1
|
Kolomeets NS, Uranova NA. Deficit of satellite oligodendrocytes of neurons in the rostral part of the head of the caudate nucleus in schizophrenia. Eur Arch Psychiatry Clin Neurosci 2024:10.1007/s00406-024-01869-x. [PMID: 39073446 DOI: 10.1007/s00406-024-01869-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
Increasing evidence implicates compromised myelin integrity and oligodendrocyte abnormalities in the dysfunction of neuronal networks in schizophrenia. We previously reported a deficiency of myelinating oligodendrocytes (OL), oligodendrocyte progenitors (OP) and satellite oligodendrocytes of neurons (Sat-OL) in the prefrontal cortex and the inferior parietal cortex - cortical hubs of the frontoparietal cognitive network and default mode network (DMN) altered in schizophrenia. Deficiency of OL and OP was also detected in the head of the caudate nucleus (HCN), which accumulates cortical projections from the associative cortex and is the central node of these networks. However, the number of Sat-Ol per neuron in schizophrenia has not been studied in the HCN. In the current study we estimated the number of Sat-Ol per neuron in the rostral part of the HCN in schizophrenia (n = 18) compared to healthy controls (n = 18) in the same section collection that was previously used to study the number Ol and OP. We found a significant decrease of the number of Sat-Ol per neuron (- 50%, p < 0.001) in schizophrenia as compared to normal controls. Considering that the rostral part of the HCN is an individual network-specific projection zone of the DMN, the deficit of Sat-Ol found in schizophrenia may be related to the dysfunctional DMN-HCN connections, which has been repeatedly described in schizophrenia. The dramatic decrease of the number of Sat-Ol per neuron may be partially related to a pronounced excess of dopamine concentration in the rostral part of the HCN in schizophrenia.
Collapse
Affiliation(s)
- N S Kolomeets
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia
| | - N A Uranova
- Laboratory of Clinical Neuropathology, Mental Health Research Center, Kashirskoe shosse 34, Moscow, 115522, Russia.
| |
Collapse
|
2
|
Jørgensen KN, Nerland S, Slapø NB, Norbom LB, Mørch-Johnsen L, Wortinger LA, Barth C, Andreou D, Maximov II, Geier OM, Andreassen OA, Jönsson EG, Agartz I. Assessing regional intracortical myelination in schizophrenia spectrum and bipolar disorders using the optimized T1w/T2w-ratio. Psychol Med 2024; 54:2369-2379. [PMID: 38563302 DOI: 10.1017/s0033291724000503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/04/2024]
Abstract
BACKGROUND Dysmyelination could be part of the pathophysiology of schizophrenia spectrum (SCZ) and bipolar disorders (BPD), yet few studies have examined myelination of the cerebral cortex. The ratio of T1- and T2-weighted magnetic resonance images (MRI) correlates with intracortical myelin. We investigated the T1w/T2w-ratio and its age trajectories in patients and healthy controls (CTR) and explored associations with antipsychotic medication use and psychotic symptoms. METHODS Patients with SCZ (n = 64; mean age = 30.4 years, s.d. = 9.8), BPD (n = 91; mean age 31.0 years, s.d. = 10.2), and CTR (n = 155; mean age = 31.9 years, s.d. = 9.1) who participated in the TOP study (NORMENT, University of Oslo, Norway) were clinically assessed and scanned using a General Electric 3 T MRI system. T1w/T2w-ratio images were computed using an optimized pipeline with intensity normalization and field inhomogeneity correction. Vertex-wise regression models were used to compare groups and examine group × age interactions. In regions showing significant differences, we explored associations with antipsychotic medication use and psychotic symptoms. RESULTS No main effect of diagnosis was found. However, age slopes of the T1w/T2w-ratio differed significantly between SCZ and CTR, predominantly in frontal and temporal lobe regions: Lower T1w/T2w-ratio values with higher age were found in CTR, but not in SCZ. Follow-up analyses revealed a more positive age slope in patients who were using antipsychotics and patients using higher chlorpromazine-equivalent doses. CONCLUSIONS While we found no evidence of reduced intracortical myelin in SCZ or BPD relative to CTR, different regional age trajectories in SCZ may suggest a promyelinating effect of antipsychotic medication.
Collapse
Affiliation(s)
- Kjetil Nordbø Jørgensen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry, Telemark Hospital, Skien, Norway
| | - Stener Nerland
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Nora Berz Slapø
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| | - Linn B Norbom
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Psychology, PROMENTA Research Center, University of Oslo, Oslo, Norway
| | - Lynn Mørch-Johnsen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatry & Department of Clinical Research, Østfold Hospital, Grålum, Norway
| | - Laura Anne Wortinger
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Claudia Barth
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
| | - Dimitrios Andreou
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ivan I Maximov
- Department of Psychology, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
- Department of Health and Functioning, Western Norway University of Applied Sciences, Bergen, Norway
| | - Oliver M Geier
- Department of Physics and Computational Radiology, Division of Radiology and Nuclear Medicine, Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- The Norwegian Centre for Mental Disorders Research (NORMENT), Division of Mental Health and Addiction, Oslo University Hospital, Oslo, Norway
| | - Erik G Jönsson
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| | - Ingrid Agartz
- The Norwegian Centre for Mental Disorders Research (NORMENT), Institute of Clinical Medicine, University of Oslo, Oslo, Norway
- Department of Psychiatric Research, Diakonhjemmet Hospital, Oslo, Norway
- Department of Clinical Neuroscience, Centre for Psychiatry Research, Karolinska Institutet, Stockholm, Sweden & Stockholm Health Care Services, Stockholm Region, Stockholm, Sweden
| |
Collapse
|
3
|
Gaudreault PO, King SG, Malaker P, Alia-Klein N, Goldstein RZ. Whole-brain white matter abnormalities in human cocaine and heroin use disorders: association with craving, recency, and cumulative use. Mol Psychiatry 2023; 28:780-791. [PMID: 36369361 PMCID: PMC9911401 DOI: 10.1038/s41380-022-01833-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 10/04/2022] [Accepted: 10/10/2022] [Indexed: 11/13/2022]
Abstract
Neuroimaging studies in substance use disorder have shown widespread impairments in white matter (WM) microstructure suggesting demyelination and axonal damage. However, substantially fewer studies explored the generalized vs. the acute and/or specific drug effects on WM. Our study assessed whole-brain WM integrity in three subgroups of individuals addicted to drugs, encompassing those with cocaine (CUD) or heroin (HUD) use disorder, compared to healthy controls (CTL). Diffusion MRI was acquired in 58 CTL, 28 current cocaine users/CUD+, 32 abstinent cocaine users/CUD-, and 30 individuals with HUD (urine was positive for cocaine in CUD+ and opiates used for treatment in HUD). Tract-Based Spatial Statistics allowed voxelwise analyses of diffusion metrics [fractional anisotropy (FA), mean diffusivity (MD), radial diffusivity (RD), and axial diffusivity (AD)]. Permutation statistics (p-corrected < 0.05) were used for between-group t-tests. Compared to CTL, all individuals with addiction showed widespread decreases in FA, and increases in MD, RD, and AD (19-57% of WM skeleton, p < 0.05). The HUD group showed the most impairments, followed by the CUD+, with only minor FA reductions in CUD- (<0.2% of WM skeleton, p = 0.05). Longer periods of regular use were associated with decreased FA and AD, and higher subjective craving was associated with increased MD, RD, and AD, across all individuals with drug addiction (p < 0.05). These findings demonstrate extensive WM impairments in individuals with drug addiction characterized by decreased anisotropy and increased diffusivity, thought to reflect demyelination and lower axonal packing. Extensive abnormalities in both groups with positive urine status (CUD+ and HUD), and correlations with craving, suggest greater WM impairments with more recent use. Results in CUD-, and correlations with regular use, further imply cumulative and/or persistent WM damage.
Collapse
Affiliation(s)
- Pierre-Olivier Gaudreault
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Sarah G King
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Pias Malaker
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Nelly Alia-Klein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA
| | - Rita Z Goldstein
- Psychiatry and Neuroscience Departments, Icahn School of Medicine at Mount Sinai, New York City, NY, USA.
| |
Collapse
|
4
|
He X, Yang L, Dong K, Zhang F, Liu Y, Ma B, Chen Y, Hai J, Zhu R, Cheng L. Biocompatible exosome-modified fibrin gel accelerates the recovery of spinal cord injury by VGF-mediated oligodendrogenesis. J Nanobiotechnology 2022; 20:360. [PMID: 35918769 PMCID: PMC9344707 DOI: 10.1186/s12951-022-01541-3] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/04/2022] [Indexed: 12/17/2022] Open
Abstract
Exosomes show potential for treating patients with spinal cord injury (SCI) in clinical practice, but the underlying repair mechanisms remain poorly understood, and biological scaffolds available for clinical transplantation of exosomes have yet to be explored. In the present study, we demonstrated the novel function of Gel-Exo (exosomes encapsulated in fibrin gel) in promoting behavioural and electrophysiological performance in mice with SCI, and the upregulated neural marker expression in the lesion site suggested enhanced neurogenesis by Gel-Exo. According to the RNA-seq results, Vgf (nerve growth factor inducible) was the key regulator through which Gel-Exo accelerated recovery from SCI. VGF is related to myelination and oligodendrocyte development according to previous reports. Furthermore, we found that VGF was abundant in exosomes, and Gel-Exo-treated mice with high VGF expression indeed showed increased oligodendrogenesis. VGF was also shown to promote oligodendrogenesis both in vitro and in vivo, and lentivirus-mediated VGF overexpression in the lesion site showed reparative effects equal to those of Gel-Exo treatment in vivo. These results suggest that Gel-Exo can thus be used as a biocompatible material for SCI repair, in which VGF-mediated oligodendrogenesis is the vital mechanism for functional recovery.
Collapse
Affiliation(s)
- Xiaolie He
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Li Yang
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Kun Dong
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Feng Zhang
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Yuchen Liu
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Bei Ma
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Youwei Chen
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Jian Hai
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China
| | - Rongrong Zhu
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
| | - Liming Cheng
- Orthopaedics Department of Tongji Hospital, Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, School of Medicine, School of Life Sciences and Technology, Tongji University, Shanghai, 200065, People's Republic of China.
| |
Collapse
|
5
|
Present and future antipsychotic drugs: a systematic review of the putative mechanisms of action for efficacy and a critical appraisal under a translational perspective. Pharmacol Res 2022; 176:106078. [PMID: 35026403 DOI: 10.1016/j.phrs.2022.106078] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 12/23/2021] [Accepted: 01/07/2022] [Indexed: 01/10/2023]
Abstract
Antipsychotics represent the mainstay of schizophrenia pharmacological therapy, and their role has been expanded in the last years to mood disorders treatment. Although introduced in 1952, many years of research were required before an accurate picture of how antipsychotics work began to emerge. Despite the well-recognized characterization of antipsychotics in typical and atypical based on their liability to induce motor adverse events, their main action at dopamine D2R to elicit the "anti-psychotic" effect, as well as the multimodal action at other classes of receptors, their effects on intracellular mechanisms starting with receptor occupancy is still not completely understood. Significant lines of evidence converge on the impact of these compounds on multiple molecular signaling pathways implicated in the regulation of early genes and growth factors, dendritic spine shape, brain inflammation, and immune response, tuning overall the function and architecture of the synapse. Here we present, based on PRISMA approach, a comprehensive and systematic review of the above mechanisms under a translational perspective to disentangle those intracellular actions and signaling that may underline clinically relevant effects and represent potential targets for further innovative strategies in antipsychotic therapy.
Collapse
|
6
|
Talhada D, Marklund N, Wieloch T, Kuric E, Ruscher K. Plasticity-Enhancing Effects of Levodopa Treatment after Stroke. Int J Mol Sci 2021; 22:10226. [PMID: 34638567 PMCID: PMC8508853 DOI: 10.3390/ijms221910226] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 09/10/2021] [Accepted: 09/21/2021] [Indexed: 11/21/2022] Open
Abstract
Dopaminergic treatment in combination with rehabilitative training enhances long-term recovery after stroke. However, the underlying mechanisms on structural plasticity are unknown. Here, we show an increased dopaminergic innervation of the ischemic territory during the first week after stroke induced in Wistar rats subjected to transient occlusion of the middle cerebral artery (tMCAO) for 120 min. This response was also found in rats subjected to permanent focal ischemia induced by photothrombosis (PT) and mice subjected to PT or tMCAO. Dopaminergic branches were detected in the infarct core of mice and rats in both stroke models. In addition, the Nogo A pathway was significantly downregulated in rats treated with levodopa (LD) compared to vehicle-treated animals subjected to tMCAO. Specifically, the number of Nogo A positive oligodendrocytes as well as the levels of Nogo A and the Nogo A receptor were significantly downregulated in the peri-infarct area of LD-treated animals, while the number of Oligodendrocyte transcription factor 2 positive cells increased in this region after treatment. In addition, we observed lower protein levels of Growth Associated Protein 43 in the peri-infarct area compared to sham-operated animals without treatment effect. The results provide the first evidence of the plasticity-promoting actions of dopaminergic treatment following stroke.
Collapse
Affiliation(s)
- Daniela Talhada
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
| | - Niklas Marklund
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden;
| | - Tadeusz Wieloch
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
| | - Enida Kuric
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
| | - Karsten Ruscher
- Laboratory for Experimental Brain Research, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden; (D.T.); (T.W.); (E.K.)
- LUBIN Lab—Lunds Laboratorium för Neurokirurgisk Hjärnskadeforskning, Division of Neurosurgery, Department of Clinical Sciences, Lund University, S-22184 Lund, Sweden;
| |
Collapse
|
7
|
Mitelman SA, Buchsbaum MS, Christian BT, Merrill BM, Buchsbaum BR, Mukherjee J, Lehrer DS. Dopamine receptor density and white mater integrity: 18F-fallypride positron emission tomography and diffusion tensor imaging study in healthy and schizophrenia subjects. Brain Imaging Behav 2021; 14:736-752. [PMID: 30523488 DOI: 10.1007/s11682-018-0012-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Dopaminergic dysfunction and changes in white matter integrity are among the most replicated findings in schizophrenia. A modulating role of dopamine in myelin formation has been proposed in animal models and healthy human brain, but has not yet been systematically explored in schizophrenia. We used diffusion tensor imaging and 18F-fallypride positron emission tomography in 19 healthy and 25 schizophrenia subjects to assess the relationship between gray matter dopamine D2/D3 receptor density and white matter fractional anisotropy in each diagnostic group. AFNI regions of interest were acquired for 42 cortical Brodmann areas and subcortical gray matter structures as well as stereotaxically placed in representative white matter areas implicated in schizophrenia neuroimaging literature. Welch's t-test with permutation-based p value adjustment was used to compare means of z-transformed correlations between fractional anisotropy and 18F-fallypride binding potentials in hypothesis-driven regions of interest in the diagnostic groups. Healthy subjects displayed an extensive pattern of predominantly negative correlations between 18F-fallypride binding across a range of cortical and subcortical gray matter regions and fractional anisotropy in rostral white matter regions (internal capsule, frontal lobe, anterior corpus callosum). These patterns were disrupted in subjects with schizophrenia, who displayed significantly weaker overall correlations as well as comparatively scant numbers of significant correlations with the internal capsule and frontal (but not temporal) white matter, especially for dopamine receptor density in thalamic nuclei. Dopamine D2/D3 receptor density and white matter integrity appear to be interrelated, and their decreases in schizophrenia may stem from hyperdopaminergia with dysregulation of dopaminergic impact on axonal myelination.
Collapse
Affiliation(s)
- Serge A Mitelman
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA. .,Department of Psychiatry, Division of Child and Adolescent Psychiatry, Elmhurst Hospital Center, 79-01 Broadway, Elmhurst, NY, 11373, USA.
| | - Monte S Buchsbaum
- Departments of Psychiatry and Radiology, University of California, San Diego, 11388 Sorrento Valley Road, San Diego, CA, 92121, USA.,Department of Psychiatry and Human Behavior, Irvine School of Medicine, University of California, 101 The City Dr. S, Orange, CA, 92868, USA
| | - Bradley T Christian
- Waisman Laboratory for Brain Imaging and Behavior, University of Wisconsin-Madison, 1500 Highland Avenue, Room T231, Madison, WI, 53705, USA
| | - Brian M Merrill
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| | - Bradley R Buchsbaum
- The Rotman Research Institute, Baycrest Centre for Geriatric Care and Department of Psychiatry, University of Toronto, 3560 Bathurst St, Toronto, ON, M6A 2E1, Canada
| | - Jogeshwar Mukherjee
- Department of Radiological Sciences, Preclinical Imaging, Irvine School of Medicine, University of California, Irvine, CA, 92697, USA
| | - Douglas S Lehrer
- Department of Psychiatry, Boonshoft School of Medicine, Wright State University, East Medical Plaza, Dayton, OH, 45408, USA
| |
Collapse
|
8
|
Martins-de-Souza D, Guest PC, Reis-de-Oliveira G, Schmitt A, Falkai P, Turck CW. An overview of the human brain myelin proteome and differences associated with schizophrenia. World J Biol Psychiatry 2021; 22:271-287. [PMID: 32602824 DOI: 10.1080/15622975.2020.1789217] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
OBJECTIVES Disturbances in the myelin sheath drive disruptions in neural transmission and brain connectivity as seen in schizophrenia. Here, the myelin proteome was characterised in schizophrenia patients and healthy controls to visualise differences in proteomic profiles. METHODS A liquid chromatography tandem mass spectrometry-based shotgun proteomic analysis was performed of a myelin-enriched fraction of postmortem brain samples from schizophrenia patients (n = 12) and mentally healthy controls (n = 8). In silico pathway analyses were performed on the resulting data. RESULTS The present characterisation of the human myelinome led to the identification of 480 non-redundant proteins, of which 102 proteins are newly annotated to be associated with the myelinome. Levels of 172 of these proteins were altered between schizophrenia patients and controls. These proteins were mainly associated with glial cell differentiation, metabolism/energy, synaptic vesicle function and neurodegeneration. The hub proteins with the highest degree of connectivity in the network included multiple kinases and synaptic vesicle transport proteins. CONCLUSIONS Together these findings suggest disruptive effects on synaptic activity and therefore neural transmission and connectivity, consistent with the dysconnectivity hypothesis of schizophrenia. Further studies on these proteins may lead to the identification of potential drug targets related to the synaptic dysconnectivity in schizophrenia and other psychiatric and neurodegenerative disorders.
Collapse
Affiliation(s)
- Daniel Martins-de-Souza
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil.,Instituto Nacional de Biomarcadores em Neuropsiquiatria (INBION) Conselho Nacional de Desenvolvimento Científico e Tecnológico, São Paulo, Brazil.,Experimental Medicine Research Cluster (EMRC), University of Campinas, Campinas, Brazil.,D'Or Institute for Research and Education (IDOR), São Paulo, Brazil
| | - Paul C Guest
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Guilherme Reis-de-Oliveira
- Laboratory of Neuroproteomics, Department of Biochemistry and Tissue Biology, Institute of Biology, University of Campinas (UNICAMP), Campinas, Brazil
| | - Andrea Schmitt
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Peter Falkai
- Department of Psychiatry and Psychotherapy, University Hospital, LMU Munich, Munich, Germany
| | - Christoph W Turck
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
| |
Collapse
|
9
|
Ji E, Guevara P, Guevara M, Grigis A, Labra N, Sarrazin S, Hamdani N, Bellivier F, Delavest M, Leboyer M, Tamouza R, Poupon C, Mangin JF, Houenou J. Increased and Decreased Superficial White Matter Structural Connectivity in Schizophrenia and Bipolar Disorder. Schizophr Bull 2019; 45:1367-1378. [PMID: 30953566 PMCID: PMC6811818 DOI: 10.1093/schbul/sbz015] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Schizophrenia (SZ) and bipolar disorder (BD) are often conceptualized as "disconnection syndromes," with substantial evidence of abnormalities in deep white matter tracts, forming the substrates of long-range connectivity, seen in both disorders. However, the study of superficial white matter (SWM) U-shaped short-range tracts remained challenging until recently, although findings from postmortem studies suggest they are likely integral components of SZ and BD neuropathology. This diffusion weighted imaging (DWI) study aimed to investigate SWM microstructure in vivo in both SZ and BD for the first time. We performed whole brain tractography in 31 people with SZ, 32 people with BD and 54 controls using BrainVISA and Connectomist 2.0. Segmentation and labeling of SWM tracts were performed using a novel, comprehensive U-fiber atlas. Analysis of covariances yielded significant generalized fractional anisotropy (gFA) differences for 17 SWM bundles in frontal, parietal, and temporal cortices. Post hoc analyses showed gFA reductions in both patient groups as compared with controls in bundles connecting regions involved in language processing, mood regulation, working memory, and motor function (pars opercularis, insula, anterior cingulate, precentral gyrus). We also found increased gFA in SZ patients in areas overlapping the default mode network (inferior parietal, middle temporal, precuneus), supporting functional hyperconnectivity of this network evidenced in SZ. We thus illustrate that short U-fibers are vulnerable to the pathological processes in major psychiatric illnesses, encouraging improved understanding of their anatomy and function.
Collapse
Affiliation(s)
- Ellen Ji
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,To whom correspondence should be addressed; INSERM U955, Hôpitaux Universitaires Mondor, 40 rue de Mesly, Créteil 94010, France; tel: +33-1-49-81-30-51, fax: +33-1-49-81-30-59, e-mail:
| | - Pamela Guevara
- Faculty of Engineering, Universidad de Concepción, Concepción, Chile
| | | | | | | | - Samuel Sarrazin
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France
| | - Nora Hamdani
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Frank Bellivier
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marine Delavest
- AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | - Marion Leboyer
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| | - Ryad Tamouza
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,Fondation Fondamental, Créteil, France,AP-HP, GH Saint-Louis - Lariboisière - F. Widal, Département de Psychiatrie et de Médecine Additologique, INSERM UMR-S1144, Paris Diderot University, Paris, France
| | | | | | - Josselin Houenou
- INSERM U955 Unit, Mondor Institute for Biomedical Research, Team 15 “Translational Psychiatry”, Créteil, France,NeuroSpin CEA Saclay, Gif-sur-Yvette, France,Fondation Fondamental, Créteil, France,AP-HP, Department of Psychiatry and Addictology, Mondor University Hospitals, School of Medicine, DHU PePsy, Créteil, France
| |
Collapse
|
10
|
Mizoguchi T, Hara H, Shimazawa M. VGF has Roles in the Pathogenesis of Major Depressive Disorder and Schizophrenia: Evidence from Transgenic Mouse Models. Cell Mol Neurobiol 2019; 39:721-727. [PMID: 31037515 DOI: 10.1007/s10571-019-00681-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 04/25/2019] [Indexed: 12/22/2022]
Abstract
Mental disorders, such as major depressive disorder and schizophrenia, are complex multigenetic conditions, but focused studies of single genes might reveal genes involved in the pathogenesis of mental disorders, including major depressive disorder and schizophrenia. Several candidate genes have been identified using transgenic mice. VGF nerve growth factor inducible (VGF) is a neuropeptide expression of which is induced by nerve growth factor (NGF). VGF is robustly and exclusively synthesized in neuronal and neuroendocrine cells. In central nervous system (CNS), VGF is extensively expressed especially in the cerebral cortex, hippocampus, and hypothalamus. VGF has many roles in the CNS, such as promotion of synaptic plasticity, neurogenesis, and neurite outgrowth. In clinical studies, altered expression and genetic mutations of VGF have been reported in patients with major depressive disorder and schizophrenia. On this basis, studies using transgenic mice to overexpress or knockout VGF have been performed to investigate the roles of upregulation or downregulation of VGF. In this review, we will discuss studies of the roles of VGF using transgenic mice and its relevance to pathologies in major depressive disorder and schizophrenia.
Collapse
Affiliation(s)
- Takahiro Mizoguchi
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Hideaki Hara
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan
| | - Masamitsu Shimazawa
- Molecular Pharmacology, Department of Biofunctional Evaluation, Gifu Pharmaceutical University, 1-25-4 Daigaku-nishi, Gifu, 501-1196, Japan.
| |
Collapse
|
11
|
Tao B, Xiao Y, Hu N, Shah C, Liu L, Gao X, Liu J, Zhang W, Yao L, Xu H, Hua J, Lui S. Reduced cortical thickness related to single nucleotide polymorphisms in the major histocompatibility complex region in antipsychotic-naive schizophrenia. Brain Behav 2019; 9:e01253. [PMID: 30924326 PMCID: PMC6598395 DOI: 10.1002/brb3.1253] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 01/30/2019] [Accepted: 02/13/2019] [Indexed: 02/05/2023] Open
Abstract
The aim of this study was to explore the relationships between changes in cortical thickness and single nucleotide polymorphisms (SNPs) in the major histocompatibility complex (MHC) region in a group of antipsychotic-naive schizophrenia (AN-SCZ) patients. Methods Twenty-five AN-SCZ patients and 51 healthy controls (HCs) participated in this study. General linear models were used to identify associations between the average cortical thicknesses of each brain region (N = 68) and each of the 11 SNPs in the MHC region in the AN-SCZ patients and HCs. Next, we performed independent-sample t tests to investigate whether cortical thickness was significantly lower in the AN-SCZ patients than in HCs in the brain regions that were significantly associated with the SNPs. Finally, we examined the correlations between clinical symptoms and cortical thickness in the above brain areas in the whole AN-SCZ group using Pearson correlation tests. Results Seven of the 11 SNPs within the MHC region were significantly associated with cortical thickness only in the AN-SCZ patients; these included rs1635, rs1736913, rs2021722, rs204999, rs2523722, rs3131296, and rs9272105. The AN-SCZ patients had significantly thinner cortical thicknesses in the above brain regions, especially the prefrontal cortex. Furthermore, the left entorhinal region was negatively correlated with Positive and Negative Symptom Scale (PANSS) activation scores in the AN-SCZ group (r = -0.601, p = 0.03). Conclusions This study provides evidence demonstrating the potential effects of MHC risk variants in cortical thickness deficits in AN-SCZ. These data also support the notion that the immune system plays critical roles in the pathology of schizophrenia, which is mediated via the modulation of the development of cerebral cortical structures.
Collapse
Affiliation(s)
- Bo Tao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Yuan Xiao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Na Hu
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Chandan Shah
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Lu Liu
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Xin Gao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Jieke Liu
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Wenjing Zhang
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Li Yao
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| | - Heng Xu
- State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Jun Hua
- Department of Radiology, Johns Hopkins University of Medicine, Baltimore, Maryland
| | - Su Lui
- Department of Radiology, Center for Medical Imaging, West China Hospital of Sichuan University, Chengdu, China
| |
Collapse
|
12
|
Ersland KM, Myrmel LS, Fjære E, Berge RK, Madsen L, Steen VM, Skrede S. One-Year Treatment with Olanzapine Depot in Female Rats: Metabolic Effects. Int J Neuropsychopharmacol 2019; 22:358-369. [PMID: 30854556 PMCID: PMC6499254 DOI: 10.1093/ijnp/pyz012] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2018] [Revised: 02/26/2019] [Accepted: 03/06/2019] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Antipsychotic drugs can negatively affect the metabolic status of patients, with olanzapine as one of the most potent drugs. While patients are often medicated for long time periods, experiments in rats typically run for 1 to 12 weeks, showing olanzapine-related weight gain and increased plasma lipid levels, with transcriptional upregulation of lipogenic genes in liver and adipose tissue. It remains unknown whether metabolic status will deteriorate with time. METHODS To examine long-term metabolic effects, we administered intramuscular long-acting injections of olanzapine (100 mg/kg BW) or control substance to female rats for up to 13 months. RESULTS Exposure to olanzapine long-acting injections led to rapid weight gain, which was sustained throughout the experiment. At 1, 6, and 13 months, plasma lipid levels were measured in separate cohorts of rats, displaying no increase. Hepatic transcription of lipid-related genes was transiently upregulated at 1 month. Glucose and insulin tolerance tests indicated insulin resistance in olanzapine-treated rats after 12 months. CONCLUSION Our data show that the continuous increase in body weight in response to long-term olanzapine exposure was accompanied by surprisingly few concomitant changes in plasma lipids and lipogenic gene expression, suggesting that adaptive mechanisms are involved to reduce long-term metabolic adverse effects of this antipsychotic agent in rats.
Collapse
Affiliation(s)
- Kari M Ersland
- The Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Norway,Dr. Einar Martens’ Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| | | | - Even Fjære
- Institute of Marine Research, Bergen, Norway
| | - Rolf K Berge
- The Lipid Research Group, Section for Medical Biochemistry, Department of Clinical Science, University of Bergen, Bergen, Norway
| | - Lise Madsen
- Institute of Marine Research, Bergen, Norway,Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Vidar M Steen
- The Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Norway,Dr. Einar Martens’ Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway,Correspondence: Professor Vidar M. Steen, MD, PhD, Department of Clinical Science, University of Bergen, Bergen, Norway ()
| | - Silje Skrede
- The Norwegian Centre for Mental Disorders Research (NORMENT), Department of Clinical Science, University of Bergen, Norway,Dr. Einar Martens’ Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway
| |
Collapse
|
13
|
Gjerde PB, Jørgensen KN, Steen NE, Melle I, Andreassen OA, Steen VM, Agartz I. Association between olanzapine treatment and brain cortical thickness and gray/white matter contrast is moderated by cholesterol in psychotic disorders. Psychiatry Res Neuroimaging 2018; 282:55-63. [PMID: 30415175 DOI: 10.1016/j.pscychresns.2018.10.001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/07/2018] [Revised: 10/09/2018] [Accepted: 10/09/2018] [Indexed: 01/21/2023]
Abstract
Altered cortical brain morphology is observed in psychotic disorders. Despite the importance of lipid homeostasis for healthy brain functioning, knowledge about its role in cortical alterations in psychosis is limited. In a sample of patients with psychotic disorders, we investigated the relationship between treatment with olanzapine (OLZ), and cortical thickness and gray/white matter intensity contrast, and the association between these measures and serum lipid levels. We included 33 OLZ users, 19 unmedicated psychotic patients and 76 healthy controls (HC). Data on serum lipids and cortical measures based on MR brain images processed with FreeSurfer were analyzed with General Linear Models. We found that intensity contrast was similar in OLZ users as compared to HC and that the cortex (frontal, orbitofrontal, medial temporal) was thinner in OLZ users (p < 0.05, Bonferroni corrected). An OLZ-specific HDL interaction effect was further found for the pericentral cortical thickness measure (p < 0.05, Bonferroni corrected). Additionally, nominally significant findings indicated similar OLZ-specific interaction effects for cortical thickness in several regions, and an OLZ-specific interaction with LDL for occipital lobe contrast (p < 0.05, uncorrected). Our findings may suggest a drug-related lipid-effect on brain myelination. Experimental studies and replications in different study samples are needed to clarify these complex relationships further.
Collapse
Affiliation(s)
- Priyanthi B Gjerde
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Kjetil N Jørgensen
- Department of Psychiatric Research, Diakonhjemmet Hospital, Vinderen, 0373 Oslo, Norway; NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Nils E Steen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ingrid Melle
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Ole A Andreassen
- NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway.
| | - Vidar M Steen
- NORMENT, K.G. Jebsen Centre for Psychosis Research, Department of Clinical Science, University of Bergen, Bergen, Norway; Dr. Einar Martens Research Group for Biological Psychiatry, Department of Medical Genetics, Haukeland University Hospital, Bergen, Norway.
| | - Ingrid Agartz
- Department of Psychiatric Research, Diakonhjemmet Hospital, Vinderen, 0373 Oslo, Norway; NORMENT, KG Jebsen Centre for Psychosis Research, Division of Mental Health and Addiction, Oslo University Hospital, and Institute of Clinical Medicine, University of Oslo, Oslo, Norway; Department of Clinical Neuroscience, Centre for Psychiatric Research, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|