1
|
Azzam M, Xu Z, Liu R, Li L, Meng Soh K, Challagundla KB, Wan S, Wang J. A review of artificial intelligence-based brain age estimation and its applications for related diseases. Brief Funct Genomics 2025; 24:elae042. [PMID: 39436320 PMCID: PMC11735757 DOI: 10.1093/bfgp/elae042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 10/02/2024] [Accepted: 10/12/2024] [Indexed: 10/23/2024] Open
Abstract
The study of brain age has emerged over the past decade, aiming to estimate a person's age based on brain imaging scans. Ideally, predicted brain age should match chronological age in healthy individuals. However, brain structure and function change in the presence of brain-related diseases. Consequently, brain age also changes in affected individuals, making the brain age gap (BAG)-the difference between brain age and chronological age-a potential biomarker for brain health, early screening, and identifying age-related cognitive decline and disorders. With the recent successes of artificial intelligence in healthcare, it is essential to track the latest advancements and highlight promising directions. This review paper presents recent machine learning techniques used in brain age estimation (BAE) studies. Typically, BAE models involve developing a machine learning regression model to capture age-related variations in brain structure from imaging scans of healthy individuals and automatically predict brain age for new subjects. The process also involves estimating BAG as a measure of brain health. While we discuss recent clinical applications of BAE methods, we also review studies of biological age that can be integrated into BAE research. Finally, we point out the current limitations of BAE's studies.
Collapse
Affiliation(s)
- Mohamed Azzam
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
- Department of Computer Science and Engineering, Faculty of Electronic Engineering, Menoufia University, Menouf 32952, Egypt
| | - Ziyang Xu
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Ruobing Liu
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Lie Li
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kah Meng Soh
- Department of Biostatistics, College of Public Health, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Kishore B Challagundla
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Shibiao Wan
- Department of Genetics, Cell Biology and Anatomy, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| | - Jieqiong Wang
- Department of Neurological Sciences, College of Medicine, University of Nebraska Medical Center, Omaha, NE 68198, United States
| |
Collapse
|
2
|
How EH, Chin SM, Teo CH, Parhar IS, Soga T. Accelerated biological brain aging in major depressive disorder. Rev Neurosci 2024; 35:959-968. [PMID: 39002110 DOI: 10.1515/revneuro-2024-0025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Accepted: 06/26/2024] [Indexed: 07/15/2024]
Abstract
Major depressive disorder (MDD) patients commonly encounter multiple types of functional disabilities, such as social, physical, and role functioning. MDD is related to an accreted risk of brain atrophy, aging-associated brain diseases, and mortality. Based on recently available studies, there are correlations between notable biological brain aging and MDD in adulthood. Despite several clinical and epidemiological studies that associate MDD with aging phenotypes, the underlying mechanisms in the brain remain unknown. The key areas in the study of biological brain aging in MDD are structural brain aging, impairment in functional connectivity, and the impact on cognitive function and age-related disorders. Various measurements have been used to determine the severity of brain aging, such as the brain age gap estimate (BrainAGE) or brain-predicted age difference (BrainPAD). This review summarized the current results of brain imaging data on the similarities between the manifestation of brain structural changes and the age-associated processes in MDD. This review also provided recent evidence of BrainPAD or BrainAGE scores in MDD, brain structural abnormalities, and functional connectivity, which are commonly observed between MDD and age-associated processes. It serves as a basis of current reference for future research on the potential areas of investigation for diagnostic, preventive, and potentially therapeutic purposes for brain aging in MDD.
Collapse
Affiliation(s)
- Eng Han How
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Shar-Maine Chin
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Chuin Hau Teo
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| | - Ishwar S Parhar
- Center Initiatives for Training International Researchers (CiTIR), University of Toyama, Gofuku, 930-8555 Toyama, Japan
| | - Tomoko Soga
- 65210 Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia , Jalan Lagoon Selatan, Bandar Sunway, 47500, Selangor, Malaysia
| |
Collapse
|
3
|
Xian Z, Tian L, Yao Z, Cao L, Jia Z, Li G. Mechanism of N6-Methyladenosine Modification in the Pathogenesis of Depression. Mol Neurobiol 2024:10.1007/s12035-024-04614-6. [PMID: 39551913 DOI: 10.1007/s12035-024-04614-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 11/05/2024] [Indexed: 11/19/2024]
Abstract
N6-methyladenosine (m6A) is one of the most common post-transcriptional RNA modifications, which plays a critical role in various bioprocesses such as immunological processes, stress response, cell self-renewal, and proliferation. The abnormal expression of m6A-related proteins may occur in the central nervous system, affecting neurogenesis, synapse formation, brain development, learning and memory, etc. Accumulating evidence is emerging that dysregulation of m6A contributes to the initiation and progression of psychiatric disorders including depression. Until now, the specific pathogenesis of depression has not been comprehensively clarified, and further investigations are warranted. Stress, inflammation, neurogenesis, and synaptic plasticity have been implicated as possible pathophysiological mechanisms underlying depression, in which m6A is extensively involved. Considering the extensive connections between depression and neurofunction and the critical role of m6A in regulating neurological function, it has been increasingly proposed that m6A may have an important role in the pathogenesis of depression; however, the results and the specific molecular mechanisms of how m6A methylation is involved in major depressive disorder (MDD) were varied and not fully understood. In this review, we describe the underlying molecular mechanisms between m6A and depression from several aspects including inflammation, stress, neuroplasticity including neurogenesis, and brain structure, which contain the interactions of m6A with cytokines, the HPA axis, BDNF, and other biological molecules or mechanisms in detail. Finally, we summarized the perspectives for the improved understanding of the pathogenesis of depression and the development of more effective treatment approaches for this disorder.
Collapse
Affiliation(s)
- Zhuohang Xian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Liangjing Tian
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhixuan Yao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Lei Cao
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Zhilin Jia
- West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Gangqin Li
- Department of Forensic Psychiatry, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
4
|
Chen W, Zhan L, Jia T. Sex Differences in Hierarchical and Modular Organization of Functional Brain Networks: Insights from Hierarchical Entropy and Modularity Analysis. ENTROPY (BASEL, SWITZERLAND) 2024; 26:864. [PMID: 39451941 PMCID: PMC11507829 DOI: 10.3390/e26100864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 10/08/2024] [Accepted: 10/11/2024] [Indexed: 10/26/2024]
Abstract
Existing studies have demonstrated significant sex differences in the neural mechanisms of daily life and neuropsychiatric disorders. The hierarchical organization of the functional brain network is a critical feature for assessing these neural mechanisms. But the sex differences in hierarchical organization have not been fully investigated. Here, we explore whether the hierarchical structure of the brain network differs between females and males using resting-state fMRI data. We measure the hierarchical entropy and the maximum modularity of each individual, and identify a significant negative correlation between the complexity of hierarchy and modularity in brain networks. At the mean level, females show higher modularity, whereas males exhibit a more complex hierarchy. At the consensus level, we use a co-classification matrix to perform a detailed investigation of the differences in the hierarchical organization between sexes and observe that the female group and the male group exhibit different interaction patterns of brain regions in the dorsal attention network (DAN) and visual network (VIN). Our findings suggest that the brains of females and males employ different network topologies to carry out brain functions. In addition, the negative correlation between hierarchy and modularity implies a need to balance the complexity in the hierarchical organization of the brain network, which sheds light on future studies of brain functions.
Collapse
Affiliation(s)
| | | | - Tao Jia
- College of Computer and Information Science, Southwest University, Chongqing 400715, China; (W.C.); (L.Z.)
| |
Collapse
|
5
|
Squassina A, Pisanu C, Menesello V, Meloni A, Congiu D, Manchia M, Paribello P, Abate M, Bortolomasi M, Baune BT, Gennarelli M, Minelli A. Leukocyte Telomere Length and Mitochondrial DNA Copy Number in Treatment-Resistant Depression and Response to Electroconvulsive Therapy: A Pilot Longitudinal Study. J ECT 2024:00124509-990000000-00206. [PMID: 39178054 DOI: 10.1097/yct.0000000000001060] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2024]
Abstract
OBJECTIVES In this study, we investigated if changes in leukocyte telomere length (LTL) and mitochondrial DNA copy number (mtDNA-cn), 2 markers of cellular aging, are associated with treatment-resistant depression (TRD) and with response to electroconvulsive therapy (ECT). METHODS LTL and mtDNA-cn were measured in 31 TRD patients before (T0), 1 week (T1), and 4 weeks (T2) after the ECT course, as well as in a sample of 65 healthy controls. RESULTS TRD patients had significantly shorter LTL and higher mtDNA-cn compared with healthy controls at baseline. In the TRD sample, LTL was inversely correlated with Montgomery-Åsberg Depression Rating Scale scores at baseline. Baseline levels of LTL or mtDNA-cn were not correlated with response to ECT. Similarly, changes in LTL or mtDNA-cn were not associated with response to ECT either when considered as a dichotomous trait (responders vs nonresponders) or as a percentage change in symptoms improvements. CONCLUSIONS Ours is the first longitudinal study exploring the role of LTL and mtDNA-cn in response to ECT. Findings of this pilot investigation suggest that LTL and mtDNA-cn may constitute disease biomarkers for TRD but are not involved in response to ECT.
Collapse
Affiliation(s)
- Alessio Squassina
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Claudia Pisanu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Valentina Menesello
- Genetics Unit, IRCCS Istituto Centro San Giovanni di Dio Fatebenefratelli, Brescia, Italy
| | - Anna Meloni
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Donatella Congiu
- From the Department of Biomedical Sciences, Section of Neuroscience and Clinical Pharmacology, University of Cagliari, Cagliari, Italy
| | - Mirko Manchia
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Pasquale Paribello
- Section of Psychiatry, Department of Medical Sciences and Public Health, University of Cagliari, Cagliari Italy
| | - Maria Abate
- Psychiatric Hospital "Villa Santa Chiara," Verona, Italy
| | | | - Bernhard T Baune
- Department of Psychiatry, University of Münster, Münster, Germany; Department of Psychiatry, University of Melbourne, Melbourne, Australia; Florey Institute of Neuroscience and Mental Health, Melbourne, Australia and
| | | | | |
Collapse
|
6
|
Ho NCW, Bethlehem RAI, Seidlitz J, Nogovitsyn N, Metzak P, Ballester PL, Hassel S, Rotzinger S, Poppenk J, Lam RW, Taylor VH, Milev R, Bullmore ET, Alexander-Bloch AF, Frey BN, Harkness KL, Addington J, Kennedy SH, Dunlop K. Atypical Brain Aging and Its Association With Working Memory Performance in Major Depressive Disorder. BIOLOGICAL PSYCHIATRY. COGNITIVE NEUROSCIENCE AND NEUROIMAGING 2024; 9:786-799. [PMID: 38679324 DOI: 10.1016/j.bpsc.2024.04.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/04/2024] [Accepted: 04/11/2024] [Indexed: 05/01/2024]
Abstract
BACKGROUND Patients with major depressive disorder (MDD) can present with altered brain structure and deficits in cognitive function similar to those seen in aging. However, the interaction between age-related brain changes and brain development in MDD remains understudied. In a cohort of adolescents and adults with and without MDD, we assessed brain aging differences and associations through a newly developed tool that quantifies normative neurodevelopmental trajectories. METHODS A total of 304 participants with MDD and 236 control participants without depression were recruited and scanned from 3 studies under the Canadian Biomarker Integration Network for Depression. Volumetric data were used to generate brain centile scores, which were examined for 1) differences between participants with MDD and control participants; 2) differences between individuals with versus without severe childhood maltreatment; and 3) correlations with depressive symptom severity, neurocognitive assessment domains, and escitalopram treatment response. RESULTS Brain centiles were significantly lower in the MDD group than in the control group. Brain centile was also significantly correlated with working memory in the control group but not the MDD group. No significant associations were observed between depression severity or antidepressant treatment response and brain centiles. Likewise, childhood maltreatment history did not significantly affect brain centiles. CONCLUSIONS Consistent with previous work on machine learning models that predict brain age, brain centile scores differed in people diagnosed with MDD, and MDD was associated with differential relationships between centile scores and working memory. The results support the notion of atypical development and aging in MDD, with implications for neurocognitive deficits associated with aging-related cognitive function.
Collapse
Affiliation(s)
- Natalie C W Ho
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Faculty of Arts and Sciences, University of Toronto, Toronto, Ontario, Canada
| | | | - Jakob Seidlitz
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Institute of Translational Medicine & Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Nikita Nogovitsyn
- Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada
| | - Paul Metzak
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada
| | - Pedro L Ballester
- Genetics and Genome Biology, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Stefanie Hassel
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Susan Rotzinger
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada; Mood Disorders Treatment and Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Jordan Poppenk
- Centre for Neuroscience Studies, Queen's University, Kingston, Ontario, Canada; Department of Psychology, Queen's University, Kingston, Ontario, Canada; School of Computing, Queen's University, Kingston, Ontario, Canada
| | - Raymond W Lam
- Department of Psychiatry, University of British Columbia, Vancouver, British Columbia, Canada
| | - Valerie H Taylor
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Roumen Milev
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada; Providence Care Hospital, Kingston, Ontario, Canada
| | - Edward T Bullmore
- Department of Psychiatry, University of Cambridge, Cambridge, United Kingdom
| | - Aaron F Alexander-Bloch
- Department of Psychiatry, University of Pennsylvania, Philadelphia, Pennsylvania; Lifespan Brain Institute, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania; Institute of Translational Medicine & Therapeutics, University of Pennsylvania, Philadelphia, Pennsylvania; Department of Child and Adolescent Psychiatry and Behavioral Science, The Children's Hospital of Philadelphia, Philadelphia, Pennsylvania
| | - Benicio N Frey
- Mood Disorders Treatment and Research Centre, St Joseph's Healthcare, Hamilton, Ontario, Canada; Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton, Ontario, Canada
| | - Kate L Harkness
- Department of Psychology, Queen's University, Kingston, Ontario, Canada; Department of Psychiatry, Queen's University, Kingston, Ontario, Canada
| | - Jean Addington
- Department of Psychiatry, University of Calgary, Calgary, Alberta, Canada; Hotchkiss Brain Institute and Mathison Centre for Mental Health Research and Education, University of Calgary, Calgary, Alberta, Canada
| | - Sidney H Kennedy
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada
| | - Katharine Dunlop
- Keenan Research Centre for Biomedical Research, Unity Health Toronto, Toronto, Ontario, Canada; Centre for Depression & Suicide Studies, Unity Health Toronto, Toronto, Ontario, Canada; Department of Psychiatry, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
7
|
Lu B, Chen X, Xavier Castellanos F, Thompson PM, Zuo XN, Zang YF, Yan CG. The power of many brains: Catalyzing neuropsychiatric discovery through open neuroimaging data and large-scale collaboration. Sci Bull (Beijing) 2024; 69:1536-1555. [PMID: 38519398 DOI: 10.1016/j.scib.2024.03.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 12/12/2023] [Accepted: 02/27/2024] [Indexed: 03/24/2024]
Abstract
Recent advances in open neuroimaging data are enhancing our comprehension of neuropsychiatric disorders. By pooling images from various cohorts, statistical power has increased, enabling the detection of subtle abnormalities and robust associations, and fostering new research methods. Global collaborations in imaging have furthered our knowledge of the neurobiological foundations of brain disorders and aided in imaging-based prediction for more targeted treatment. Large-scale magnetic resonance imaging initiatives are driving innovation in analytics and supporting generalizable psychiatric studies. We also emphasize the significant role of big data in understanding neural mechanisms and in the early identification and precise treatment of neuropsychiatric disorders. However, challenges such as data harmonization across different sites, privacy protection, and effective data sharing must be addressed. With proper governance and open science practices, we conclude with a projection of how large-scale imaging resources and collaborations could revolutionize diagnosis, treatment selection, and outcome prediction, contributing to optimal brain health.
Collapse
Affiliation(s)
- Bin Lu
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Xiao Chen
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China
| | - Francisco Xavier Castellanos
- Department of Child and Adolescent Psychiatry, NYU Grossman School of Medicine, New York 10016, USA; Nathan Kline Institute for Psychiatric Research, Orangeburg 10962, USA
| | - Paul M Thompson
- Imaging Genetics Center, Mark & Mary Stevens Institute for Neuroimaging & Informatics, Keck School of Medicine, University of Southern California, Los Angeles 90033, USA
| | - Xi-Nian Zuo
- Developmental Population Neuroscience Research Center, IDG/McGovern Institute for Brain Research, Beijing Normal University, Beijing 100875, China; National Basic Science Data Center, Beijing 100190, China
| | - Yu-Feng Zang
- Centre for Cognition and Brain Disorders, The Affiliated Hospital of Hangzhou Normal University, Hangzhou 310004, China; Institute of Psychological Science, Hangzhou Normal University, Hangzhou 310030, China; Zhejiang Key Laboratory for Research in Assessment of Cognitive Impairment, Hangzhou 311121, China
| | - Chao-Gan Yan
- CAS Key Laboratory of Behavioral Science, Institute of Psychology, Beijing 100101, China; Department of Psychology, University of Chinese Academy of Sciences, Beijing 100101, China; International Big-Data Center for Depression Research, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China; Magnetic Resonance Imaging Research Center, Institute of Psychology, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
8
|
Abulseoud OA, Caparelli EC, Krell‐Roesch J, Geda YE, Ross TJ, Yang Y. Sex-difference in the association between social drinking, structural brain aging and cognitive function in older individuals free of cognitive impairment. Front Psychiatry 2024; 15:1235171. [PMID: 38651011 PMCID: PMC11033502 DOI: 10.3389/fpsyt.2024.1235171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 03/19/2024] [Indexed: 04/25/2024] Open
Abstract
Background We investigated a potential sex difference in the relationship between alcohol consumption, brain age gap and cognitive function in older adults without cognitive impairment from the population-based Mayo Clinic Study of Aging. Methods Self-reported alcohol consumption was collected using the food-frequency questionnaire. A battery of cognitive testing assessed performance in four different domains: attention, memory, language, and visuospatial. Brain magnetic resonance imaging (MRI) was conducted using 3-T scanners (Signa; GE Healthcare). Brain age was estimated using the Brain-Age Regression Analysis and Computational Utility Software (BARACUS). We calculated the brain age gap as the difference between predicted brain age and chronological age. Results The sample consisted of 269 participants [55% men (n=148) and 45% women (n=121) with a mean age of 79.2 ± 4.6 and 79.5 ± 4.7 years respectively]. Women had significantly better performance compared to men in memory, (1.12 ± 0.87 vs 0.57 ± 0.89, P<0.0001) language (0.66 ± 0.8 vs 0.33 ± 0.72, P=0.0006) and attention (0.79 ± 0.87 vs 0.39 ± 0.83, P=0.0002) z-scores. Men scored higher in visuospatial skills (0.71 ± 0.91 vs 0.44 ± 0.90, P=0.016). Compared to participants who reported zero alcohol drinking (n=121), those who reported alcohol consumption over the year prior to study enrollment (n=148) scored significantly higher in all four cognitive domains [memory: F3,268 = 5.257, P=0.002, Language: F3,258 = 12.047, P<0.001, Attention: F3,260 = 22.036, P<0.001, and Visuospatial: F3,261 = 9.326, P<0.001] after correcting for age and years of education. In addition, we found a significant positive correlation between alcohol consumption and the brain age gap (P=0.03). Post hoc regression analysis for each sex with language z-score revealed a significant negative correlation between brain age gap and language z-scores in women only (P=0.008). Conclusion Among older adults who report alcohol drinking, there is a positive association between higher average daily alcohol consumption and accelerated brain aging despite the fact that drinkers had better cognitive performance compared to zero drinkers. In women only, accelerated brain aging is associated with worse performance in language cognitive domain. Older adult women seem to be vulnerable to the negative effects of alcohol on brain structure and on certain cognitive functions.
Collapse
Affiliation(s)
- Osama A. Abulseoud
- Department of Psychiatry and Psychology, Mayo Clinic, Phoenix, AZ, United States
- Department of Neuroscience, Graduate School of Biomedical Sciences, Mayo Clinic College of Medicine, Phoenix, AZ, United States
| | - Elisabeth C. Caparelli
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Janina Krell‐Roesch
- Department of Quantitative Health Sciences, Mayo Clinic Rochester, Rochester, MN, United States
- Institute of Sports and Sports Science, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Yonas E. Geda
- Department of Neurology, and the Franke Barrow Global Neuroscience Education Center, Barrow Neurological Institute, Phoenix, AZ, United States
| | - Thomas J. Ross
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| | - Yihong Yang
- Neuroimaging Research Branch, National Institute on Drug Abuse, National Institutes of Health, Baltimore, MD, United States
| |
Collapse
|
9
|
Seitz-Holland J, Haas SS, Penzel N, Reichenberg A, Pasternak O. BrainAGE, brain health, and mental disorders: A systematic review. Neurosci Biobehav Rev 2024; 159:105581. [PMID: 38354871 PMCID: PMC11119273 DOI: 10.1016/j.neubiorev.2024.105581] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 02/05/2024] [Accepted: 02/09/2024] [Indexed: 02/16/2024]
Abstract
The imaging-based method of brainAGE aims to characterize an individual's vulnerability to age-related brain changes. The present study systematically reviewed brainAGE findings in neuropsychiatric conditions and discussed the potential of brainAGE as a marker for biological age. A systematic PubMed search (from inception to March 6th, 2023) identified 273 articles. The 30 included studies compared brainAGE between neuropsychiatric and healthy groups (n≥50). We presented results qualitatively and adapted a bias risk assessment questionnaire. The imaging modalities, design, and input features varied considerably between studies. While the studies found higher brainAGE in neuropsychiatric conditions (11 mild cognitive impairment/ dementia, 11 schizophrenia spectrum/ other psychotic and bipolar disorder, six depression/ anxiety, two multiple groups), the associations with clinical characteristics were mixed. While brainAGE is sensitive to group differences, limitations include the lack of diverse training samples, multi-modal studies, and external validation. Only a few studies obtained longitudinal data, and all have used algorithms built solely to predict chronological age. These limitations impede the validity of brainAGE as a biological age marker.
Collapse
Affiliation(s)
- Johanna Seitz-Holland
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA.
| | - Shalaila S Haas
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Nora Penzel
- Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Abraham Reichenberg
- Department of Psychiatry, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Department of Environmental Medicine and Public Health, Icahn School of Medicine at Mount Sinai, New York, NY, USA; Mindich Child Health and Development Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Ofer Pasternak
- Department of Psychiatry, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA; Department of Psychiatry, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
10
|
Gai Q, Chu T, Che K, Li Y, Dong F, Zhang H, Li Q, Ma H, Shi Y, Zhao F, Liu J, Mao N, Xie H. Classification of Major Depressive Disorder Based on Integrated Temporal and Spatial Functional MRI Variability Features of Dynamic Brain Network. J Magn Reson Imaging 2023; 58:827-837. [PMID: 36579618 DOI: 10.1002/jmri.28578] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Revised: 12/13/2022] [Accepted: 12/13/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Characterization of the dynamics of functional brain network has gained increased attention in the study of depression. However, most studies have focused on single temporal dimension, while ignoring spatial dimensional information, hampering the discovery of validated biomarkers for depression. PURPOSE To integrate temporal and spatial functional MRI variability features of dynamic brain network in machine-learning techniques to distinguish patients with major depressive disorder (MDD) from healthy controls (HCs). STUDY TYPE Prospective. POPULATION A discovery cohort including 119 patients and 106 HCs and an external validation cohort including 126 patients and 124 HCs from Rest-meta-MDD consortium. FIELD STRENGTH/SEQUENCE A 3.0 T/resting-state functional MRI using the gradient echo sequence. ASSESSMENT A random forest (RF) model integrating temporal and spatial variability features of dynamic brain networks with separate feature selection method (MSFS ) was implemented for MDD classification. Its performance was compared with three RF models that used: temporal variability features (MTVF ), spatial variability features (MSVF ), and integrated temporal and spatial variability features with hybrid feature selection method (MHFS ). A linear regression model based on MSFS was further established to assess MDD symptom severity, with prediction performance evaluated by the correlations between true and predicted scores. STATISTICAL TESTS Receiver operating characteristic analyses with the area under the curve (AUC) were used to evaluate models' performance. Pearson's correlation was used to assess relationship of predicted scores and true scores. P < 0.05 was considered statistically significant. RESULTS The model with MSFS achieved the best performance, with AUCs of 0.946 and 0.834 in the discovery and validation cohort, respectively. Additionally, altered temporal and spatial variability could significantly predict the severity of depression (r = 0.640) and anxiety (r = 0.616) in MDD. DATA CONCLUSION Integration of temporal and spatial variability features provides potential assistance for clinical diagnosis and symptom prediction of MDD. EVIDENCE LEVEL 2. TECHNICAL EFFICACY Stage 2.
Collapse
Affiliation(s)
- Qun Gai
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Tongpeng Chu
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
- Big Data & Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Kaili Che
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Yuna Li
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Fanghui Dong
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Haicheng Zhang
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
- Big Data & Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Qinghe Li
- School of Medical Imaging, Binzhou Medical University, Yantai, Shandong, People's Republic of China
| | - Heng Ma
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Yinghong Shi
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Feng Zhao
- School of Computer Science and Technology, Shandong Technology and Business University, Yantai, Shandong, People's Republic of China
| | - Jing Liu
- Department of Pediatrics, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Ning Mao
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
- Big Data & Artificial Intelligence Laboratory, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| | - Haizhu Xie
- Department of Radiology, Yantai Yuhuangding Hospital, Qingdao University, Yantai, Shandong, People's Republic of China
| |
Collapse
|