1
|
Yu Z, Sun J, Fang K, Xu J, Yang J, Chunlei D, Gong Y, Ma H. SLC2A1 boosts the resistance of non-small cell lung cancer to taxanes by stimulating the formation of EPCAM + cancer stem-like cells via glycolysis. Transl Oncol 2024; 49:102082. [PMID: 39126936 PMCID: PMC11364050 DOI: 10.1016/j.tranon.2024.102082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2024] [Revised: 07/01/2024] [Accepted: 08/01/2024] [Indexed: 08/12/2024] Open
Abstract
BACKGROUND The mechanisms by which SLC2A1 enhances chemo-resistance of taxanes to non-small cell lung cancer (NSCLC) remains enigmatic. METHODS An investigation into the SLC2A1 expression pattern and prognosis across diverse datasets, as well as our internally collected samples, was undertaken. Additionally, the biological function of SLC2A1 was further delved into through in vitro experiments. The study also examined the chemo-resistance of NSCLC to taxanes using CCK-8, Annexin-V, and caspase-3 assays. Furthermore, the impact of taxanes on SLC2A1 expression was determined via western blot analysis. The effects of SLC2A1 on the formation of CSCs was examined via flow cytometry and metabolomics techniques. Finally, the impact of SLC2A1 on the tumor microenvironment was analyzed using single-cell sequencing and cellchat. RESULTS In the present investigation, it was observed that there was an elevated expression of SLC2A1 in NSCLC tumor tissues, which exhibited a significant association with a poorer prognosis. SLC2A1 overexpression in vitro promoted NSCLC cell proliferation, invasion, migration, chemo-resistance, and the formation of CD90+ and EpCAM+ CSCs. NSCLC cells were categorized based on SLC2A1 and EpCAM expression. SLC2A1highEpCAM+ CSCs were more chemo-resistance to taxanes. NSCLC patients with high SLC2A1 and EpCAM expression had poorer prognosis. Mechanically, SLC2A1 promoted the formation of CD90+ and EpCAM+ CSCs via activating glycolysis. Finally, SLC2A1low tumor cells promoted CD8+T cell function via HLA-A, B, C, and suppressed NK cell function via HLA-E. CONCLUSION Together, SLC2A1 plays an important role in enhancing chemo-resistance of taxanes to NSCLC.
Collapse
Affiliation(s)
- Zhe Yu
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jian Sun
- Center for Reproduction and Genetics, Suzhou Municipal Hospital &The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Kai Fang
- Department of Oncological Surgery, The Affiliated Hospital of Jiangnan University, Wuxi, Jiangsu province, China
| | - Jingwei Xu
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Jian Yang
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Dai Chunlei
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Yongsheng Gong
- Department of Thoracic Surgery, Suzhou Municipal Hospital & The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, Jiangsu, China
| | - Haitao Ma
- Department of Thoracic Surgery, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
2
|
Wu YR, Xiong W, Dong YJ, Chen X, Zhong YY, He XL, Wang YJ, Lin QF, Tian XF, Zhou Q. Chemical Constituents and Pharmacological Properties of Frankincense: Implications for Anticancer Therapy. Chin J Integr Med 2024; 30:759-767. [PMID: 38816637 DOI: 10.1007/s11655-024-4105-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/08/2023] [Indexed: 06/01/2024]
Abstract
The discovery of novel antitumor agents derived from natural plants is a principal objective of anticancer drug research. Frankincense, a widely recognized natural antitumor medicine, has undergone a systematic review encompassing its species, chemical constituents, and diverse pharmacological activities and mechanisms. The different species of frankincense include Boswellia serrata, Somali frankincense, Boswellia frereana, and Boswellia arabica. Various frankincense extracts and compounds exhibit antitumor, anti-inflammatory, and hepatoprotective properties and antioxidation, memory enhancement, and immunological regulation capabilities. They also have comprehensive effects on regulating flora. Frankincense and its principal chemical constituents have demonstrated promising chemoprophylactic and therapeutic abilities against tumors. This review provides a systematic summary of the mechanism of action underlying the antitumor effects of frankincense and its major constituents, thus laying the foundations for developing effective tumor-combating targets.
Collapse
Affiliation(s)
- Yong-Rong Wu
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Wei Xiong
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China
| | - Ying-Jing Dong
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xin Chen
- College of Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yuan-Yuan Zhong
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Xin-Ling He
- College of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Yu-Jia Wang
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Qun-Fang Lin
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China
| | - Xue-Fei Tian
- College of Traditional Chinese and Western Medicine, Hunan University of Chinese Medicine, Changsha, 410208, China
- Hunan Provincial Key Laboratory of Traditional Chinese Medicine Prescription and Transformation, Changsha, 410208, China
| | - Qing Zhou
- Department of Andrology, the First Hospital of Hunan University of Chinese Medicine, Changsha, 41007, China.
- Hunan Sexual and Reproductive Health Clinical Medical Research Center of Traditional Chinese Medicine, Changsha, 410021, China.
| |
Collapse
|
3
|
Alalawy AI. Key genes and molecular mechanisms related to Paclitaxel Resistance. Cancer Cell Int 2024; 24:244. [PMID: 39003454 PMCID: PMC11245874 DOI: 10.1186/s12935-024-03415-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 06/22/2024] [Indexed: 07/15/2024] Open
Abstract
Paclitaxel is commonly used to treat breast, ovarian, lung, esophageal, gastric, pancreatic cancer, and neck cancer cells. Cancer recurrence is observed in patients treated with paclitaxel due to paclitaxel resistance emergence. Resistant mechanisms are observed in cancer cells treated with paclitaxel, docetaxel, and cabazitaxel including changes in the target molecule β-tubulin of mitosis, molecular mechanisms that activate efflux drug out of the cells, and alterations in regulatory proteins of apoptosis. This review discusses new molecular mechanisms of taxane resistance, such as overexpression of genes like the multidrug resistance genes and EDIL3, ABCB1, MRP1, and TRAG-3/CSAG2 genes. Moreover, significant lncRNAs are detected in paclitaxel resistance, such as lncRNA H19 and cross-resistance between taxanes. This review contributed to discovering new treatment strategies for taxane resistance and increasing the responsiveness of cancer cells toward chemotherapeutic drugs.
Collapse
Affiliation(s)
- Adel I Alalawy
- Department of Biochemistry, Faculty of Science, University of Tabuk, Tabuk, 71491, Saudi Arabia.
| |
Collapse
|
4
|
Jawad M, Bhatia S, Al-Harrasi A, Ullah S, Halim SA, Khan A, Koca E, Aydemir LY, Dıblan S, Pratap-Singh A. Antimicrobial topical polymeric films loaded with Acetyl-11-keto-β-boswellic acid (AKBA), boswellic acid and silver nanoparticles: Optimization, characterization, and biological activity. Heliyon 2024; 10:e31671. [PMID: 38882278 PMCID: PMC11180321 DOI: 10.1016/j.heliyon.2024.e31671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2024] [Revised: 05/20/2024] [Accepted: 05/20/2024] [Indexed: 06/18/2024] Open
Abstract
The study examined the antimicrobial and antioxidant potential of pure Acetyl-11-keto-β-boswellic acid (AKBA), boswellic acid (70%) and AKBA loaded nanoparticles as topical polymeric films. The optimized concentration (0.05 % w/v) of pure AKBA, boswellic acid (BA), and AKBA loaded silver nanoparticles were used to study its impact on film characteristics. Carboxymethyl cellulose (CMC), sodium alginate (SA), and gelatin (Ge) composite films were prepared in this study. The polymeric films were evaluated for their biological (antioxidant and antimicrobial activities) and mechanical characteristics such as tensile strength (TS) and elongation (%). Moreover, other parameters including water barrier properties and color attributes of the film were also evaluated. Furthermore, assessments were conducted using analytical techniques like FTIR, XRD, and SEM. Surface analysis revealed that AgNP precipitation led to a few particles in the film structure. Overall, the results indicate a relatively consistent microstructure. Moreover, due to the addition of AKBA, BA, and AgNPs, a significant decrease in TS, moisture content, water solubility, and water vapor permeation was observed. The films transparency also showed a decreasing trend, and the color analysis revealed decreasing yellowness (b*) of the films. Importantly, a significant increase in antioxidant activity against DPPH free radicals and ABTS cations was observed in the CSG films. Additionally, the AgNP-AKBA loaded films displayed significant antifungal activity against C. albicans. Moreover, the molecular docking analysis revealed the inter-molecular interactions between the AKBA, AgNPs, and composite films. The docking results indicate good binding of AKBA and silver nanoparticles with gelatin and carboxymethyl cellulosemolecules. In conclusion, these polymeric films have potential as novel materials with significant antioxidant and antifungal activities.
Collapse
Affiliation(s)
- Muhammad Jawad
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Saurabh Bhatia
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
- School of Health Science, University of Petroleum and Energy Studies, Dehradun, 248007, India
| | - Ahmed Al-Harrasi
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Sana Ullah
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Sobia Ahsan Halim
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Ajmal Khan
- Natural and Medical Sciences Research Center, University of Nizwa, P.O. Box 33, Birkat Al Mauz, Nizwa, 616, Oman
| | - Esra Koca
- Department of Food Engineering, Adana Alparslan Turkes Science and Technology University, 01250, Adana, Turkey
| | - Levent Yurdaer Aydemir
- Department of Food Engineering, Adana Alparslan Turkes Science and Technology University, 01250, Adana, Turkey
| | - Sevgin Dıblan
- Food Processing Department, Vocational School of Technical Sciences at Mersin Tarsus Organized Industrial Zone, Tarsus University, 33100, Tarsus/Mersin, Turkey
| | - Anubhav Pratap-Singh
- BC Food and Beverage Innovation Centre, Faculty of Land & Food Systems, The University of British Columbia, 2205 East Mall, Vancouver, BC-V6T2G2, Canada
| |
Collapse
|
5
|
Verma M, Fatima S, Saeed M, Ansari IA. Anti-proliferative, Pro-apoptotic, and Chemosensitizing Potential of 3-Acetyl-11-keto-β-boswellic Acid (AKBA) Against Prostate Cancer Cells. Mol Biotechnol 2024:10.1007/s12033-024-01089-7. [PMID: 38502429 DOI: 10.1007/s12033-024-01089-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Accepted: 01/26/2024] [Indexed: 03/21/2024]
Abstract
Prostate cancer incidences are rising worldwide at an alarming rate. Drug resistance and relapse are two major challenges in the treatment of prostate cancer. Therefore, new multimodal, safe, and effective therapeutic agents are urgently required which could effectively mitigate the menace of tumor recurrence and chemo-resistance. Plant-derived products are increasingly being utilized due to their antioxidant, antibacterial, and anti-tumor potential. In the current study, 3-acetyl-11-keto-β-boswellic acid, a triterpenoid isolated from plant Boswellia, was utilized to ascertain its chemotherapeutic potential against human prostate cancer cells. Various in vitro assays including cell viability, nuclear staining, mitochondria potential, reactive oxygen species (ROS) generation, and quantification of apoptosis, were performed for the evaluation of the cytotoxic potential of AKBA. We observed that AKBA (10-50 µM) dose-dependently suppressed cell proliferation and caused programmed cell death in PC3 cells via both intrinsic and extrinsic pathway. Intriguingly, AKBA was also found to chemosensitize PC3 cells in synergistic combination with doxorubicin. To the best of our knowledge, this is the first study to document the synergistic chemosensitizing impact of AKBA when combined with doxorubicin in prostate cancer cells.This showcases the potential of AKBA in combinatorial therapy or adjuvant therapy for the management of prostate cancer. In sum, our results suggested that AKBA is a promising drug-like molecule against prostate cancer. Our investigation introduces a novel perspective, elucidating a previously unexplored dimension, and uncovering a compelling chemosensitizing phenomenon along with a strong synergistic effect arising from the concurrent application of these two agents.
Collapse
Affiliation(s)
- Mahima Verma
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Shireen Fatima
- Department of Biosciences, Integral Centre of Excellence for Interdisciplinary Research (ICEIR), Integral University, Lucknow, India
| | - Mohd Saeed
- Department of Biology, College of Science, University of Hail, Hail, Saudi Arabia
| | | |
Collapse
|
6
|
Ashrafizadeh M, Zhang W, Tian Y, Sethi G, Zhang X, Qiu A. Molecular panorama of therapy resistance in prostate cancer: a pre-clinical and bioinformatics analysis for clinical translation. Cancer Metastasis Rev 2024; 43:229-260. [PMID: 38374496 DOI: 10.1007/s10555-024-10168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 01/04/2024] [Indexed: 02/21/2024]
Abstract
Prostate cancer (PCa) is a malignant disorder of prostate gland being asymptomatic in early stages and high metastatic potential in advanced stages. The chemotherapy and surgical resection have provided favourable prognosis of PCa patients, but advanced and aggressive forms of PCa including CRPC and AVPC lack response to therapy properly, and therefore, prognosis of patients is deteriorated. At the advanced stages, PCa cells do not respond to chemotherapy and radiotherapy in a satisfactory level, and therefore, therapy resistance is emerged. Molecular profile analysis of PCa cells reveals the apoptosis suppression, pro-survival autophagy induction, and EMT induction as factors in escalating malignant of cancer cells and development of therapy resistance. The dysregulation in molecular profile of PCa including upregulation of STAT3 and PI3K/Akt, downregulation of STAT3, and aberrant expression of non-coding RNAs are determining factor for response of cancer cells to chemotherapy. Because of prevalence of drug resistance in PCa, combination therapy including co-utilization of anti-cancer drugs and nanotherapeutic approaches has been suggested in PCa therapy. As a result of increase in DNA damage repair, PCa cells induce radioresistance and RelB overexpression prevents irradiation-mediated cell death. Similar to chemotherapy, nanomaterials are promising for promoting radiosensitivity through delivery of cargo, improving accumulation in PCa cells, and targeting survival-related pathways. In respect to emergence of immunotherapy as a new tool in PCa suppression, tumour cells are able to increase PD-L1 expression and inactivate NK cells in mediating immune evasion. The bioinformatics analysis for evaluation of drug resistance-related genes has been performed.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Yu Tian
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
| | - Xianbin Zhang
- Department of General Surgery and Institute of Precision Diagnosis and Treatment of Digestive System Tumors, Carson International Cancer Center, Shenzhen University General Hospital, Shenzhen University, Shenzhen, 518055, Guangdong, China.
| | - Aiming Qiu
- Department of Geriatrics, the Fifth People's Hospital of Wujiang District, Suzhou, China.
| |
Collapse
|
7
|
Guo Y, Wang S, Dong Y, Liu Y. Attenuation of pro-tumorigenic senescent secretory phenotype by StN, a novel derivative of stevioside, potentiates its inhibitory activity on hepatocellular carcinoma. Food Chem Toxicol 2024; 184:114371. [PMID: 38104710 DOI: 10.1016/j.fct.2023.114371] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/06/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Ent-13-Hydroxy-15-kaurene-19-acid N-Methylpiperazine Ethyl Ester (StN) is a novel derivative of the natural diterpene stevioside isolated from Stevia rebaudiana (Bertoni). In this study, we examined the effects of StN against hepatocellular carcinoma (HCC) in vitro and in vivo as well as its anticancer mechanisms by inhibiting proliferation and regulating the senescence-associated secretory phenotype (SASP). We showed that StN significantly inhibited HCC cell proliferation by inducing cellular senescence, as observed by increased senescence-associated β-galactosidase activity and cell cycle arrest. Mechanistically, StN impaired lysosomal stability and triggered the release of cathepsin B from the lysosomes into the nucleus where it promoted DNA damage. Cathepsin B-mediated DNA damage contributed to cellular senescence triggered by StN. Meanwhile, StN transcriptionally suppressed multiple pro-inflammatory SASP components, including IL-6, IL-1α, IL-1β, and IL-8, resulting in the reduction of pro-tumorigenic impact of SASP. Further study revealed that StN inactivated NF-κB and PI3K/Akt signaling, which significantly accounted for its inhibition on the SASP factors. In HCC xenograft mice, administration of StN significantly suppressed tumor growth, while no significant toxicity was detected. This study demonstrates a novel mechanism that suppressing the SASP by StN in senescent cells potentiates its anticancer efficacy, thus defining a potential compound for cancer treatment.
Collapse
Affiliation(s)
- Yanxia Guo
- Department of Central Laboratory, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Shikang Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, 250021, China
| | - Yan Dong
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China
| | - Yongqing Liu
- Department of Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, 250033, China.
| |
Collapse
|
8
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, Salimimoghadam S, Mirzaei S, Entezari M, Samarghandian S. Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal 2023; 17:423-443. [PMID: 36367667 PMCID: PMC10409967 DOI: 10.1007/s12079-022-00702-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 05/26/2022] [Accepted: 09/21/2022] [Indexed: 11/13/2022] Open
Abstract
Urological cancers have obtained much attention in recent years due to their mortality and morbidity. The most common and malignant tumor of urological cancers is prostate cancer that imposes high socioeconomic costs on public life and androgen-deprivation therapy, surgery, and combination of chemotherapy and radiotherapy are employed in its treatment. PI3K/Akt signaling is an oncogenic pathway responsible for migration, proliferation and drug resistance in various cancers. In the present review, the role of PI3K/Akt signaling in prostate cancer progression is highlighted. The activation of PI3K/Akt signaling occurs in prostate cancer, while PTEN as inhibitor of PI3K/Akt shows down-regulation. Stimulation of PI3K/Akt signaling promotes survival of prostate tumor cells and prevents apoptosis. The cell cycle progression and proliferation rate of prostate tumor cells increase by PI3K/Akt signaling induction. PI3K/Akt signaling stimulates EMT and enhances metastasis of prostate tumor cells. Silencing PI3K/Akt signaling impairs growth and metastasis of prostate tumor cells. Activation of PI3K/Akt signaling mediates drug resistance and reduces radio-sensitivity of prostate tumor cells. Anti-tumor compounds suppress PI3K/Akt signaling in impairing prostate tumor progression. Furthermore, upstream regulators such as miRNAs, lncRNAs and circRNAs regulate PI3K/Akt signaling and it has clinical implications for prostate cancer patients.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Pouria Daneii
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Aria Hassanpour
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Amirabbas Kakavand
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Shamin Rezaei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Elahe Sadat Hejazi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Maryam Aboutalebi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Gholamrezaie
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Hamidreza Saebfar
- League of European Research Universities, European University Association, University of Milan, Milan, Italy
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran.
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Saeed Samarghandian
- Healthy Ageing Research Centre, Neyshabur University of Medical Sciences, Neyshabur, Iran.
| |
Collapse
|
9
|
Xu HB, Chen XZ, Wang X, Pan J, Yi-Zhuo Z, Zhou CH. Xihuang pill in the treatment of cancer: TCM theories, pharmacological activities, chemical compounds and clinical applications. JOURNAL OF ETHNOPHARMACOLOGY 2023:116699. [PMID: 37257709 DOI: 10.1016/j.jep.2023.116699] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 05/17/2023] [Accepted: 05/28/2023] [Indexed: 06/02/2023]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Xihuang pill as a famous traditional Chinese formula has long been used as an adjuvant therapy for cancer. AIM OF THE STUDY This study is aimed at summarizing recent advances in research of Xihuang pill's anti-cancer efficacies from the theoretical basis of traditional Chinese medicine, pharmacological activities, chemical components and its clinical application. MATERIALS AND METHODS The literature information was obtained from several authoritative databases including PubMed, Embase, Cochrane Library, CNKI and Wan Fang before April 30, 2023. We also analyzed the representatively chemical compounds of Xihuang pill in vivo experiments using HPLC-Q/TOF-MS. RESULTS The present study indicated that Xihuang pill, a classic anti-tumor prescription, had efficacies of strengthening body resistance, clearing heat and detoxification, and promoting blood circulation for removing blood stasis. Modern basic researches showed that Xihuang pill played anti-cancer roles through inducing cancer cell apoptosis, inhibiting cell proliferation, migration, invasion and angiogenesis, improving immune function and tumor microenvironment, and regulating related signaling pathways. Its chemical components are primarily consisted of amino acids, terpenoids, fatty acids, fatty acid esters, phenolics, bile acids, bile pigments and volatile oil. Clinically, Xihuang pill, as an adjuvant drug for cancer treatment, was mostly combined with chemotherapy, which could prolong survival, enhance response rate, improve patients' life quality, regulate immune function and alleviate chemotherapy-induced toxicities. CONCLUSIONS This present study suggests that Xihuang pill may be a promising adjuvant therapy for cancer, and proposes the possibility of future research directions for Xihuang pill based on the current research status.
Collapse
Affiliation(s)
- Hong-Bin Xu
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo, China; Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China.
| | - Xian-Zhen Chen
- Department of Neurosurgery, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xia Wang
- Department of Oncology, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Jing Pan
- Department of Pharmacy, The Second Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, China
| | - Zhao Yi-Zhuo
- Department of Pharmacy, Ningbo First Hospital, Ningbo University, Ningbo, China
| | - Chen-Hui Zhou
- Department of Neurosurgery, Ningbo First Hospital, Ningbo University, Ningbo, China
| |
Collapse
|
10
|
Sadrkhanloo M, Paskeh MDA, Hashemi M, Raesi R, Motahhary M, Saghari S, Sharifi L, Bokaie S, Mirzaei S, Entezari M, Aref AR, Salimimoghadam S, Rashidi M, Taheriazam A, Hushmandi K. STAT3 signaling in prostate cancer progression and therapy resistance: An oncogenic pathway with diverse functions. Biomed Pharmacother 2023; 158:114168. [PMID: 36916439 DOI: 10.1016/j.biopha.2022.114168] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 12/24/2022] [Accepted: 12/28/2022] [Indexed: 01/05/2023] Open
Abstract
The categorization of cancers demonstrates that prostate cancer is the most common malignancy in men and it causes high death annually. Prostate cancer patients are diagnosed mainly via biomarkers such as PSA test and patients show poor prognosis. Prostate cancer cells rapidly diffuse into different parts of body and their metastasis is also a reason for death. Current therapies for prostate cancer patients include chemotherapy, surgery and radiotherapy as well as targeted therapy. The progression of prostate cancer cells is regulated by different factors that STAT3 signaling is among them. Growth factors and cytokines such as IL-6 can induce STAT3 signaling and it shows carcinogenic impact. Activation of STAT3 signaling occurs in prostate cancer and it promotes malignant behavior of tumor cells. Induction of STAT3 signaling increases glycolysis and proliferation of prostate cancer cells and prevents apoptosis. Furthermore, STAT3 signaling induces EMT mechanism in increasing cancer metastasis. Activation of STAT3 signaling stimulates drug resistance and the limitation of current works is lack of experiment related to role of STAT3 signaling in radio-resistance in prostate tumor. Calcitriol, capsazepine and β-elemonic are among the compounds capable of targeting STAT3 signaling and its inhibition in prostate cancer therapy. In addition to natural products, small molecules targeting STAT3 signaling have been developed in prostate cancer therapy.
Collapse
Affiliation(s)
- Mehrdokht Sadrkhanloo
- Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran; Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran
| | | | - Sam Saghari
- Department of Health Services Management, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Laleh Sharifi
- Uro-oncology Research Center, Tehran University of Medical Sciences, Tehran, Iran
| | - Saied Bokaie
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc., 6, Tide Street, Boston, MA 02210, USA
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Kiavash Hushmandi
- Department of Food Hygiene and Quality Control, Division of Epidemiology & Zoonoses, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran.
| |
Collapse
|
11
|
Triazole-tethered boswellic acid derivatives against breast cancer: synthesis, in vitro, and in-silico studies. J Mol Struct 2023. [DOI: 10.1016/j.molstruc.2023.135181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023]
|
12
|
Gong C, Li W, Wu J, Li YY, Ma Y, Tang LW. AKBA inhibits radiotherapy resistance in lung cancer by inhibiting maspin methylation and regulating the AKT/FOXO1/p21 axis. JOURNAL OF RADIATION RESEARCH 2023; 64:33-43. [PMID: 36300343 PMCID: PMC9855320 DOI: 10.1093/jrr/rrac064] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 05/11/2022] [Indexed: 06/16/2023]
Abstract
Acetyl-keto-b-boswellic acid (AKBA) functions in combating human malignant tumors, including lung cancer. However, the function of AKBA in regulating the radioresistance of lung cancer and its underlying mechanism still need to be elucidated. Radiation-resistant lung cancer cells (RA549) were established. Quantitative real-time polymerase chain reaction (QRT-PCR) and Western blot were employed to examine the messenger RNA (mRNA) and protein expressions. After being treated with AKBA and different doses of X-ray, cell proliferation and survival were examined using colony formation assay and cell-counting kit-8 (CCK-8) assay. The cellular localization of Forkhead box 1 (FOXO1) was measured by immunofluorescence (IF). Flow cytometry was employed to analyze cell cycle and apoptosis. In addition, in vivo experiment was performed to determine the effect of AKBA on the sensitivity of tumors to radiation. Herein, we found that AKBA could enhance the radiosensitivity in RA549, suppress cell proliferation, induce cell apoptosis and arrest cell cycle. It was observed that maspin was lowly expressed and hypermethylated in RA549 cells compared to that in A549 cells, while these changes were all eliminated by AKBA treatment. Maspin knockdown could reverse the regulatory effects of AKBA on radioresistance and cellular behaviors of RA549 cells. In addition, we found that AKBA treatment could repress the phosphorylation of Serine/Threonine Kinase (AKT), and FOXO1, increase the translocation of FOXO1 and p21 level in RA549 cells, which was abolished by maspin knockdown. Moreover, results of tumor xenograft displayed that AKBA could enhance the sensitivity of tumor to radiation through the maspin/AKT/FOXO1/p21 axis. We discovered that AKBA enhanced the radiosensitivity of radiation-resistant lung cancer cells by regulating maspin-mediated AKT/FOXO1/p21 axis.
Collapse
Affiliation(s)
| | | | - Jing Wu
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Yao-Yao Li
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Yi Ma
- Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, Changsha 410007, Hunan Province, P.R. China
| | - Li-Wen Tang
- Corresponding author. Department of Oncology, The First Hospital of Hunan University of Chinese Medicine, No.95, Shaoshan Middle Road, Yuhua District, Changsha 410007, Hunan Province, P.R. China. Tel: +86-13739072892;
| |
Collapse
|
13
|
Fan L, Wang X, Cheng C, Wang S, Li X, Cui J, Zhang B, Shi L. Inhibitory Effect and Mechanism of Ursolic Acid on Cisplatin-Induced Resistance and Stemness in Human Lung Cancer A549 Cells. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE : ECAM 2023; 2023:1307323. [PMID: 37089712 PMCID: PMC10121351 DOI: 10.1155/2023/1307323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 02/21/2023] [Accepted: 03/17/2023] [Indexed: 04/25/2023]
Abstract
The survival rate of lung cancer patients remains low largely due to chemotherapy resistance during treatment, and cancer stem cells (CSCs) may hold the key to targeting this resistance. Cisplatin is a chemotherapy drug commonly used in cancer treatment, yet the mechanisms of intrinsic cisplatin resistance have not yet been determined because lung CSCs are hard to identify. In this paper, we proposed a mechanism relating to the function of ursolic acid (UA), a new drug, in reversing the cisplatin resistance of lung cancer cells regulated by CSCs. Human lung cancer cell line A549 was selected as the model cell and treated to become a cisplatin-resistant lung cancer cell line (A549-CisR), which was less sensitive to cisplatin and showed an enhanced capability of tumor sphere formation. Furthermore, in the A549-CisR cell line expression, levels of pluripotent stem cell transcription factors Oct-4, Sox-2, and c-Myc were increased, and activation of the Jak2/Stat3 signaling pathway was promoted. When UA was applied to the cisplatin-resistant cells, levels of the pluripotent stem cell transcription factors were restrained by the inhibition of the Jak2/Stat3 signaling pathway, which reduced the enrichment of tumor stem cells, and in turn, reversed cisplatin resistance in lung cancer cells. Hence, as a potential antitumor drug, UA may be able to inhibit the enrichment of the lung CSC population by inhibiting the activation of the Jak2-Stat3 pathway and preventing the resistance of lung cancer cells to cisplatin.
Collapse
Affiliation(s)
- Luxin Fan
- Department of Respiratory, Weifang People's Hospital, Weifang 261041, China
| | - Xiaodong Wang
- Microbiological Laboratory, Weifang Inspection and Testing Center, Weifang 261100, China
| | - Congcong Cheng
- Department of Oncology, Yidu Central Hospital of Weifang, Qingzhou 262500, China
| | - Shuxiao Wang
- Intravenous Drug Dispensing Center, Second Hospital of Shandong University, Jinan 250033, China
| | - Xuesong Li
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Jiayu Cui
- School of Clinical Medicine, Weifang Medical University, Weifang 261053, China
| | - Baogang Zhang
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| | - Lihong Shi
- School of Pharmacy, Weifang Medical University, Weifang 261053, China
| |
Collapse
|
14
|
Comparative study of the cytotoxicity, apoptotic, and epigenetic effects of Boswellic acid derivatives on breast cancer. Sci Rep 2022; 12:19979. [PMID: 36411309 PMCID: PMC9678894 DOI: 10.1038/s41598-022-24229-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 11/11/2022] [Indexed: 11/23/2022] Open
Abstract
This study aimed to compare the effect of Boswellic acid derivatives on the viability, apoptosis, and epigenomic profiling of breast cancer. According to the viability assays, 3-O-acetyl-11-keto-β-Boswellic acid (AKBA) showed more toxicity against MDA-MB-231 cells when compared with the 3-O-acetyl-β-Boswellic acid (ABA). In contrast, ABA revealed less toxicity against MCF-10A. Cell cycle and apoptosis assays determined the maximum apoptotic effect of AKBA on MCF-7, and MDA-MB-231 cells. Interestingly, β-Boswellic acid (BA) and ABA did not promote the apoptosis in MCF-10A cells. Transwell migration assay indicated the greatest normalized inhibition (around 160%) in the migration of MDA-MB-231 cells induced by AKBA. The expression of P53, BAX, and BCL2 genes in cancerous cell lines has affirmed that both AKBA and ABA could induce the maximal apoptosis. Western-blot investigation demonstrated that the maximum over-expression of P53 protein (1.96 times) was caused by AKBA in MDA-MB-231 cells, followed by ABA in MCF-7 cells. The BCL2 protein expression was in agreement with the previously reported results. The global DNA methylation in both cancerous cells was reduced by ABA. These results suggest that ABA represented more epigenetic modulatory effect while AKBA shows more cytotoxic and apoptotic effect against breast cancer cell lines.
Collapse
|
15
|
Sethi V, Garg M, Herve M, Mobasheri A. Potential complementary and/or synergistic effects of curcumin and boswellic acids for management of osteoarthritis. Ther Adv Musculoskelet Dis 2022; 14:1759720X221124545. [PMID: 36171802 PMCID: PMC9511324 DOI: 10.1177/1759720x221124545] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/19/2022] [Indexed: 11/15/2022] Open
Abstract
For several thousand years (~4000) Boswellia serrata and Curcuma longa have been used in Aryuvedic medicine for treatment of various illnesses, including asthma, peptic ulcers, and rheumatoid arthritis, all of which are mediated through pathways associated with inflammation and pain. Although the in vivo pharmacology of both these natural ingredients is difficult to study because of poor bioavailability, in vitro data suggest that both influence gene expression mediated through nuclear factor kappa B (NF-κB). Therefore, the activity of pathways associated with inflammation (including NF-κB and lipoxygenase- and cyclooxygenase-mediated reduction in leukotrienes/prostaglandins) and those involved in matrix degradation and apoptosis are reduced, resulting in a reduction in pain. Additive activity of boswellic acids and curcumin was observed in preclinical models and synergism was suggested in clinical trials for the management of osteoarthritis (OA) pain. Overall, studies of these natural ingredients, alone or in combination, revealed that these extracts relieved pain from OA and other inflammatory conditions. This may present an opportunity to improve patient care by offering alternatives for patients and physicians, and potentially reducing nonsteroidal anti-inflammatory or other pharmacologic agent use. Additional research is needed on the effects of curcumin on the microbiome and the influence of intestinal metabolism on the activity of curcuminoids to further enhance formulations to ensure sufficient anti-inflammatory and antinociceptive activity. This narrative review includes evidence from in vitro and preclinical studies, and clinical trials that have evaluated the mechanism of action, pharmacokinetics, efficacy, and safety of curcumin and boswellic acids individually and in combination for the management of OA pain.
Collapse
Affiliation(s)
- Vidhu Sethi
- Pain Relief, Medical Affairs, Consumer Healthcare R&D, Haleon, 23, Rochester Park, GSK Asia House, 139234 Singapore
| | - Manohar Garg
- Nutraceuticals Research Program, University of Newcastle, Callaghan, NSW, Australia
| | - Maxime Herve
- was an employee of Consumer Healthcare R&D, GlaxoSmithKline Consumer Healthcare, Singapore
| | - Ali Mobasheri
- Research Unit of Medical Imaging, Physics and Technology, University of Oulu, Oulu, Finland.,World Health Organization Collaborating Center for Public Health Aspects of Musculoskeletal Health and Aging, Université de Liège, Liège, Belgium
| |
Collapse
|
16
|
Yang J, Wang L, Guan X, Qin JJ. Inhibiting STAT3 signaling pathway by natural products for cancer prevention and therapy: In vitro and in vivo activity and mechanisms of action. Pharmacol Res 2022; 182:106357. [PMID: 35868477 DOI: 10.1016/j.phrs.2022.106357] [Citation(s) in RCA: 24] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/13/2022] [Accepted: 07/15/2022] [Indexed: 10/17/2022]
Abstract
Signal transducer and activator of transcription 3 (STAT3) plays a critical role in signal transmission from the plasma membrane to the nucleus, regulating the expression of genes involved in essential cell functions and controlling the processes of cell cycle progression and apoptosis. Thus, STAT3 has been elucidated as a promising target for developing anticancer drugs. Many natural products have been reported to inhibit the STAT3 signaling pathway during the past two decades and have exhibited significant anticancer activities in vitro and in vivo. However, there is no FDA-approved STAT3 inhibitor yet. The major mechanisms of these natural product inhibitors of the STAT3 signaling pathway include targeting the upstream regulators of STAT3, directly binding to the STAT3 SH2 domain and inhibiting its activation, inhibiting STAT3 phosphorylation and/or dimerization, and others. In the present review, we have systematically discussed the development of these natural product inhibitors of STAT3 signaling pathway as well as their in vitro and in vivo anticancer activity and mechanisms of action. Outlooks and perspectives on the associated challenges are provided as well.
Collapse
Affiliation(s)
- Jing Yang
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China
| | - Lingling Wang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; School of Life Sciences, Tianjin University, Tianjin, China
| | - Xiaoqing Guan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| | - Jiang-Jiang Qin
- College of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China; The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang, China; Key Laboratory of Prevention, Diagnosis and Therapy of Upper Gastrointestinal Cancer of Zhejiang Province, Hangzhou 310022, China.
| |
Collapse
|
17
|
Wang S, Han L, Li J, Liu Y, Wang S. Inflammatory molecules facilitate the development of docetaxel-resistant prostate cancer cells in vitro and in vivo. Fundam Clin Pharmacol 2022; 36:837-849. [PMID: 35255161 DOI: 10.1111/fcp.12773] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2021] [Revised: 02/18/2022] [Accepted: 02/28/2022] [Indexed: 01/04/2023]
Abstract
Numerous molecular mechanisms have been found to contribute to docetaxel-induced resistance in prostate cancer (PCa). In this study, the changes in gene expression profiles of multidrug resistant PCa cells that were established in response to docetaxel were determined using microarray analysis. In addition to alterations in the expression of multidrug resistance-associated genes, the expression levels of multiple inflammatory molecules, in particular IL-6, significantly increased in resistant cells in vitro and in vivo, which further increased with the development of drug resistance following microarray, qRT-PCR and ELISA analysis. Compared with parental cells, resistant cells also presented with stronger activation of multiple IL-6-associated signaling pathways STAT1/3, NF-κB, and PI3K/AKT. Inactivation of IL-6 using a neutralizing antibody resulted in a slight effect on the sensitivity of resistant cells to docetaxel, while blockade of of STAT1/3, NF-κB, or PI3K/AKT signaling significantly resensitized resistant cells to docetaxel. Of note, simultaneous inactivation of IL-6 and STAT1/3, PI3K/AKT or NF-κB further enhanced the sensitivity of the resistant cells to docetaxel. Thus, inflammatory molecules, in particular IL-6, and IL-6-associated signaling pathways NF-κB, STAT1/3, and PI3K/AKT, are crucial mediators of the development of docetaxel-resistance in PCa. Targeting inflammatory molecules and signaling pathways could be a potential therapeutic option for the intervention of drug resistance in PCa.
Collapse
Affiliation(s)
- Shikang Wang
- Department of Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Leiqiang Han
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Juan Li
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Shaoyong Wang
- Department of Urology, The Second Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| |
Collapse
|
18
|
Khajehdehi M, Khalaj-Kondori M, Baradaran B. Molecular evidences on anti-inflammatory, anticancer, and memory-boosting effects of frankincense. Phytother Res 2022; 36:1194-1215. [PMID: 35142408 DOI: 10.1002/ptr.7399] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2021] [Revised: 01/10/2022] [Accepted: 01/17/2022] [Indexed: 12/16/2022]
Abstract
Chemical diversity of natural products with drug-like features has attracted much attention from medicine to develop more safe and effective drugs. Their anti-inflammatory, antitumor, analgesic, and other therapeutic properties are sometimes more successful than chemical drugs in controlling disease due to fewer drug resistance and side effects and being more tolerable in a long time. Frankincense, the oleo gum resin extracted from the Boswellia species, contains some of these chemicals. The anti-inflammatory effect of its main ingredient, boswellic acid, has been traditionally used to treat many diseases, mainly those target memory functions. In this review, we have accumulated research evidence from the beneficial effect of Frankincense consumption in memory improvement and the prevention of inflammation and cancer. Besides, we have discussed the molecular pathways mediating the therapeutic effects of this natural supplement.
Collapse
Affiliation(s)
- Mina Khajehdehi
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | - Behzad Baradaran
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| |
Collapse
|
19
|
Potential therapeutic effects of boswellic acids/Boswellia serrata extract in the prevention and therapy of type 2 diabetes and Alzheimer's disease. Naunyn Schmiedebergs Arch Pharmacol 2021; 394:2167-2185. [PMID: 34542667 DOI: 10.1007/s00210-021-02154-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Accepted: 09/08/2021] [Indexed: 12/18/2022]
Abstract
The link between diabetes and cognitive dysfunction has been reported in many recent articles. There is currently no disease-modifying treatment available for cognitive impairment. Boswellia serrata (B. serrata) is used traditionally to treat chronic inflammatory diseases such as type 2 diabetes (T2D), insulin resistance (IR), and Alzheimer's disease (AD). This review aims to highlight current research on the potential use of boswellic acids (BAs)/B. serrata extract in T2D and AD. We reviewed the published information through June 2021. Studies have been collected through a search on online electronic databases (Academic libraries as PubMed, Scopus, Web of Science, and Egyptian Knowledge Bank). Accumulating evidence in preclinical and small human clinical studies has indicated that BAs/B. serrata extract has potential therapeutic effect in T2D and AD. According to most of the authors, the potential therapeutic effects of BAs/B. serrata extract in T2D and AD can be attributed to immunomodulatory, anti-inflammatory, antioxidant activity, and elimination of the senescent cells. BAs/B. serrata extract may act by inhibiting the IκB kinase/nuclear transcription factor-κB (IKK/NF-κB) signaling pathway and increasing the formation of selective anti-inflammatory LOX-isoform modulators. In conclusion, BAs/B. serrata extract may have positive therapeutic effects in prevention and therapy of T2D and AD. However, more randomized controlled trials with effective, large populations are needed to show a definitive conclusion about therapeutic efficacy of BAs/B. serrata extract in T2D and AD.
Collapse
|
20
|
Pillai P, Pooleri GK, Nair SV. Role of Testosterone Levels on the Combinatorial Effect of Boswellia serrata Extract and Enzalutamide on Androgen Dependent LNCaP Cells and in Patient Derived Cells. Integr Cancer Ther 2021; 20:1534735421996824. [PMID: 33615860 PMCID: PMC7903822 DOI: 10.1177/1534735421996824] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Co-therapy with herbal extracts along with current clinical drugs is being increasingly recognized as a useful complementary treatment for cancer. The anti-cancer property of the phyto-derivative acetyl-11 keto β boswellic acid (AKBA) has been studied in many cancers, including prostate cancer. However, the whole extract of the gum resin Boswellia serrata (BS) and anti-androgen enzalutamide has not been explored in prostate cancer to date. We hypothesized that the BS extract containing 30% (AKBA) with enzalutamide acted synergistically in the early phase of cancer, especially in LNCaP cells, by inhibiting androgen receptor (AR) and by reducing cell proliferation, and further, that the extract would be superior to the action of the active ingredient AKBA when used alone or in combination with enzalutamide. To test our hypothesis, we treated LNCaP cells with BS extract or AKBA and enzalutamide both individually and in combination to analyze cell viability under different levels of dihydrotestosterone (DHT). The inhibition of androgen receptor (AR) followed by the expression of prostate-specific antigen (PSA) and the efflux mechanism of the cells were analyzed to determine the effect of the combination on the cellular mechanism. Cells derived from prostate cancer patients were also tested with the combination. Only 6 µM enzalutamide along with BS in the range of 4.1 µg/ml to 16.4 µg/ml gave the best synergistic results with nearly 50% cell killing even though standard enzalutamide doses were as high as 48 µM. Cell killing was most effective at intermediate DHT concentrations of approximately 1 nM, which corresponds to normal physiological serum levels of DHT. The Pgp expression level and the androgen receptor expression levels were reduced under the combination treatment; the former helping to minimize drug efflux and the latter by reducing the sensitivity to hormonal changes. Furthermore, the combination reduced the PSA level secreted by the cells. In contrast, AKBA could not achieve the needed synergism for adequate cell killing at equivalent concentrations. The combination of enzalutamide and BS extract containing 30% AKBA because of their synergistic interaction is an attractive therapeutic option for treating early stage (hormone-dependent) prostate cancer and is superior to the use of AKBA alone.
Collapse
Affiliation(s)
- Prathesha Pillai
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Ginil Kumar Pooleri
- Amrita Institute of Medical Sciences, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| | - Shantikumar V Nair
- Center for Nanosciences and Molecular Medicine, Amrita Vishwa Vidyapeetham, Kochi, Kerala, India
| |
Collapse
|
21
|
Rizzo M. Mechanisms of docetaxel resistance in prostate cancer: The key role played by miRNAs. Biochim Biophys Acta Rev Cancer 2020; 1875:188481. [PMID: 33217485 DOI: 10.1016/j.bbcan.2020.188481] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2020] [Revised: 11/04/2020] [Accepted: 11/12/2020] [Indexed: 12/24/2022]
Abstract
One of the main problems with the treatment of metastatic prostate cancer is that, despite an initial positive response, the majority of patients develop resistance and progress. In particular, the resistance to docetaxel, the gold standard therapy for metastatic prostate cancer since 2010, represents one of the main factors responsible for the failure of prostate cancer therapy. According to the present knowledge, different processes contribute to the appearance of docetaxel resistance and non-coding RNA seems to play a relevant role in them. In this review, a comprehensive overview of the miRNA network involved in docetaxel resistance is described, highlighting the pathway/s affected by their activity.
Collapse
Affiliation(s)
- Milena Rizzo
- Non-coding RNA Group, Functional Genetics and Genomics Lab, Institute of Clinical Physiology (IFC), CNR, Pisa, Italy.
| |
Collapse
|
22
|
Sun MX, He XP, Huang PY, Qi Q, Sun WH, Liu GS, Hua J. Acetyl-11-keto-β-boswellic acid inhibits proliferation and induces apoptosis of gastric cancer cells through the phosphatase and tensin homolog /Akt/ cyclooxygenase-2 signaling pathway. World J Gastroenterol 2020; 26:5822-5835. [PMID: 33132637 PMCID: PMC7579763 DOI: 10.3748/wjg.v26.i38.5822] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/08/2020] [Accepted: 08/25/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Gastric cancer is one of the most common malignant tumors of the digestive system worldwide, posing a serious danger to human health. Cyclooxygenase (COX)-2 plays an important role in the carcinogenesis and progression of gastric cancer. Acetyl-11-keto-β-boswellic acid (AKBA) is a promising drug for cancer therapy, but its effects and mechanism of action on human gastric cancer remain unclear.
AIM To evaluate whether the phosphatase and tensin homolog (PTEN)/Akt/COX-2 signaling pathway is involved in the anti-tumor effect of AKBA in gastric cancer.
METHODS Human poorly differentiated BGC823 and moderately differentiated SGC7901 gastric cancer cells were routinely cultured in Roswell Park Memorial Institute 1640 medium supplemented with 10% fetal bovine serum and 1% penicillin/streptomycin. Gastric cancer cell proliferation was determined by methyl thiazolyl tetrazolium colorimetric assay. Apoptosis was measured by flow cytometry. Cell migration was assessed using the wound-healing assay. Expression of Bcl-2, Bax, proliferating cell nuclear antigen, PTEN, p-Akt, and COX-2 were detected by Western blot analysis. A xenograft nude mouse model of human gastric cancer was established to evaluate the anti-cancer effect of AKBA in vivo.
RESULTS AKBA significantly inhibited the proliferation of gastric cancer cells in a dose- and time-dependent manner, inhibited migration in a time-dependent manner, and induced apoptosis in a dose-dependent manner in vitro; it also inhibited tumor growth in vivo. AKBA up-regulated the expression of PTEN and Bax, and down-regulated the expression of proliferating cell nuclear antigen, Bcl-2, p-Akt, and COX-2 in a dose-dependent manner. The PTEN inhibitor bpv (Hopic) reversed the high expression of PTEN and low expression of p-Akt and COX-2 that were induced by AKBA. The Akt inhibitor MK2206 combined with AKBA down- regulated the expression of p-Akt and COX-2, and the combined effect was better than that of AKBA alone.
CONCLUSION AKBA inhibits the proliferation and migration and promotes the apoptosis of gastric cancer cells through the PTEN/Akt/COX-2 signaling pathway.
Collapse
Affiliation(s)
- Meng-Xue Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Xiao-Pu He
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Pei-Yun Huang
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Qi Qi
- Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Wei-Hao Sun
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Gao-Shuang Liu
- Department of Geriatric Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| | - Jie Hua
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210000, Jiangsu Province, China
| |
Collapse
|
23
|
Jiang X, Liu Y, Zhang G, Lin S, Yuan N, Wu J, Yan X, Ma Y, Ma M. Acetyl-11-keto-β-boswellic Acid Inhibits Precancerous Breast Lesion MCF-10AT Cells via Regulation of LINC00707/miR-206 that Reduces Estrogen Receptor-α. Cancer Manag Res 2020; 12:2301-2314. [PMID: 32273767 PMCID: PMC7108719 DOI: 10.2147/cmar.s238051] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2019] [Accepted: 02/20/2020] [Indexed: 12/21/2022] Open
Abstract
Purpose Acetyl-11-keto-β-boswellic acid (AKBA) has therapeutic effects on a range of diseases, including tumours. lncRNAs, as competing endogenous RNAs (ceRNAs), can interact with miRNAs to regulate the expression of target genes, which can affect the development of tumors. Here, we examined the effects of AKBA on breast precancerous lesions MCF-10AT cells. Methods The expression profiles of breast cancer (BC) tissue were collated from The Cancer Genome Atlas (TCGA), and the lncRNA-miRNA-mRNA ceRNA network was constructed. AKBA targets were predicted by network pharmacology. The expression of long intergenic nonprotein-coding RNA 707 (LINC00707), miR-206 and ER-α was determined by qRT-PCR. Cell viability, apoptosis and cycle were assessed by CCK-8 and flow cytometry. Protein levels were measured by Western blotting. Results A total of 3205 differentially expressed mRNAs, 104 miRNAs, and 605 lncRNAs were identified. The ceRNA network consisting of 9 lncRNAs, 15 miRNAs and 82 mRNAs was constructed. We found that LINC00707 was up-regulated and miR-206 was down-regulated in MCF-10AT cells. Transfected si-LINC00707 could inhibit cell proliferation, induce cell apoptosis and cycle arrest of MCF-10AT cells. In addition, network pharmacology predicted that AKBA may regulate the ESR1 in the treatment of BC. Our research demonstrated that AKBA could induce cell apoptosis and G1-phase arrest and inhibit ER-α expression via LINC00707/miR-206 in MCF-10AT cells. Conclusion AKBA inhibited MCF-10AT cells via regulation of LINC00707/miR-206 that reduces ER-α.
Collapse
Affiliation(s)
- Xuefeng Jiang
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Yusheng Liu
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Guijuan Zhang
- The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| | - Shujun Lin
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Naijun Yuan
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Jieyan Wu
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Xianxin Yan
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China
| | - Yi Ma
- Institute of Biomedicine and Department of Cellular Biology, Jinan University, Guangzhou, People's Republic of China
| | - Min Ma
- College of Traditional Chinese Medicine of Jinan University, Guangzhou, People's Republic of China.,The First Affiliated Hospital of Jinan University, Guangzhou, People's Republic of China
| |
Collapse
|
24
|
Anti-inflammatory and anti-cancer activities of frankincense: Targets, treatments and toxicities. Semin Cancer Biol 2020; 80:39-57. [PMID: 32027979 DOI: 10.1016/j.semcancer.2020.01.015] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 01/23/2020] [Accepted: 01/30/2020] [Indexed: 02/06/2023]
Abstract
The oleogum resins of Boswellia species known as frankincense have been used for ages in traditional medicine in India, China and the Arabian world independent of its use for cultural and religious rituals in Europe. During the past two decades, scientific investigations provided mounting evidence for the therapeutic potential of frankincense. We conducted a systematic review on the anti-inflammatory and anti-cancer activities of Boswellia species and their chemical ingredients (e.g. 3-O-acetyl-11-keto-β boswellic acid, α- and β-boswellic acids, 11-keto-β-boswellic acid and other boswellic acids, lupeolic acids, incensole, cembrenes, triterpenediol, tirucallic acids, and olibanumols). Frankincense acts by multiple mechanisms, e.g. by the inhibition of leukotriene synthesis, of cyclooxygenase 1/2 and 5-lipoxygenase, of oxidative stress, and by regulation of immune cells from the innate and acquired immune systems. Furthermore, frankincense modulates signaling transduction responsible for cell cycle arrest and inhibition of proliferation, angiogenesis, invasion and metastasis. Clinical trials showed the efficacy of frankincense and its phytochemicals against osteoarthritis, multiple sclerosis, asthma, psoriasis and erythematous eczema, plaque-induced gingivitis and pain. Frankincense revealed beneficial effects towards brain tumor-related edema, but did not reduce glioma size. Even if there is no treatment effect on brain tumors itself, the management of glioma-associated edema may represent a desirable improvement. The therapeutic potential against other tumor types is still speculative. Experimental toxicology and clinical trials revealed only mild adverse side effects. More randomized clinical trials are required to estimate the full clinical potential of frankincense for cancer therapy.
Collapse
|
25
|
Wang S, Wang Q, Wang H, Qin C, Cui X, Li L, Liu Y, Chang H. Induction of ROS and DNA damage-dependent senescence by icaritin contributes to its antitumor activity in hepatocellular carcinoma cells. PHARMACEUTICAL BIOLOGY 2019; 57:424-431. [PMID: 31407933 PMCID: PMC8871611 DOI: 10.1080/13880209.2019.1628073] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Revised: 04/06/2019] [Accepted: 05/21/2019] [Indexed: 05/30/2023]
Abstract
Context: Icaritin (ICT), a prenylflavonoid derivative extracted from the Epimedium (Berberidaceae) genus, has been identified to exhibit antitumor effect in hepatocellular carcinoma (HCC) cells by inducing apoptosis. However, its effect on cellular senescence has not been elucidated. Objective: To investigate the mechanism for low concentrations of ICT exerting antitumor activity through induction of cellular senescence. Materials and methods: Human HepG2 and Huh7 cells were treated with low concentrations of ICT (1 and 2 μM) once per day for a week. Cellular senescence was evaluated through cell viability and senescence-associated-β-galactosidase activity. Cell cycle distribution and ROS levels were measured with flow cytometry. Gene expression was detected using qRT-PCR and western blotting. Fluorescent punctuates formation of γH2AX was analyzed by immunofluorescence. Results: ICT (1 and 2 μM) promoted cellular senescence in HepG2 and Huh7 cells, as observed by enlarged and flattened morphology and increased senescence-associated-β-galactosidase activity (∼7-8-fold and ∼11-12-fold of vehicle controls, respectively), accompanied by significant cell cycle arrest and decrease in DNA synthesis. Mechanistically, ICT-induced senescence occurred through accumulation of ROS (∼1.3-fold and ∼1.8-fold of vehicle controls in response to 1 and 2 μM ICT, respectively), which further resulted in DNA damage response, as evidenced by strong induction of γH2AX through immunofluorescence and western blotting assays. Pharmacological inhibition of ROS production with N-acetylcysteine attenuated ICT-induced γH2AX and senescence-associated-β-galactosidase activity (∼0.28-0.30-fold decrease, p < 0.05). Discussion and conclusions: Induction of cellular senescence by ICT defines a novel anticancer mechanism of ICT and provides a rationale for generalizing the study design to a broader study population to further developing ICT as a novel therapeutic agent for treatment of HCC.
Collapse
Affiliation(s)
- Shikang Wang
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Qian Wang
- Institute of Medical Sciences, The Second Hospital of Shandong University, Jinan, China
| | - Huijun Wang
- Department of Internal Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Xianping Cui
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Lei Li
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, China
| |
Collapse
|
26
|
Liu Q, Chen H, Li H, Zhang T, Ma W. [Isolation of cancer stem cells and the establishment of a H 2O 2-resistant cancer stem cell model]. ZHONGGUO XIU FU CHONG JIAN WAI KE ZA ZHI = ZHONGGUO XIUFU CHONGJIAN WAIKE ZAZHI = CHINESE JOURNAL OF REPARATIVE AND RECONSTRUCTIVE SURGERY 2019; 33:1433-1438. [PMID: 31650762 DOI: 10.7507/1002-1892.201809014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Objective To isolate cancer stem cells (CST) from human breast cancer cell line (MCF-7) and study their sensitivity toward oxidative stress. Methods MCF-7 cells were cultured in serum-free suspension culture medium to identify cells forming the sphere phenotype. The morphological changes of MCF-7 cells were observed by inverted phase contrast microscope (compared with MCF-7 cells cultured in serum-free suspension culture medium). The expression of CST marker CD133 was detected by immunocytochemical staining in CST cell spheres (experimental group) with a diameter of 100 μm and MCF-7 cells (control group) with a fusion degree of 70%. The positive rate of CD133 was detected by flow cytometry in the third generation of tumor cells with diameter of 150 μm. The second generation of tumor globular cells (experimental group) with diameter of 150 μm and corresponding MCF-7 cells (control group) were taken to be damaged by 50 mol/L H 2O 2 for 120 minutes. The expression of DNA damage marker histone H2AX phosphorylation (γH2AX) was detected by immunocytochemical staining. Results Inverted phase contrast microscopy showed that MCF-7 cells grew initially in a single-cell adherent state, then aggregated and grew in serum-free suspension culture medium, and finally formed CST cell spheres, while the control MCF-7 cells cultured in MCF-7 cell culture medium grew extensively and could not grow in suspension. Fluorescence microscopy showed that the expression of CD133 in MCF-7 cells of control group was negative, while that in experimental group was positive. Flow cytometry showed that CD133 was positive in CST cells, and the positive rate was 92%. Inverted fluorescence microscopy showed that the expression of γH2AX in CST tumor spheres of experimental group was significantly lower than that in MCF-7 cells of control group after 120 minutes of H 2O 2 injury. Conclusion Serum-free suspension culture medium can produce globular CST cells from MCF-7 tumor cell line, which have strong antioxidant damage.
Collapse
Affiliation(s)
- Qingxi Liu
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;Qilu Institute of Technology, Jinan Shandong, 250200, P.R.China;IncoCell Tianjin Ltd., Tianjin, 300457, P.R.China
| | - Hongran Chen
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;Qilu Institute of Technology, Jinan Shandong, 250200, P.R.China
| | - Hui Li
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;Qilu Institute of Technology, Jinan Shandong, 250200, P.R.China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457,
| | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, 300457, P.R.China;Qilu Institute of Technology, Jinan Shandong, 250200,
| |
Collapse
|
27
|
Roy NK, Parama D, Banik K, Bordoloi D, Devi AK, Thakur KK, Padmavathi G, Shakibaei M, Fan L, Sethi G, Kunnumakkara AB. An Update on Pharmacological Potential of Boswellic Acids against Chronic Diseases. Int J Mol Sci 2019; 20:ijms20174101. [PMID: 31443458 PMCID: PMC6747466 DOI: 10.3390/ijms20174101] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2019] [Revised: 08/16/2019] [Accepted: 08/16/2019] [Indexed: 02/07/2023] Open
Abstract
Natural compounds, in recent years, have attracted significant attention for their use in the prevention and treatment of diverse chronic diseases as they are devoid of major toxicities. Boswellic acid (BA), a series of pentacyclic triterpene molecules, is isolated from the gum resin of Boswellia serrata and Boswellia carteri. It proved to be one such agent that has exhibited efficacy against various chronic diseases like arthritis, diabetes, asthma, cancer, inflammatory bowel disease, Parkinson’s disease, Alzheimer’s, etc. The molecular targets attributed to its wide range of biological activities include transcription factors, kinases, enzymes, receptors, growth factors, etc. The present review is an attempt to demonstrate the diverse pharmacological uses of BA, along with its underlying molecular mechanism of action against different ailments. Further, this review also discusses the roadblocks associated with the pharmacokinetics and bioavailability of this promising compound and strategies to overcome those limitations for developing it as an effective drug for the clinical management of chronic diseases.
Collapse
Affiliation(s)
- Nand Kishor Roy
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Dey Parama
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Kishore Banik
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Devivasha Bordoloi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Amrita Khwairakpam Devi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Krishan Kumar Thakur
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Ganesan Padmavathi
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India
| | - Mehdi Shakibaei
- Musculoskeletal Research Group and Tumour Biology, Chair of Vegetative Anatomy, Institute of Anatomy, Ludwig-Maximilian-University, 80336 Munich, Germany
| | - Lu Fan
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory and DBT-AIST International Centre for Translational and Environmental Research(DAICENTER), Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Assam 781039, India.
| |
Collapse
|
28
|
Wang S, Wang H, Sun B, Li D, Wu J, Li J, Tian X, Qin C, Chang H, Liu Y. Acetyl-11-keto-β-boswellic acid triggers premature senescence via induction of DNA damage accompanied by impairment of DNA repair genes in hepatocellular carcinoma cells in vitro and in vivo. Fundam Clin Pharmacol 2019; 34:65-76. [PMID: 31141202 DOI: 10.1111/fcp.12488] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2019] [Revised: 04/28/2019] [Accepted: 05/24/2019] [Indexed: 01/25/2023]
Abstract
Cellular senescence, a state of irreversible growth arrest, occurs in all somatic cells and causes the cells to exhaust replicative capacity. Recently, cellular senescence has been emerging as one of the principal mechanisms of tumor suppression, which can be induced by low doses of therapeutic drugs in cancer cells. Acetyl-11-keto-β-boswellic acid (AKBA), an active ingredient isolated from the plant Boswellia serrata, has been identified to induce apoptosis in hepatocellular carcinoma (HCC) cells. In this study, we found that low concentrations of AKBA treatment triggered cell growth arrest at G0/G1 phase with features of premature cellular senescence phenotype in both HCC cell lines HepG2 and SMMC7721, as observed by enlarged and flattened morphology, significant increase in cells with senescence-associated β-galactosidase staining, and decrease in cell proliferation and DNA synthesis. Furthermore, cellular senescence induced by AKBA occurred via activation of DNA damage response and impairment of DNA repair, as evidenced by strong induction of γH2AX and p53, and downregulated expressions of multiple DNA repair associated genes. Induction of p53 by AKBA caused a significant increase in p21CIP1 , which had a critical involvement in the induction of cellular senescence. Additionally, in vivo study demonstrated that induction of senescence contributed to the anticancer efficacy of AKBA. Therefore, our findings suggested that induction of premature senescence by AKBA through DNA damage response accompanied by impairment of DNA repair genes defines a novel mechanism contributing to its growth suppression in HCC cells.
Collapse
Affiliation(s)
- Shikang Wang
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China.,Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Huijun Wang
- Department of Internal Medicine, Shandong Cancer Hospital Affiliated to Shandong University, Shandong Academy of Medical Sciences, Jinan, 250117, Shandong, China
| | - Baoyou Sun
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Duanfeng Li
- Emergency Center, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Jing Wu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Juan Li
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Xiaona Tian
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| | - Chengkun Qin
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Jinan, 250021, Shandong, China
| | - Yongqing Liu
- Department of Clinical Pharmacy, The Second Hospital of Shandong University, Jinan, 250033, Shandong, China
| |
Collapse
|