1
|
Inserra A, Campanale A, Rezai T, Romualdi P, Rubino T. Epigenetic mechanisms of rapid-acting antidepressants. Transl Psychiatry 2024; 14:359. [PMID: 39231927 PMCID: PMC11375021 DOI: 10.1038/s41398-024-03055-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2023] [Revised: 08/19/2024] [Accepted: 08/21/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND Rapid-acting antidepressants (RAADs), including dissociative anesthetics, psychedelics, and empathogens, elicit rapid and sustained therapeutic improvements in psychiatric disorders by purportedly modulating neuroplasticity, neurotransmission, and immunity. These outcomes may be mediated by, or result in, an acute and/or sustained entrainment of epigenetic processes, which remodel chromatin structure and alter DNA accessibility to regulate gene expression. METHODS In this perspective, we present an overview of the known mechanisms, knowledge gaps, and future directions surrounding the epigenetic effects of RAADs, with a focus on the regulation of stress-responsive DNA and brain regions, and on the comparison with conventional antidepressants. MAIN BODY Preliminary correlative evidence indicates that administration of RAADs is accompanied by epigenetic effects which are similar to those elicited by conventional antidepressants. These include changes in DNA methylation, post-translational modifications of histones, and differential regulation of non-coding RNAs in stress-responsive chromatin areas involved in neurotrophism, neurotransmission, and immunomodulation, in stress-responsive brain regions. Whether these epigenetic changes causally contribute to the therapeutic effects of RAADs, are a consequence thereof, or are unrelated, remains unknown. Moreover, the potential cell type-specificity and mechanisms involved are yet to be fully elucidated. Candidate mechanisms include neuronal activity- and serotonin and Tropomyosine Receptor Kinase B (TRKB) signaling-mediated epigenetic changes, and direct interaction with DNA, histones, or chromatin remodeling complexes. CONCLUSION Correlative evidence suggests that epigenetic changes induced by RAADs accompany therapeutic and side effects, although causation, mechanisms, and cell type-specificity remain largely unknown. Addressing these research gaps may lead to the development of novel neuroepigenetics-based precision therapeutics.
Collapse
Affiliation(s)
- Antonio Inserra
- Department of Psychiatry, McGill University, Montreal, QC, Canada.
- Behavioral Neuroscience Laboratory, University of South Santa Catarina (UNISUL), Tubarão, Brazil., Tubarão, Brazil.
| | | | - Tamim Rezai
- Department of Psychiatry, McGill University, Montreal, QC, Canada
| | - Patrizia Romualdi
- Department of Pharmacy and Biotechnology, University of Bologna, Bologna, Italy
| | - Tiziana Rubino
- Department of Biotechnology and Life Sciences and Neuroscience Center, University of Insubria, Varese, Italy
| |
Collapse
|
2
|
Li X, Saiyin H, Chen X, Yu Q, Ma L, Liang W. Ketamine impairs growth cone and synaptogenesis in human GABAergic projection neurons via GSK-3β and HDAC6 signaling. Mol Psychiatry 2024; 29:1647-1659. [PMID: 36414713 PMCID: PMC11371642 DOI: 10.1038/s41380-022-01864-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 11/23/2022]
Abstract
The growth cone guides the axon or dendrite of striatal GABAergic projection neurons that protrude into the midbrain and cortex and form complex neuronal circuits and synaptic networks in a developing brain, aberrant projections and synaptic connections in the striatum related to multiple brain disorders. Previously, we showed that ketamine, an anesthetic, reduced dendritic growth, dendritic branches, and spine density in human striatal GABAergic neurons. However, whether ketamine affects the growth cone, the synaptic connection of growing striatal GABAergic neurons has not been tested. Using human GABAergic projection neurons derived from human inducible pluripotent stem cells (hiPSCs) and embryonic stem cells (ES) in vitro, we tested ketamine effects on the growth cones and synapses in developing GABAergic neurons by assessing the morphometry and the glycogen synthase kinase-3 (GSK-3) and histone deacetylase 6 (HDAC6) pathway. Ketamine exposure impairs growth cone formation, synaptogenesis, dendritic development, and maturation via ketamine-mediated activation of GSK-3 pathways and inhibiting HDAC6, an essential stabilizing protein for dendritic morphogenesis and synapse maturation. Our findings identified a novel ketamine neurotoxic pathway that depends on GSK-3β and HDAC6 signaling, suggesting that microtubule acetylation is a potential target for reducing ketamine's toxic effect on GABAergic projection neuronal development.
Collapse
Affiliation(s)
- Xuan Li
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China
- Department of Anesthesiology, The Fifth Affiliated Hospital, Sun Yat-Sen University, Zhuhai, Guangdong, China
| | - Hexige Saiyin
- State Key Laboratory of Genetic Engineering, School of Life Sciences, Fudan University, Shanghai, China
| | - Xinyu Chen
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China
| | - Qiong Yu
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| | - Lixiang Ma
- Department of Anatomy and Histology & Embryology, School of Basic Medical Sciences, Fudan University, Shanghai, China.
| | - Weimin Liang
- Department of Anesthesiology, Huashan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
3
|
Luo Y, Yu Y, He H, Fan N. Acute ketamine induces neuronal hyperexcitability and deficits in prepulse inhibition by upregulating IL-6. Prog Neuropsychopharmacol Biol Psychiatry 2024; 130:110913. [PMID: 38103855 DOI: 10.1016/j.pnpbp.2023.110913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 12/04/2023] [Accepted: 12/10/2023] [Indexed: 12/19/2023]
Abstract
Acute ketamine administration results in psychotic symptoms similar to those observed in schizophrenia and is regarded as a pharmacological model of schizophrenia. Accumulating evidence suggests that patients with schizophrenia show increased IL-6 levels in the blood and cerebrospinal fluid and that IL-6 levels are associated with the severity of psychotic symptoms. In the present study, we found that a single ketamine exposure led to increased expression of IL-6 and IL-6Rα, decreased dendritic spine density, increased expression and currents of T-type calcium channels, and increased neuron excitability in the hippocampal CA1 area 12 h after exposure. Acute ketamine administration also led to impaired prepulse inhibition (PPI) 12 h after administration. Additionally, we found that the expression of signaling molecules IKKα/β, NF-κB, JAK2, and STAT3 was upregulated 12 h after a single ketamine injection. The decreases in dendritic spine density, the increases in calcium currents and neuron excitability, and the impairments in PPI were ameliorated by blocking IL-6 or IL-6Rα. Our findings show that blocking IL-6 or its receptor may protect hippocampal neurons from hyperexcitability, thereby ameliorating ketamine-induced psychotic effects. Our study provides additional evidence that targeting IL-6 and its receptor is a potential strategy for treating psychotic symptoms in acute ketamine-induced psychosis and schizophrenia.
Collapse
Affiliation(s)
- Yayan Luo
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Yang Yu
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Hongbo He
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China
| | - Ni Fan
- The Affiliated Brain Hospital of Guangzhou Medical University, 36 Mingxin Road, Liwan District, Guangzhou, Guangdong Province 510370, China.
| |
Collapse
|
4
|
Zhornitsky S, Oliva HNP, Jayne LA, Allsop ASA, Kaye AP, Potenza MN, Angarita GA. Changes in synaptic markers after administration of ketamine or psychedelics: a systematic scoping review. Front Psychiatry 2023; 14:1197890. [PMID: 37435405 PMCID: PMC10331617 DOI: 10.3389/fpsyt.2023.1197890] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Accepted: 06/05/2023] [Indexed: 07/13/2023] Open
Abstract
Background Ketamine and psychedelics have abuse liability. They can also induce "transformative experiences" where individuals experience enhanced states of awareness. This enhanced awareness can lead to changes in preexisting behavioral patterns which could be beneficial in the treatment of substance use disorders (SUDs). Preclinical and clinical studies suggest that ketamine and psychedelics may alter markers associated with synaptic density, and that these changes may underlie effects such as sensitization, conditioned place preference, drug self-administration, and verbal memory performance. In this scoping review, we examined studies that measured synaptic markers in animals and humans after exposure to ketamine and/or psychedelics. Methods A systematic search was conducted following PRISMA guidelines, through PubMed, EBSCO, Scopus, and Web of Science, based on a published protocol (Open Science Framework, DOI: 10.17605/OSF.IO/43FQ9). Both in vivo and in vitro studies were included. Studies on the following synaptic markers were included: dendritic structural changes, PSD-95, synapsin-1, synaptophysin-1, synaptotagmin-1, and SV2A. Results Eighty-four studies were included in the final analyses. Seventy-one studies examined synaptic markers following ketamine treatment, nine examined psychedelics, and four examined both. Psychedelics included psilocybin/psilocin, lysergic acid diethylamide, N,N-dimethyltryptamine, 2,5-dimethoxy-4-iodoamphetamine, and ibogaine/noribogaine. Mixed findings regarding synaptic changes in the hippocampus and prefrontal cortex (PFC) have been reported when ketamine was administered in a single dose under basal conditions. Similar mixed findings were seen under basal conditions in studies that used repeated administration of ketamine. However, studies that examined animals during stressful conditions found that a single dose of ketamine counteracted stress-related reductions in synaptic markers in the hippocampus and PFC. Repeated administration of ketamine also counteracted stress effects in the hippocampus. Psychedelics generally increased synaptic markers, but results were more consistently positive for certain agents. Conclusion Ketamine and psychedelics can increase synaptic markers under certain conditions. Heterogeneous findings may relate to methodological differences, agents administered (or different formulations of the same agent), sex, and type of markers. Future studies could address seemingly mixed results by using meta-analytical approaches or study designs that more fully consider individual differences.
Collapse
Affiliation(s)
- Simon Zhornitsky
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Henrique N. P. Oliva
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Laura A. Jayne
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Aza S. A. Allsop
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| | - Alfred P. Kaye
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Clinical Neurosciences Division, VA National Center for PTSD, West Haven, CT, United States
| | - Marc N. Potenza
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Connecticut Mental Health Center, New Haven, CT, United States
- Child Study Center, Yale University School of Medicine, New Haven, CT, United States
- Department of Neuroscience, Yale University, New Haven, CT, United States
- Connecticut Council on Problem Gambling, Hartford, CT, United States
- Wu Tsai Institute, Yale University, New Haven, CT, United States
| | - Gustavo A. Angarita
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT, United States
- Clinical Neuroscience Research Unit, Connecticut Mental Health Center, New Haven, CT, United States
| |
Collapse
|
5
|
Suárez Santiago JE, Roldán GR, Picazo O. Ketamine as a pharmacological tool for the preclinical study of memory deficit in schizophrenia. Behav Pharmacol 2023; 34:80-91. [PMID: 36094064 DOI: 10.1097/fbp.0000000000000689] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Schizophrenia is a serious neuropsychiatric disorder characterized by the presence of positive symptoms (hallucinations, delusions, and disorganization of thought and language), negative symptoms (abulia, alogia, and affective flattening), and cognitive impairment (attention deficit, impaired declarative memory, and deficits in social cognition). Dopaminergic hyperactivity seems to explain the positive symptoms, but it does not completely clarify the appearance of negative and cognitive clinical manifestations. Preclinical data have demonstrated that acute and subchronic treatment with NMDA receptor antagonists such as ketamine (KET) represents a useful model that resembles the schizophrenia symptomatology, including cognitive impairment. This latter has been explained as a hypofunction of NMDA receptors located on the GABA parvalbumin-positive interneurons (near to the cortical pyramidal cells), thus generating an imbalance between the inhibitory and excitatory activity in the corticomesolimbic circuits. The use of behavioral models to explore alterations in different domains of memory is vital to learn more about the neurobiological changes that underlie schizophrenia. Thus, to better understand the neurophysiological mechanisms involved in cognitive impairment related to schizophrenia, the purpose of this review is to analyze the most recent findings regarding the effect of KET administration on these processes.
Collapse
Affiliation(s)
- José Eduardo Suárez Santiago
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Gabriel Roldán Roldán
- Facultad de Medicina, Departamento de Fisiología, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | - Ofir Picazo
- Escuela Superior de Medicina, Laboratorio de Farmacología Conductual, Instituto Politécnico Nacional
| |
Collapse
|
6
|
Epigenetic Mechanisms of Postoperative Cognitive Impairment Induced by Anesthesia and Neuroinflammation. Cells 2022; 11:cells11192954. [PMID: 36230916 PMCID: PMC9563723 DOI: 10.3390/cells11192954] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 09/09/2022] [Accepted: 09/14/2022] [Indexed: 11/17/2022] Open
Abstract
Cognitive impairment after surgery is a common problem, affects mainly the elderly, and can be divided into postoperative delirium and postoperative cognitive dysfunction. Both phenomena are accompanied by neuroinflammation; however, the precise molecular mechanisms underlying cognitive impairment after anesthesia are not yet fully understood. Anesthesiological drugs can have a longer-term influence on protein transcription, thus, epigenetics is a possible mechanism that impacts on cognitive function. Epigenetic mechanisms may be responsible for long-lasting effects and may implicate novel therapeutic approaches. Hence, we here summarize the existing literature connecting postoperative cognitive impairment to anesthesia. It becomes clear that anesthetics alter the expression of DNA and histone modifying enzymes, which, in turn, affect epigenetic markers, such as methylation, histone acetylation and histone methylation on inflammatory genes (e.g., TNF-alpha, IL-6 or IL1 beta) and genes which are responsible for neuronal development (such as brain-derived neurotrophic factor). Neuroinflammation is generally increased after anesthesia and neuronal growth decreased. All these changes can induce cognitive impairment. The inhibition of histone deacetylase especially alleviates cognitive impairment after surgery and might be a novel therapeutic option for treatment. However, further research with human subjects is necessary because most findings are from animal models.
Collapse
|