1
|
González VV, Zhang Y, Ashikyan SA, Rickard A, Yassine I, Romero-Sosa JL, Blaisdell AP, Izquierdo A. A special role for anterior cingulate cortex, but not orbitofrontal cortex or basolateral amygdala, in choices involving information. Cereb Cortex 2024; 34:bhae135. [PMID: 38610085 PMCID: PMC11014886 DOI: 10.1093/cercor/bhae135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/13/2024] [Indexed: 04/14/2024] Open
Abstract
Subjects are often willing to pay a cost for information. In a procedure that promotes paradoxical choices, animals choose between a richer option followed by a cue that is rewarded 50% of the time (No Info) vs. a leaner option followed by one of two cues that signal certain outcomes: one always rewarded (100%) and the other never rewarded, 0% (Info). Since decisions involve comparing the subjective value of options after integrating all their features, preference for information may rely on cortico-amygdalar circuitry. To test this, male and female rats were prepared with bilateral inhibitory Designer Receptors Exclusively Activated by Designer Drugs (DREADDs) in the anterior cingulate cortex, orbitofrontal cortex, basolateral amygdala, or null virus (control). We inhibited these regions after stable preference was acquired. We found that inhibition of the anterior cingulate cortex destabilized choice preference in female rats without affecting latency to choose or response rate to cues. A logistic regression fit revealed that previous choice predicted current choice in all conditions, however previously rewarded Info trials strongly predicted preference in all conditions except in female rats following anterior cingulate cortex inhibition. The results reveal a causal, sex-dependent role for the anterior cingulate cortex in decisions involving information.
Collapse
Affiliation(s)
- Valeria V González
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Yifan Zhang
- Department of Computer Science, University of Southern California, Salvatori Computer Science Center, 941 Bloom Walk, Los Angeles, CA 90089, United States
| | - Sonya A Ashikyan
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Anne Rickard
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Ibrahim Yassine
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Juan Luis Romero-Sosa
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
| | - Aaron P Blaisdell
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
- The Brain Research Institute, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Learning and Memory, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
| | - Alicia Izquierdo
- Department of Psychology, University of California-Los Angeles, 502 Portola Plaza, Los Angeles, CA 90095, United States
- The Brain Research Institute, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Learning and Memory, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
- Integrative Center for Addictions, University of California-Los Angeles, 695 Charles E Young Dr S, Los Angeles, CA 90095, United States
| |
Collapse
|
2
|
González VV, Ashikyan SA, Zhang Y, Rickard A, Yassine I, Romero-Sosa JL, Blaisdell AP, Izquierdo A. A special role for anterior cingulate cortex, but not orbitofrontal cortex or basolateral amygdala, in choices involving information. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.551514. [PMID: 37577596 PMCID: PMC10418268 DOI: 10.1101/2023.08.03.551514] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Subjects often are willing to pay a cost for information. In a procedure that promotes paradoxical choices, animals choose between a richer option followed by a cue that is rewarded 50% of the time (No-info) vs a leaner option followed by one of two cues that signal certain outcomes: one always rewarded (100%), and the other never rewarded, 0% (Info). Since decisions involve comparing the subjective value of options after integrating all their features, preference for information may rely on cortico-amygdalar circuitry. To test this, male and female rats were prepared with bilateral inhibitory DREADDs in the anterior cingulate cortex (ACC), orbitofrontal cortex (OFC), basolateral amygdala (BLA), or null virus (control). We inhibited these regions after stable preference was acquired. We found that inhibition of ACC destabilized choice preference in female rats without affecting latency to choose or response rate to cues. A logistic regression fit revealed that the previous choice strongly predicted preference in control animals, but not in female rats following ACC inhibition. The results reveal a causal, sex-dependent role for ACC in decisions involving information.
Collapse
|
3
|
Biernacki K, Molokotos E, Han C, Dillon DG, Leventhal AM, Janes AC. Enhanced decision-making in nicotine dependent individuals who abstain: A computational analysis using Hierarchical Drift Diffusion Modeling. Drug Alcohol Depend 2023; 250:110890. [PMID: 37480798 PMCID: PMC10530296 DOI: 10.1016/j.drugalcdep.2023.110890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 06/26/2023] [Accepted: 07/04/2023] [Indexed: 07/24/2023]
Abstract
BACKGROUND Variability in decision-making capacity and reward responsiveness may underlie differences in the ability to abstain from smoking. Computational modeling of choice behavior, as with the Hierarchical Drift Diffusion Model (HDDM), can help dissociate reward responsiveness from underlying components of decision-making. Here we used the HDDM to identify which decision-making or reward-related parameters, extracted from data acquired in a reward processing task, contributed to the ability of people who smoke that are not seeking treatment to abstain from cigarettes during a laboratory task. METHODS 80 adults who smoke cigarettes completed the Probabilistic Reward Task (PRT) - a signal detection task with a differential reinforcement schedule - following smoking as usual, and the Relapse Analogue Task (RAT) - a task in which participants could earn money for delaying smoking up to 50min - after a period of overnight abstinence. Two cohorts were defined by the RAT; those who waited either 0-min (n=36) or the full 50-min (n=44) before smoking. RESULTS PRT signal detection metrics indicated all subjects learned the task contingencies, with no differences in response bias or discriminability between the two groups. However, HDDM analyses indicated faster drift rates in 50-min vs. 0-min waiters. CONCLUSIONS Relative to those who did not abstain, computational modeling indicated that people who abstained from smoking for 50min showed faster evidence accumulation during reward-based decision-making. These results highlight the importance of decision-making mechanisms to smoking abstinence, and suggest that focusing on the evidence accumulation process may yield new targets for treatment.
Collapse
Affiliation(s)
- Kathryn Biernacki
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD21224, United States.
| | - Elena Molokotos
- Suffolk University, Boston, MA02116, United States; CBTeam, Lexington, MA02421, United States
| | - Chungmin Han
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD21224, United States
| | - Daniel G Dillon
- Center for Depression, Anxiety and Stress Research, McLean Hospital, Belmont, MA02478, United States; Harvard Medical School, Boston, MA02115, United States
| | - Adam M Leventhal
- Institute for Addiction Science, University of Southern California, Los Angeles, CA90033, United States
| | - Amy C Janes
- National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD21224, United States
| |
Collapse
|
4
|
Nissan N, Hertz U, Shahar N, Gabay Y. Distinct reinforcement learning profiles distinguish between language and attentional neurodevelopmental disorders. BEHAVIORAL AND BRAIN FUNCTIONS : BBF 2023; 19:6. [PMID: 36941632 PMCID: PMC10029183 DOI: 10.1186/s12993-023-00207-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Accepted: 01/26/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Theoretical models posit abnormalities in cortico-striatal pathways in two of the most common neurodevelopmental disorders (Developmental dyslexia, DD, and Attention deficit hyperactive disorder, ADHD), but it is still unclear what distinct cortico-striatal dysfunction might distinguish language disorders from others that exhibit very different symptomatology. Although impairments in tasks that depend on the cortico-striatal network, including reinforcement learning (RL), have been implicated in both disorders, there has been little attempt to dissociate between different types of RL or to compare learning processes in these two types of disorders. The present study builds upon prior research indicating the existence of two learning manifestations of RL and evaluates whether these processes can be differentiated in language and attention deficit disorders. We used a two-step RL task shown to dissociate model-based from model-free learning in human learners. RESULTS Our results show that, relative to neurotypicals, DD individuals showed an impairment in model-free but not in model-based learning, whereas in ADHD the ability to use both model-free and model-based learning strategies was significantly compromised. CONCLUSIONS Thus, learning impairments in DD may be linked to a selective deficit in the ability to form action-outcome associations based on previous history, whereas in ADHD some learning deficits may be related to an incapacity to pursue rewards based on the tasks' structure. Our results indicate how different patterns of learning deficits may underlie different disorders, and how computation-minded experimental approaches can differentiate between them.
Collapse
Affiliation(s)
- Noyli Nissan
- Department of Special Education, University of Haifa, Haifa, Israel
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, 199 Abba Khoushy Ave, Haifa, Israel
| | - Uri Hertz
- Department of Cognitive Sciences, University of Haifa, Haifa, Israel
| | - Nitzan Shahar
- The School of Psychological Sciences, Tel Aviv University, Tel Aviv, Israel
- Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
| | - Yafit Gabay
- Department of Special Education, University of Haifa, Haifa, Israel.
- Edmond J. Safra Brain Research Center for the Study of Learning Disabilities, University of Haifa, 199 Abba Khoushy Ave, Haifa, Israel.
| |
Collapse
|
5
|
Iotzov V, Weiß M, Windmann S, Hein G. Valence framing induces cognitive bias. CURRENT PSYCHOLOGY 2022. [DOI: 10.1007/s12144-022-03797-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
AbstractValence framing effects refer to inconsistent choice preferences in response to positive versus negative formulation of mathematically equivalent outcomes. Here, we manipulate valence framing in a two-alternative forced choice dictator game using gains and losses as frames to investigate the cognitive mechanisms underlying valence framing. We applied a Drift-Diffusion Model (DDM) to examine whether gain (i.e., “take” money) and loss (i.e., “give” money) frames evoke a cognitive bias as previous research did not consistently reveal framing effects using reaction times and response frequency as dependent variables. DDMs allow decomposing the decision process into separate cognitive mechanisms, whereby a cognitive bias was repeatedly associated with a shift in the starting point of the model. Conducting both a laboratory (N = 62) and an online study (N = 109), female participants allocated money between themselves and another person in a prosocial or selfish way. In each study, one group was instructed to give money (give frame), the other to take money (take frame). Consistent with previous studies, no differences were found in response times and response frequencies. However, in both studies, substantial bias towards the selfish option was found in the take frame groups, captured by the starting point of the DDM. Thus, our results suggest that valence framing induces a cognitive bias in decision processing in women, even when no behavioral differences are present.
Collapse
|
6
|
Daood M, Peled-Avron L, Ben-Hayun R, Nevat M, Aharon-Peretz J, Tomer R, Admon R. Fronto-striatal connectivity patterns account for the impact of methylphenidate on choice impulsivity among healthy adults. Neuropharmacology 2022; 216:109190. [PMID: 35835210 DOI: 10.1016/j.neuropharm.2022.109190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/06/2022] [Accepted: 07/07/2022] [Indexed: 10/17/2022]
Abstract
Choice impulsivity depicts a preference towards smaller-sooner rewards over larger-delayed rewards, and is often assessed using a delay discounting (DD) task. Previous research uncovered the prominent role of dopaminergic signaling within fronto-striatal circuits in mediating choice impulsivity. Administration of methylphenidate (MPH), an indirect dopaminergic agonist, was shown to reduce choice impulsivity in animals and pathological populations, although significant inter-individual variability in these effects was reported. Whether MPH impacts choice impulsivity among healthy individuals, and whether variability in the impact of MPH is related to fronto-striatal activation and connectivity patterns, has yet to be assessed. Here, fifty-seven healthy young adults completed the DD task twice during fMRI scans, after acute administration of either MPH (20 mg) or placebo, in a randomized double-blind placebo-controlled design. Acute MPH administration was found to reduce choice impulsivity at the group level, yet substantial variability in this behavioral response was observed. MPH was also found to increase activation in the bilateral putamen and the right caudate, and to enhance functional connectivity between the left putamen and medial prefrontal cortex (mPFC), particularly during non-impulsive choices. Notably, the more putamen-mPFC functional connectivity increased during non-impulsive choices following MPH administration, the less an individual was likely to make impulsive choices. These findings reveal, for the first time in healthy adults, that acute MPH administration is associated with reduced choice impulsivity and increased striatal activation and fronto-striatal connectivity; and furthermore, that the magnitude of MPH-induced change in fronto-striatal connectivity may account for individual differences in the impact of MPH on impulsive behavior.
Collapse
Affiliation(s)
- Maryana Daood
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Leehe Peled-Avron
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | - Rachel Ben-Hayun
- The Cognitive Neurology Institute, Rambam Health Care Campus, Haifa, Israel
| | - Michael Nevat
- School of Psychological Sciences, University of Haifa, Haifa, Israel
| | | | - Rachel Tomer
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel
| | - Roee Admon
- School of Psychological Sciences, University of Haifa, Haifa, Israel; The Integrated Brain and Behavior Research Center (IBBRC), University of Haifa, Haifa, Israel.
| |
Collapse
|
7
|
Prepubertal methylphenidate leads to sex-dependent differences in probabilistic discounting. Pharmacol Biochem Behav 2022; 218:173424. [PMID: 35780911 DOI: 10.1016/j.pbb.2022.173424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 06/08/2022] [Accepted: 06/27/2022] [Indexed: 10/17/2022]
Abstract
Prescription psychostimulants, such as methylphenidate (MPH), have served as a first line treatment for ADHD and associated developmental disorders since 1961. Psychostimulants has been shown to improve attention, response inhibition, and reduce hyperactivity in patients with ADHD, as well as in non-clinical human populations and animals. While there is a considerable amount of preclinical research investigating the effects of stimulant medications on reward sensitivity and basic learning in male rats, less is understood about their effects in females. Further, there are competing theories on the long-term cognitive impact of MPH, specifically in children who do not have ADHD. To this end, Long-Evans female and male rats were exposed to methylphenidate (0, 2.5, 5 mg/kg, BID, IP) for 20 days during early development (PD10-29). After discontinuation of MPH into adulthood, rats (beginning PD 60) were trained and tested for risk-preference using a 2-choice probabilistic discounting task. For this task, rats were given an option between a 'large-risky' choice (3 sugar pellets delivered on a probabilistic VR schedule) and 'small-certain' choice (1 sugar pellet delivered on a FR schedule). Rats were subsequently tested on an open field conflict test. The results demonstrate that prepubertal exposure to MPH can have lasting effects on decision-making. Specifically, female rats treated with 2.5 mg/kg MPH displayed a decrease in preference for the risky option, whereas male rats treated with the same dose showed an overall increase in preference compared to sex-matched controls. Irrespective of sex, rats treated with 2.5 mg/kg MPH also demonstrated a decrease in anxiety/inhibitory behavior on the modified open field test compared to controls. These results were not due to differences in locomotor behavior. Overall, the study contributes to the growing body of evidence to suggest that MPH exposure early in development can have a sex-dependent impact on decision-making in adulthood.
Collapse
|
8
|
Gross J, Faber NS, Kappes A, Nussberger AM, Cowen PJ, Browning M, Kahane G, Savulescu J, Crockett MJ, De Dreu CK. When Helping Is Risky: The Behavioral and Neurobiological Trade-off of Social and Risk Preferences. Psychol Sci 2021; 32:1842-1855. [PMID: 34705578 PMCID: PMC7614101 DOI: 10.1177/09567976211015942] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Helping other people can entail risks for the helper. For example, when treating infectious patients, medical volunteers risk their own health. In such situations, decisions to help should depend on the individual's valuation of others' well-being (social preferences) and the degree of personal risk the individual finds acceptable (risk preferences). We investigated how these distinct preferences are psychologically and neurobiologically integrated when helping is risky. We used incentivized decision-making tasks (Study 1; N = 292 adults) and manipulated dopamine and norepinephrine levels in the brain by administering methylphenidate, atomoxetine, or a placebo (Study 2; N = 154 adults). We found that social and risk preferences are independent drivers of risky helping. Methylphenidate increased risky helping by selectively altering risk preferences rather than social preferences. Atomoxetine influenced neither risk preferences nor social preferences and did not affect risky helping. This suggests that methylphenidate-altered dopamine concentrations affect helping decisions that entail a risk to the helper.
Collapse
Affiliation(s)
- Jörg Gross
- Institute of Psychology, Leiden University,Corresponding author: Jörg Gross, Leiden University, Institute of Psychology, Wassenaarseweg 52, 2300 RB Leiden, , +31 71 527 2727
| | - Nadira S. Faber
- College of Life and Environmental Sciences, University of Exeter,Oxford Uehiro Centre for Practical Ethics, University of Oxford
| | | | | | - Philip J Cowen
- Department of Psychiatry, University of Oxford,Oxford Health NHS Foundation Trust, Oxford
| | - Michael Browning
- Department of Psychiatry, University of Oxford,Oxford Health NHS Foundation Trust, Oxford
| | - Guy Kahane
- Oxford Uehiro Centre for Practical Ethics, University of Oxford
| | | | | | - Carsten K.W. De Dreu
- Institute of Psychology, Leiden University,Center for Research in Experimental Economics and Political Decision Making (CREED), University of Amsterdam
| |
Collapse
|