1
|
Chen X, Hu N, Han H, Cai G, Qin Y. Effects of high-intensity interval training in a cold environment on arterial stiffness and cerebral hemodynamics in sedentary Chinese college female students post-COVID-19. Front Neurol 2024; 15:1466549. [PMID: 39563778 PMCID: PMC11573531 DOI: 10.3389/fneur.2024.1466549] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 11/21/2024] Open
Abstract
Many patients with COVID-19 experience increased arterial stiffness and abnormal cerebral hemodynamics. Although previous studies have explored the effects of cold environments on cardiovascular health and cerebral hemodynamics, there is still no research on the changes in cardiovascular and cerebral hemodynamics in sedentary female students recovering from COVID-19 while performing high-intensity interval training (HIIT) in cold environments. This study investigates the effects of 1 week of HIIT in a cold environment on cerebral hemodynamics and arterial stiffness (AS) in sedentary female college students, providing new insights into the pathophysiological mechanisms in this specific context. Thirty-six participants were randomly divided into a control group (n = 12), a room temperature (RE) group (n = 12), and a cold environment (CE) group (n = 12). HIIT was performed for four 4-min running training sessions, with a 4-min interval between each training session, The training duration was 1 week, with a frequency of 2 sessions per day, while the control group did not undergo any training. After training, the AS in the CE group significantly decreased (p < 0.05), with an average reduction of 11% in brachial-ankle pulse wave velocity, showing a significantly greater improvement compared to the RE group and the control group (p < 0.05), while no significant changes were observed in the RE group (p > 0.05). In the Y-Balance Tests (YBTs), the concentrations of cerebral oxygenated hemoglobin and total hemoglobin significantly increased (p < 0.05) during unilateral leg support tests in both the CE and RE groups, and the increase of CE group is greater than that of RE group. In contrast, in the control group, the concentrations of cerebral oxygenated hemoglobin and total hemoglobin significantly decreased during left leg support (p < 0.05). Our study found that performing HIIT in a cold environment not only effectively reduces AS in sedentary female college students after COVID-19, improves cardiovascular function, but also significantly enhances cerebral hemodynamics, helping them alleviate the negative impacts of post-COVID-19 sequelae and sedentary behavior on health. Future research should further explore the mechanisms by which sedentary behavior, post-COVID-19 recovery status, and adaptation to cold environments collectively influence cardiovascular function and cerebral hemodynamics, providing a more comprehensive understanding of these factors.
Collapse
Affiliation(s)
- Xiangyuan Chen
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Niyuan Hu
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Huifeng Han
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Guoliang Cai
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| | - Ying Qin
- College of Sports and Human Sciences, Harbin Sport University, Harbin, China
| |
Collapse
|
2
|
Florez-Perdomo WA, Reyes Bello JS, García-Ballestas E, Moscote-Salazar LR, Barthélemy EJ, Janjua T, Maurya VP, Agrawal A. "Aneurysmal Subarachnoid Hemorrhage and Cocaine Consumption: A Systematic Review and Metanalysis". World Neurosurg 2024; 184:241-252.e2. [PMID: 38072159 DOI: 10.1016/j.wneu.2023.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Accepted: 12/04/2023] [Indexed: 01/14/2024]
Abstract
BACKGROUND The use of cocaine can lead to a variety of neurologic complications, including cerebral vasoconstriction, ischemia, aneurysm formation, and aneurysm rupture. A previous study has shown that cocaine use is associated with an increased risk of subarachnoid hemorrhage (SAH). This study conducted a systematic review and meta-analysis of observational studies to assess the association between cocaine use and the risk of poor neurological outcomes and mortality in patients with SAH. METHODS A systematic review and meta-analysis were performed following the meta-analysis of observational studies in epidemiology (MOOSE) declaration for systematic reviews and the Cochrane Manual of Systematic Reviews and Meta-Analyses guidelines. Randomized controlled trials (RCTs), nonrandomized clinical trials, and prospective and retrospective cohort studies that reported data about adults who suffered Aneurysmal Subarachnoid Hemorrhage (aSAH) after having consumed cocaine recreationally were included. Variables such as mortality, vasospasm, seizures, re-bleeding, and complications were analyzed. RESULTS After a thorough selection process, 14 studies involving 116,141 patients, of which 2227 had a history of cocaine consumption, were included in the analysis. There was a significant increase in overall unfavorable outcomes in aSAH patients with a history of cocaine use (OR 5.51 CI 95% [4.26-7.13] P = <0.0001; I2 = 78%), with higher mortality and poor neurologic outcomes. There were no significant differences in the risk of hydrocephalus, seizures, or re-bleeding. Cocaine use was found to increase the risk of vasospasm and overall complications. CONCLUSIONS This study insinuates that cocaine use is associated with worse clinical outcomes in aSAH patients. Despite the cocaine users did not exhibit a higher risk of certain complications such as hydrocephalus and seizures, they had an increased risk of vasospasm and overall complications. These findings highlight the importance of addressing the issue of cocaine consumption as a primary preventive measure to decrease the incidence of aSAH and improve patient outcomes.
Collapse
Affiliation(s)
- William Andres Florez-Perdomo
- Department of Neurocritical Care, Colombian Clinical Research Group in Neurocritical Care, Bogota, Colombia; Department of Research, European Stroke Organization (ESO), Basel, Switzerland.
| | - Juan Sebastian Reyes Bello
- Department of Neurocritical Care, Colombian Clinical Research Group in Neurocritical Care, Bogota, Colombia
| | - Ezequiel García-Ballestas
- Department of Neurocritical Care, Colombian Clinical Research Group in Neurocritical Care, Bogota, Colombia
| | | | - Ernest J Barthélemy
- Department of Neurosurgery, SUNY Downstate Health sciences University, Brooklin, New York, USA
| | - Tariq Janjua
- Department of Critical Care, Neurocritical Care Unit, Regions Hospital Saint Paul, Saint Paul, Minnessota, USA
| | - Ved Prakash Maurya
- Department of Neurosurgery, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, India
| | - Amit Agrawal
- Department of Neurosurgery, All India Institute of Medical Sciences, Bhopal, India
| |
Collapse
|
3
|
Du C, Park K, Hua Y, Liu Y, Volkow ND, Pan Y. Astrocytes modulate cerebral blood flow and neuronal response to cocaine in prefrontal cortex. Mol Psychiatry 2024; 29:820-834. [PMID: 38238549 DOI: 10.1038/s41380-023-02373-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 11/30/2023] [Accepted: 12/07/2023] [Indexed: 01/30/2024]
Abstract
Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which modulate neurovascular coupling-a process that regulates cerebral hemodynamics in response to neuronal activation. However, separating neuronal and astrocytic effects from cocaine's direct vasoactive effects has been challenging, partially due to limitations of neuroimaging techniques able to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions. Here, we used a newly-developed multi-channel fluorescence and optical coherence Doppler microscope (fl-ODM) that allows for simultaneous measurements of neuronal and astrocytic activities (reflected by the intracellular calcium changes in neurons Ca2+N and astrocytes Ca2+A, respectively) alongside their vascular interactions in vivo to address this challenge. Using green and red genetically-encoded Ca2+ indicators differentially expressed in astrocytes and neurons, fl-ODM enabled concomitant imaging of large-scale astrocytic and neuronal Ca2+ fluorescence and 3D cerebral blood flow velocity (CBFv) in vascular networks in the mouse cortex. We assessed cocaine's effects in the prefrontal cortex (PFC) and found that the CBFv changes triggered by cocaine were temporally correlated with astrocytic Ca2+A activity. Chemogenetic inhibition of astrocytes during the baseline state resulted in blood vessel dilation and CBFv increases but did not affect neuronal activity, suggesting modulation of spontaneous blood vessel's vascular tone by astrocytes. Chemogenetic inhibition of astrocytes during a cocaine challenge prevented its vasoconstricting effects alongside the CBFv decreases, but it also attenuated the neuronal Ca2+N increases triggered by cocaine. These results document a role of astrocytes both in regulating vascular tone and consequently blood flow, at baseline and for modulating the vasoconstricting and neuronal activation responses to cocaine in the PFC. Strategies to inhibit astrocytic activity could offer promise for ameliorating vascular and neuronal toxicity from cocaine misuse.
Collapse
Affiliation(s)
- Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kichon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yanzuo Liu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nora D Volkow
- National Institute on Alcohol Abuse and Alcoholism, National Institutes of Health, Bethesda, MD, 20857, USA
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
4
|
Clare K, Park K, Pan Y, Lejuez CW, Volkow ND, Du C. Neurovascular effects of cocaine: relevance to addiction. Front Pharmacol 2024; 15:1357422. [PMID: 38455961 PMCID: PMC10917943 DOI: 10.3389/fphar.2024.1357422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Accepted: 01/22/2024] [Indexed: 03/09/2024] Open
Abstract
Cocaine is a highly addictive drug, and its use is associated with adverse medical consequences such as cerebrovascular accidents that result in debilitating neurological complications. Indeed, brain imaging studies have reported severe reductions in cerebral blood flow (CBF) in cocaine misusers when compared to the brains of healthy non-drug using controls. Such CBF deficits are likely to disrupt neuro-vascular interaction and contribute to changes in brain function. This review aims to provide an overview of cocaine-induced CBF changes and its implication to brain function and to cocaine addiction, including its effects on tissue metabolism and neuronal activity. Finally, we discuss implications for future research, including targeted pharmacological interventions and neuromodulation to limit cocaine use and mitigate the negative impacts.
Collapse
Affiliation(s)
- Kevin Clare
- New York Medical College, Valhalla, NY, United States
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| | - Carl W. Lejuez
- Department of Psychology, Stony Brook University, Stony Brook, NY, United States
| | - Nora D. Volkow
- National Institute on Alcohol Abuse and Alcoholism, Bethesda, MD, United States
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, United States
| |
Collapse
|
5
|
Choudhury N, Chen L, Al-Harthi L, Hu XT. Hyperactivity of medial prefrontal cortex pyramidal neurons occurs in a mouse model of early-stage Alzheimer's disease without β-amyloid accumulation. Front Pharmacol 2023; 14:1194869. [PMID: 37465526 PMCID: PMC10350500 DOI: 10.3389/fphar.2023.1194869] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
The normal function of the medial prefrontal cortex (mPFC) is essential for regulating neurocognition, but it is disrupted in the early stages of Alzheimer's disease (AD) before the accumulation of Aβ and the appearance of symptoms. Despite this, little is known about how the functional activity of medial prefrontal cortex pyramidal neurons changes as Alzheimer's disease progresses during aging. We used electrophysiological techniques (patch-clamping) to assess the functional activity of medial prefrontal cortex pyramidal neurons in the brain of 3xTg-Alzheimer's disease mice modeling early-stage Alzheimer's disease without Aβ accumulation. Our results indicate that firing rate and the frequency of spontaneous excitatory postsynaptic currents (sEPSCs) were significantly increased in medial prefrontal cortex neurons from young Alzheimer's disease mice (4-5-month, equivalent of <30-year-old humans) compared to age-matched control mice. Blocking ionotropic glutamatergic NMDA receptors, which regulate neuronal excitability and Ca2+ homeostasis, abolished this neuronal hyperactivity. There were no changes in Ca2+ influx through the voltage-gated Ca2+ channels (VGCCs) or inhibitory postsynaptic activity in medial prefrontal cortex neurons from young Alzheimer's disease mice compared to controls. Additionally, acute exposure to Aβ42 potentiated medial prefrontal cortex neuronal hyperactivity in young Alzheimer's disease mice but had no effects on controls. These findings indicate that the hyperactivity of medial prefrontal cortex pyramidal neurons at early-stage Alzheimer's disease is induced by an abnormal increase in presynaptic glutamate release and postsynaptic NMDA receptor activity, which initiates neuronal Ca2+ dyshomeostasis. Additionally, because accumulated Aβ forms unconventional but functional Ca2+ channels in medial prefrontal cortex neurons in the late stage of Alzheimer's disease, our study also suggests an exacerbated Ca2+ dyshomeostasis in medial prefrontal cortex pyramidal neurons following overactivation of such VGCCs.
Collapse
Affiliation(s)
| | | | | | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Centre, Chicago, IL, United States
| |
Collapse
|
6
|
Pan Y, Du C, Park K, Hua Y, Volkow N. Astrocytes mediate cerebral blood flow and neuronal response to cocaine in prefrontal cortex. RESEARCH SQUARE 2023:rs.3.rs-2626090. [PMID: 36993330 PMCID: PMC10055529 DOI: 10.21203/rs.3.rs-2626090/v1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
Cocaine affects both cerebral blood vessels and neuronal activity in brain. Cocaine can also disrupt astrocytes, which are involved in neurovascular coupling process that modulates cerebral hemodynamics in response to neuronal activity. However, separating neuronal and astrocytic effects from cocaine's direct vasoactive effects is challenging, partially due to limitations of neuroimaging techniques to differentiate vascular from neuronal and glial effects at high temporal and spatial resolutions. Here, we used a newly-developed multi-channel fluorescence and optical coherence Doppler microscope (fl-ODM) that allows for simultaneous measurements of neuronal and astrocytic activities alongside their vascular interactions in vivo to address this challenge. Using green and red genetically-encoded Ca2+ indicators differentially expressed in astrocytes and neurons, fl-ODM enabled concomitant imaging of large-scale astrocytic and neuronal Ca2+ fluorescence and 3D cerebral blood flow velocity (CBFv) in vascular networks in the mouse cortex. We assessed cocaine's effects in the prefrontal cortex (PFC) and found that the CBFv changes triggered by cocaine were temporally correlated with astrocytic Ca2 + A activity. Chemogenetic inhibition of astrocytes during the baseline state resulted in blood vessel dilation and CBFv increases but did not affect neuronal activity, suggesting modulation of spontaneous blood vessel's vascular tone by astrocytes. Chemogenetic inhibition of astrocytes during cocaine challenge prevented its vasoconstricting effects alongside the CBFv decreases but also attenuated the neuronal Ca2+ N increases triggered by cocaine. These results document a role of astrocytes both in regulating vascular tone of blood flow at baseline and for mediating the vasoconstricting responses to cocaine as well as its neuronal activation in the PFC. Strategies to inhibit astrocytic activity could offer promise for ameliorating vascular and neuronal toxicity from cocaine misuse.
Collapse
Affiliation(s)
| | | | | | | | - Nora Volkow
- National Institute on Drug Abuse National Institutes of Health
| |
Collapse
|
7
|
Short- and Long-Term Effects of Cocaine on Enteric Neuronal Functions. Cells 2023; 12:cells12040577. [PMID: 36831246 PMCID: PMC9954635 DOI: 10.3390/cells12040577] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 02/06/2023] [Accepted: 02/09/2023] [Indexed: 02/15/2023] Open
Abstract
Cocaine is one of the most consumed illegal drugs among (young) adults in the European Union and it exerts various acute and chronic negative effects on psychical and physical health. The central mechanism through which cocaine initially leads to improved performance, followed by addictive behavior, has already been intensively studied and includes effects on the homeostasis of the neurotransmitters dopamine, partly mediated via nicotinic acetylcholine receptors, and serotonin. However, effects on the peripheral nervous system, including the enteric nervous system, are much less understood, though a correlation between cocaine consumption and gastrointestinal symptoms has been reported. The aim of the present study was to gain more information on the effects of cocaine on enteric neuronal functions and the underlying mechanisms. For this purpose, functional experiments using an organ bath, Ussing chamber and neuroimaging techniques were conducted on gastrointestinal tissues from guinea pigs. Key results obtained are that cocaine (1) exhibits a stimulating, non-neuronal effect on gastric antrum motility, (2) acutely (but not chronically) diminishes responses of primary cultured enteric neurons to nicotinic and serotonergic stimulation and (3) reversibly attenuates neuronal-mediated intestinal mucosal secretion. It can be concluded that cocaine, among its central effects, also alters enteric neuronal functions, providing potential explanations for the coexistence of cocaine abuse and gastrointestinal complaints.
Collapse
|
8
|
Liu Y, Hua Y, Park K, Volkow ND, Pan Y, Du C. Cocaine's cerebrovascular vasoconstriction is associated with astrocytic Ca 2+ increase in mice. Commun Biol 2022; 5:936. [PMID: 36097038 PMCID: PMC9468035 DOI: 10.1038/s42003-022-03877-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Human and animal studies have reported widespread reductions in cerebral blood flow associated with chronic cocaine exposures. However, the molecular and cellular mechanisms underlying cerebral blood flow reductions are not well understood. Here, by combining a multimodal imaging platform with a genetically encoded calcium indicator, we simultaneously measured the effects of acute cocaine on neuronal and astrocytic activity, tissue oxygenation, hemodynamics and vascular diameter changes in the mouse cerebral cortex. Our results showed that cocaine constricted blood vessels (measured by vessel diameter Φ changes), decreasing cerebral total blood volume (HbT) and temporally reducing tissue oxygenation. Cellular imaging showed that the mean astrocytic Ca2+ dependent fluorescence [Formula: see text] increase in response to cocaine was weaker but longer lasting than the mean neuronal Ca2+ dependent fluorescence [Formula: see text] changes. Interestingly, while cocaine-induced [Formula: see text] increase was temporally correlated with tissue oxygenation change, the [Formula: see text] elevation after cocaine was in temporal correspondence with the long-lasting decrease in arterial blood volumes. To determine whether the temporal association between astrocytic activation and cocaine induced vasoconstriction reflected a causal association we inhibited astrocytic Ca2+ using GFAP-DREADD(Gi). Inhibition of astrocytes attenuated the vasoconstriction resulting from cocaine, providing evidence that astrocytes play a critical role in cocaine's vasoconstrictive effects in the brain. These results indicate that neurons and astrocytes play different roles in mediating neurovascular coupling in response to cocaine. Our findings implicate neuronal activation as the main driver of the short-lasting reduction in tissue oxygenation and astrocyte long-lasting activation as the driver of the persistent vasoconstriction with cocaine. Understanding the cellular and vascular interaction induced by cocaine will be helpful for future putative treatments to reduce cerebrovascular pathology from cocaine use.
Collapse
Affiliation(s)
- Yanzuo Liu
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Nora D Volkow
- National Institute on Drug Abuse, Bethesda, MD, 20852, USA.
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA
| | - Congwu Du
- Department of Biomedical Engineering, Stony Brook University, Stony Brook, NY, 11794, USA.
| |
Collapse
|
9
|
Du C, Hua Y, Clare K, Park K, Allen CP, Volkow ND, Hu XT, Pan Y. Memantine Attenuates Cocaine and neuroHIV Neurotoxicity in the Medial Prefrontal Cortex. Front Pharmacol 2022; 13:895006. [PMID: 35694269 PMCID: PMC9174902 DOI: 10.3389/fphar.2022.895006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2022] [Accepted: 04/20/2022] [Indexed: 11/30/2022] Open
Abstract
Individuals with substance use disorder are at a higher risk of contracting HIV and progress more rapidly to AIDS as drugs of abuse, such as cocaine, potentiate the neurotoxic effects of HIV-associated proteins including, but not limited to, HIV-1 trans-activator of transcription (Tat) and the envelope protein Gp120. Neurotoxicity and neurodegeneration are hallmarks of HIV-1-associated neurocognitive disorders (HANDs), which are hypothesized to occur secondary to excitotoxicity from NMDA-induced neuronal calcium dysregulation, which could be targeted with NMDA antagonist drugs. Multiple studies have examined how Gp120 affects calcium influx and how cocaine potentiates this influx; however, they mostly focused on single cells and did not analyze effects in neuronal and vascular brain networks. Here, we utilize a custom multi-wavelength imaging platform to simultaneously study the neuronal activity (detected using genetically encoded Ca2+ indicator, GcaMP6f, expressed in neurons) and hemodynamic changes (measured by total hemoglobin and oxygenated hemoglobin within the tissue) in the prefrontal cortex (PFC) of HIV-1 Tg rats in response to cocaine and evaluate the effects of the selective NMDA antagonist drug memantine on cocaine and HIV neurotoxicity compared to those of non-HIV-1 Tg animals (controls). Our results show that memantine improved cocaine-induced deficit in cerebral blood volume while also attenuating an abnormal increase of the neuronal calcium influx and influx duration in both control rats and HIV-1 Tg rats. Cocaine-induced neuronal and hemodynamic dysregulations were significantly greater in HIV-1 Tg rats than in control rats. With memantine pretreatment, HIV-1 Tg rats showed attenuated cocaine’s effects on neuronal and hemodynamic responses, with responses similar to those observed in control rats. These imaging results document an enhancement of neuronal Ca2+ influx, hypoxemia, and ischemia with cocaine in the PFC of HIV-1 Tg rats that were attenuated by memantine pretreatment. Thus, the potential utility of memantine in the treatment of HAND and of cocaine-induced neurotoxicity deserves further investigation.
Collapse
Affiliation(s)
- Congwu Du
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Yueming Hua
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Kevin Clare
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Kicheon Park
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Craig P. Allen
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| | - Nora D. Volkow
- National Institute on Drug Abuse, Bethesda, MD, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Xiu-Ti Hu
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL, United States
- *Correspondence: Congwu Du, ; Nora D. Volkow, ; Xiu-Ti Hu,
| | - Yingtian Pan
- Department of Biomedical Engineering, Stony Brook University, New York, NY, United States
| |
Collapse
|
10
|
Cocaine: An Updated Overview on Chemistry, Detection, Biokinetics, and Pharmacotoxicological Aspects including Abuse Pattern. Toxins (Basel) 2022; 14:toxins14040278. [PMID: 35448887 PMCID: PMC9032145 DOI: 10.3390/toxins14040278] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 03/30/2022] [Accepted: 04/07/2022] [Indexed: 12/28/2022] Open
Abstract
Cocaine is one of the most consumed stimulants throughout the world, as official sources report. It is a naturally occurring sympathomimetic tropane alkaloid derived from the leaves of Erythroxylon coca, which has been used by South American locals for millennia. Cocaine can usually be found in two forms, cocaine hydrochloride, a white powder, or ‘crack’ cocaine, the free base. While the first is commonly administered by insufflation (‘snorting’) or intravenously, the second is adapted for inhalation (smoking). Cocaine can exert local anaesthetic action by inhibiting voltage-gated sodium channels, thus halting electrical impulse propagation; cocaine also impacts neurotransmission by hindering monoamine reuptake, particularly dopamine, from the synaptic cleft. The excess of available dopamine for postsynaptic activation mediates the pleasurable effects reported by users and contributes to the addictive potential and toxic effects of the drug. Cocaine is metabolised (mostly hepatically) into two main metabolites, ecgonine methyl ester and benzoylecgonine. Other metabolites include, for example, norcocaine and cocaethylene, both displaying pharmacological action, and the last one constituting a biomarker for co-consumption of cocaine with alcohol. This review provides a brief overview of cocaine’s prevalence and patterns of use, its physical-chemical properties and methods for analysis, pharmacokinetics, pharmacodynamics, and multi-level toxicity.
Collapse
|