1
|
Sullivan PF, Yao S, Hjerling-Leffler J. Schizophrenia genomics: genetic complexity and functional insights. Nat Rev Neurosci 2024; 25:611-624. [PMID: 39030273 DOI: 10.1038/s41583-024-00837-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/04/2024] [Indexed: 07/21/2024]
Abstract
Determining the causes of schizophrenia has been a notoriously intractable problem, resistant to a multitude of investigative approaches over centuries. In recent decades, genomic studies have delivered hundreds of robust findings that implicate nearly 300 common genetic variants (via genome-wide association studies) and more than 20 rare variants (via whole-exome sequencing and copy number variant studies) as risk factors for schizophrenia. In parallel, functional genomic and neurobiological studies have provided exceptionally detailed information about the cellular composition of the brain and its interconnections in neurotypical individuals and, increasingly, in those with schizophrenia. Taken together, these results suggest unexpected complexity in the mechanisms that drive schizophrenia, pointing to the involvement of ensembles of genes (polygenicity) rather than single-gene causation. In this Review, we describe what we now know about the genetics of schizophrenia and consider the neurobiological implications of this information.
Collapse
Affiliation(s)
- Patrick F Sullivan
- Department of Genetics, University of North Carolina, Chapel Hill, NC, USA.
- Department of Psychiatry, University of North Carolina, Chapel Hill, NC, USA.
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden.
| | - Shuyang Yao
- Department of Medical Epidemiology and Biostatistics, Karolinska Institutet, Stockholm, Sweden
| | - Jens Hjerling-Leffler
- Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
2
|
Ahangari M, Kirkpatrick R, Nguyen TH, Gillespie N, Kendler KS, Bacanu SA, Webb BT, Verrelli BC, Riley BP. Examining the source of increased bipolar disorder and major depressive disorder common risk variation burden in multiplex schizophrenia families. SCHIZOPHRENIA (HEIDELBERG, GERMANY) 2022; 8:106. [PMID: 36434002 PMCID: PMC9700852 DOI: 10.1038/s41537-022-00317-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 11/03/2022] [Indexed: 11/27/2022]
Abstract
Psychotic and affective disorders often aggregate in the relatives of probands with schizophrenia, and genetic studies show substantial genetic correlation among schizophrenia, bipolar disorder, and major depressive disorder. In this study, we examined the polygenic risk burden of bipolar disorder and major depressive disorder in 257 multiplex schizophrenia families (N = 1005) from the Irish Study of High-Density Multiplex Schizophrenia Families versus 2205 ancestry-matched controls. Our results indicate that members of multiplex schizophrenia families have an increased polygenic risk for bipolar disorder and major depressive disorder compared to population controls. However, this observation is largely attributable to the part of the genetic risk that bipolar disorder or major depressive disorder share with schizophrenia due to genetic correlation, rather than the affective portion of the genetic risk unique to them. These findings suggest that a complete interpretation of cross-disorder polygenic risks in multiplex families requires an assessment of the relative contribution of shared versus unique genetic factors to account for genetic correlations across psychiatric disorders.
Collapse
Affiliation(s)
- Mohammad Ahangari
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA.
- Integrative Life Sciences PhD Program, Virginia Commonwealth University, Richmond, VA, USA.
| | - Robert Kirkpatrick
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Tan-Hoang Nguyen
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Nathan Gillespie
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Kenneth S Kendler
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| | - Silviu-Alin Bacanu
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
| | - Bradley T Webb
- GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI International, Research Triangle Park, NC, USA
| | - Brian C Verrelli
- Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA, USA
| | - Brien P Riley
- Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA, USA
- Department of Psychiatry, Virginia Commonwealth University, Richmond, VA, USA
- Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA, USA
| |
Collapse
|
3
|
Ahangari M, Gentry AE, Nguyen TH, Kirkpatrick R, Verrelli BC, Bacanu SA, Kendler KS, Webb BT, Riley BP. Evaluating the role of common risk variation in the recurrence risk of schizophrenia in multiplex schizophrenia families. Transl Psychiatry 2022; 12:291. [PMID: 35864105 PMCID: PMC9304393 DOI: 10.1038/s41398-022-02060-3] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Multiplex families have higher recurrence risk of schizophrenia compared to the families of sporadic cases, but the source of this increased recurrence risk is unknown. We used schizophrenia genome-wide association study data (N = 156,509) to construct polygenic risk scores (PRS) in 1005 individuals from 257 multiplex schizophrenia families, 2114 ancestry-matched sporadic cases, and 2205 population controls, to evaluate whether increased PRS can explain the higher recurrence risk of schizophrenia in multiplex families compared to ancestry-matched sporadic cases. Using mixed-effects logistic regression with family structure modeled as a random effect, we show that SCZ PRS in familial cases does not differ significantly from sporadic cases either with, or without family history (FH) of psychotic disorders (All sporadic cases p = 0.90, FH+ cases p = 0.88, FH- cases p = 0.82). These results indicate that increased burden of common schizophrenia risk variation as indexed by current SCZ PRS, is unlikely to account for the higher recurrence risk of schizophrenia in multiplex families. In the absence of elevated PRS, segregation of rare risk variation or environmental influences unique to the families may explain the increased familial recurrence risk. These findings also further validate a genetically influenced psychosis spectrum, as shown by a continuous increase of common SCZ risk variation burden from unaffected relatives to schizophrenia cases in multiplex families. Finally, these results suggest that common risk variation loading are unlikely to be predictive of schizophrenia recurrence risk in the families of index probands, and additional components of genetic risk must be identified and included in order to improve recurrence risk prediction.
Collapse
Affiliation(s)
- Mohammad Ahangari
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Integrative Life Sciences PhD Program, Virginia Commonwealth University, Richmond, VA USA
| | - Amanda E. Gentry
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA
| | | | - Tan-Hoang Nguyen
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
| | - Robert Kirkpatrick
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
| | - Brian C. Verrelli
- grid.224260.00000 0004 0458 8737Center for Biological Data Science, Virginia Commonwealth University, Richmond, VA USA
| | - Silviu-Alin Bacanu
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA
| | - Kenneth S. Kendler
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA USA
| | - Bradley T. Webb
- grid.505215.6GenOmics, Bioinformatics, and Translational Research Center, Biostatistics and Epidemiology Division, RTI, Richmond, VA USA
| | - Brien P. Riley
- grid.224260.00000 0004 0458 8737Virginia Institute for Psychiatric and Behavioral Genetics, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Psychiatry, Virginia Commonwealth University, Richmond, VA USA ,grid.224260.00000 0004 0458 8737Department of Human and Molecular Genetics, Virginia Commonwealth University, Richmond, VA USA
| |
Collapse
|
4
|
Abstract
BACKGROUND To date, besides genome-wide association studies, a variety of other genetic analyses (e.g. polygenic risk scores, whole-exome sequencing and whole-genome sequencing) have been conducted, and a large amount of data has been gathered for investigating the involvement of common, rare and very rare types of DNA sequence variants in bipolar disorder. Also, non-invasive neuroimaging methods can be used to quantify changes in brain structure and function in patients with bipolar disorder. AIMS To provide a comprehensive assessment of genetic findings associated with bipolar disorder, based on the evaluation of different genomic approaches and neuroimaging studies. METHOD We conducted a PubMed search of all relevant literatures from the beginning to the present, by querying related search strings. RESULTS ANK3, CACNA1C, SYNE1, ODZ4 and TRANK1 are five genes that have been replicated as key gene candidates in bipolar disorder pathophysiology, through the investigated studies. The percentage of phenotypic variance explained by the identified variants is small (approximately 4.7%). Bipolar disorder polygenic risk scores are associated with other psychiatric phenotypes. The ENIGMA-BD studies show a replicable pattern of lower cortical thickness, altered white matter integrity and smaller subcortical volumes in bipolar disorder. CONCLUSIONS The low amount of explained phenotypic variance highlights the need for further large-scale investigations, especially among non-European populations, to achieve a more complete understanding of the genetic architecture of bipolar disorder and the missing heritability. Combining neuroimaging data with genetic data in large-scale studies might help researchers acquire a better knowledge of the engaged brain regions in bipolar disorder.
Collapse
Affiliation(s)
- Mojtaba Oraki Kohshour
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Immunology, School of Medicine, Ahvaz Jundishapur University of Medical Sciences, Iran
| | - Sergi Papiol
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Psychotherapy, University Hospital LMU Munich, Germany
| | - Christopher R K Ching
- Imaging Genetics Center, Mark and Mary Stevens Neuroimaging and Informatics Institute, Keck School of Medicine, University of Southern California, USA
| | - Thomas G Schulze
- Institute of Psychiatric Phenomics and Genomics, University Hospital LMU Munich, Germany; and Department of Psychiatry and Behavioral Sciences, SUNY Upstate Medical University, USA
| |
Collapse
|
5
|
Birmaher B, Hafeman D, Merranko J, Zwicker A, Goldstein B, Goldstein T, Axelson D, Monk K, Hickey MB, Sakolsky D, Iyengar S, Diler R, Nimgaonkar V, Uher R. Role of Polygenic Risk Score in the Familial Transmission of Bipolar Disorder in Youth. JAMA Psychiatry 2022; 79:160-168. [PMID: 34935868 PMCID: PMC8696688 DOI: 10.1001/jamapsychiatry.2021.3700] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
IMPORTANCE Establishing genetic contributions to the transmission of bipolar disorder (BD) from parents to offspring may inform the risk of developing this disorder and further serve to validate BD in youth. OBJECTIVE To evaluate the specific association of BD polygenic risk scores (PRSs) on the familial transmission and validity of pediatric BD. DESIGN, SETTING, AND PARTICIPANTS This community-based case-control longitudinal study (Pittsburgh Biological Offspring Study) included parents with BD I/II and their offspring and parents without BD (healthy or non-BD psychopathology) and their offspring. Participants were recruited between March 2001 and May 2007, and analysis took place from December 2020 to September 2021. EXPOSURES PRSs for BD, major depressive disorder, schizophrenia, and attention-deficit/hyperactivity disorder. MAIN OUTCOMES AND MEASURES Participants were prospectively evaluated using standardized interviews blind to parental diagnosis. DNA was extracted from saliva and genotyped. PRSs were constructed based on independent large-scale genome-wide association studies. RESULTS A total of 156 parents with BD I/II and 180 parents without BD (mean [SD] age, 39.6 [7.9] years; 241 female [72%]) as well as 251 offspring of parents with BD and 158 offspring of parents without BD (mean [SD] age, 10.4 [4.7] years; 213 female [52%]) of European ancestry were analyzed. Participants were assessed a mean of 6.7 times during a mean (SD) of 13 (3.4) years of follow-up (84% retention). More offspring of parents with BD developed BD (58 [23.1%] vs 8 [5.1%]; P < .001) and depression (126 [50.2%] vs 52 [32.9%]; P < .001) compared with offspring of parents without BD. BD PRS was higher in both parents and offspring with BD than parents and offspring without BD (parents: odds ratio, 1.50; 95% CI, 1.19-1.89; P < .001; explained 4.8% of the phenotypic variance vs offspring: hazard ratio, 1.34; 95% CI, 1.03-1.7; P = .02; explained 5.0% of the phenotypic variance). BD PRS did not differ across BD subtypes. In a model combining parental and offspring BD PRS, the parental BD PRS association with offspring BD was fully mediated by offspring BD PRS (hazard ratio, 1.40; 95% CI, 1.05-1.86; P = .02). Parental BD had a stronger direct association than parental or offspring BD PRS with offspring BD risk (hazard ratio, 5.21; 95% CI, 1.86-14.62; P = .002), explaining 30% of the variance. Parental and offspring BD PRS explained 6% of the BD onset variance beyond parental diagnosis. There were no significant between-group differences in PRSs for major depressive disorder, schizophrenia, and attention-deficit/hyperactivity disorder in parents or offspring and they were not significantly associated with BD onset. CONCLUSIONS AND RELEVANCE The findings of this study add to the extant clinical validation of BD in youth. Parental BD and offspring BD PRS independently associated with the risk of BD in offspring. Although this is promising, the association of BD PRS was relatively small and cannot be used alone to determine BD risk until further developments occur.
Collapse
Affiliation(s)
- Boris Birmaher
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Danella Hafeman
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - John Merranko
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Alyson Zwicker
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, Canada,Dalhousie Medicine New Brunswick, Dalhousie University, St John, New Brunswick, Canada
| | - Benjamin Goldstein
- Center for Addiction and Mental Health, University of Toronto Faculty of Medicine, Toronto, Ontario, Canada
| | - Tina Goldstein
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - David Axelson
- Nationwide Children’s Hospital and Ohio State College of Medicine, Columbus
| | - Kelly Monk
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Mary Beth Hickey
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Dara Sakolsky
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Rasim Diler
- Western Psychiatric Hospital, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | | | - Rudolf Uher
- Department of Psychiatry, Dalhousie University, Nova Scotia, Canada
| |
Collapse
|
6
|
Halvorsen M, Szatkiewicz J, Mudgal P, Yu D, Nordsletten AE, Mataix-Cols D, Mathews CA, Scharf JM, Mattheisen M, Robertson MM, McQuillin A, Crowley JJ. Elevated common variant genetic risk for tourette syndrome in a densely-affected pedigree. Mol Psychiatry 2021; 26:7522-7529. [PMID: 34526668 PMCID: PMC8881309 DOI: 10.1038/s41380-021-01277-w] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/29/2021] [Accepted: 08/20/2021] [Indexed: 12/13/2022]
Abstract
Tourette syndrome (TS) is a highly heritable neuropsychiatric disorder with complex patterns of genetic inheritance. Recent genetic findings in TS have highlighted both numerous common variants with small effects and a few rare variants with moderate or large effects. Here we searched for genetic causes of TS in a large, densely-affected British pedigree using a systematic genomic approach. This pedigree spans six generations and includes 122 members, 85 of whom were individually interviewed, and 53 of whom were diagnosed as "cases" (consisting of 28 with definite or probable TS, 20 with chronic multiple tics [CMT], and five with obsessive-compulsive behaviors [OCB]). A total of 66 DNA samples were available (25 TS, 15 CMT, 4 OCB cases, and 22 unaffecteds) and all were genotyped using a dense single nucleotide polymorphism (SNP) array to identify shared segments, copy number variants (CNVs), and to calculate genetic risk scores. Eight cases were also whole genome sequenced to test whether any rare variants were shared identical by descent. While we did not identify any notable CNVs, single nucleotide variants, indels or repeat expansions of near-Mendelian effect, the most distinctive feature of this family proved to be an unusually high load of common risk alleles for TS. We found that cases within this family carried a higher load of TS common variant risk similar to that previously found in unrelated TS cases. Thus far, the strongest evidence from genetic data for contribution to TS risk in this family comes from multiple common risk variants rather than one or a few variants of strong effect.
Collapse
Affiliation(s)
- Matthew Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Jin Szatkiewicz
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Poorva Mudgal
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| | - Dongmei Yu
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Ashley E Nordsletten
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Psychiatry, University of Michigan, Ann Arbor, MI, USA
| | - David Mataix-Cols
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Carol A Mathews
- Department of Psychiatry and Genetics Institute, University of Florida, Gainesville, FL, USA
| | - Jeremiah M Scharf
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Department of Psychiatry, Massachusetts General Hospital, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Cambridge, MA, USA
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Manuel Mattheisen
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
- Department of Biomedicine, Aarhus University, Aarhus, Denmark
- Center for Psychiatry Research, Stockholm Health Care Services, Stockholm County Council, Stockholm, Sweden
- Department of Psychiatry, Psychosomatics and Psychotherapy, University of Würzburg, Würzburg, Germany
| | | | - Andrew McQuillin
- Molecular Psychiatry Laboratory, Division of Psychiatry, University College London, London, UK
| | - James J Crowley
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
- Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Department of Psychiatry, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
| |
Collapse
|
7
|
Abstract
Tourette syndrome (TS) is a severe neuropsychiatric disorder characterized by recurrent, involuntary physical and verbal tics. With a prevalence as high as 1% in children, a deeper understanding of the etiology of the disorder and contributions to risk is critical. Here, we cover the current body of knowledge in scientific literature regarding the genetics of TS. We first review the history and diagnostic criteria for TS cases. We then cover the prevalence, and begin to address the etiology of the disorder. We highlight long-standing evidence for a genetic contribution to TS risk from epidemiology studies focused on twins, families, and population-scale data. Finally, we summarize current large-scale genetic studies of TS along specific classes of genetic variation, including common variation, rare copy number variation, and de novo variation that impact protein-coding sequence. Although these variants do not account for the entirety of TS genetic risk, current evidence is clear that each class of variation is a factor in the overall risk architecture across TS cases.
Collapse
Affiliation(s)
- Laura Domènech
- Psychiatric and Neurodevelopmental Genetics Unit, Center for Genomic Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
- Stanley Center for Psychiatric Research, Broad Institute of MIT and Harvard, Boston, MA, USA
| | - Carolina Cappi
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- The Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Department of Psychiatry, School of Medicine, University of São Paulo, São Paulo, Brazil
| | - Matt Halvorsen
- Department of Genetics, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA
| |
Collapse
|
8
|
Li S, DeLisi LE, McDonough SI. Rare germline variants in individuals diagnosed with schizophrenia within multiplex families. Psychiatry Res 2021; 303:114038. [PMID: 34174581 DOI: 10.1016/j.psychres.2021.114038] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Accepted: 05/27/2021] [Indexed: 12/30/2022]
Abstract
An extensive catalog of common and rare genetic variants contributes to overall risk for schizophrenia and related disorders. As a complement to population genetics efforts, here we present whole genome sequences of multiple affected probands within individual families to search for possible high penetrance driver variants. From a total of 15 families diagnostically evaluated by a single research psychiatrist, we performed whole genome sequencing of a total of 61 affected individuals, called SNPs, indels, and copy number variants, and compared to reference genomes. In fourteen out of fifteen families, the schizophrenia polygenic risk score for each proband was within the control range defined by the Thousand Genomes cohort. In six families, each affected member carried a very rare or private, predicted-damaging, variant in at least one gene. Among these genes, variants in LRP1 and TENM2 suggest these are candidate disease-related genes when taken into context with existing population genetic studies and biological information. Results add to the number of pedigree sequences reported, suggest pathways for the investigation of biological mechanisms, and are consistent with the overall accumulating evidence that very rare damaging variants contribute to the heritability of schizophrenia.
Collapse
Affiliation(s)
| | - Lynn E DeLisi
- Cambridge Health Alliance, Cambridge, MA, United States; Harvard Medical School, Boston, MA, United States
| | | |
Collapse
|
9
|
Pol-Fuster J, Cañellas F, Ruiz-Guerra L, Medina-Dols A, Bisbal-Carrió B, Ortega-Vila B, Llinàs J, Hernandez-Rodriguez J, Lladó J, Olmos G, Strauch K, Heine-Suñer D, Vives-Bauzà C, Flaquer A. The conserved ASTN2/BRINP1 locus at 9q33.1-33.2 is associated with major psychiatric disorders in a large pedigree from Southern Spain. Sci Rep 2021; 11:14529. [PMID: 34267256 PMCID: PMC8282839 DOI: 10.1038/s41598-021-93555-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2021] [Accepted: 06/21/2021] [Indexed: 11/11/2022] Open
Abstract
We investigated the genetic causes of major mental disorders (MMDs) including schizophrenia, bipolar disorder I, major depressive disorder and attention deficit hyperactive disorder, in a large family pedigree from Alpujarras, South of Spain, a region with high prevalence of psychotic disorders. We applied a systematic genomic approach based on karyotyping (n = 4), genotyping by genome-wide SNP array (n = 34) and whole-genome sequencing (n = 12). We performed genome-wide linkage analysis, family-based association analysis and polygenic risk score estimates. Significant linkage was obtained at chromosome 9 (9q33.1–33.2, LOD score = 4.11), a suggestive region that contains five candidate genes ASTN2, BRINP1, C5, TLR4 and TRIM32, previously associated with MMDs. Comprehensive analysis associated the MMD phenotype with genes of the immune system with dual brain functions. Moreover, the psychotic phenotype was enriched for genes involved in synapsis. These results should be considered once studying the genetics of psychiatric disorders in other families, especially the ones from the same region, since founder effects may be related to the high prevalence.
Collapse
Affiliation(s)
- Josep Pol-Fuster
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Francesca Cañellas
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Department of Psychiatry, HUSE, IdISBa, Palma, Spain
| | - Laura Ruiz-Guerra
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Aina Medina-Dols
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bàrbara Bisbal-Carrió
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Bernat Ortega-Vila
- Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.,Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jaume Llinàs
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain
| | - Jessica Hernandez-Rodriguez
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Jerònia Lladó
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Gabriel Olmos
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain.,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain
| | - Konstantin Strauch
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| | - Damià Heine-Suñer
- Molecular Diagnostics and Clinical Genetics Unit (UDMGC) and Genomics of Health Research Group, Hospital Universitari Son Espases (HUSE) and Institut d'Investigacions Sanitaries de Balears (IDISBA), Palma, Spain
| | - Cristòfol Vives-Bauzà
- Department of Biology, University of Balearic Islands (UIB), Institut Universitari d'Investigacions en Ciències de la Salut (IUNICS), Palma, Spain. .,Neurobiology Laboratory, Research Unit, Son Espases University Hospital (HUSE), Health Research Institute of Balearic Islands (IdISBa), Floor -1, Module F, R-805, Palma, Spain.
| | - Antònia Flaquer
- Institute of Medical Biostatistics, Epidemiology and Informatics (IMBEI), University Medical Center, Johannes Gutenberg University, Mainz, Germany.,Institute of Genetic Epidemiology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany.,Institute of Medical Informatics, Biometry and Epidemiology, Chair of Genetic Epidemiology, LMU Munich, Munich, Germany
| |
Collapse
|
10
|
Andlauer TFM, Guzman-Parra J, Streit F, Strohmaier J, González MJ, Gil Flores S, Cabaleiro Fabeiro FJ, Del Río Noriega F, Perez FP, Haro González J, Orozco Diaz G, de Diego-Otero Y, Moreno-Küstner B, Auburger G, Degenhardt F, Heilmann-Heimbach S, Herms S, Hoffmann P, Frank J, Foo JC, Treutlein J, Witt SH, Cichon S, Kogevinas M, Rivas F, Mayoral F, Müller-Myhsok B, Forstner AJ, Nöthen MM, Rietschel M. Bipolar multiplex families have an increased burden of common risk variants for psychiatric disorders. Mol Psychiatry 2021; 26:1286-1298. [PMID: 31712721 PMCID: PMC7985020 DOI: 10.1038/s41380-019-0558-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 07/17/2019] [Accepted: 07/24/2019] [Indexed: 12/13/2022]
Abstract
Multiplex families with a high prevalence of a psychiatric disorder are often examined to identify rare genetic variants with large effect sizes. In the present study, we analysed whether the risk for bipolar disorder (BD) in BD multiplex families is influenced by common genetic variants. Furthermore, we investigated whether this risk is conferred mainly by BD-specific risk variants or by variants also associated with the susceptibility to schizophrenia or major depression. In total, 395 individuals from 33 Andalusian BD multiplex families (166 BD, 78 major depressive disorder, 151 unaffected) as well as 438 subjects from an independent, BD case/control cohort (161 unrelated BD, 277 unrelated controls) were analysed. Polygenic risk scores (PRS) for BD, schizophrenia (SCZ), and major depression were calculated and compared between the cohorts. Both the familial BD cases and unaffected family members had higher PRS for all three psychiatric disorders than the independent controls, with BD and SCZ being significant after correction for multiple testing, suggesting a high baseline risk for several psychiatric disorders in the families. Moreover, familial BD cases showed significantly higher BD PRS than unaffected family members and unrelated BD cases. A plausible hypothesis is that, in multiplex families with a general increase in risk for psychiatric disease, BD development is attributable to a high burden of common variants that confer a specific risk for BD. The present analyses demonstrated that common genetic risk variants for psychiatric disorders are likely to contribute to the high incidence of affective psychiatric disorders in the multiplex families. However, the PRS explained only part of the observed phenotypic variance, and rare variants might have also contributed to disease development.
Collapse
Affiliation(s)
- Till F M Andlauer
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Department of Neurology, Klinikum rechts der Isar, School of Medicine, Technical University of Munich, Munich, Germany
| | - Jose Guzman-Parra
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Fabian Streit
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jana Strohmaier
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | | | - Susana Gil Flores
- Department of Mental Health, University Hospital of Reina Sofia, Córdoba, Spain
| | | | | | | | | | - Guillermo Orozco Diaz
- Unidad de Gestión Clínica del Dispositivo de Cuidados Críticos y Urgencias del Distrito Sanitario Málaga-Coin-Guadalhorce, Málaga, Spain
| | - Yolanda de Diego-Otero
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Berta Moreno-Küstner
- Department of Personality, Assessment and Psychological Treatment, University of Malaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Georg Auburger
- Department of Neurology, Goethe University Medical School, Frankfurt am Main, Germany
| | - Franziska Degenhardt
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefanie Heilmann-Heimbach
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Stefan Herms
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | - Josef Frank
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jerome C Foo
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Jens Treutlein
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Stephanie H Witt
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Sven Cichon
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Institute of Neuroscience and Medicine (INM-1), Research Center Jülich, Jülich, Germany
| | | | - Fabio Rivas
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Fermín Mayoral
- Department of Mental Health, University Regional Hospital of Málaga, Institute of Biomedicine of Málaga (IBIMA), Málaga, Spain
| | - Bertram Müller-Myhsok
- Department of Translational Research in Psychiatry, Max Planck Institute of Psychiatry, Munich, Germany
- Munich Cluster for Systems Neurology (SyNergy), Munich, Germany
- Institute of Translational Medicine, University of Liverpool, Liverpool, UK
| | - Andreas J Forstner
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
- Department of Biomedicine, University of Basel, Basel, Switzerland
- Centre for Human Genetics, University of Marburg, Marburg, Germany
- Department of Psychiatry (UPK), University of Basel, Basel, Switzerland
| | - Markus M Nöthen
- Institute of Human Genetics, University of Bonn, School of Medicine & University Hospital Bonn, Bonn, Germany
| | - Marcella Rietschel
- Department of Genetic Epidemiology in Psychiatry, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany.
| |
Collapse
|
11
|
Ramsden DB, Waring RH, Parsons RB, Barlow DJ, Williams AC. Nicotinamide N-Methyltransferase: Genomic Connection to Disease. Int J Tryptophan Res 2020; 13:1178646920919770. [PMID: 32547055 PMCID: PMC7273554 DOI: 10.1177/1178646920919770] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 03/24/2020] [Indexed: 12/20/2022] Open
Abstract
Single-nucleotide polymorphisms (SNPs) in and around the nicotinamide
N-methyltransferase (NNMT) gene are associated with a range
of cancers and other diseases and conditions. The data on these associations
have been assembled, and their strength discussed. There is no evidence that the
presence of either the major or minor base in any SNP affects the expression of
nicotinamide N-methyltransferase. Nevertheless, suggestions
have been put forward that some of these SNPs do affect NNMT expression and thus
homocysteine metabolism. An alternative idea involving non-coding messenger RNAs
(mRNAs) is suggested as a possible mechanism whereby health is influenced. It is
postulated that these long, non-coding NNMT mRNAs may exert deleterious effects
by interfering with the expression of other genes. Neither hypothesis, however,
has experimental proof, and further work is necessary to elucidate NNMT genetic
interactions.
Collapse
Affiliation(s)
- David B Ramsden
- Institute of Metabolism and Systems Research, The Medical School, University of Birmingham, Birmingham, UK
| | | | - Richard B Parsons
- Institute of Pharmaceutical Science, Kings College London, London, UK
| | - David J Barlow
- Institute of Pharmaceutical Science, Kings College London, London, UK
| | | |
Collapse
|
12
|
Courtois E, Schmid M, Wajsbrot O, Barau C, Le Corvoisier P, Aouizerate B, Bellivier F, Belzeaux R, Dubertret C, Kahn JP, Leboyer M, Olie E, Passerieux C, Polosan M, Etain B, Jamain S. Contribution of common and rare damaging variants in familial forms of bipolar disorder and phenotypic outcome. Transl Psychiatry 2020; 10:124. [PMID: 32345981 PMCID: PMC7188882 DOI: 10.1038/s41398-020-0783-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 01/14/2020] [Accepted: 02/28/2020] [Indexed: 12/30/2022] Open
Abstract
Genome-wide association studies on bipolar disorders (BD) have revealed an additive polygenic contribution of common single-nucleotide polymorphisms (SNPs). However, these SNPs explain only 25% of the overall genetic variance and suggest a role of rare variants in BD vulnerability. Here, we combined high-throughput genotyping data and whole-exome sequencing in cohorts of individuals with BD as well as in multiplex families with a high density of affected individuals in order to determine the contribution of both common and rare variants to BD genetic vulnerability. Using polygenic risk scores (PRS), we showed a strong contribution of common polymorphisms previously associated with BD and schizophrenia (SZ) and noticed that those specifically associated with SZ contributed more in familial forms of BD than in non-familial ones. The analysis of rare damaging variants shared by affected individuals in multiplex families with BD revealed a single interaction network enriched in neuronal and developmental biological pathways, as well as in the regulation of gene expression. We identified four genes with a higher mutation rate in individuals with BD than in the general population and showed that mutations in two of them were associated with specific clinical manifestations. In addition, we showed a significant negative correlation between PRS and the number of rare damaging variants specifically in unaffected individuals of multiplex families. Altogether, our results suggest that common and rare genetic variants both contribute to the familial aggregation of BD and this genetic architecture may explain the heterogeneity of clinical manifestations in multiplex families.
Collapse
Affiliation(s)
- Elisa Courtois
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France
- Fondation FondaMental, Créteil, 94000, France
| | - Mark Schmid
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France
- Fondation FondaMental, Créteil, 94000, France
| | - Orly Wajsbrot
- Fondation FondaMental, Créteil, 94000, France
- Université de Lorraine, CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy, Laxou, 54520, France
| | - Caroline Barau
- AP-HP, Hôpital H. Mondor-A. Chenevier, Plateforme de Ressources Biologiques, Créteil, 94000, France
| | - Philippe Le Corvoisier
- Inserm, Centre d'Investigation Clinique 1430 and APHP, Henri Mondor Hospital, Créteil, 94000, France
| | - Bruno Aouizerate
- Fondation FondaMental, Créteil, 94000, France
- Centre Expert Troubles Bipolaires, Service de Psychiatrie Adulte, Hôpital Charles-Perrens, Bordeaux, 33000, France
| | - Frank Bellivier
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, 75010, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, 75010, France
- Inserm, UMR-S1144, Paris, 75010, France
| | - Raoul Belzeaux
- Fondation FondaMental, Créteil, 94000, France
- Pôle de Psychiatrie, Assistance Publique Hôpitaux de Marseille, INT-UMR7289, CNRS Aix-Marseille Université, Marseille, 13009, France
| | - Caroline Dubertret
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, Département de Psychiatrie, Hôpital Louis Mourier, INSERM U894, Université de Paris, Colombes, 92700, France
| | - Jean-Pierre Kahn
- Fondation FondaMental, Créteil, 94000, France
- Université de Lorraine, CHRU de Nancy et Pôle de Psychiatrie et Psychologie Clinique, Centre Psychothérapique de Nancy, Laxou, 54520, France
| | - Marion Leboyer
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, DHU PePSY, Pôle de Psychiatrie et d'Addictologie des Hôpitaux Universitaires Henri Mondor, Créteil, 94000, France
| | - Emilie Olie
- Fondation FondaMental, Créteil, 94000, France
- Département urgence et Post-urgence psychiatrique, CHU Montpellier, INSERM U1061, Université de Montpellier, Montpellier, 34000, France
| | - Christine Passerieux
- Fondation FondaMental, Créteil, 94000, France
- Service Universitaire de Psychiatrie d'Adultes, Centre Hospitalier de Versailles, Laboratoire HandiRESP, EA4047, UFR des Sciences de la Santé Simone Veil, Université de Versailles Saint-Quentin-En-Yvelines, Le Chesnay, 78150, France
| | - Mircea Polosan
- Fondation FondaMental, Créteil, 94000, France
- Université Grenoble Alpes, CHU de Grenoble et des Alpes, Grenoble Institut des Neurosciences (GIN) Inserm U 1216, La Tronche, 38700, France
| | - Bruno Etain
- Fondation FondaMental, Créteil, 94000, France
- AP-HP, GH Saint-Louis-Lariboisière-F. Widal, Département de Psychiatrie et de Médecine Addictologique, Paris, 75010, France
- Université Paris Diderot, Sorbonne Paris Cité, Paris, 75010, France
- Inserm, UMR-S1144, Paris, 75010, France
| | - Stéphane Jamain
- INSERM U955, Psychiatrie Translationnelle, Créteil, 94000, France.
- Université Paris Est, Faculté de Médecine, Créteil, 94000, France.
- Fondation FondaMental, Créteil, 94000, France.
| |
Collapse
|
13
|
Transcriptome analysis of fibroblasts from schizophrenia patients reveals differential expression of schizophrenia-related genes. Sci Rep 2020; 10:630. [PMID: 31959813 PMCID: PMC6971273 DOI: 10.1038/s41598-020-57467-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 12/19/2019] [Indexed: 01/05/2023] Open
Abstract
Schizophrenia is a complex neurodevelopmental disorder with high rate of morbidity and mortality. While the heritability rate is high, the precise etiology is still unknown. Although schizophrenia is a central nervous system disorder, studies using peripheral tissues have also been established to search for patient specific biomarkers and to increase understanding of schizophrenia etiology. Among all peripheral tissues, fibroblasts stand out as they are easy to obtain and culture. Furthermore, they keep genetic stability for long period and exhibit molecular similarities to cells from nervous system. Using a unique set of fibroblast samples from a genetically isolated population in northern Sweden, we performed whole transcriptome sequencing to compare differentially expressed genes in seven controls and nine patients. We found differential fibroblast expression between cases and controls for 48 genes, including eight genes previously implicated in schizophrenia or schizophrenia related pathways; HGF, PRRT2, EGR1, EGR3, C11orf87, TLR3, PLEKHH2 and PIK3CD. Weighted gene correlation network analysis identified three differentially co-expressed networks of genes significantly-associated with schizophrenia. All three modules were significantly suppressed in patients compared to control, with one module highly enriched in genes involved in synaptic plasticity, behavior and synaptic transmission. In conclusion, our results support the use of fibroblasts for identification of differentially expressed genes in schizophrenia and highlight dysregulation of synaptic networks as an important mechanism in schizophrenia.
Collapse
|