1
|
Overholtzer LN, Torgerson C, Morrel J, Ahmadi H, Tyszka JM, Herting MM. Amygdala Subregion Volumes and Apportionment in Preadolescents - Associations with Age, Sex, and Body Mass Index. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.10.07.617048. [PMID: 39416063 PMCID: PMC11482789 DOI: 10.1101/2024.10.07.617048] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 10/19/2024]
Abstract
Importance The amygdala, a key limbic structure, plays a critical role in emotional, social, and appetitive behaviors that develop throughout adolescence. Composed of a heterogeneous group of nuclei, questions remain about potential differences in the maturation of its subregions during development. Objective To characterize the associations between developmental variables and amygdala subregion volumes during preadolescence. Design Setting and Participants Cross-sectional Adolescent Brain Cognitive Development (ABCD®) Study data was collected from 3,953 9- and 10-year-old children between September 1, 2016, and October 15, 2018. Data analysis was conducted between June 1, 2023, and July 30, 2024. Main Outcomes and Measures Using the CIT168 Amygdala Atlas, nine amygdala subregion volumes were quantified from high-quality MRI scans. Linear mixed-effects models were used to examine the effects of age, sex, pubertal stage, and body mass index z-score (BMIz) on subregion volumes and their relative apportionment within the amygdala. Results The study population consisted of 3,953 preadolescents (mean [SD] age, 120 [7.41] months; 1,763 [44.6%] female; 57 [1.4%] Asian, 527 [13.3%] Black, 740 [18.7%] Hispanic, 2,279 [57.7%] white, and 350 [8.9%] from other racial/ethnic groups [identified by parents as American Indian/Native American, Alaska Native, Native Hawaiian, Guamanian, Samoan, other Pacific Islander, or other race]). Distinct associations were observed between age, sex, and BMIz and whole amygdala volume, subregion volumes, and subregion apportionment. Pubertal stage was not related to amygdala subregion volumes. Age was associated with near-global expansion of amygdala subregions during this developmental period. Female sex was linked to smaller volumes in most amygdala subregions, with larger relative apportionment in dorsal amygdala subregions and smaller apportionment in the basolateral ventral paralaminar subregion. Higher BMIz was associated with smaller volumes in large laterobasal subregions, with increased relative apportionment in smaller subregions. Conclusions and Relevance This cross-sectional study suggests that age, but not pubertal stage, is associated with near-global expansion of the amygdala at ages 9 and 10, while sex and BMIz are linked to distinct changes in amygdala subregions that explain observed differences in total volumes. These findings provide a foundational context for understanding how developmental variables influence amygdala structure in preadolescents, with implications for understanding future risk for brain disorders.
Collapse
Affiliation(s)
- L. Nate Overholtzer
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
- USC-Caltech MD-PhD Program, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - Carinna Torgerson
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Jessica Morrel
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
- Neurosciences Graduate Program, University of Southern California, Los Angeles, CA, USA
| | - Hedyeh Ahmadi
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| | - J. Michael Tyszka
- Caltech Brain Imaging Center, California Institute of Technology, Pasadena, CA, USA
| | - Megan M. Herting
- Department of Population and Public Health Sciences, Keck School of Medicine of USC, Los Angeles, CA, USA
| |
Collapse
|
2
|
Ge YJ, Fu Y, Gong W, Cheng W, Yu JT. Genetic architecture of brain morphology and overlap with neuropsychiatric traits. Trends Genet 2024; 40:706-717. [PMID: 38702264 DOI: 10.1016/j.tig.2024.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2024] [Revised: 04/05/2024] [Accepted: 04/12/2024] [Indexed: 05/06/2024]
Abstract
Uncovering the genetic architectures of brain morphology offers valuable insights into brain development and disease. Genetic association studies of brain morphological phenotypes have discovered thousands of loci. However, interpretation of these loci presents a significant challenge. One potential solution is exploring the genetic overlap between brain morphology and disorders, which can improve our understanding of their complex relationships, ultimately aiding in clinical applications. In this review, we examine current evidence on the genetic associations between brain morphology and neuropsychiatric traits. We discuss the impact of these associations on the diagnosis, prediction, and treatment of neuropsychiatric diseases, along with suggestions for future research directions.
Collapse
Affiliation(s)
- Yi-Jun Ge
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yan Fu
- Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, 266071, China
| | - Weikang Gong
- School of Data Science, Fudan University, Shanghai, China; Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UK
| | - Wei Cheng
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China; Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China; Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence, Fudan University, Ministry of Education, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and National Center for Neurological Disorders, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Chen SD, You J, Zhang W, Wu BS, Ge YJ, Xiang ST, Du J, Kuo K, Banaschewski T, Barker GJ, Bokde ALW, Desrivières S, Flor H, Grigis A, Garavan H, Gowland P, Heinz A, Brühl R, Martinot JL, Martinot MLP, Artiges E, Nees F, Orfanos DP, Lemaitre H, Paus T, Poustka L, Hohmann S, Millenet S, Baeuchl C, Smolka MN, Vaidya N, Walter H, Whelan R, Schumann G, Feng JF, Dong Q, Cheng W, Yu JT. The genetic architecture of the human hypothalamus and its involvement in neuropsychiatric behaviours and disorders. Nat Hum Behav 2024:10.1038/s41562-023-01792-6. [PMID: 38182882 DOI: 10.1038/s41562-023-01792-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Accepted: 11/20/2023] [Indexed: 01/07/2024]
Abstract
Despite its crucial role in the regulation of vital metabolic and neurological functions, the genetic architecture of the hypothalamus remains unknown. Here we conducted multivariate genome-wide association studies (GWAS) using hypothalamic imaging data from 32,956 individuals to uncover the genetic underpinnings of the hypothalamus and its involvement in neuropsychiatric traits. There were 23 significant loci associated with the whole hypothalamus and its subunits, with functional enrichment for genes involved in intracellular trafficking systems and metabolic processes of steroid-related compounds. The hypothalamus exhibited substantial genetic associations with limbic system structures and neuropsychiatric traits including chronotype, risky behaviour, cognition, satiety and sympathetic-parasympathetic activity. The strongest signal in the primary GWAS, the ADAMTS8 locus, was replicated in three independent datasets (N = 1,685-4,321) and was strengthened after meta-analysis. Exome-wide association analyses added evidence to the association for ADAMTS8, and Mendelian randomization showed lower ADAMTS8 expression with larger hypothalamic volumes. The current study advances our understanding of complex structure-function relationships of the hypothalamus and provides insights into the molecular mechanisms that underlie hypothalamic formation.
Collapse
Affiliation(s)
- Shi-Dong Chen
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Jia You
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Wei Zhang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Bang-Sheng Wu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Yi-Jun Ge
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Shi-Tong Xiang
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Jing Du
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China
| | - Kevin Kuo
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China
| | - Tobias Banaschewski
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Gareth J Barker
- Department of Neuroimaging, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Arun L W Bokde
- Discipline of Psychiatry, School of Medicine and Trinity College Institute of Neuroscience, Trinity College Dublin, Dublin, Ireland
| | - Sylvane Desrivières
- Institute of Psychiatry, Psychology & Neuroscience, Social, Genetic, Developmental Psychiatry Centre, King's College London, London, UK
| | - Herta Flor
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Department of Psychology, School of Social Sciences, University of Mannheim, Mannheim, Germany
| | - Antoine Grigis
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
| | - Hugh Garavan
- Departments of Psychiatry and Psychology, University of Vermont, Burlington, VT, USA
| | - Penny Gowland
- Sir Peter Mansfield Imaging Centre School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Andreas Heinz
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Rüdiger Brühl
- Physikalisch-Technische Bundesanstalt (PTB), Braunschweig and Berlin, Germany
| | - Jean-Luc Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
| | - Marie-Laure Paillère Martinot
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- AP-HP, Sorbonne University, Department of Child and Adolescent Psychiatry, Pitié-Salpêtrière Hospital, Paris, France
| | - Eric Artiges
- Institut National de la Santé et de la Recherche Médicale, INSERM U 1299 "Trajectoires développementales & psychiatrie", University Paris-Saclay, CNRS, Ecole Normale Supérieure Paris-Saclay, Centre Borelli, Gif-sur-Yvette, France
- Psychiatry Department, EPS Barthélémy Durand, Etampes, France
| | - Frauke Nees
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Cognitive and Clinical Neuroscience, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
- Institute of Medical Psychology and Medical Sociology, University Medical Center Schleswig Holstein, Kiel University, Kiel, Germany
| | | | - Herve Lemaitre
- NeuroSpin, CEA, Université Paris-Saclay, Gif-sur-Yvette, France
- Institut des Maladies Neurodégénératives, UMR 5293, CNRS, CEA, Université de Bordeaux, Bordeaux, France
| | - Tomáš Paus
- Departments of Psychiatry and Neuroscience, Faculty of Medicine and Centre Hosptalier Universitaire Sainte-Justine, University of Montreal, Montreal, Quebec, Canada
- Departments of Psychiatry and Psychology, University of Toronto, Toronto, Ontario, Canada
| | - Luise Poustka
- Department of Child and Adolescent Psychiatry and Psychotherapy, University Medical Centre Göttingen, Göttingen, Germany
| | - Sarah Hohmann
- Department of Child and Adolescent Psychiatry, Psychotherapy and Psychosomatics, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Sabina Millenet
- Department of Child and Adolescent Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Christian Baeuchl
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Michael N Smolka
- Department of Psychiatry and Psychotherapy, Technische Universität Dresden, Dresden, Germany
| | - Nilakshi Vaidya
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
| | - Henrik Walter
- Department of Psychiatry and Psychotherapy CCM, Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Robert Whelan
- School of Psychology and Global Brain Health Institute, Trinity College Dublin, Dublin, Ireland
| | - Gunter Schumann
- Centre for Population Neuroscience and Stratified Medicine (PONS), Department of Psychiatry and Neuroscience, Charité Universitätsmedizin Berlin, Berlin, Germany
- Centre for Population Neuroscience and Precision Medicine (PONS), Institute for Science and Technology of Brain-inspired Intelligence (ISTBI), Fudan University, Shanghai, China
| | - Jian-Feng Feng
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- MOE Frontiers Center for Brain Science, Fudan University, Shanghai, China.
- Zhangjiang Fudan International Innovation Center, Shanghai, China.
| | - Qiang Dong
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| | - Wei Cheng
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
- Institute of Science and Technology for Brain-Inspired Intelligence, Fudan University, Shanghai, China.
- Key Laboratory of Computational Neuroscience and Brain-Inspired Intelligence (Fudan University), Ministry of Education, Shanghai, China.
- Fudan ISTBI-ZJNU Algorithm Centre for Brain-Inspired Intelligence, Zhejiang Normal University, Jinhua, China.
- Shanghai Medical College and Zhongshan Hospital Immunotherapy Technology Transfer Center, Shanghai, China.
| | - Jin-Tai Yu
- Department of Neurology and Institute of Neurology, Huashan Hospital, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Shanghai Medical College, Fudan University, National Center for Neurological Disorders, Shanghai, China.
| |
Collapse
|
4
|
Campbell ML, Dalvie S, Shadrin A, van der Meer D, O'Connell K, Frei O, Andreassen OA, Stein DJ, Rokicki J. Distributed genetic effects of the corpus callosum subregions suggest links to neuropsychiatric disorders and related traits. Acta Neuropsychiatr 2023:1-8. [PMID: 37612147 PMCID: PMC10891296 DOI: 10.1017/neu.2023.32] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 08/25/2023]
Abstract
BACKGROUND The corpus callosum (CC) is a brain structure with a high heritability and potential role in psychiatric disorders. However, the genetic architecture of the CC and the genetic link with psychiatric disorders remain largely unclear. We investigated the genetic architectures of the volume of the CC and its subregions and the genetic overlap with psychiatric disorders. METHODS We applied multivariate genome-wide association study (GWAS) to genetic and T1-weighted magnetic resonance imaging (MRI) data of 40,894 individuals from the UK Biobank, aiming to boost genetic discovery and to assess the pleiotropic effects across volumes of the five subregions of the CC (posterior, mid-posterior, central, mid-anterior and anterior) obtained by FreeSurfer 7.1. Multivariate GWAS was run combining all subregions, co-varying for relevant variables. Gene-set enrichment analyses were performed using MAGMA. Linkage disequilibrium score regression (LDSC) was used to determine Single nucleotide polymorphism (SNP)-based heritability of total CC volume and volumes of its subregions as well as their genetic correlations with relevant psychiatric traits. RESULTS We identified 70 independent loci with distributed effects across the five subregions of the CC (p < 5 × 10-8). Additionally, we identified 33 significant loci in the anterior subregion, 23 in the mid-anterior, 29 in the central, 7 in the mid-posterior and 56 in the posterior subregion. Gene-set analysis revealed 156 significant genes contributing to volume of the CC subregions (p < 2.6 × 10-6). LDSC estimated the heritability of CC to (h2SNP = 0.38, SE = 0.03) and subregions ranging from 0.22 (SE = 0.02) to 0.37 (SE = 0.03). We found significant genetic correlations of total CC volume with bipolar disorder (BD, rg = -0.09, SE = 0.03; p = 5.9 × 10-3) and drinks consumed per week (rg = -0.09, SE = 0.02; p = 4.8 × 10-4), and volume of the mid-anterior subregion with BD (rg = -0.12, SE = 0.02; p = 2.5 × 10-4), major depressive disorder (MDD) (rg = -0.12, SE = 0.04; p = 3.6 × 10-3), drinks consumed per week (rg = -0.13, SE = 0.04; p = 1.8 × 10-3) and cannabis use (rg = -0.09, SE = 0.03; p = 8.4 × 10-3). CONCLUSIONS Our results demonstrate that the CC has a polygenic architecture implicating multiple genes and show that CC subregion volumes are heritable. We found that distinct genetic factors are involved in the development of anterior and posterior subregions, consistent with their divergent functional specialisation. Significant genetic correlation between volumes of the CC and BD, drinks per week, MDD and cannabis consumption subregion volumes with psychiatric traits is noteworthy and deserving of further investigation.
Collapse
Affiliation(s)
- Megan L Campbell
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
- Global Initiative for Neuropsychiatric Genetics Education in Research (GINGER), Harvard, T.H. Chan School of Public Health, Boston, MA, USA
| | - Shareefa Dalvie
- Division of Human Genetics, Department of Pathology, University of Cape Town, Cape Town, South Africa
| | - Alexey Shadrin
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Dennis van der Meer
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
- School of Mental Health and Neuroscience, Faculty of Health, Medicine and Life Sciences, Maastricht University, Maastricht, Netherlands
| | - Kevin O'Connell
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Oleksander Frei
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Ole A Andreassen
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
| | - Dan J Stein
- Department of Psychiatry and Mental Health, University of Cape Town, Cape Town, South Africa
| | - Jaroslav Rokicki
- NORMENT Centre for Psychosis Research, Division of Mental Health and Addiction, University of Oslo, and Oslo University Hospital, Oslo, Norway
- Centre of Research and Education in Forensic Psychiatry (SIFER), Oslo University Hospital, Oslo, Norway
| |
Collapse
|