1
|
Lusiki Z, Blom D, Soko ND, Malema S, Jones E, Rayner B, Blackburn J, Sinxadi P, Dandara MT, Dandara C. Major Genetic Drivers of Statin Treatment Response in African Populations and Pharmacogenetics of Dyslipidemia Through a One Health Lens. OMICS : A JOURNAL OF INTEGRATIVE BIOLOGY 2024; 28:261-279. [PMID: 37956269 DOI: 10.1089/omi.2023.0122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/15/2023]
Abstract
A One Health lens is increasingly significant to address the intertwined challenges in planetary health concerned with the health of humans, nonhuman animals, plants, and ecosystems. A One Health approach can benefit the public health systems in Africa that are overburdened by noncommunicable, infectious, and environmental diseases. Notably, the COVID-19 pandemic revealed the previously overlooked two-fold importance of pharmacogenetics (PGx), for individually tailored treatment of noncommunicable diseases and environmental pathogens. For example, dyslipidemia, a common cardiometabolic risk factor, has been identified as an independent COVID-19 severity risk factor. Observational data suggest that patients with COVID-19 infection receiving lipid-lowering therapy may have better outcomes. However, among African patients, the response to these drugs varies from patient to patient, pointing to the possible contribution of genetic variation in important pharmacogenes. The PGx of lipid-lowering therapies may underlie differences in treatment responses observed among dyslipidemia patients as well as patients comorbid with COVID-19 and dyslipidemia. Genetic variations in APOE, ABCB1, CETP, CYP2C9, CYP3A4, CYP3A5, HMGCR, LDLR, NPC1L1, and SLCO1B1 genes affect the pharmacogenomics of statins, and they have individually been linked to differential responses to dyslipidemia and COVID-19 treatment. African populations are underrepresented in PGx research. This leads to poor accounting of additional diverse genetic variants that could be important in understanding interindividual and between-population variations in therapeutic responses to dyslipidemia and COVID-19. This expert review examines and synthesizes the salient and priority PGx variations, as seen through a One Health lens in Africa, to improve and inform personalized medicine in both dyslipidemia and COVID-19.
Collapse
Affiliation(s)
- Zizo Lusiki
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Dirk Blom
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Lipidology and Cape Heart Institute, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Nyarai D Soko
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Smangele Malema
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Erika Jones
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Brian Rayner
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Nephrology and Hypertension, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Jonathan Blackburn
- Division of Chemical and Systems Biology, Department of Integrative Biomedical Sciences, University of Cape Town, Cape Town, South Africa
| | - Phumla Sinxadi
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
- Division of Clinical Pharmacology, Department of Medicine, University of Cape Town, Cape Town, South Africa
| | - Michelle T Dandara
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| | - Collet Dandara
- Division of Human Genetics, Department of Pathology, Institute of Infectious Diseases and Molecular Medicine (IDM), University of Cape Town, Cape Town, South Africa
- Platform for Pharmacogenomics Research and Translation (PREMED) Unit, South African Medical Research Council (SAMRC), Cape Town, South Africa
| |
Collapse
|
2
|
Shatnawi A, Kamran Z, Al-Share Q. Pharmacogenomics of lipid-lowering agents: the impact on efficacy and safety. Per Med 2022; 20:65-86. [DOI: 10.2217/pme-2022-0041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Hyperlipidemia is a significant risk factor for cardiovascular disease morbidity and mortality. The lipid-lowering drugs are considered the cornerstone of primary and secondary prevention of atherosclerotic cardiovascular disease. Unfortunately, the lack of efficacy and associated adverse effects, ranging from mild-to-moderate to potentially life-threatening, lead to therapy discontinuation. Numerous reports support the role of gene polymorphisms in drugs' pharmacokinetic parameters and their associated adverse reactions. Therefore, this study aims to understand the pharmacogenomics of lipid-lowering drugs and the impact of genetic variants of key genes on the drugs' efficacy and toxicity. Indeed, genetically guided lipid-lowering therapy enhances overall safety, improves drug adherence and achieves long-term therapy.
Collapse
Affiliation(s)
- Aymen Shatnawi
- Department of Drug Discovery & Biomedical Sciences, College of Pharmacy, Medical University of South Carolina, 70 President St., Room 402, Charleston, SC 29425, USA
| | - Zourayz Kamran
- Department of Pharmaceutical & Administrative Sciences, University of Charleston School of Pharmacy, 2300 MacCorkle Ave SE, Charleston, WV 25304, USA
| | - Qusai Al-Share
- Department of Clinical Pharmacy, Assistant Professor of Pharmacology & Therapeutics, Faculty of Pharmacy, Jordan University of Science & Technology, P.O. Box 3030, Irbid, 22110, Jordan
| |
Collapse
|
3
|
Murphy WA, Lin N, Damask A, Schwartz GG, Steg PG, Szarek M, Banerjee P, Fazio S, Manvelian G, Pordy R, Shuldiner AR, Paulding C. Pharmacogenomic Study of Statin-Associated Muscle Symptoms in the ODYSSEY OUTCOMES Trial. Circ Genom Precis Med 2022; 15:e003503. [PMID: 35543701 PMCID: PMC9213083 DOI: 10.1161/circgen.121.003503] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Statin-associated muscle symptoms (SAMS) are the most frequently reported adverse events for statin therapies. Previous studies have reported an association between the p.Val174Ala missense variant in SLCO1B1 and SAMS in simvastatin-treated subjects; however, evidence for genetic predictors of SAMS in atorvastatin- or rosuvastatin-treated subjects is currently lacking.
Collapse
Affiliation(s)
- William A. Murphy
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill‚ Chapel Hill‚ NC (W.A.M.)
| | - Nan Lin
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Amy Damask
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill‚ Chapel Hill‚ NC (W.A.M.)
| | | | - P. Gabriel Steg
- Université de Paris, Hôpital Bichat, Assistance Publique-Hôpitaux de Paris, Paris‚ INSERM U1148, France (P.G.S.)
| | - Michael Szarek
- University of Colorado School of Medicine, Aurora‚ CO (G.G.S., M.S.)
- Department of Biostatistics and Epidemiology, SUNY Downstate School of Public Health, Brooklyn, NY (M.S.)
- CPC Clinical Research, Aurora, CO (M.S.)
| | - Poulabi Banerjee
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Sergio Fazio
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Garen Manvelian
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Robert Pordy
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Alan R. Shuldiner
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| | - Charles Paulding
- Regeneron Genetics Center, Regeneron Pharmaceuticals Inc, Tarrytown, NY (N.L., A.D., P.B., S.F., G.M., R.P., A.R.S., C.P.)
| |
Collapse
|
4
|
Loss of function polymorphisms in SLCO1B1 (c.521T>C, rs4149056) and ABCG2 (c.421C>A, rs2231142) genes are associated with adverse events of rosuvastatin: a case-control study. Eur J Clin Pharmacol 2021; 78:227-236. [PMID: 34668025 DOI: 10.1007/s00228-021-03233-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Accepted: 10/11/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE The study aims to evaluate relationship between polymorphisms associated with a reduced function of two transporter proteins resulting in increased exposure to rosuvastatin - organic anion transporter 1B1 (OATP1B1) (SLCO1B1 c.521T>C) and ATP binding cassette subfamily G member 2 (ABCG2) (ABCG2 c.421C>A) and occurrence of rosuvastatin related myotoxicity/hepatotoxicity. METHODS In a case-control study, cases (rosuvastatin treated patients developing myotoxicity or hepatotoxicity) and controls (concurrent rosuvastatin treated patients free of adverse events) were prospectively recruited over a 2 year period in a single tertiary center specialized in treatment of metabolic disorders. Subjects were evaluated for clinical, comorbidity, and comedication characteristics and for genotype predicted metabolizing phenotypes regarding cytochrome P450 enzymes CYP2C9 and CYP2C19. Standard regression analysis and analysis in matched sets of cases and controls (optimal full matching) were undertaken by fitting frequentist and Bayesian models (covariates/matching variables: age, sex, diabetes, liver/renal disease, hypertension, CYP2C9 and C19 phenotype, use of CYP or transporter inhibitors, non evaluated transporter genotype). RESULTS A total of 88 cases (81 with myotoxicity, 6 with hepatotoxicity, 1 with both) and 129 controls were recruited. Odds of variant SLCO1B1 c.521T>C allele were 2.2-2.5 times higher in cases than in controls (OR = 2.45, 95% CI 1.34-4.48; Bayesian OR = 2.59, 95% CrI 1.42-4.90 in regression analysis; OR = 2.20, 1.10-4.42; Bayesian OR = 2.26, 1.28-4.41 in matched analysis). Odds of variant ABCG2 c.421C>A allele were 2.1-2.3 times higher in cases than in controls (OR = 2.24, 1.04-4.83; Bayesian OR = 2.35, 1.09-4.31 in regression analysis; OR = 2.10, 0.83-5.31; Bayesian OR = 2.17, 1.07-4.35 in matched analysis). CONCLUSION Loss of function polymorphisms in SLCO1B1 c.521T>C and ABCG2 c.421C>A genes are associated with the presence of rosuvastatin related myotoxicity and/or hepatotoxicity.
Collapse
|
5
|
Deng F, Tuomi SK, Neuvonen M, Hirvensalo P, Kulju S, Wenzel C, Oswald S, Filppula AM, Niemi M. Comparative Hepatic and Intestinal Efflux Transport of Statins. Drug Metab Dispos 2021; 49:750-759. [PMID: 34162690 DOI: 10.1124/dmd.121.000430] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 06/14/2021] [Indexed: 11/22/2022] Open
Abstract
Previous studies have shown that lipid-lowering statins are transported by various ATP-binding cassette (ABC) transporters. However, because of varying methods, it is difficult to compare the transport profiles of statins. Therefore, we investigated the transport of 10 statins or statin metabolites by six ABC transporters using human embryonic kidney cell-derived membrane vesicles. The transporter protein expression levels in the vesicles were quantified with liquid chromatography-tandem mass spectrometry and used to scale the measured clearances to tissue levels. In our study, apically expressed breast cancer resistance protein (BCRP) and P-glycoprotein (P-gp) transported atorvastatin, fluvastatin, pitavastatin, and rosuvastatin. Multidrug resistance-associated protein 3 (MRP3) transported atorvastatin, fluvastatin, pitavastatin, and, to a smaller extent, pravastatin. MRP4 transported fluvastatin and rosuvastatin. The scaled clearances suggest that BCRP contributes to 87%-91% and 84% of the total active efflux of rosuvastatin in the small intestine and the liver, respectively. For atorvastatin, the corresponding values for P-gp-mediated efflux were 43%-79% and 66%, respectively. MRP3, on the other hand, may contribute to 23%-26% and 25%-37% of total active efflux of atorvastatin, fluvastatin, and pitavastatin in jejunal enterocytes and liver hepatocytes, respectively. These data indicate that BCRP may play an important role in limiting the intestinal absorption and facilitating the biliary excretion of rosuvastatin and that P-gp may restrict the intestinal absorption and mediate the biliary excretion of atorvastatin. Moreover, the basolateral MRP3 may enhance the intestinal absorption and sinusoidal hepatic efflux of several statins. Taken together, the data show that statins differ considerably in their efflux transport profiles. SIGNIFICANCE STATEMENT: This study characterized and compared the transport of atorvastatin, fluvastatin, pitavastatin, pravastatin, rosuvastatin, and simvastatin acid and four atorvastatin metabolites by six ABC transporters (BCRP, MRP2, MRP3, MRP4, MRP8, P-gp). Based on in vitro findings and protein abundance data, the study concludes that BCRP, MRP3, and P-gp have a major impact in the efflux of various statins. Together with in vitro metabolism, uptake transport, and clinical data, our findings are applicable for use in comparative systems pharmacology modeling of statins.
Collapse
Affiliation(s)
- Feng Deng
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Suvi-Kukka Tuomi
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Mikko Neuvonen
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Päivi Hirvensalo
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Sami Kulju
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Christoph Wenzel
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Stefan Oswald
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Anne M Filppula
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| | - Mikko Niemi
- Department of Clinical Pharmacology, Faculty of Medicine (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.), and Individualized Drug Therapy Research Program, Faculty of Medicine, University of Helsinki, Helsinki, Finland (F.D., S.-K.T., M.Ne, P.H., S.K., A.M.F., M.Ni.); Institute of Pharmacology, Center of Drug Absorption and Transport, University Medicine Greifswald, Greifswald, Germany (C.W., S.O.); Institute of Pharmacology and Toxicology, Rostock University Medical Center, Rostock, Germany (S.O.); and Department of Clinical Pharmacology, HUS Diagnostic Center, Helsinki University Hospital, Helsinki, Finland (M.Ni.)
| |
Collapse
|
6
|
Kuang YL, Theusch E, M Krauss R, W Medina M. Identifying genetic modulators of statin response using subject-derived lymphoblastoid cell lines. Pharmacogenomics 2021; 22:413-421. [PMID: 33858191 DOI: 10.2217/pgs-2020-0197] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Although statins (3-hydroxy-3-methylglutaryl-CoA reductase inhibitors) have proven effective in reducing plasma low-density lipoprotein levels and risk of cardiovascular disease, their lipid lowering efficacy is highly variable among individuals. Furthermore, statin treatment carries a small but significant risk of adverse effects, most notably myopathy and new onset diabetes. Hence, identification of biomarkers for predicting patients who would most likely benefit from statin treatment without incurring increased risk of adverse effects can have a significant public health impact. In this review, we discuss the rationale for the use of subject-derived lymphoblastoid cell lines in studies of statin pharmacogenomics and describe a variety of approaches we have employed to identify novel genetic markers associated with interindividual variation in statin response.
Collapse
Affiliation(s)
- Yu-Lin Kuang
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Elizabeth Theusch
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| | - Ronald M Krauss
- Departments of Pediatrics and Medicine, University of California San Francisco, Oakland, CA, USA
| | - Marisa W Medina
- Department of Pediatrics, University of California San Francisco, Oakland, CA, USA
| |
Collapse
|
7
|
Magavern EF, Kaski JC, Turner RM, Drexel H, Janmohamed A, Scourfield A, Burrage D, Floyd CN, Adeyeye E, Tamargo J, Lewis BS, Kjeldsen KP, Niessner A, Wassmann S, Sulzgruber P, Borry P, Agewall S, Semb AG, Savarese G, Pirmohamed M, Caulfield MJ. The Role of Pharmacogenomics in Contemporary Cardiovascular Therapy: A position statement from the European Society of Cardiology Working Group on Cardiovascular Pharmacotherapy. EUROPEAN HEART JOURNAL. CARDIOVASCULAR PHARMACOTHERAPY 2021; 8:85-99. [PMID: 33638977 DOI: 10.1093/ehjcvp/pvab018] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 02/05/2021] [Accepted: 02/24/2021] [Indexed: 12/14/2022]
Abstract
There is a strong and ever-growing body of evidence regarding the use of pharmacogenomics to inform cardiovascular pharmacology. However, there is no common position taken by international cardiovascular societies to unite diverse availability, interpretation and application of such data, nor is there recognition of the challenges of variation in clinical practice between countries within Europe. Aside from the considerable barriers to implementing pharmacogenomic testing and the complexities of clinically actioning results, there are differences in the availability of resources and expertise internationally within Europe. Diverse legal and ethical approaches to genomic testing and clinical therapeutic application also require serious thought. As direct-to-consumer genomic testing becomes more common, it can be anticipated that data may be brought in by patients themselves, which will require critical assessment by the clinical cardiovascular prescriber. In a modern, pluralistic and multi-ethnic Europe, self-identified race/ethnicity may not be concordant with genetically detected ancestry and thus may not accurately convey polymorphism prevalence. Given the broad relevance of pharmacogenomics to areas such as thrombosis and coagulation, interventional cardiology, heart failure, arrhythmias, clinical trials, and policy/regulatory activity within cardiovascular medicine, as well as to genomic and pharmacology subspecialists, this position statement attempts to address these issues at a wide-ranging level.
Collapse
Affiliation(s)
- E F Magavern
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK.,Department of Clinical Pharmacology, Cardiovascular Medicine, Barts Health NHS Trust, London, UK
| | - J C Kaski
- Molecular and Clinical Sciences Research Institute, St George's, University of London, United Kingdom
| | - R M Turner
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK
| | - H Drexel
- Vorarlberg Institute for Vascular Investigation & Treatment (VIVIT), Feldkirch, A Private University of the Principality of Liechtenstein, Triesen, FL.,Drexel University College of Medicine, Philadelphia, USA
| | - A Janmohamed
- Department of Clinical Pharmacology, St George's, University of London, United Kingdom
| | - A Scourfield
- Department of Clinical Pharmacology, University College London Hospital Foundation Trust, UK
| | - D Burrage
- Whittington Health NHS Trust, London, UK
| | - C N Floyd
- King's College London British Heart Foundation Centre, School of Cardiovascular Medicine and Sciences, London, UK.,Department of Clinical Pharmacology, Guy's and St Thomas' NHS Foundation Trust, London, UK
| | - E Adeyeye
- Department of Clinical Pharmacology, Cardiovascular Medicine, Barts Health NHS Trust, London, UK
| | - J Tamargo
- Department of Pharmacology and Toxicology, School of Medicine, Universidad Complutense, Madrid, Spain
| | - B S Lewis
- Cardiovascular Clinical Research Institute, Lady Davis Carmel Medical Center and the Ruth and Bruce Rappaport School of Medicine, Technion-Israel Institute of Technology, Haifa, Israel
| | - Keld Per Kjeldsen
- Department of Cardiology, Copenhagen University Hospital (Amager-Hvidovre), Copenhagen, Denmark.,Department of Health Science and Technology, Faculty of Medicine, Aalborg University, Aalborg, Denmark
| | - A Niessner
- Department of Internal Medicine II, Division of Cardiology, Medical University of Vienna
| | - S Wassmann
- Cardiology Pasing, Munich, Germany and University of the Saarland, Homburg/Saar, Germany
| | - P Sulzgruber
- Medical University of Vienna, Department of Medicine II, Division of Cardiology
| | - P Borry
- Center for Biomedical Ethics and Law, Department of Public Health and Primary Care, KU Leuven, Leuven, Belgium.,Leuven Institute for Human Genetics and Society, Leuven, Belgium
| | - S Agewall
- Oslo University Hospital Ullevål and Institute of Clinical Sciences, University of Oslo, Oslo, Norway
| | - A G Semb
- Preventive Cardio-Rheuma clinic, department of rheumatology, innovation and research, Diakonhjemmet hospital, Oslo, Norway
| | - G Savarese
- Division of Cardiology, Department of Medicine, Karolinska Institutet, Stockholm, Sweden Heart and Vascular Theme, Karolinska University Hospital, Stockholm, Sweden
| | - M Pirmohamed
- The Wolfson Centre for Personalised Medicine, Institute of Systems, Molecular and Integrative Biology (ISMIB), University of Liverpool, UK.,Liverpool University Hospitals NHS Foundation Trust, Liverpool, UK.,Liverpool Health Partners, Liverpool, UK
| | - M J Caulfield
- William Harvey Research Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
8
|
Turongkaravee S, Jittikoon J, Lukkunaprasit T, Sangroongruangsri S, Chaikledkaew U, Thakkinstian A. A systematic review and meta-analysis of genotype-based and individualized data analysis of SLCO1B1 gene and statin-induced myopathy. THE PHARMACOGENOMICS JOURNAL 2021; 21:296-307. [PMID: 33608664 PMCID: PMC8159730 DOI: 10.1038/s41397-021-00208-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Revised: 12/05/2020] [Accepted: 01/15/2021] [Indexed: 01/31/2023]
Abstract
This meta-analysis was conducted to determine the genotypic effects of rs4149056 and rs2306283 polymorphism in SLCO1B1 gene on myopathy in patients with statin. Studies were searched using multiple databases and selected following inclusion criteria. Two reviewers independently performed data extraction and assessments for risk of bias. Fixed-or-random-effect was applied to pool allele frequency/effects. Mixed-effect logit model was used to pool genotypic effects using individual patient data. Heterogeneity and publication bias were explored. Fourteen studies were pooled for rs4149056; the minor C allele frequency were 15% in Caucasians and 14% in Asians. Six studies were pooled for rs2306283; the minor G allele frequency was 34% in Caucasian and 75% in Asians. Genotypic effects of rs4149056 polymorphism in Caucasians indicated that statin users who carried CC and TC genotypes had a significantly higher risk of myopathy than those who carried TT genotype, with a pooled odds ratio (OR) of 2.9 (95% confidence interval, 1.59, 5.34) and 1.6 (1.20, 2.16), respectively. For subgroup analysis, CC and TC genotypes also suggested a higher risk of myopathy in simvastatin users [OR = 2.8 (1.17, 6.77) and OR = 1.8 (1.15, 2.77), respectively] and in atorvastatin users [OR = 4.0 (1.23, 12.63) and OR = 2.0 (1.11, 3.52), respectively] than those who carried TT genotype. There was no significant association between rs2306283 polymorphism and myopathy in Caucasians and Asians. There was no evidence of publication bias for both polymorphisms.
Collapse
Affiliation(s)
- Saowalak Turongkaravee
- grid.10223.320000 0004 1937 0490Social, Economic and Administrative Pharmacy (SEAP) Graduate Program, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Jiraphun Jittikoon
- grid.10223.320000 0004 1937 0490Department of Biochemistry, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Thitiya Lukkunaprasit
- grid.10223.320000 0004 1937 0490Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Sermsiri Sangroongruangsri
- grid.10223.320000 0004 1937 0490Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand
| | - Usa Chaikledkaew
- grid.10223.320000 0004 1937 0490Social and Administrative Pharmacy Division, Department of Pharmacy, Faculty of Pharmacy, Mahidol University, Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| | - Ammarin Thakkinstian
- grid.10223.320000 0004 1937 0490Department of Clinical Epidemiology and Biostatistics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand ,grid.10223.320000 0004 1937 0490Mahidol University Health Technology Assessment (MUHTA) Graduate Program, Mahidol University, Bangkok, Thailand
| |
Collapse
|
9
|
Dagli-Hernandez C, de Freitas RCC, Marçal EDSR, Gonçalves RM, Faludi AA, Borges JB, Bastos GM, Los B, Mori AA, Bortolin RH, Ferreira GM, de Oliveira VF, Hirata TDC, Hirata MH, Hirata RDC. Late response to rosuvastatin and statin-related myalgia due to SLCO1B1, SLCO1B3, ABCB11, and CYP3A5 variants in a patient with Familial Hypercholesterolemia: a case report. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:76. [PMID: 33553369 PMCID: PMC7859822 DOI: 10.21037/atm-20-5540] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Statins are the most widely used cholesterol-lowering drugs for cardiovascular diseases prevention. However, some patients are refractory to treatment, whereas others experience statin-related adverse events (SRAE). It has been increasingly important to identify pharmacogenetic biomarkers for predicting statin response and adverse events. This case report describes a female patient with familial hypercholesterolemia (FH) who showed late response to rosuvastatin and experienced myalgia on statin treatment. In the first visit (V1), the patient reported myalgia to rosuvastatin 40 mg, which was interrupted for a 6-week wash-out period. In V2, rosuvastatin 20 mg was reintroduced, but her lipid profile did not show any changes after 6 weeks (V3) (LDL-c: 402 vs. 407 mg/dL). Her lipid profile markedly improved after 12 weeks of treatment (V4) (LDL-c: 208 mg/dL), suggesting a late rosuvastatin response. Her adherence to treatment was similar in V1 and V3 and no drug interactions were detected. Pharmacogenetic analysis revealed that the patient carries low-activity variants in SLCO1B1*1B and*5, SLCO1B3 (rs4149117 and rs7311358), and ABCB11 rs2287622, and the non-functional variant in CYP3A5*3. The combined effect of variants in pharmacokinetics-related genes may have contributed to the late response to rosuvastatin and statin-related myalgia. Therefore, they should be considered when assessing a patient’s response to statin treatment. To the best of our knowledge, this is the first report of a pharmacogenetic analysis on a case of late rosuvastatin response.
Collapse
Affiliation(s)
- Carolina Dagli-Hernandez
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Renata Caroline Costa de Freitas
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | | | | | | | | | | | - Bruna Los
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Augusto Akira Mori
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Raul Hernandes Bortolin
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Glaucio Monteiro Ferreira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Victor Fernandes de Oliveira
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Thiago Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Mario Hiroyuki Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| | - Rosario Dominguez Crespo Hirata
- Department of Clinical and Toxicological Analyses, School of Pharmaceutical Sciences, University of Sao Paulo, Sao Paulo, Brazil
| |
Collapse
|
10
|
Rollinson V, Turner R, Pirmohamed M. Pharmacogenomics for Primary Care: An Overview. Genes (Basel) 2020; 11:E1337. [PMID: 33198260 PMCID: PMC7696803 DOI: 10.3390/genes11111337] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/02/2020] [Accepted: 11/04/2020] [Indexed: 12/11/2022] Open
Abstract
Most of the prescribing and dispensing of medicines happens in primary care. Pharmacogenomics (PGx) is the study and clinical application of the role of genetic variation on drug response. Mounting evidence suggests PGx can improve the safety and/or efficacy of several medications commonly prescribed in primary care. However, implementation of PGx has generally been limited to a relatively few academic hospital centres, with little adoption in primary care. Despite this, many primary healthcare providers are optimistic about the role of PGx in their future practice. The increasing prevalence of direct-to-consumer genetic testing and primary care PGx studies herald the plausible gradual introduction of PGx into primary care and highlight the changes needed for optimal translation. In this article, the potential utility of PGx in primary care will be explored and on-going barriers to implementation discussed. The evidence base of several drug-gene pairs relevant to primary care will be outlined with a focus on antidepressants, codeine and tramadol, statins, clopidogrel, warfarin, metoprolol and allopurinol. This review is intended to provide both a general introduction to PGx with a more in-depth overview of elements relevant to primary care.
Collapse
|
11
|
Xiang Q, Zhang XD, Mu GY, Wang Z, Liu ZY, Xie QF, Hu K, Zhang Z, Ma LY, Jiang J, Cui YM. Correlation between single-nucleotide polymorphisms and statin-induced myopathy: a mixed-effects model meta-analysis. Eur J Clin Pharmacol 2020; 77:569-581. [PMID: 33150478 DOI: 10.1007/s00228-020-03029-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Accepted: 10/21/2020] [Indexed: 12/18/2022]
Abstract
PURPOSE A meta-analysis was performed to evaluate the correlation between single-nucleotide polymorphisms (SNPs) and risk of statin-induced myopathy (SIM). METHODS We retrieved the studies published on SIM until April 2019 from the PubMed, Embase, and Cochrane Library databases. We collected data from 32 studies that analyzed 10 SNPs in five genes and included 21,692 individuals and nine statins. RESULTS The analysis of the heterozygous (p = 0.017), homozygous (p = 0.002), dominant (p = 0.005), and recessive models (p = 0.009) of SLCO1B1 rs4149056 showed that this SNP increases the risk of SIM. Conversely, heterozygous (p = 0.048) and dominant models (p = 0.030) of SLCO1B1 rs4363657 demonstrated that this SNP is associated with a reduced risk of SIM. Moreover, an increased risk of SIM was predicted for carriers of the rs4149056 C allele among simvastatin-treated patients, whereas carriers of the GATM rs9806699 A allele among rosuvastatin-treated patients had a lower risk of SIM. CONCLUSION The meta-analysis revealed that the rs4149056 and rs4363657 SNPs in SLCO1B1 and the rs9806699 SNP in GATM are correlated with the risk of SIM.
Collapse
Affiliation(s)
- Qian Xiang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Xiao-Dan Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Guang-Yan Mu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhe Wang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhi-Yan Liu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Qiu-Fen Xie
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Kun Hu
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Zhuo Zhang
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Ling-Yue Ma
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China
| | - Jie Jiang
- Department of Cardiology, Peking University First Hospital, Beijing, 100034, China
| | - Yi-Min Cui
- Department of Pharmacy, Peking University First Hospital, Beijing, 100034, China. .,, Beijing, China.
| |
Collapse
|
12
|
Kee PS, Chin PKL, Kennedy MA, Maggo SDS. Pharmacogenetics of Statin-Induced Myotoxicity. Front Genet 2020; 11:575678. [PMID: 33193687 PMCID: PMC7596698 DOI: 10.3389/fgene.2020.575678] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022] Open
Abstract
Statins, a class of lipid-lowering medications, have been a keystone treatment in cardiovascular health. However, adverse effects associated with statin use impact patient adherence, leading to statin discontinuation. Statin-induced myotoxicity (SIM) is one of the most common adverse effects, prevalent across all ages, genders, and ethnicities. Although certain demographic cohorts carry a higher risk, the impaired quality of life attributed to SIM is significant. The pathogenesis of SIM remains to be fully elucidated, but it is clear that SIM is multifactorial. These factors include drug-drug interactions, renal or liver dysfunction, and genetics. Genetic-inferred risk for SIM was first reported by a landmark genome-wide association study, which reported a higher risk of SIM with a polymorphism in the SLCO1B1 gene. Since then, research associating genetic factors with SIM has expanded widely and has become one of the foci in the field of pharmacogenomics. This review provides an update on the genetic risk factors associated with SIM.
Collapse
Affiliation(s)
- Ping Siu Kee
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | | | - Martin A. Kennedy
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| | - Simran D. S. Maggo
- Gene Structure and Function Laboratory, Carney Centre for Pharmacogenomics, Department of Pathology and Biomedical Science, University of Otago, Christchurch, New Zealand
| |
Collapse
|
13
|
The association of GATM polymorphism with statin-induced myopathy: a systematic review and meta-analysis. Eur J Clin Pharmacol 2020; 77:349-357. [PMID: 33051696 PMCID: PMC7867530 DOI: 10.1007/s00228-020-03019-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 10/07/2020] [Indexed: 10/27/2022]
Abstract
PURPOSE Statin-induced myopathy (SIM) is the commonest reason for discontinuation of statin therapy. The aim of this present meta-analysis is to assess the relationship between glycine amidinotransferase gene (GATM) polymorphism and risk of SIM. METHODS MEDLINE, EMBASE, Web of Science, and Cochrane Library databases were searched systematically for case-control studies investigating the relationship between GATM polymorphism and SIM. Retrieved articles were carefully reviewed and assessed according to the inclusion criteria. Associations were assessed in pooled data by calculating odds ratio with 95% confidence intervals. Subgroup analysis was performed according to comedications and severity of SIM. RESULTS Six studies with 707 cases and 2321 controls were included in this meta-analysis. GATM rs9806699 G>A was associated with decreased risk of SIM (OR = 0.80, 95% CI 0.68-0.94, P = 0.006). This association remained significant in the subgroup with fibrates or niacin excluded. However, the association of rs9806699 G>A with severe SIM was not significant. In addition, another two variations at GATM, rs1719247 C>T, and rs1346268 T>C were also associated with declined risk of SIM. CONCLUSIONS GATM polymorphism including rs9806699 G>A, rs1719247 C>T, and rs1346268 T>C may be protective factors of SIM. GATM rs9806699 G>A may only exert protective effect on mild SIM cases. Our meta-analysis indicates that GATM polymorphism may represent a pharmacogenomics biomarker for predicting incidence of SIM, which contributes to risk stratification and optimizing statin adherence.
Collapse
|
14
|
León-Cachón RBR, Bamford AD, Meester I, Barrera-Saldaña HA, Gómez-Silva M, Bustos MFG. The atorvastatin metabolic phenotype shift is influenced by interaction of drug-transporter polymorphisms in Mexican population: results of a randomized trial. Sci Rep 2020; 10:8900. [PMID: 32483134 PMCID: PMC7264171 DOI: 10.1038/s41598-020-65843-y] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2020] [Accepted: 05/08/2020] [Indexed: 12/18/2022] Open
Abstract
Atorvastatin (ATV) is a blood cholesterol-lowering drug used to prevent cardiovascular events, the leading cause of death worldwide. As pharmacokinetics, metabolism and response vary among individuals, we wanted to determine the most reliable metabolic ATV phenotypes and identify novel and preponderant genetic markers that affect ATV plasma levels. A controlled, randomized, crossover, single-blind, three-treatment, three-period, and six-sequence clinical study of ATV (single 80-mg oral dose) was conducted among 60 healthy Mexican men. ATV plasma levels were measured using high-performance liquid chromatography mass spectrometry. Genotyping was performed by real-time PCR with TaqMan probes. Four ATV metabolizer phenotypes were found: slow, intermediate, normal and fast. Six gene polymorphisms, SLCO1B1-rs4149056, ABCB1-rs1045642, CYP2D6-rs1135840, CYP2B6-rs3745274, NAT2-rs1208, and COMT- rs4680, had a significant effect on ATV pharmacokinetics (P < 0.05). The polymorphisms in SLCO1B1 and ABCB1 seemed to have a greater effect and were especially important for the shift from an intermediate to a normal metabolizer. This is the first study that demonstrates how the interaction of genetic variants affect metabolic phenotyping and improves understanding of how SLCO1B1 and ABCB1 variants that affect statin metabolism may partially explain the variability in drug response. Notwithstanding, the influence of other genetic and non-genetic factors is not ruled out.
Collapse
Affiliation(s)
- Rafael B R León-Cachón
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico.
| | - Aileen-Diane Bamford
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | - Irene Meester
- Center of Molecular Diagnostics and Personalized Medicine, Department of Basic Sciences, Division of Health Sciences, University of Monterrey, San Pedro Garza Garcia, Nuevo Leon, Mexico
| | | | - Magdalena Gómez-Silva
- Forensic Medicine Service, School of Medicine, Autonomous University of Nuevo Leon, Monterrey, Nuevo Leon, Mexico.,Analytical Department of the Research Institute for Clinical and Experimental Pharmacology, Ipharma S.A., Monterrey, Nuevo Leon, Mexico
| | - María F García Bustos
- Institute of Experimental Pathology (CONICET), Faculty of Health Sciences, National University of Salta, Salta, Argentina.,University School in Health Sciences, Catholic University of Salta, Salta, Argentina
| |
Collapse
|
15
|
Zhang D, Ding Y, Wang X, Xin W, Du W, Chen W, Zhang X, Li P. Effects of ABCG2 and SLCO1B1 gene variants on inflammation markers in patients with hypercholesterolemia and diabetes mellitus treated with rosuvastatin. Eur J Clin Pharmacol 2020; 76:939-946. [PMID: 32361904 DOI: 10.1007/s00228-020-02882-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2019] [Accepted: 04/24/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE Dysregulation of angiogenesis and inflammation play important roles in the development of atherosclerosis. Rosuvastatin (RST) was widely used in atherosclerosis therapy. Genetic variations of transporters may affect the rosuvastatin concentration in plasma and reflect different clinical treatment. The aim of this study was to explore the drug transport related single-nucleotide polymorphisms (SNPs) on RST pharmacokinetic and the further on pro-angiogenic and pro-inflammatory factors. METHODS A total of 269 Chinese patients with hypercholesterolemia and diabetes mellitus were enrolled. They were treated with RST to lower cholesterol. The plasma concentration of RST was determined using a validated UPLC-MS/MS method. Seven single-nucleotide polymorphisms (SNPs) in six genes were genotyped using the Sanger dideoxy DNA sequencing method. The serum concentrations of inflammation markers were determined using ELISA kits. RESULTS ABCG2 421C > A (rs2231142) and SLCO1B1 521 T > C (rs4149056) variations were highly associated with plasma concentrations of RST (P < 0.01, FDR < 0.05). The serum MCP-1, sVCAM-1, and TNF-α levels were significantly different between the ABCG2 421C > A and SLCO1B1 521 T > C genetic variation groups (P < 0.01). RST concentration was negatively correlated with sVCAM-1 concentration (r = 0.150, P = 0.008). CONCLUSION ABCG2 421C > A (rs2231142) and SLCO1B1 521 T > C (rs4149056) genetic variants affect RST concentration significantly and potentially affect serum levels of pro-inflammatory and pro-angiogenic markers. The effects on anti-inflammation might not be related to high plasma exposure of RST.
Collapse
Affiliation(s)
- Dan Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Yangming Ding
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xiaoxue Wang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenyu Xin
- Department of Pharmacology, School of Pharmacy, Binzhou Medical University, Yantai, 264003, China
| | - Wenwen Du
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Wenqian Chen
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Xianglin Zhang
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China
| | - Pengmei Li
- Department of Pharmacy, China-Japan Friendship Hospital, Beijing, 100029, China.
| |
Collapse
|
16
|
Turner RM, Pirmohamed M. Statin-Related Myotoxicity: A Comprehensive Review of Pharmacokinetic, Pharmacogenomic and Muscle Components. J Clin Med 2019; 9:jcm9010022. [PMID: 31861911 PMCID: PMC7019839 DOI: 10.3390/jcm9010022] [Citation(s) in RCA: 98] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 12/17/2019] [Accepted: 12/18/2019] [Indexed: 02/06/2023] Open
Abstract
Statins are a cornerstone in the pharmacological prevention of cardiovascular disease. Although generally well tolerated, a small subset of patients experience statin-related myotoxicity (SRM). SRM is heterogeneous in presentation; phenotypes include the relatively more common myalgias, infrequent myopathies, and rare rhabdomyolysis. Very rarely, statins induce an anti-HMGCR positive immune-mediated necrotizing myopathy. Diagnosing SRM in clinical practice can be challenging, particularly for mild SRM that is frequently due to alternative aetiologies and the nocebo effect. Nevertheless, SRM can directly harm patients and lead to statin discontinuation/non-adherence, which increases the risk of cardiovascular events. Several factors increase systemic statin exposure and predispose to SRM, including advanced age, concomitant medications, and the nonsynonymous variant, rs4149056, in SLCO1B1, which encodes the hepatic sinusoidal transporter, OATP1B1. Increased exposure of skeletal muscle to statins increases the risk of mitochondrial dysfunction, calcium signalling disruption, reduced prenylation, atrogin-1 mediated atrophy and pro-apoptotic signalling. Rare variants in several metabolic myopathy genes including CACNA1S, CPT2, LPIN1, PYGM and RYR1 increase myopathy/rhabdomyolysis risk following statin exposure. The immune system is implicated in both conventional statin intolerance/myotoxicity via LILRB5 rs12975366, and a strong association exists between HLA-DRB1*11:01 and anti-HMGCR positive myopathy. Epigenetic factors (miR-499-5p, miR-145) have also been implicated in statin myotoxicity. SRM remains a challenge to the safe and effective use of statins, although consensus strategies to manage SRM have been proposed. Further research is required, including stringent phenotyping of mild SRM through N-of-1 trials coupled to systems pharmacology omics- approaches to identify novel risk factors and provide mechanistic insight.
Collapse
|
17
|
Sasani A, Hornig S, Grzybowski R, Cordts K, Hanff E, Tsikas D, Böger R, Gerloff C, Isbrandt D, Neu A, Schwedhelm E, Choe CU. Muscle phenotype of AGAT- and GAMT-deficient mice after simvastatin exposure. Amino Acids 2019; 52:73-85. [DOI: 10.1007/s00726-019-02812-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 12/05/2019] [Indexed: 01/03/2023]
|