1
|
Anitha A, Banerjee M, Thanseem I, Prakash A, Melempatt N, Sumitha PS, Iype M, Thomas SV. Rare Pathogenic Variants Identified in Whole Exome Sequencing of Monozygotic Twins With Autism Spectrum Disorder. Pediatr Neurol 2024; 158:113-123. [PMID: 39038432 DOI: 10.1016/j.pediatrneurol.2024.06.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 05/07/2024] [Accepted: 06/09/2024] [Indexed: 07/24/2024]
Abstract
BACKGROUND Autism spectrum disorder (ASD) is a childhood-onset complex neurodevelopmental disorder characterized by problems with communication and social interaction and restricted, repetitive, stereotyped behavior. The prevalence of ASD is one in 36 children. The genetic architecture of ASD is complex in spite of its high heritability. To identify the potential candidate genes of ASD, we carried out a comprehensive genetic study of monozygotic (MZ) twins concordant or discordant for ASD. METHODS Five MZ twins and their parents were recruited for the study. Four of the twins were concordant, whereas one was discordant for ASD. Whole exome sequencing was conducted for the twins and their parents. The exome DNA was enriched using Twist Human Customized Core Exome Kit, and paired-end sequencing was performed on HiSeq system. RESULTS We identified several rare and pathogenic variants (homozygous recessive, compound heterozygous, de novo) in ASD-affected individuals. CONCLUSION We report novel variants in individuals diagnosed with ASD. Several of these genes are involved in brain-related functions and not previously reported in ASD. Intriguingly, some of the variants were observed in the genes involved in sensory perception (auditory [MYO15A, PLEC, CDH23, UBR3, GPSM2], olfactory [OR9K2], gustatory [TAS2R31], and visual [CDH23, UBR3]). This is the first comprehensive genetic study of MZ twins in an Indian population. Further validation is required to determine whether these variants are associated with ASD.
Collapse
Affiliation(s)
- Ayyappan Anitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India.
| | - Moinak Banerjee
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Ismail Thanseem
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Anil Prakash
- Department of Neurobiology, Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram, Kerala, India
| | - Nisha Melempatt
- Department of Audiology and Speech Language Pathology (ASLP), ICCONS, Palakkad, Kerala, India
| | - P S Sumitha
- Department of Neurogenetics, Institute for Communicative and Cognitive Neurosciences (ICCONS), Palakkad, Kerala, India
| | - Mary Iype
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India; Department of Pediatric Neurology, Government Medical College, Thiruvananthapuram, Kerala, India
| | - Sanjeev V Thomas
- Department of Neurology, ICCONS, Thiruvananthapuram, Kerala, India; Department of Neurology, ICCONS, Shoranur, Kerala, India
| |
Collapse
|
2
|
Schieweck R, Götz M. Pan-cellular organelles and suborganelles-from common functions to cellular diversity? Genes Dev 2024; 38:98-114. [PMID: 38485267 PMCID: PMC10982711 DOI: 10.1101/gad.351337.123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Cell diversification is at the base of increasing multicellular organism complexity in phylogeny achieved during ontogeny. However, there are also functions common to all cells, such as cell division, cell migration, translation, endocytosis, exocytosis, etc. Here we revisit the organelles involved in such common functions, reviewing recent evidence of unexpected differences of proteins at these organelles. For instance, centrosomes or mitochondria differ significantly in their protein composition in different, sometimes closely related, cell types. This has relevance for development and disease. Particularly striking is the high amount and diversity of RNA-binding proteins at these and other organelles, which brings us to review the evidence for RNA at different organelles and suborganelles. We include a discussion about (sub)organelles involved in translation, such as the nucleolus and ribosomes, for which unexpected cell type-specific diversity has also been reported. We propose here that the heterogeneity of these organelles and compartments represents a novel mechanism for regulating cell diversity. One reason is that protein functions can be multiplied by their different contributions in distinct organelles, as also exemplified by proteins with moonlighting function. The specialized organelles still perform pan-cellular functions but in a cell type-specific mode, as discussed here for centrosomes, mitochondria, vesicles, and other organelles. These can serve as regulatory hubs for the storage and transport of specific and functionally important regulators. In this way, they can control cell differentiation, plasticity, and survival. We further include examples highlighting the relevance for disease and propose to examine organelles in many more cell types for their possible differences with functional relevance.
Collapse
Affiliation(s)
- Rico Schieweck
- Institute of Biophysics, National Research Council (CNR) Unit at Trento, 38123 Povo, Italy;
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| | - Magdalena Götz
- Biomedical Center (BMC), Department of Physiological Genomics, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany;
- Institute of Stem Cell Research, Helmholtz Center Munich, German Research Center for Environmental Health, 82152 Planegg-Martinsried, Germany
- SYNERGY, Excellence Cluster of Systems Neurology, Biomedical Center, Ludwig-Maximilians-University, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
3
|
Lipp HP, Krackow S, Turkes E, Benner S, Endo T, Russig H. IntelliCage: the development and perspectives of a mouse- and user-friendly automated behavioral test system. Front Behav Neurosci 2024; 17:1270538. [PMID: 38235003 PMCID: PMC10793385 DOI: 10.3389/fnbeh.2023.1270538] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 10/18/2023] [Indexed: 01/19/2024] Open
Abstract
IntelliCage for mice is a rodent home-cage equipped with four corner structures harboring symmetrical double panels for operant conditioning at each of the two sides, either by reward (access to water) or by aversion (non-painful stimuli: air-puffs, LED lights). Corner visits, nose-pokes and actual licks at bottle-nipples are recorded individually using subcutaneously implanted transponders for RFID identification of up to 16 adult mice housed in the same home-cage. This allows for recording individual in-cage activity of mice and applying reward/punishment operant conditioning schemes in corners using workflows designed on a versatile graphic user interface. IntelliCage development had four roots: (i) dissatisfaction with standard approaches for analyzing mouse behavior, including standardization and reproducibility issues, (ii) response to handling and housing animal welfare issues, (iii) the increasing number of mouse models had produced a high work burden on classic manual behavioral phenotyping of single mice. and (iv), studies of transponder-chipped mice in outdoor settings revealed clear genetic behavioral differences in mouse models corresponding to those observed by classic testing in the laboratory. The latter observations were important for the development of home-cage testing in social groups, because they contradicted the traditional belief that animals must be tested under social isolation to prevent disturbance by other group members. The use of IntelliCages reduced indeed the amount of classic testing remarkably, while its flexibility was proved in a wide range of applications worldwide including transcontinental parallel testing. Essentially, two lines of testing emerged: sophisticated analysis of spontaneous behavior in the IntelliCage for screening of new genetic models, and hypothesis testing in many fields of behavioral neuroscience. Upcoming developments of the IntelliCage aim at improved stimulus presentation in the learning corners and videotracking of social interactions within the IntelliCage. Its main advantages are (i) that mice live in social context and are not stressfully handled for experiments, (ii) that studies are not restricted in time and can run in absence of humans, (iii) that it increases reproducibility of behavioral phenotyping worldwide, and (iv) that the industrial standardization of the cage permits retrospective data analysis with new statistical tools even after many years.
Collapse
Affiliation(s)
- Hans-Peter Lipp
- Faculty of Medicine, Institute of Evolutionary Medicine, University of Zürich, Zürich, Switzerland
| | - Sven Krackow
- Institute of Pathology and Molecular Pathology, University Hospital Zürich, Zürich, Switzerland
| | - Emir Turkes
- Queen Square Institute of Neurology, University College London, London, United Kingdom
| | - Seico Benner
- Center for Health and Environmental Risk Research, National Institute for Environmental Studies, Ibaraki, Japan
| | | | | |
Collapse
|
4
|
Openshaw RL, Thomson DM, Bristow GC, Mitchell EJ, Pratt JA, Morris BJ, Dawson N. 16p11.2 deletion mice exhibit compromised fronto-temporal connectivity, GABAergic dysfunction, and enhanced attentional ability. Commun Biol 2023; 6:557. [PMID: 37225770 DOI: 10.1038/s42003-023-04891-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2022] [Accepted: 05/01/2023] [Indexed: 05/26/2023] Open
Abstract
Autism spectrum disorders are more common in males, and have a substantial genetic component. Chromosomal 16p11.2 deletions in particular carry strong genetic risk for autism, yet their neurobiological impact is poorly characterised, particularly at the integrated systems level. Here we show that mice reproducing this deletion (16p11.2 DEL mice) have reduced GABAergic interneuron gene expression (decreased parvalbumin mRNA in orbitofrontal cortex, and male-specific decreases in Gad67 mRNA in parietal and insular cortex and medial septum). Metabolic activity was increased in medial septum, and in its efferent targets: mammillary body and (males only) subiculum. Functional connectivity was altered between orbitofrontal, insular and auditory cortex, and between septum and hippocampus/subiculum. Consistent with this circuit dysfunction, 16p11.2 DEL mice showed reduced prepulse inhibition, but enhanced performance in the continuous performance test of attentional ability. Level 1 autistic individuals show similarly heightened performance in the equivalent human test, also associated with parietal, insular-orbitofrontal and septo-subicular dysfunction. The data implicate cortical and septal GABAergic dysfunction, and resulting connectivity changes, as the cause of pre-attentional and attentional changes in autism.
Collapse
Affiliation(s)
- Rebecca L Openshaw
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK
| | - David M Thomson
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Greg C Bristow
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK
- School of Pharmacy and Medical Sciences, University of Bradford, Bradford, BD7 1DP, UK
| | - Emma J Mitchell
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Judith A Pratt
- Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, Glasgow, G4 0RE, UK
| | - Brian J Morris
- School of Psychology and Neuroscience, College of Medical, Veterinary and Life Sciences, University of Glasgow, Sir James Black Building, Glasgow, G12 8QQ, UK.
| | - Neil Dawson
- Department of Biomedical and Life Sciences, Lancaster University, Lancaster, LA1 4YW, UK.
| |
Collapse
|
5
|
Zare Ashrafi F, Akhtarkhavari T, Fattahi Z, Asadnezhad M, Beheshtian M, Arzhangi S, Najmabadi H, Kahrizi K. Emerging Epidemiological Data on Rare Intellectual Disability Syndromes from Analyzing the Data of a Large Iranian Cohort. ARCHIVES OF IRANIAN MEDICINE 2023; 26:186-197. [PMID: 38301078 PMCID: PMC10685746 DOI: 10.34172/aim.2023.29] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 02/25/2023] [Indexed: 02/03/2024]
Abstract
BACKGROUND Intellectual disability (ID) is a genetically heterogeneous condition, and so far, 1679 human genes have been identified for this phenotype. Countries with a high rate of parental consanguinity, such as Iran, provide an excellent opportunity to identify the remaining novel ID genes, especially those with an autosomal recessive (AR) mode of inheritance. This study aimed to investigate the most prevalent ID genes identified via next-generation sequencing (NGS) in a large ID cohort at the Genetics Research Center (GRC) of the University of Social Welfare and Rehabilitation Sciences. METHODS First, we surveyed the epidemiological data of 619 of 1295 families in our ID cohort, who referred to the Genetics Research Center from all over the country between 2004 and 2021 for genetic investigation via the NGS pipeline. We then compared our data with those of several prominent studies conducted in consanguineous countries. Data analysis, including cohort data extraction, categorization, and comparison, was performed using the R program version 4.1.2. RESULTS We categorized the most common ID genes that were mutated in more than two families into 17 categories. The most common syndromic ID in our cohort was AP4 deficiency syndrome, and the most common non-syndromic autosomal recessive intellectual disability (ARID) gene was ASPM. We identified two unrelated families for the 36 ID genes. We found 14 genes in common between our cohort and the Arab and Pakistani groups, of which three genes (AP4M1, AP4S1, and ADGRG1) were repeated more than once. CONCLUSION To date, there has been no comprehensive targeted NGS platform for the detection of ID genes in our country. Due to the large sample size of our study, our data may provide the initial step toward designing an indigenously targeted NGS platform for the diagnosis of ID, especially common ARID in our population.
Collapse
Affiliation(s)
- Farzane Zare Ashrafi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Tara Akhtarkhavari
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Zohreh Fattahi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Asadnezhad
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Maryam Beheshtian
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Sanaz Arzhangi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Hossein Najmabadi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| | - Kimia Kahrizi
- Genetics Research Center, University of Social Welfare and Rehabilitation Sciences, Tehran, Iran
| |
Collapse
|
6
|
Ketogenic Diet Modulates Neuroinflammation via Metabolites from Lactobacillus reuteri After Repetitive Mild Traumatic Brain Injury in Adolescent Mice. Cell Mol Neurobiol 2023; 43:907-923. [PMID: 35499776 DOI: 10.1007/s10571-022-01226-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 04/14/2022] [Indexed: 11/03/2022]
Abstract
Repetitive mild traumatic brain injury (rmTBI) is associated with a range of neural changes which is characterized by axonal injury and neuroinflammation. Ketogenic diet (KD) is regarded as a potential therapy for facilitating recovery after moderate-severe traumatic brain injury (TBI). However, its effect on rmTBI has not been fully studied. In this study, we evaluated the anti-neuroinflammation effects of KD after rmTBI in adolescent mice and explored the potential mechanisms. Experimentally, specific pathogen-free (SPF) adolescent male C57BL/6 mice received a sham surgery or repetitive mild controlled cortical impacts consecutively for 7 days. The uninjured mice received the standard diet, and the mice with rmTBI were fed either the standard diet or KD for 7 days. One week later, all mice were subjected to behavioral tests and experimental analysis. Results suggest that KD significantly increased blood beta-hydroxybutyrate (β-HB) levels and improved neurological function. KD also reduced white matter damage, microgliosis, and astrogliosis induced by rmTBI. Aryl hydrocarbon receptor (AHR) signaling pathway, which was mediated by indole-3-acetic acid (3-IAA) from Lactobacillus reuteri (L. reuteri) in gut and activated in microglia and astrocytes after rmTBI, was inhibited by KD. The expression level of the toll-like receptor 4 (TLR4)/myeloid differentiation primary response 88 (MyD88) in inflammatory cells, which mediates the NF-κB pathway, was also attenuated by KD. Taken together, our results indicated that KD can promote recovery following rmTBI in adolescent mice. KD may modulate neuroinflammation by altering L. reuteri in gut and its metabolites. The inhibition of indole/AHR pathway and the downregulation of TLR4/MyD88 may play a role in the beneficial effect of KD against neuroinflammation in rmTBI mice.
Collapse
|
7
|
Wu Y, You Y, Chen L, Liu Y, Liu Y, Lou W, Fu F. Abnormal spindle-like microcephaly-associated protein promotes proliferation by regulating cell cycle in epithelial ovarian cancer. Gland Surg 2022; 11:687-701. [PMID: 35531115 PMCID: PMC9068545 DOI: 10.21037/gs-22-29] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 03/20/2022] [Indexed: 08/22/2023]
Abstract
BACKGROUND Epithelial ovarian cancer (EOC) ranks first for female gynecological tumor-related deaths. Due to the limited efficacy of traditional chemotherapy strategies, potential therapeutic targets are urgently needed. Previous studies have reported a relationship between abnormal spindle-like microcephaly-associated protein (ASPM) and ovarian cancer based on immunohistochemistry (IHC) and bioinformatics analysis. However, the potential role of ASPM in the proliferation of ovarian cancer cells and its molecular mechanism remain to be elucidated. Therefore, we aimed to further investigate the potential role of ASPM and its underlying mechanism in EOC using integrated online databases, clinical samples, and cell models. METHODS We used online databases (Gene Expression Profiling Interactive Analysis, Cbioportal and Kaplan-Meier Plotter) to analyze differential ASPM expression in ovarian carcinoma and explore its prognostic value in ovarian cancer (OvCa) patients. Immunohistochemistry staining based on a clinical tissue microarray (TMA) comprised 75 cases of EOC tissue and 5 cases of adjacent normal ovary tissue was used to detect the ASPM expression and analyze the relationship between ASPM expression and EOC characteristics. Various cell function experiments related to tumorigenesis were performed including the CCK8 assay, 5-ethynyl-2'-deoxyuridine (EdU), colony formation assay and Transwell assay in EOC cell models (A2780 and OVCAR3) with knocked down ASPM by small interfering RNA (siRNA) to observe its role. Finally, Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment was conducted to determine the signaling pathways in which ASPM was involved in the pathogenesis of ovarian cancer. Analysis of cell cycle distribution using flow cytometry was further performed to verify the pathways. RESULTS The expression profile based on data from The Cancer Genome Atlas (TCGA) database confirmed ASPM expression in EOC was higher compared with normal tissue, and further analysis suggested that higher expression was correlated with worse patient prognosis. Immunohistochemical analysis further indicated that ASPM was highly expressed in OvCa tissues and associated with a higher pathological stage, grade, and positive lymphatic metastasis. Cell models with knocked down ASPM by small interfering RNA (siRNA) significantly inhibited proliferation and migration. KEGG pathway enrichment and cell cycle analysis showed that ASPM silencing could inhibit ovarian cancer cell proliferation via synthesis (S) phase arrest. CONCLUSIONS Our study confirmed that ASPM promoted proliferation and caused S phase arrest in EOC cells. ASPM may become a potential molecular marker for early screening and a valuable therapeutic target in EOC. KEYWORDS Abnormal spindle-like microcephaly-associated protein (ASPM); epithelial ovarian cancer (EOC); prognosis; proliferation.
Collapse
Affiliation(s)
- Yiguo Wu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yujuan You
- Department of Anesthesiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Ling Chen
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yue Liu
- Queen Mary School, Medical College of Nanchang University, Nanchang, China
| | - Yujuan Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Nanchang University, Nanchang, China
| | - Weiming Lou
- Institute of Translational Medicine, Nanchang University, Nanchang, China
| | - Fen Fu
- Department of Obstetrics and Gynecology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
8
|
Khan NM, Hussain B, Zheng C, Khan A, Masoud MS, Gu Q, Qiu L, Malik NA, Qasim M, Tariq M, Chang J. Updates on Clinical and Genetic Heterogeneity of ASPM in 12 Autosomal Recessive Primary Microcephaly Families in Pakistani Population. Front Pediatr 2021; 9:695133. [PMID: 34295862 PMCID: PMC8290066 DOI: 10.3389/fped.2021.695133] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Accepted: 05/27/2021] [Indexed: 12/24/2022] Open
Abstract
Microcephaly (MCPH) is a genetically heterogeneous disorder characterized by non-progressive intellectual disability, small head circumference, and small brain size compared with the age- and sex-matched population. MCPH manifests as an isolated condition or part of another clinical syndrome; so far, 25 genes have been linked with MCPH. Many of these genes are reported in Pakistani population, but due to a high rate of consanguinity, a significant proportion of MCPH cohort is yet to be explored. MCPH5 is the most frequently reported type, accounting for up to 68.75% alone in a genetically constrained population like Pakistan. In the current study, whole exome sequencing (WES) was performed on probands from 10 families sampled from South Waziristan and two families from rural areas of the Pakistani Punjab. Candidate variants were validated through Sanger sequencing in all available family members. Variant filtering and in silico analysis identified three known mutations in ASPM, a MCPH5-associated gene. The founder mutation p.Trp1326* was segregating in 10 families, which further confirmed the evidence that it is the most prominent mutation in Pashtun ethnicity living in Pakistan and Afghanistan. Furthermore, the previously known mutations p.Arg3244* and p.Arg1019* were inherited in two families with Punjab ethnic profile. Collectively, this study added 12 more families to the mutational paradigm of ASPM and expanded the Pakistani MCPH cohort.
Collapse
Affiliation(s)
- Niaz Muhammad Khan
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Basharat Hussain
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China.,University of Chinese Academy of Sciences, Beijing, China
| | | | - Ayaz Khan
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Shareef Masoud
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Qingquan Gu
- Shenzhen Real Omics Biotech Co., Ltd., Shenzhen, China
| | - Linhui Qiu
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| | - Naveed Altaf Malik
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Muhammad Qasim
- Department of Bioinformatics and Biotechnology, Government College University Faisalabad, Faisalabad, Pakistan
| | - Muhammad Tariq
- National Institute for Biotechnology and Genetic Engineering (NIBGE-C), Faisalabad, Pakistan; Pakistan Institute of Engineering and Applied Sciences (PIEAS), Islamabad, Pakistan
| | - Junlei Chang
- Shenzhen Key Laboratory of Biomimetic Materials and Cellular Immunomodulation, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
| |
Collapse
|
9
|
Filice F, Janickova L, Henzi T, Bilella A, Schwaller B. The Parvalbumin Hypothesis of Autism Spectrum Disorder. Front Cell Neurosci 2020; 14:577525. [PMID: 33390904 PMCID: PMC7775315 DOI: 10.3389/fncel.2020.577525] [Citation(s) in RCA: 52] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Accepted: 11/10/2020] [Indexed: 12/11/2022] Open
Abstract
The prevalence of autism spectrum disorder (ASD)-a type of neurodevelopmental disorder-is increasing and is around 2% in North America, Asia, and Europe. Besides the known genetic link, environmental, epigenetic, and metabolic factors have been implicated in ASD etiology. Although highly heterogeneous at the behavioral level, ASD comprises a set of core symptoms including impaired communication and social interaction skills as well as stereotyped and repetitive behaviors. This has led to the suggestion that a large part of the ASD phenotype is caused by changes in a few and common set of signaling pathways, the identification of which is a fundamental aim of autism research. Using advanced bioinformatics tools and the abundantly available genetic data, it is possible to classify the large number of ASD-associated genes according to cellular function and pathways. Cellular processes known to be impaired in ASD include gene regulation, synaptic transmission affecting the excitation/inhibition balance, neuronal Ca2+ signaling, development of short-/long-range connectivity (circuits and networks), and mitochondrial function. Such alterations often occur during early postnatal neurodevelopment. Among the neurons most affected in ASD as well as in schizophrenia are those expressing the Ca2+-binding protein parvalbumin (PV). These mainly inhibitory interneurons present in many different brain regions in humans and rodents are characterized by rapid, non-adaptive firing and have a high energy requirement. PV expression is often reduced at both messenger RNA (mRNA) and protein levels in human ASD brain samples and mouse ASD (and schizophrenia) models. Although the human PVALB gene is not a high-ranking susceptibility/risk gene for either disorder and is currently only listed in the SFARI Gene Archive, we propose and present supporting evidence for the Parvalbumin Hypothesis, which posits that decreased PV level is causally related to the etiology of ASD (and possibly schizophrenia).
Collapse
Affiliation(s)
| | | | | | | | - Beat Schwaller
- Section of Medicine, Anatomy, University of Fribourg, Fribourg, Switzerland
| |
Collapse
|
10
|
Horigane S, Ozawa Y, Zhang J, Todoroki H, Miao P, Haijima A, Yanagawa Y, Ueda S, Nakamura S, Kakeyama M, Takemoto‐Kimura S. A mouse model of Timothy syndrome exhibits altered social competitive dominance and inhibitory neuron development. FEBS Open Bio 2020; 10:1436-1446. [PMID: 32598571 PMCID: PMC7396430 DOI: 10.1002/2211-5463.12924] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Revised: 06/13/2020] [Accepted: 06/25/2020] [Indexed: 01/17/2023] Open
Abstract
Multiple genetic factors related to autism spectrum disorder (ASD) have been identified, but the biological mechanisms remain obscure. Timothy syndrome (TS), associated with syndromic ASD, is caused by a gain-of-function mutation, G406R, in the pore-forming subunit of L-type Ca2+ channels, Cav 1.2. In this study, a mouse model of TS, TS2-neo, was used to enhance behavioral phenotyping and to identify developmental anomalies in inhibitory neurons. Using the IntelliCage, which enables sequential behavioral tasks without human handling and mouse isolation stress, high social competitive dominance was observed in TS2-neo mice. Furthermore, histological analysis demonstrated inhibitory neuronal abnormalities in the neocortex, including an excess of smaller-sized inhibitory presynaptic terminals in the somatosensory cortex of young adolescent mice and higher numbers of migrating inhibitory neurons from the medial ganglionic eminence during embryonic development. In contrast, no obvious changes in excitatory synaptic terminals were found. These novel neural abnormalities in inhibitory neurons of TS2-neo mice may result in a disturbed excitatory/inhibitory (E/I) balance, a key feature underlying ASD.
Collapse
Affiliation(s)
- Shin‐ichiro Horigane
- Department of Neuroscience IResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- Molecular/Cellular NeuroscienceNagoya University Graduate School of MedicineNagoyaJapan
| | - Yukihiro Ozawa
- Department of Neuroscience IResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- Molecular/Cellular NeuroscienceNagoya University Graduate School of MedicineNagoyaJapan
- Department of Pathology and Laboratory MedicineNagoya University HospitalNagoyaJapan
| | - Jun Zhang
- Department of Neuroscience IResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- Molecular/Cellular NeuroscienceNagoya University Graduate School of MedicineNagoyaJapan
| | - Hiroe Todoroki
- Laboratory for Systems Neurosciences and Preventive MedicineFaculty of Human SciencesWaseda UniversityTokorozawaJapan
| | - Pan Miao
- Department of Neuroscience IResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- Molecular/Cellular NeuroscienceNagoya University Graduate School of MedicineNagoyaJapan
| | - Asahi Haijima
- Laboratory for Systems Neurosciences and Preventive MedicineFaculty of Human SciencesWaseda UniversityTokorozawaJapan
- Research Institute for Environmental Medical SciencesWaseda UniversityTokorozawaJapan
| | - Yuchio Yanagawa
- Department of Genetic and Behavioral NeuroscienceGunma University Graduate School of MedicineMaebashiJapan
| | - Shuhei Ueda
- Department of Neuroscience IResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- Molecular/Cellular NeuroscienceNagoya University Graduate School of MedicineNagoyaJapan
| | - Shigeo Nakamura
- Department of Pathology and Laboratory MedicineNagoya University HospitalNagoyaJapan
| | - Masaki Kakeyama
- Laboratory for Systems Neurosciences and Preventive MedicineFaculty of Human SciencesWaseda UniversityTokorozawaJapan
- Research Institute for Environmental Medical SciencesWaseda UniversityTokorozawaJapan
| | - Sayaka Takemoto‐Kimura
- Department of Neuroscience IResearch Institute of Environmental MedicineNagoya UniversityNagoyaJapan
- Molecular/Cellular NeuroscienceNagoya University Graduate School of MedicineNagoyaJapan
- Precursory Research for Embryonic Science and Technology (PRESTO)Japan Science and Technology AgencySaitamaJapan
| |
Collapse
|