genome sequencing data from 949 unrelated Thai individuals and conducted an in-depth analysis of 3239 genes involved in drug pharmacokinetics, pharmacodynamics, or immune-mediated adverse drug reactions. We identified 43 single nucleotide polymorphisms (SNPs), 134 diplotypes, and 15 human leukocyte antigen (HLA) alleles, all with moderate to high clinical significance. On average, each Thai individual carried 14 SNPs, one to two HLA alleles, and six diplotypes with actionable phenotypic associations. Clinically important diplotypes were present in over 20% of individuals for seven genes (CYP2A6, CYP2B6, CYP2C19, CYP3A5, NAT2, SLCO1B1, and VKORC1). In addition, clinically significant SNPs with allele frequencies exceeding 20% were identified among 15 genes, including VKORC1, CYP4F2, and ABCG2. We also identified 21,211 potentially deleterious variants among 3239 genes. Of these variants, 3746 were novel. The comprehensive dataset from this study serves as a valuable resource of pharmacogenomic variants in the Thai population, which will facilitate the development of personalized drug therapies and enhance patient care in Thailand.
Collapse
Affiliation(s)
- Jittima Piriyapongsa
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Supatat Chumnumwat
- Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Pavita Kaewprommal
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Kwankom Triparn
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | | | | | - Jiraphun Jittikoon
- Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Philip J Shaw
- Medical Molecular Biotechnology Research Unit, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Vorthunju Nakhonsri
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Chumpol Ngamphiw
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Pongsakorn Wangkumhang
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand
| | - Manop Pithukpakorn
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Ekkapong Roothumnong
- Department of Medicine, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Supakit Wiboonthanasarn
- Siriraj Genomics, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chulaluck Kuptanon
- Department of Pediatrics, Queen Sirikit National Institute of Child Health, Bangkok, Thailand
- Department of Pediatrics, College of Medicine, Rangsit University, Pathum Thani, Thailand
| | - Natini Jinawath
- Program in Translational Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Chakri Naruebodindra Medical Institute, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Samut Prakan, Thailand
- Integrative Computational BioScience Center (ICBS), Mahidol University, Nakhon Pathom, Thailand
| | - Thantrira Porntaveetus
- Center of Excellence in Genomics and Precision Dentistry, Department of Physiology, Faculty of Dentistry, Chulalongkorn University, Bangkok, Thailand
| | - Prapat Suriyaphol
- Office for Research and Development, Faculty of Medicine, Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Vip Viprakasit
- Division of Hematology & Oncology, Department of Pediatrics & Siriraj Thalassemia Center, Siriraj Research Hospital, Mahidol University, Bangkok, Thailand
| | - Prapaporn Pisitkun
- Division of Allergy, Immunology, and Rheumatology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Piranit Kantaputra
- Division of Pediatric Dentistry, Department of Orthodontics and Pediatric Dentistry, Center of Excellence in Medical Genetics Research, Faculty of Dentistry, Chiang Mai University, Chiang Mai, Thailand
| | - Thipwimol Tim-Aroon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Duangrurdee Wattanasirichaigoon
- Division of Medical Genetics, Department of Pediatrics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Thanyachai Sura
- Medical Genetics and Molecular Medicine Unit, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Kanya Suphapeetiporn
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Orapan Sripichai
- National Institute of Health, Department of Medical Sciences, Ministry of Public Health, Nonthaburi, Thailand
| | - Apichai Khongphatthanayothin
- Division of Cardiology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Center of Excellence in Arrhythmia Research Chulalongkorn University, Department of Medicine, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
| | - Suthat Fucharoen
- Thalassemia Research Center, Institute of Molecular Biosciences, Mahidol University, Nakhon Pathom, Thailand
| | - Nuttapong Ngamphaiboon
- Division of Medical Oncology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Vorasuk Shotelersuk
- Center of Excellence for Medical Genomics, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- Excellence Center for Genomics and Precision Medicine, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand
| | - Surakameth Mahasirimongkol
- Information and Communication Technology Center, Office of Permanent Secretary, Ministry of Public Health, Nonthaburi, Thailand.
| | - Sissades Tongsima
- National Biobank of Thailand, National Center for Genetic Engineering and Biotechnology, National Science and Technology Development Agency, Pathum Thani, Thailand.
| |
Collapse
|
3
|
Tham KM, Yek JJL, Liu CWY. Unraveling the genetic link: an umbrella review on HLA-B*15:02 and antiepileptic drug-induced Stevens-Johnson syndrome/toxic epidermal necrolysis. Pharmacogenet Genomics 2024; 34:154-165. [PMID: 38527170 DOI: 10.1097/fpc.0000000000000531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
PURPOSE This umbrella review was conducted to summarize the association between HLA*1502 allele with antiepileptic induced Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN). METHODS Pubmed, Scopus and EMBASE were searched for eligible reviews in May 2023. Two authors independently screened titles and abstracts and assessed full-text reviews for eligibility. The quality of meta-analyses and case-control studies was appraised with Assessing the Methodological Quality of Systematic Reviews 2 and Newcastle-Ottawa Scale, respectively. Narrative summaries of each antiepileptic drug were analyzed. Preestablished protocol was registered on the International Prospective Register of Systematic Reviews Registry(ID: CRD42023403957). RESULTS Included studies are systematic reviews, meta-analyses and case-control studies evaluating the association of HLA-B*1502 allele with the following antiepileptics. Seven meta-analyses for carbamazepine, three meta-analyses for lamotrigine (LTG), three case-control studies for oxcarbazepine, nine case-control studies for phenytoin and four case-control studies for phenobarbitone were included. The findings of this umbrella review suggest that there is a strong association between HLA-B-1502 with SJS/TEN for carbamazepine and oxcarbazepine and a milder association for lamotrigine and phenytoin. CONCLUSION In summary, although HLA-B*1502 is less likely to be associated with phenytoin or lamotrigine-induced SJS/TEN compared to carbamazepine-induced SJS/TEN, it is a significant risk factor that if carefully screened, could potentially reduce the development of SJS/TEN. In view of potential morbidity and mortality, HLA-B*1502 testing may be beneficial in patients who are initiating lamotrigine/phenytoin therapy. However, further studies are required to examine the association of other alleles with the development of SJS/TEN and to explore the possibility of genome-wide association studies before initiation of treatment.
Collapse
Affiliation(s)
- Kar Mun Tham
- Department of Pain Medicine, Singapore General Hospital, Singapore
| | | | - Christopher Wei Yang Liu
- Department of Pain Medicine, Singapore General Hospital, Singapore
- Anesthesiology and Perioperative Sciences Academic Clinical Program, Duke-NUS Graduate Medical School
- Napier Pain Specialists, Gleneagles Hospital, Singapore
| |
Collapse
|
4
|
Jaruthamsophon K, Sangmanee P, Plong‐on O, Charalsawadi C, Sukasem C, Hnoonual A. Molecular identification of HLA-B75 serotype markers by qPCR: A more inclusive pharmacogenetic approach before carbamazepine prescription. Clin Transl Sci 2024; 17:e13867. [PMID: 38894615 PMCID: PMC11187875 DOI: 10.1111/cts.13867] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 06/05/2024] [Accepted: 06/07/2024] [Indexed: 06/21/2024] Open
Abstract
Genetic screening for HLA-B*15:02 before prescribing carbamazepine is standard practice to prevent severe cutaneous adverse reactions in Asian populations. These reactions are associated not only with this allele but also with closely related HLA-B75 serotype markers-HLA-B*15:11 and HLA-B*15:21-which are prevalent in several Asian countries. However, a reliable method for identifying HLA-B75 serotype markers is still not available. We developed an in-house quantitative PCR (qPCR) for HLA-B75 screening and validated it using 303 anonymized DNA samples. Due to inadequate quality control, the qPCR results for 11 samples were excluded. We analyzed the sensitivity and specificity of the test using 93 HLA-typed samples. The concordance between the qPCR method and an established screening method was assessed using 199 HLA-screened samples tested for HLA-B*15:02 at Songklanagarind Hospital, Songkhla, Thailand. All discordant results were confirmed by Sanger sequencing. The qPCR method demonstrated a sensitivity of 100% (95% confidence interval = 83.16%-100.00%) and a specificity of 100% (95% confidence interval = 95.07%-100.00%). Concordance analysis revealed a 96.5% agreement between methods (192/199; 44 positive and 148 negative results). All discordant results were due to HLA-B75 markers not being HLA-B*15:02 (two samples with HLA-B*15:11 and five samples with HLA-B*15:21). In conclusion, this qPCR method could be useful for identifying HLA-B75 carriers at risk of carbamazepine-induced reactions in Asian populations where carriers of HLA-B*15:02, HLA-B*15:11, or HLA-B*15:21 are common.
Collapse
Affiliation(s)
- Kanoot Jaruthamsophon
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Pornsiri Sangmanee
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Oradawan Plong‐on
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Chariyawan Charalsawadi
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi HospitalMahidol UniversityBangkokThailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC)Ramathibodi HospitalBangkokThailand
- Pharmacogenomics ClinicBumrungrad Genomic Medicine Institute, Bumrungrad International HospitalBangkokThailand
- Faculty of Pharmaceutical SciencesBurapha UniversitySaensuk, Mueang, ChonburiThailand
- Department of Pharmacology and Therapeutics, MRC Centre for Drug Safety ScienceInstitute of Systems, Molecular, and Integrative Biology, University of LiverpoolLiverpoolUK
| | - Areerat Hnoonual
- Human Genetic Unit, Department of Pathology, Faculty of MedicinePrince of Songkla UniversitySongkhlaThailand
| |
Collapse
|
5
|
Wei BM, Fox LP, Kaffenberger BH, Korman AM, Micheletti RG, Mostaghimi A, Noe MH, Rosenbach M, Shinkai K, Kwah JH, Phillips EJ, Bolognia JL, Damsky W, Nelson CA. Drug-induced hypersensitivity syndrome/drug reaction with eosinophilia and systemic symptoms. Part I. Epidemiology, pathogenesis, clinicopathological features, and prognosis. J Am Acad Dermatol 2024; 90:885-908. [PMID: 37516359 DOI: 10.1016/j.jaad.2023.02.072] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 02/11/2023] [Accepted: 02/26/2023] [Indexed: 07/31/2023]
Abstract
Drug-induced hypersensitivity syndrome (DiHS), also known as drug reaction with eosinophilia and systemic symptoms (DRESS), is a severe cutaneous adverse reaction (SCAR) characterized by an exanthem, fever, and hematologic and visceral organ involvement. Anticonvulsants, antibiotics, and allopurinol are the most common triggers. The pathogenesis involves a complex interplay between drugs, viruses, and the immune system primarily mediated by T-cells. DiHS/DRESS typically presents with a morbilliform eruption 2-6 weeks after drug exposure, and is associated with significant morbidity, mortality, and risk of relapse. Long-term sequelae primarily relate to organ dysfunction and autoimmune diseases. Part I of this continuing medical education activity on DiHS/DRESS provides an update on epidemiology, novel insights into pathogenesis, and a description of clinicopathological features and prognosis.
Collapse
Affiliation(s)
- Brian M Wei
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - Lindy P Fox
- Department of Dermatology, University of California, San Francisco, California
| | | | - Abraham M Korman
- Department of Dermatology, The Ohio State University, Columbus, Ohio
| | - Robert G Micheletti
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Arash Mostaghimi
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Megan H Noe
- Department of Dermatology, Brigham & Women's Hospital, Harvard Medical School, Boston, Massachusetts
| | - Misha Rosenbach
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Kanade Shinkai
- Department of Dermatology, University of California, San Francisco, California
| | - Jason H Kwah
- Department of Medicine, Section of Rheumatology, Allergy and Immunology, Yale School of Medicine, New Haven, Connecticut
| | - Elizabeth J Phillips
- Department of Medicine, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jean L Bolognia
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut
| | - William Damsky
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut; Department of Pathology, Yale School of Medicine, New Haven, Connecticut
| | - Caroline A Nelson
- Department of Dermatology, Yale School of Medicine, New Haven, Connecticut.
| |
Collapse
|
6
|
Marzouka NAD, Alnaqbi H, Al-Aamri A, Tay G, Alsafar H. Investigating the genetic makeup of the major histocompatibility complex (MHC) in the United Arab Emirates population through next-generation sequencing. Sci Rep 2024; 14:3392. [PMID: 38337023 PMCID: PMC10858242 DOI: 10.1038/s41598-024-53986-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Accepted: 02/07/2024] [Indexed: 02/12/2024] Open
Abstract
The Human leukocyte antigen (HLA) molecules are central to immune response and have associations with the phenotypes of various diseases and induced drug toxicity. Further, the role of HLA molecules in presenting antigens significantly affects the transplantation outcome. The objective of this study was to examine the extent of the diversity of HLA alleles in the population of the United Arab Emirates (UAE) using Next-Generation Sequencing methodologies and encompassing a larger cohort of individuals. A cohort of 570 unrelated healthy citizens of the UAE volunteered to provide samples for Whole Genome Sequencing and Whole Exome Sequencing. The definition of the HLA alleles was achieved through the application of the bioinformatics tools, HLA-LA and xHLA. Subsequently, the findings from this study were compared with other local and international datasets. A broad range of HLA alleles in the UAE population, of which some were previously unreported, was identified. A comparison with other populations confirmed the current population's unique intertwined genetic heritage while highlighting similarities with populations from the Middle East region. Some disease-associated HLA alleles were detected at a frequency of > 5%, such as HLA-B*51:01, HLA-DRB1*03:01, HLA-DRB1*15:01, and HLA-DQB1*02:01. The increase in allele homozygosity, especially for HLA class I genes, was identified in samples with a higher level of genome-wide homozygosity. This highlights a possible effect of consanguinity on the HLA homozygosity. The HLA allele distribution in the UAE population showcases a unique profile, underscoring the need for tailored databases for traditional activities such as unrelated transplant matching and for newer initiatives in precision medicine based on specific populations. This research is part of a concerted effort to improve the knowledge base, particularly in the fields of transplant medicine and investigating disease associations as well as in understanding human migration patterns within the Arabian Peninsula and surrounding regions.
Collapse
Affiliation(s)
- Nour Al Dain Marzouka
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Halima Alnaqbi
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Amira Al-Aamri
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates
| | - Guan Tay
- Division of Psychiatry, Faculty of Health and Medical Sciences, Medical School, The University of Western Australia, Crawley, WA, Australia
- School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia
| | - Habiba Alsafar
- Center for Biotechnology, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- College of Medicine and Health Sciences, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
- Department of Biomedical Engineering, Khalifa University of Science and Technology, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
7
|
Zhu X, Luo G, Zheng L. Update on HLA-B*15:02 allele associated with adverse drug reactions. Pharmacogenomics 2024; 25:97-111. [PMID: 38305022 DOI: 10.2217/pgs-2023-0173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2024] Open
Abstract
HLA alleles, part of the major histocompatibility complex, are strongly associated with adverse drug reactions (ADRs). This review focuses on HLA-B*15:02 and explores its association with ADRs in various ethnic populations and with different drugs, aiming to provide insights into the safe clinical use of drugs and minimize the occurrence of ADRs. Furthermore, the review explores the potential mechanisms by which HLA-B*15:02 may be associated with ADRs, aiming to gain new insights into drug modification and identification of haptens. In addition, it analyzes the frequency of the HLA-B*15:02, genotyping methods, cost-effectiveness and treatment measures for adverse reactions, thereby providing a theoretical basis for formulating clinical treatment plans.
Collapse
Affiliation(s)
- Xueting Zhu
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Guanghua Luo
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| | - Lu Zheng
- Clinical Medical Research Center, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
8
|
Guin D, Kukreti R. Drug hypersensitivity linked to genetic variations of human leukocyte antigen. Ther Drug Monit 2024:387-417. [DOI: 10.1016/b978-0-443-18649-3.00018-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
9
|
Guin D, Hasija Y, Kukreti R. Assessment of clinically actionable pharmacogenetic markers to stratify anti-seizure medications. THE PHARMACOGENOMICS JOURNAL 2023; 23:149-160. [PMID: 37626111 DOI: 10.1038/s41397-023-00313-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 07/22/2023] [Accepted: 07/31/2023] [Indexed: 08/27/2023]
Abstract
Epilepsy treatment is challenging due to heterogeneous syndromes, different seizure types and higher inter-individual variability. Identification of genetic variants predicting drug efficacy, tolerability and risk of adverse-effects for anti-seizure medications (ASMs) is essential. Here, we assessed the clinical actionability of known genetic variants, based on their functional and clinical significance and estimated their diagnostic predictability. We performed a systematic PubMed search to identify articles with pharmacogenomic (PGx) information for forty known ASMs. Functional annotation of the identified genetic variants was performed using different in silico tools, and their clinical significance was assessed using the American College of Medical Genetics (ACMG) guidelines for variant pathogenicity, level of evidence (LOE) from PharmGKB and the United States-Food and drug administration (US- FDA) drug labelling with PGx information. Diagnostic predictability of the replicated genetic variants was evaluated by calculating their accuracy. A total of 270 articles were retrieved with PGx evidence associated with 19 ASMs including 178 variants across 93 genes, classifying 26 genetic variants as benign/ likely benign, fourteen as drug response markers and three as risk factors for drug response. Only seventeen of these were replicated, with accuracy (up to 95%) in predicting PGx outcomes specific to six ASMs. Eight out of seventeen variants have FDA-approved PGx drug labelling for clinical implementation. Therefore, the remaining nine variants promise for potential clinical actionability and can be improvised with additional experimental evidence for clinical utility.
Collapse
Affiliation(s)
- Debleena Guin
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Yasha Hasija
- Department of Biotechnology, Delhi Technological University, Shahbad Daulatpur, Delhi, 110042, India
| | - Ritushree Kukreti
- Genomics and Molecular Medicine Unit, Council of Scientific and Industrial Research (CSIR)-Institute of Genomics and Integrative Biology (IGIB), New Delhi, 110007, India.
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
10
|
Chen CB, Hung WK, Wang CW, Lee CC, Hung SI, Chung WH. Advances in understanding of the pathogenesis and therapeutic implications of drug reaction with eosinophilia and systemic symptoms: an updated review. Front Med (Lausanne) 2023; 10:1187937. [PMID: 37457584 PMCID: PMC10338933 DOI: 10.3389/fmed.2023.1187937] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/05/2023] [Indexed: 07/18/2023] Open
Abstract
Drug reaction with eosinophilia and systemic symptoms or drug-induced hypersensitivity syndrome (DRESS/DIHS) is one type of severe cutaneous adverse reaction (SCAR). It is featured by fever, widespread skin lesions, protracted clinical course, internal organ involvement, and possibly long-term autoimmune sequelae. The presence of high-risk human leukocyte antigen (HLA) alleles, hypersensitivity reaction after culprit drug ingestion, and human herpesvirus reactivation may all contribute to its complex clinical manifestations. Some recent studies focusing on the roles of involved cytokines/chemokines and T cells co-signaling pathways in DRESS/DIHS were conducted. In addition, some predictors of disease severity and prognosis were also reported. In this review, we provided an update on the current understanding of the pathogenesis, potential biomarkers, and the relevant therapeutic rationales of DRESS/DIHS.
Collapse
Affiliation(s)
- Chun-Bing Chen
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- School of Medicine, National Tsing Hua University, Hsinchu, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Graduate Institute of Clinical Medical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wei-Kai Hung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Chuang-Wei Wang
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
| | - Chih-Chun Lee
- Department of Medical Education, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Shuen-Iu Hung
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
| | - Wen-Hung Chung
- Department of Dermatology, Drug Hypersensitivity Clinical and Research Center, Chang Gung Memorial Hospital, Linkou, Taiwan
- Cancer Vaccine and Immune Cell Therapy Core Laboratory, Department of Medical Research, Chang Gung Memorial Hospital, Linkou, Taiwan
- Chang Gung Immunology Consortium, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
- Department of Dermatology, Xiamen Chang Gung Hospital, Xiamen, China
- Xiamen Chang Gung Allergology Consortium, Xiamen Chang Gung Hospital, Xiamen, China
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Immune-Oncology Center of Excellence, Chang Gung Memorial Hospital, Linkou, Taiwan
- Whole-Genome Research Core Laboratory of Human Diseases, Chang Gung Memorial Hospital, Keelung, Taiwan
- Department of Dermatology, Beijing Tsinghua Chang Gung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
- Department of Dermatology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
- Genomic Medicine Core Laboratory, Chang Gung Memorial Hospital, Linkou, Taiwan
| |
Collapse
|
11
|
Yang W, Lu Y, Wu Z, Niu J. Toxic epidermal necrosis associated with afatinib: A case report and literature review. Front Oncol 2023; 12:1010052. [PMID: 36698415 PMCID: PMC9868907 DOI: 10.3389/fonc.2022.1010052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Accepted: 12/16/2022] [Indexed: 01/11/2023] Open
Abstract
Objective To report a case of afatinib-induced toxic epidermal necrosis (TEN), in a patient with metastatic non-small cell lung cancer (NSCLC) and compare these findings with that of evaluate similarities and differences to other cases reported in the literature. Methods With use of the algorithm of drug causality for epidermal necrolysis (ALDEN), the effects of afatinib were evaluated in a NSCLC patient who developed TEN. In addition, previous case reports on this topic were included to provide a review of patients' clinical characteristics, treatment regimens and therapy outcomes in response to afatinib treatment. Results In our case, toxic epidermal necrolysis was observed at five days after afatinib therapy, while other Stevens-Johnson syndrome/toxic epidermal necrolysis responses, as associated with afatinib, did not seem to be induced until a latency period of over thirty days post-afatinib. Treatment with corticosteroids resulted in significant improvements of these clinical symptoms, and eventually to a complete remission. Conclusion Afatinib can result in grade four cutaneous adverse effects like SJS/TEN, with an uncertain latency period. The skin lesions which appear during this period of afatinib treatment should be closely monitored.
Collapse
|
12
|
Choppradit C, Likittientong T, Glinnil K, Ferngprayoon P, Ploylearmsang C. Implementing Drug Reaction with Eosinophilia and Systemic Symptoms (DRESS) syndrome management system by hospital pharmacists in Samutsakhon Hospital, Thailand. Pharm Pract (Granada) 2023; 21:2749. [PMID: 37090462 PMCID: PMC10117362 DOI: 10.18549/pharmpract.2023.1.2749] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2022] [Accepted: 11/03/2022] [Indexed: 04/09/2023] Open
Abstract
Objectives To study the process of implementing the DRESS management system by pharmacists and its results, during 2016-2020. Research method Operational Research, starting from the process of implementing the DRESS management system by the pharmacy department of Samutsakhon Hospital and reporting the results to the Pharmacy and Therapeutic Committee in patients diagnosed with DRESS according to the RegiSCAR criteria, collecting data from an electronic medical records database. Study results The main DRESS management system implementation process is: 1) listing the High alert drugs which may cause an adverse reaction and preparation of pharmacists in DRESS; 2) Using RegiSCAR for patient assessment; 3) Suggesting a genotyping test before the patient receives the drug, starting with carbamazepine and allopurinol; 4) Using a Computerized Decision Support System (CDSS) to facilitate the screening alert. 5) Proposing to the Pharmacy and Therapeutic Committee for approval on gene testing. As a result, a total of 184 patients were sent for genotyping testing, and 92 of the drug allergy genes were identified, making the prevention or monitoring of patients more effectively. 31 patients were diagnosed with DRESS, and 54.84% were male. The 4 drug items with the highest incidence were phenytoin 28.95%, nevirapine 10.53%, rifampicin 7.89%, and pyrazinamide 7.89%. Clinical symptoms were rash 100.00%, fever 90.32%, lymphadenopathy 6.45%, at least one dysfunction in the internal organ system 74.19%, liver dysfunction 80.65%, and eosinophilia 58.65%. Phenytoin had a statistically significant induced eosinophil (p=0.044), which could be used as a factor in the CDSS drug surveillance. Conclusion Even DRESS is a rare adverse drug reaction symptom but causes life-threatening. Continuous system management by pharmacists is significant with a huge effect. In the drug items, the highest incidence was phenytoin. Implementing a system to monitor patients' drug use, could reduce DRESS, and prevent the recurrence of drug allergies.
Collapse
Affiliation(s)
- Chanchira Choppradit
- Head of Adverse drug reaction monitoring (ADRM) center, Samutsakhon Hospital, Samut Sakhon Province, 74000, Thailand.
| | | | - Karnrawee Glinnil
- Hospital pharmacist, Samutsakhon Hospital, Samut Sakhon Province, 74000, Thailand.
| | | | - Chanuttha Ploylearmsang
- Assistant Professor, Social Pharmacy Research Unit, Faculty of Pharmacy, Mahasarakham University, Kantarawichai 44150, Thailand.
| |
Collapse
|
13
|
Tiwattanon K, John S, Koomdee N, Jinda P, Rachanakul J, Jantararoungtong T, Nuntharadthanaphong N, Kloypan C, Biswas M, Boongird A, Sukasem C. Implementation of HLA-B*15:02 Genotyping as Standard-of-Care for Reducing Carbamazepine/Oxcarbazepine Induced Cutaneous Adverse Drug Reactions in Thailand. Front Pharmacol 2022; 13:867490. [PMID: 35865943 PMCID: PMC9294359 DOI: 10.3389/fphar.2022.867490] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Objective: This study aimed to investigate the clinical impact of HLA-B*15:02 pharmacogenomics (PGx) testing before carbamazepine (CBZ)/oxcarbazepine (OXC) prescriptions and to determine whether this PGx testing was associated with the reduction of CBZ/OXC-induced cutaneous adverse drug reactions (CADRs) in Thailand.Methods: This retrospective observational cohort study was conducted by obtaining relevant HLA-B*15:02 PGx-testing and clinical data from electronic medical records during 2011–2020. 384 patient data were included in this study to investigate the clinical decision on CBZ/OXC usage before and after the HLA-B*15:02 PGx testing, and 1,539 patient data were included in this study to demonstrate the incidence of CBZ/OXC-induced SCARs and SJS between HLA-B*15:02 tested and non-tested patients. To analyze and summarize the results, descriptive statistics were employed, and Fisher exact test was used to compare the clinical difference between the HLA-B*15:02 positive and negative groups and to compare the differences of SCARs incidence.Results: 384 patients were included in this study as per the inclusion criteria. Of these, 70 patients carried HLA-B*15:02, of which 63 and 65 patients were not prescribed with CBZ/OXC before and after the availability of genotyping results, respectively. In the remaining HLA-B*15:02 non-carriers, 48, and 189 patients were prescribed CBZ/OXC before and after genotyping results were available, respectively. The findings of this study showed that the incidence of SCARs of CBZ/OXC was significantly lower (p < 0.001) in the HLA-B*15:02 screening arm than in the non-screening arm.Conclusion:HLA-B pharmacogenetics testing influenced the selection of appropriate AEDs. The presence of mild rash in the HLA-B*15:02 negative group indicates that other genetic biomarker (HLA-A*31:01) and/or non-genetic variables are involved in CBZ/OXC-induced CADRs, emphasizing that CBZ/OXC prescriptions necessitate CADR monitoring. The hospital policy and clinical decision support (CDS) alert system is essential to overcome the barriers associated with the utilization of PGx guidelines into clinical practice.
Collapse
Affiliation(s)
- Kanyawan Tiwattanon
- Division of Neurology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital Mahidol University, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- *Correspondence: Napatrupron Koomdee, ; Apisit Boongird,
| | - Pimonpan Jinda
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Jiratha Rachanakul
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Thawinee Jantararoungtong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Nutthan Nuntharadthanaphong
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao, Thailand
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Apisit Boongird
- Division of Neurology, Department of Medicine, Faculty of Medicine Ramathibodi Hospital Mahidol University, Bangkok, Thailand
- Ramathibodi Multidisciplinary Center (RMEC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- *Correspondence: Napatrupron Koomdee, ; Apisit Boongird,
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Ramathibodi Multidisciplinary Center (RMEC), Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine Clinic, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
14
|
Tempark T, John S, Rerknimitr P, Satapornpong P, Sukasem C. Drug-Induced Severe Cutaneous Adverse Reactions: Insights Into Clinical Presentation, Immunopathogenesis, Diagnostic Methods, Treatment, and Pharmacogenomics. Front Pharmacol 2022; 13:832048. [PMID: 35517811 PMCID: PMC9065683 DOI: 10.3389/fphar.2022.832048] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 03/01/2022] [Indexed: 12/19/2022] Open
Abstract
SCARs are rare and life-threatening hypersensitivity reactions. In general, the increased duration of hospital stays and the associated cost burden are common issues, and in the worst-case scenario, they can result in mortality. SCARs are delayed T cell-mediated hypersensitivity reactions. Recovery can take from 2 weeks to many months after dechallenging the culprit drugs. Genetic polymorphism of the HLA genes may change the selection and presentation of antigens, allowing toxic drug metabolites to initiate immunological reactions. However, each SCARs has a different onset latency period, clinical features, or morphological pattern. This explains that, other than HLA mutations, other immuno-pathogenesis may be involved in drug-induced severe cutaneous reactions. This review will discuss the clinical morphology of various SCARs, various immune pathogenesis models, diagnostic criteria, treatments, the association of various drug-induced reactions and susceptible alleles in different populations, and the successful implementation of pharmacogenomics in Thailand for the prevention of SCARs.
Collapse
Affiliation(s)
- Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok, Thailand
- The Pediatrics-Thai Severe Cutaneous Adverse Drug Reaction (Ped-Thai-SCAR) Research Group, Bangkok, Thailand
| | - Shobana John
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Pawinee Rerknimitr
- The Thai Severe Cutaneous Adverse Drug Reaction (Thai-SCAR) Research Group, Bangkok, Thailand
- Division of Dermatology, Department of Medicine, Faculty of Medicine, Skin, and Allergy Research Unit, Chulalongkorn University, Bangkok, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani, Thailand
| | - Chonlaphat Sukasem
- The Pediatrics-Thai Severe Cutaneous Adverse Drug Reaction (Ped-Thai-SCAR) Research Group, Bangkok, Thailand
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction (Thai-SCAR) Research Group, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics & Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
15
|
Biswas M, Sawajan N, Rungrotmongkol T, Sanachai K, Ershadian M, Sukasem C. Pharmacogenetics and Precision Medicine Approaches for the Improvement of COVID-19 Therapies. Front Pharmacol 2022; 13:835136. [PMID: 35250581 PMCID: PMC8894812 DOI: 10.3389/fphar.2022.835136] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 01/24/2022] [Indexed: 01/18/2023] Open
Abstract
Many drugs are being administered to tackle coronavirus disease 2019 (COVID-19) pandemic situations without establishing clinical effectiveness or tailoring safety. A repurposing strategy might be more effective and successful if pharmacogenetic interventions are being considered in future clinical studies/trials. Although it is very unlikely that there are almost no pharmacogenetic data for COVID-19 drugs, however, from inferring the pharmacokinetic (PK)/pharmacodynamic(PD) properties and some pharmacogenetic evidence in other diseases/clinical conditions, it is highly likely that pharmacogenetic associations are also feasible in at least some COVID-19 drugs. We strongly mandate to undertake a pharmacogenetic assessment for at least these drug-gene pairs (atazanavir-UGT1A1, ABCB1, SLCO1B1, APOA5; efavirenz-CYP2B6; nevirapine-HLA, CYP2B6, ABCB1; lopinavir-SLCO1B3, ABCC2; ribavirin-SLC28A2; tocilizumab-FCGR3A; ivermectin-ABCB1; oseltamivir-CES1, ABCB1; clopidogrel-CYP2C19, ABCB1, warfarin-CYP2C9, VKORC1; non-steroidal anti-inflammatory drugs (NSAIDs)-CYP2C9) in COVID-19 patients for advancing precision medicine. Molecular docking and computational studies are promising to achieve new therapeutics against SARS-CoV-2 infection. The current situation in the discovery of anti-SARS-CoV-2 agents at four important targets from in silico studies has been described and summarized in this review. Although natural occurring compounds from different herbs against SARS-CoV-2 infection are favorable, however, accurate experimental investigation of these compounds is warranted to provide insightful information. Moreover, clinical considerations of drug-drug interactions (DDIs) and drug-herb interactions (DHIs) of the existing repurposed drugs along with pharmacogenetic (e.g., efavirenz and CYP2B6) and herbogenetic (e.g., andrographolide and CYP2C9) interventions, collectively called multifactorial drug-gene interactions (DGIs), may further accelerate the development of precision COVID-19 therapies in the real-world clinical settings.
Collapse
Affiliation(s)
- Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi, Bangladesh
| | - Nares Sawajan
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Department of Pathology, School of Medicine, Mae Fah Luang University, Chiang Rai, Thailand
| | - Thanyada Rungrotmongkol
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Bangkok, Thailand
| | - Kamonpan Sanachai
- Structural and Computational Biology Research Unit, Department of Biochemistry, Faculty of Science, Chulalongkorn University, Bangkok, Thailand
| | - Maliheh Ershadian
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
- Laboratory for Pharmacogenomics, Somdech Phra Debaratana Medical Center (SDMC), Ramathibodi Hospital, Bangkok, Thailand
- Pharmacogenomics and Precision Medicine, The Preventive Genomics and Family Check-up Services Center, Bumrungrad International Hospital, Bangkok, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool, United Kingdom
| |
Collapse
|
16
|
Kloypan C, Koomdee N, Satapornpong P, Tempark T, Biswas M, Sukasem C. A Comprehensive Review of HLA and Severe Cutaneous Adverse Drug Reactions: Implication for Clinical Pharmacogenomics and Precision Medicine. Pharmaceuticals (Basel) 2021; 14:1077. [PMID: 34832859 PMCID: PMC8622011 DOI: 10.3390/ph14111077] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/13/2021] [Accepted: 10/18/2021] [Indexed: 12/19/2022] Open
Abstract
Human leukocyte antigen (HLA) encoded by the HLA gene is an important modulator for immune responses and drug hypersensitivity reactions as well. Genetic polymorphisms of HLA vary widely at population level and are responsible for developing severe cutaneous adverse drug reactions (SCARs) such as Stevens-Johnson syndrome (SJS), toxic epidermal necrolysis (TEN), drug reaction with eosinophilia and systemic symptoms (DRESS), maculopapular exanthema (MPE). The associations of different HLA alleles with the risk of drug induced SJS/TEN, DRESS and MPE are strongly supportive for clinical considerations. Prescribing guidelines generated by different national and international working groups for translation of HLA pharmacogenetics into clinical practice are underway and functional in many countries, including Thailand. Cutting edge genomic technologies may accelerate wider adoption of HLA screening in routine clinical settings. There are great opportunities and several challenges as well for effective implementation of HLA genotyping globally in routine clinical practice for the prevention of drug induced SCARs substantially, enforcing precision medicine initiatives.
Collapse
Affiliation(s)
- Chiraphat Kloypan
- Unit of Excellence in Integrative Molecular Biomedicine, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand;
- Division of Clinical Immunology and Transfusion Science, Department of Medical Technology, School of Allied Health Sciences, University of Phayao, Phayao 56000, Thailand
| | - Napatrupron Koomdee
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
| | - Patompong Satapornpong
- Division of General Pharmacy Practice, Department of Pharmaceutical Care, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand;
- Excellence Pharmacogenomics and Precision Medicine Centre, College of Pharmacy, Rangsit University, Pathum Thani 12000, Thailand
| | - Therdpong Tempark
- Division of Dermatology, Department of Pediatrics, Faculty of Medicine, Chulalongkorn University, Bangkok 10330, Thailand;
| | - Mohitosh Biswas
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- Department of Pharmacy, University of Rajshahi, Rajshahi 6205, Bangladesh
| | - Chonlaphat Sukasem
- Division of Pharmacogenomics and Personalized Medicine, Department of Pathology, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand; (N.K.); (M.B.)
- Laboratory for Pharmacogenomics, Ramathibodi Hospital, Somdech Phra Debaratana Medical Center SDMC, Bangkok 10400, Thailand
- The Thai Severe Cutaneous Adverse Drug Reaction THAI-SCAR Research-Genomics Thailand, Ramathibodi Hospital, Mahidol University, Bangkok 10400, Thailand
- The Preventive Genomics & Family Check-Up Services Center, Bumrungrad International Hospital, Pharmacogenomics and Precision Medicine Clinic, Bangkok 10110, Thailand
- MRC Centre for Drug Safety Science, Department of Pharmacology and Therapeutics, Institute of Systems, Molecular and Integrative Biology, University of Liverpool, Liverpool L69 3GL, UK
| |
Collapse
|
17
|
Association of HLA-B*51:01, HLA-B*55:01, CYP2C9*3, and Phenytoin-Induced Cutaneous Adverse Drug Reactions in the South Indian Tamil Population. J Pers Med 2021; 11:jpm11080737. [PMID: 34442381 PMCID: PMC8400937 DOI: 10.3390/jpm11080737] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/25/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Phenytoin (PHT) is one of the most commonly reported aromatic anti-epileptic drugs (AEDs) to cause cutaneous adverse reactions (CADRs), particularly severe cutaneous adverse reactions (SCARs). Although human leukocyte antigen (HLA)-B*15:02 is associated with PHT-induced Steven Johnson syndrome/toxic epidermal necrosis (SJS/TEN) in East Asians, the association is much weaker than it is reported for carbamazepine (CBZ). In this study, we investigated the association of pharmacogenetic variants of the HLA B gene and CYP2C9*3 with PHT-CADRs in South Indian epileptic patients. This prospective case-controlled study included 25 PHT-induced CADRs, 30 phenytoin-tolerant patients, and 463 (HLA-B) and 82 (CYP2C9*3) normal-controls from previous studies included for the case and normal-control comparison. Six SCARs cases and 19 mild-moderate reactions were observed among the 25 cases. Pooled data analysis was performed for the HLA B*51:01 and PHT-CADRs associations. The Fisher exact test and multivariate binary logistic regression analysis were used to identify the susceptible alleles associated with PHT-CADRs. Multivariate analysis showed that CYP2C9*3 was significantly associated with overall PHT-CADRs (OR = 12.00, 95% CI 2.759–84.87, p = 003). In subgroup analysis, CYP2C9*3 and HLA B*55:01 were found to be associated with PHT-SCARs (OR = 12.45, 95% CI 1.138–136.2, p = 0.003) and PHT-maculopapular exanthema (MPE) (OR = 4.041, 95% CI 1.125–15.67, p = 0.035), respectively. Pooled data analysis has confirmed the association between HLA B*51:01/PHT-SCARs (OR = 6.273, 95% CI 2.24–16.69, p = <0.001) and HLA B*51:01/PHT-overall CADRs (OR = 2.323, 95% CI 1.22–5.899, p = 0.037). In this study, neither the case nor the control groups had any patients with HLA B*15:02. The risk variables for PHT-SCARs, PHT-overall CADRs, and PHT-MPE were found to be HLA B*51:01, CYP2C9*3, and HLA B*55:01, respectively. These alleles were identified as the risk factors for the first time in the South Indian Tamil population for PHT-CADRs. Further investigation is warranted to establish the clinical relevance of these alleles in this population with larger sample size.
Collapse
|