2
|
de la Rosa T, Llorca-Torralba M, Martínez-Cortés A, Romero-López-Alberca C, Berrocoso E. A Systematic Review and Meta-Analysis of Anxiety- and Depressive-Like Behaviors in Rodent Models of Neuropathic Pain. BIOLOGICAL PSYCHIATRY GLOBAL OPEN SCIENCE 2024; 4:100388. [PMID: 39416657 PMCID: PMC11480234 DOI: 10.1016/j.bpsgos.2024.100388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 08/08/2024] [Accepted: 08/08/2024] [Indexed: 10/19/2024] Open
Abstract
Background Epidemiological studies have frequently shown the concurrence of chronic pain with symptoms of anxiety and depression, particularly in women. Animal models are useful to understand the complex mechanisms underlying comorbidities, but the wide range of methods employed and the wealth of evidence sometimes impedes effective translation and reproducibility. In this systematic review and meta-analysis, we aimed to synthesize the evidence regarding the influence of variables such as sex and species on anxiety- and depressive-like behaviors in rodent models of neuropathic pain. Methods Following PROSPERO registration, we searched EMBASE, Scopus, and the Web of Science from their inception to November 24, 2023, identifying 126 studies that met the inclusion criteria. The Hedges' g value for each experiment and study was calculated, and further subgroup and meta-regression analyses were performed. Results Neuropathic pain significantly reduced the time that rats and mice spent in the open arms of the elevated plus and zero mazes (g = -1.14), time spent in the center of the open field (g = -1.12), sucrose consumption in the sucrose preference test (g = -1.43), and grooming time in the splash test (g = -1.37) while increasing latency to feed in the novelty-suppressed feeding test (g = 1.59) and immobility in the forced swimming (g = 1.85) and tail suspension (g = 1.91) tests. Sex differences were observed, with weaker effects in female than in male rodents for several behavioral paradigms, and funnel plots identified positive publication bias in the literature. Conclusions This meta-analysis emphasizes the effect of neuropathic pain on anxiety- and depressive-like behaviors in rodents, highlighting the importance of investigating sex differences in future experimental studies.
Collapse
Affiliation(s)
- Tomás de la Rosa
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| | - Meritxell Llorca-Torralba
- Centro de Investigación Biomédica en Red en Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Cell Biology & Histology, University of Cádiz, Cádiz, Spain
| | - Adrián Martínez-Cortés
- Centro de Investigación Biomédica en Red en Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Psychology, University of Cádiz, Puerto Real, Spain
| | - Cristina Romero-López-Alberca
- Centro de Investigación Biomédica en Red en Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
- Neuropsychopharmacology & Psychobiology Research Group, Department of Psychology, University of Cádiz, Puerto Real, Spain
| | - Esther Berrocoso
- Neuropsychopharmacology & Psychobiology Research Group, Department of Neuroscience, University of Cádiz, Cádiz, Spain
- Centro de Investigación Biomédica en Red en Salud Mental, Instituto de Salud Carlos III, Madrid, Spain
- Instituto de Investigación e Innovación Biomédica de Cádiz (INiBICA), Hospital Universitario Puerta del Mar, Cádiz, Spain
| |
Collapse
|
3
|
Norris MR, Becker LJ, Bilbily J, Chang YH, Borges G, Dunn SS, Madasu MK, Vazquez CR, Cariello SA, Al-Hasani R, Creed MC, McCall JG. Spared nerve injury decreases motivation in long-access homecage-based operant tasks in mice. Pain 2024; 165:1247-1265. [PMID: 38015628 PMCID: PMC11095834 DOI: 10.1097/j.pain.0000000000003123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2022] [Accepted: 10/10/2023] [Indexed: 11/30/2023]
Abstract
ABSTRACT Neuropathic pain causes both sensory and emotional maladaptation. Preclinical animal studies of neuropathic pain-induced negative affect could result in novel insights into the mechanisms of chronic pain. Modeling pain-induced negative affect, however, is variable across research groups and conditions. The same injury may or may not produce robust negative affective behavioral responses across different species, strains, and laboratories. Here, we sought to identify negative affective consequences of the spared nerve injury model on C57BL/6J male and female mice. We found no significant effect of spared nerve injury across a variety of approach-avoidance conflict, hedonic choice, and coping strategy assays. We hypothesized these inconsistencies may stem in part from the short test duration of these assays. To test this hypothesis, we used the homecage-based Feeding Experimentation Device version 3 to conduct 12-hour, overnight progressive ratio testing to determine whether mice with chronic spared nerve injury had decreased motivation to earn palatable food rewards. Our data demonstrate that despite equivalent task learning, spared nerve injury mice are less motivated to work for a sugar pellet than sham controls. Furthermore, when we normalized behavioral responses across all the behavioral assays we tested, we found that a combined normalized behavioral score is predictive of injury state and significantly correlates with mechanical thresholds. Together, these results suggest that homecage-based operant behaviors provide a useful platform for modeling nerve injury-induced negative affect and that valuable pain-related information can arise from agglomerative data analyses across behavioral assays-even when individual inferential statistics do not demonstrate significant mean differences.
Collapse
Affiliation(s)
- Makenzie R. Norris
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Léa J. Becker
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - John Bilbily
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Yu-Hsuan Chang
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Gustavo Borges
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Samantha S. Dunn
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Manish K. Madasu
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Chayla R. Vazquez
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Solana A. Cariello
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
| | - Ream Al-Hasani
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| | - Meaghan C. Creed
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
- Department of Psychiatry, Washington University in St. Louis, St. Louis, MO, USA
| | - Jordan G. McCall
- Department of Anesthesiology, Washington University in St. Louis, St. Louis, MO, USA; Department of Pharmaceutical and Administrative Sciences, St. Louis College of Pharmacy, St. Louis, MO, USA; Center for Clinical Pharmacology, St. Louis College of Pharmacy and Washington University School of Medicine, St. Louis, MO, USA; Washington University Pain Center, Washington University in St. Louis, St. Louis, MO, USA
- Division of Biology and Biomedical Sciences, Washington University School of Medicine, St. Louis, MO, USA
| |
Collapse
|
5
|
Xing L, Simon JM, Ptacek TS, Yi JJ, Loo L, Mao H, Wolter JM, McCoy ES, Paranjape SR, Taylor-Blake B, Zylka MJ. Autism-linked UBE3A gain-of-function mutation causes interneuron and behavioral phenotypes when inherited maternally or paternally in mice. Cell Rep 2023; 42:112706. [PMID: 37389991 PMCID: PMC10530456 DOI: 10.1016/j.celrep.2023.112706] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 04/15/2023] [Accepted: 06/12/2023] [Indexed: 07/02/2023] Open
Abstract
The E3 ubiquitin ligase Ube3a is biallelically expressed in neural progenitors and glial cells, suggesting that UBE3A gain-of-function mutations might cause neurodevelopmental disorders irrespective of parent of origin. Here, we engineered a mouse line that harbors an autism-linked UBE3AT485A (T503A in mouse) gain-of-function mutation and evaluated phenotypes in animals that inherited the mutant allele paternally, maternally, or from both parents. We find that paternally and maternally expressed UBE3AT503A results in elevated UBE3A activity in neural progenitors and glial cells. Expression of UBE3AT503A from the maternal allele, but not the paternal one, leads to a persistent elevation of UBE3A activity in neurons. Mutant mice display behavioral phenotypes that differ by parent of origin. Expression of UBE3AT503A, irrespective of its parent of origin, promotes transient embryonic expansion of Zcchc12 lineage interneurons. Phenotypes of Ube3aT503A mice are distinct from Angelman syndrome model mice. Our study has clinical implications for a growing number of disease-linked UBE3A gain-of-function mutations.
Collapse
Affiliation(s)
- Lei Xing
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeremy M Simon
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Travis S Ptacek
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Jason J Yi
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Lipin Loo
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Hanqian Mao
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA
| | - Justin M Wolter
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA; Department of Genetics, The University of North Carolina at Chapel Hill, Campus Box #7264, Chapel Hill, NC 27599, USA
| | - Eric S McCoy
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Smita R Paranjape
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Bonnie Taylor-Blake
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Mark J Zylka
- UNC Neuroscience Center, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Cell Biology and Physiology, The University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Carolina Institute for Developmental Disabilities, The University of North Carolina at Chapel Hill, Campus Box #7255, Chapel Hill, NC 27599, USA.
| |
Collapse
|