1
|
Xu H, You R, Zhang H, Wei W, Li T, Duan X. One-step on-chip preparation of nanoparticle-conjugated red blood cell carriers. Colloids Surf B Biointerfaces 2025; 246:114373. [PMID: 39556898 DOI: 10.1016/j.colsurfb.2024.114373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 11/02/2024] [Accepted: 11/09/2024] [Indexed: 11/20/2024]
Abstract
Red blood cell (RBC)-based carriers have emerged as promising vehicles for drug delivery due to their inherent biocompatibility and biodegradability. Traditional methods for loading nanoparticles (NPs) onto RBC surfaces often involve labor-intensive processes like incubation and multiple centrifugation steps, limiting their practicality and controllability. In this study, we introduce a fully integrated acoustofluidic platform that enables one-step preparation of NP-loaded RBC carriers with controlled modification and on-site purification. By incorporating a high-frequency bulk acoustic wave (BAW) resonator into a microfluidic chip, we utilize acoustic streaming effects to manipulate the movement and interaction of RBCs and NPs within the microchannel. This design allows for precise control over NP loading efficiency by adjusting the input power to the resonator. Experimental results using 200 nm positively charged fluorescent NPs demonstrate that our platform significantly enhances the interaction between RBCs and NPs, achieving efficient and controllable surface loading of NPs onto RBCs. Furthermore, the platform simplifies post-processing by directing excess NPs to waste outlets, eliminating the need for repetitive washing and centrifugation. This acoustofluidics approach not only automates the loading process but also offers high controllability, highlighting its potential for various applications in particle and cell surface modification.
Collapse
Affiliation(s)
- Huihui Xu
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Rui You
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Huijing Zhang
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Wei Wei
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China
| | - Tiechuan Li
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| | - Xuexin Duan
- State Key Laboratory of Precision Measuring Technology & Instruments, and College of Precision Instrument and Opto-electronics Engineering, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
2
|
Rahman M, Singh J, Aodah A, Alrobaian M, Alruwaili NK, Almalki WH, Almujri SS, Rab SO, Madkhali OA, Sahoo A, Lal JA. Chiral nanosystem and chiral supraparticles for drug delivery: an expert opinion. Expert Opin Drug Deliv 2025; 22:143-162. [PMID: 39688614 DOI: 10.1080/17425247.2024.2444347] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2024] [Revised: 12/07/2024] [Accepted: 12/16/2024] [Indexed: 12/18/2024]
Abstract
INTRODUCTION Chiral nanocarriers enhance therapeutic efficacy by improving in vivo stability and cellular uptake. Chemical functionalization reduces cytotoxicity, resulting in favorable biocompatibility. Nanoparticles self-assemble into supraparticles, enhancing drug delivery through improved retention and drug loading. AREA COVERED This review covers chiral nanostructures and chiral supraparticles, and their applications in drug delivery and various healthcare applications. EXPERT OPINION The chirality of biomaterials is crucial for advancing nanomedicine. Chiral nanosystem enhance drug delivery by interacting selectively with biological molecules, improving their specificity and efficacy. This reduces off-target effects and improves therapeutic outcomes. Research has focused on cellular uptake and elimination to ensure safety, and chiral nanomaterials also show promise in optical sensing and gene editing. Their biocompatibility and ability to self-assemble into supraparticles may make them ideal for drug delivery systems.
Collapse
Affiliation(s)
- Mahfoozur Rahman
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Janhvi Singh
- Department of Biotechnology and Market Research, Thelansis Knowledge Partners, Gurugram, India
| | - Alhussain Aodah
- College of Pharmacy, Prince Sattam bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Majed Alrobaian
- Department of Pharmaceutics & Industrial Pharmacy, College of Pharmacy, Taif University, Taif, Saudi Arabia
| | - Nabil K Alruwaili
- Department of Pharmaceutics, College of Pharmacy, Jouf University, Sakakah, Saudi Arabia
| | - Waleed H Almalki
- Department of Pharmacology and Toxicology, College of Pharmacy, Umm Al-Qura University, Makkah, Saudi Arabia
| | - Salem Salman Almujri
- Department of Pharmacology, College of Pharmacy, King Khalid University, Asir-Abha, Saudi Arabia
| | - Safia Obaidur Rab
- Central Labs, King Khalid University, Al Qura'a, Abha, Saudi Arabia
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Osama A Madkhali
- Department of Pharmaceutics, College of Pharmacy, Jazan University, Jazan, Saudi Arabia
| | - Ankit Sahoo
- Department of Pharmaceutical Sciences, Shalom Institute of Health & Allied Sciences, Sam Higginbottom University of Agriculture, Technology & Sciences, Allahabad, India
| | - Jonathan A Lal
- Department of Molecular and Cellular Engineering, Jacob Institute of Biotechnology and Bioengineering, Sam Higginbottom University of Agriculture, Technology and Sciences, Prayagraj, Uttar Pradesh, India
| |
Collapse
|
3
|
Li SR, Tao SY, Li Q, Hu CY, Sun ZJ. Harnessing nanomaterials for copper-induced cell death. Biomaterials 2025; 313:122805. [PMID: 39250865 DOI: 10.1016/j.biomaterials.2024.122805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 08/20/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Copper (Cu), an essential micronutrient with redox properties, plays a pivotal role in a wide array of pathological and physiological processes across virtually all cell types. Maintaining an optimal copper concentration is critical for cellular survival: insufficient copper levels disrupt respiration and metabolism, while excess copper compromises cell viability, potentially leading to cell death. Similarly, in the context of cancer, copper exhibits a dual role: appropriate amount of copper can promote tumor progression and be an accomplice, yet beyond befitting level, copper can bring about multiple types of cell death, including autophagy, apoptosis, ferroptosis, immunogenic cell death, pyroptosis, and cuproptosis. These forms of cell death are beneficial against cancer progression; however, achieving precise copper regulation within tumors remains a significant challenge in the pursuit of effective cancer therapies. The emergence of nanodrug delivery systems, distinguished by their precise targeting, controlled release, high payload capacity, and the ability to co-deliver multiple agents, has revitalized interest in exploiting copper's precise regulatory capabilities. Nevertheless, there remains a dearth of comprehensive review of copper's bidirectional effects on tumorigenesis and the role of copper-based nanomaterials in modulating tumor progression. This paper aims to address this gap by elucidating the complex role in cancer biology and highlighting its potential as a therapeutic target. Through an exploration of copper's dualistic nature and the application of nanotechnology, this review seeks to offer novel insights and guide future research in advancing cancer treatment.
Collapse
Affiliation(s)
- Su-Ran Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Shi-Yue Tao
- Bathune School of Stomatology, Jilin University, Changchun, 130021, Jilin, PR China
| | - Qian Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China
| | - Chuan-Yu Hu
- Department of Stomatology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, Hubei, PR China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, 430079, Hubei, PR China.
| |
Collapse
|
4
|
He A, Huang Y, Cao C, Li X. Advances in drug delivery systems utilizing blood cells and their membrane-derived microvesicles. Drug Deliv 2024; 31:2425156. [PMID: 39520082 PMCID: PMC11552282 DOI: 10.1080/10717544.2024.2425156] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 10/11/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
The advancement of drug delivery systems (DDSs) in recent decades has demonstrated significant potential in enhancing the efficacy of pharmacological agents. Despite the approval of certain DDSs for clinical use, challenges such as rapid clearance from circulation, toxic accumulation in the body, and ineffective targeted delivery persist as obstacles to successful clinical application. Blood cell-based DDSs have emerged as a popular strategy for drug administration, offering enhanced biocompatibility, stability, and prolonged circulation. These DDSs are well-suited for systemic drug delivery and have played a crucial role in formulating optimal drug combinations for treating a variety of diseases in both preclinical studies and clinical trials. This review focuses on recent advancements and applications of DDSs utilizing blood cells and their membrane-derived microvesicles. It addresses the current therapeutic applications of blood cell-based DDSs at the organ and tissue levels, highlighting their successful deployment at the cellular level. Furthermore, it explores the mechanisms of cellular uptake of drug delivery vectors at the subcellular level. Additionally, the review discusses the opportunities and challenges associated with these DDSs.
Collapse
Affiliation(s)
- Andong He
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| | - Yuye Huang
- Center for Medical and Engineering Innovation, Central Laboratory, The First Affiliated Hospital, Ningbo University School of Medicine, Ningbo, China
| | - Chao Cao
- Department of Respiratory and Critical Care Medicine, Key Laboratory of Respiratory Disease of Ningbo, The First Affiliated Hospital of Ningbo University, Ningbo, China
| | - Xuejin Li
- Department of Engineering Mechanics, Zhejiang University, Hangzhou, China
| |
Collapse
|
5
|
Li X, He J, He W. Cell carriers change the in vivo fate of nanoparticles. Acta Pharm Sin B 2024; 14:5515-5517. [PMID: 39807311 PMCID: PMC11725126 DOI: 10.1016/j.apsb.2024.08.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Revised: 07/28/2024] [Accepted: 07/31/2024] [Indexed: 01/16/2025] Open
Affiliation(s)
- Xiaotong Li
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| | - Jianhua He
- School of Pharmacy, Hubei University of Chinese Medicine, Wuhan 430065, China
- Hubei Shizhen Laboratory, Wuhan 430065, China
| | - Wei He
- School of Pharmacy, China Pharmaceutical University, Nanjing 211198, China
| |
Collapse
|
6
|
Lu H, Wang J, Chen Z, Wang J, Jiang Y, Xia Z, Hou Y, Shang P, Li R, Liu Y, Xie J. Engineered Macrophage Membrane-Coated S100A9-siRNA for Ameliorating Myocardial Ischemia-Reperfusion Injury. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2403542. [PMID: 39264262 PMCID: PMC11538685 DOI: 10.1002/advs.202403542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 09/03/2024] [Indexed: 09/13/2024]
Abstract
Despite the widespread adoption of emergency coronary reperfusion therapy, reperfusion-induced myocardial injury remains a challenging issue in clinical practice. Following myocardial reperfusion, S100A8/A9 molecules are considered pivotal in initiating and regulating tissue inflammatory damage. Effectively reducing the S100A8/A9 level in ischemic myocardial tissue holds significant therapeutic value in salvaging damaged myocardium. In this study, HA (hemagglutinin)- and RAGE (receptor for advanced glycation end products)- comodified macrophage membrane-coated siRNA nanoparticles (MMM/RNA NPs) with siRNA targeting S100A9 (S100A9-siRNA) are successfully prepared. This nanocarrier system is able to target effectively the injured myocardium in an inflammatory environment while evading digestive damage by lysosomes. In vivo, migration of MMM/RNA NPs to myocardial injury lesions is confirmed in a myocardial ischemia-reperfusion injury (MIRI) mouse model. Intravenous injection of MMM/RNA NPs significantly reduced S100A9 levels in serum and myocardial tissues, further decreasing myocardial infarction area and improving cardiac function. Targeted reduction of S100A8/A9 by genetically modified macrophage membrane-coated nanoparticles may represent a new therapeutic intervention for MIRI.
Collapse
Affiliation(s)
- He Lu
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
| | - Junzhuo Wang
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
| | - Ziwei Chen
- Department of CardiologyAffiliated Hospital of Nantong UniversityNantong226001China
| | - Jing Wang
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
| | - Yaohui Jiang
- Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Zequn Xia
- Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Ya Hou
- Nanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Pingping Shang
- Department of CardiologyThe People's Hospital of Jiawang District of XuzhouXuzhou221011China
| | - Rutian Li
- Department of OncologyNanjing Drum Tower HospitalAffiliated Hospital of Medical SchoolNanjing UniversityNo. 321 Zhongshan RoadNanjing210008China
| | - Yuyong Liu
- Department of Cardiac SurgeryNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
- Beijing Institute of HeartLung, and Blood Vessel DiseasesBeijing Anzhen Hospital Affiliated to Capital Medical UniversityBeijing100029China
| | - Jun Xie
- Nanjing Drum Tower HospitalDrum Tower Clinical CollegeNanjing University of Chinese MedicineNo. 321 Zhongshan RoadNanjing210008China
- Department of Cardiac SurgeryNational Cardiovascular Disease Regional Center for Anhuithe First Affiliated Hospital of Anhui Medical UniversityHefei230022China
| |
Collapse
|
7
|
Lan X, Feng M, Chen L, Zhang L, Han C, Wang Y, Zheng J, Wang X, Liu C, Liu R. Trends in research on nanomedicine in urologic cancer: a bibliometric and visualized analysis. Discov Oncol 2024; 15:366. [PMID: 39179938 PMCID: PMC11343939 DOI: 10.1007/s12672-024-01249-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2024] [Accepted: 08/19/2024] [Indexed: 08/26/2024] Open
Abstract
Increasing research efforts are focused on studying the synthesis and mechanisms of nanomedicine in urologic cancer. We performed a bibliometric study of the literature on nanomedicine in urologic cancer over the last 23 years, focusing on aspects such as researchers, institutions, nations, and keywords. We searched for papers in the Web of Science Core Collection from January 1, 2001, to December 29, 2023. Only reviews and original articles written in English were considered. A total of 2386 papers satisfied the given criteria for inclusion. The publications included in the study originated from 90 nations. The United States had the largest number of published papers, accounting for more than 31.01% of the total. The leading institution in this field is the Chinese Academy of Sciences, with a publishing output of 2.35%. Farokhzad, Omid C., is the most prolific author, with 21 articles, and has garnered the most citations, totaling 6271. The latest phrase to enter the top ten most common lists was "gold nanoparticles." We searched for papers in the Web of Science Core Collection from January 1, 2000, to November 28, 2023. Only reviews and original articles written in English were considered. This is the first bibliometric study of nanomedicine in urologic cancer. This article provides a comprehensive analysis of the current state of research on nanomedicine in urologic cancer over the last 23 years. On the basis of this study, future researchers can identify noteworthy publications, journals, and potential collaborators and explore cutting-edge research directions.
Collapse
Affiliation(s)
- Xiaopeng Lan
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China
| | - Mei Feng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Lili Chen
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Luchen Zhang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Chao Han
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Yizhen Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Jilu Zheng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Xiaoyan Wang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Chunlei Liu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Ranlu Liu
- Department of Urology, Tianjin Medical University General Hospital, Tianjin, China.
| |
Collapse
|
8
|
Ma C, Cheng Z, Tan H, Wang Y, Sun S, Zhang M, Wang J. Nanomaterials: leading immunogenic cell death-based cancer therapies. Front Immunol 2024; 15:1447817. [PMID: 39185425 PMCID: PMC11341423 DOI: 10.3389/fimmu.2024.1447817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 07/24/2024] [Indexed: 08/27/2024] Open
Abstract
The field of oncology has transformed in recent years, with treatments shifting from traditional surgical resection and radiation therapy to more diverse and customized approaches, one of which is immunotherapy. ICD (immunogenic cell death) belongs to a class of regulatory cell death modalities that reactivate the immune response by facilitating the interaction between apoptotic cells and immune cells and releasing specific signaling molecules, and DAMPs (damage-associated molecular patterns). The inducers of ICD can elevate the expression of specific proteins to optimize the TME (tumor microenvironment). The use of nanotechnology has shown its unique potential. Nanomaterials, due to their tunability, targeting, and biocompatibility, have become powerful tools for drug delivery, immunomodulators, etc., and have shown significant efficacy in clinical trials. In particular, these nanomaterials can effectively activate the ICD, trigger a potent anti-tumor immune response, and maintain long-term tumor suppression. Different types of nanomaterials, such as biological cell membrane-modified nanoparticles, self-assembled nanostructures, metallic nanoparticles, mesoporous materials, and hydrogels, play their respective roles in ICD induction due to their unique structures and mechanisms of action. Therefore, this review will explore the latest advances in the application of these common nanomaterials in tumor ICD induction and discuss how they can provide new strategies and tools for cancer therapy. By gaining a deeper understanding of the mechanism of action of these nanomaterials, researchers can develop more precise and effective therapeutic approaches to improve the prognosis and quality of life of cancer patients. Moreover, these strategies hold the promise to overcome resistance to conventional therapies, minimize side effects, and lead to more personalized treatment regimens, ultimately benefiting cancer treatment.
Collapse
Affiliation(s)
- Changyu Ma
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Zhe Cheng
- Department of Forensic Medicine, Harbin Medical University, Harbin, China
| | - Haotian Tan
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- Graduate School of Peking Union Medical College, Peking Union Medical College, Beijing, China
| | - Yihan Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Shuzhan Sun
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
- China-Japan Friendship Clinical College, Peking University Health Science Center, Beijing, China
| | - Mingxiao Zhang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| | - Jianfeng Wang
- Department of Urology, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
9
|
Yang X, Chen M, Weng C, Zhuge D, Jin F, Xiao Y, Tian D, Yin Q, Li L, Zhang X, Shi G, Lu X, Yan L, Wang L, Wen B, Zhao Y, Lin J, Wang F, Zhang W, Chen Y. Red Blood Cell Membrane-Coated Nanoparticles Enable Incompatible Blood Transfusions. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310230. [PMID: 38837643 PMCID: PMC11304279 DOI: 10.1002/advs.202310230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/18/2024] [Indexed: 06/07/2024]
Abstract
Blood transfusions save lives and improve health every day. Despite the matching of blood types being stricter than it ever has been, emergency transfusions among incompatible blood types are still inevitable in the clinic when there is a lack of acceptable blood types for recipients. Here to overcome this, a counter measure nanoplatform consisting of a polymeric core coated by a red blood cell (RBC) membrane is developed. With A-type or B-type RBC membrane camouflaging, the nanoplatform is capable of specifically capturing anti-A or anti-B IgM antibodies within B-type or A-type whole blood, thereby decreasing the corresponding IgM antibody levels and then allowing the incompatible blood transfusions. In addition to IgM, the anti-RBC IgG antibody in a passive immunization murine model can likewise be neutralized by this nanoplatform, leading to prolonged circulation time of incompatible donor RBCs. Noteworthily, nanoplatform made by expired RBCs (>42 days stored hypothermically) and then subjected to lyophilization does not impair their effect on antibody neutralization. Most importantly, antibody-captured RBC-NP do not exacerbate the risk of inflammation, complement activation, and coagulopathy in an acute hemorrhagic shock murine model. Overall, this biomimetic nanoplatform can safely neutralize the antibody to enable incompatible blood transfusion.
Collapse
Affiliation(s)
- Xuewei Yang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Mengchun Chen
- Department of PharmacyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Cuiye Weng
- Department of Pediatric Allergy and ImmunologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Deli Zhuge
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Fangsi Jin
- Department of Blood TransfusionThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Yingnan Xiao
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Dongyan Tian
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Qingqing Yin
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Li Li
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xufei Zhang
- Wenzhou Medical UniversityWenzhou325027China
| | - Genghe Shi
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
- Wenzhou Medical UniversityWenzhou325027China
| | - Xiaosheng Lu
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Linzhi Yan
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Ledan Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Bin Wen
- Wenzhou Medical UniversityWenzhou325027China
| | - Yingzheng Zhao
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
| | - Jiajin Lin
- Department of Blood TransfusionThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Fang Wang
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Weixi Zhang
- Department of Pediatric Allergy and ImmunologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Yijie Chen
- Department of Obstetrics and GynecologyThe Second Affiliated Hospital of Wenzhou Medical UniversityWenzhou325027China
- Department of PharmaceuticsSchool of Pharmaceutical Sciences of Wenzhou Medical UniversityWenzhou325035China
- Wenzhou Medical UniversityWenzhou325027China
- Cixi Biomedical Research InstituteWenzhou Medical UniversityNingbo315302China
| |
Collapse
|
10
|
Lang X, Wang X, Han M, Guo Y. Nanoparticle-Mediated Synergistic Chemoimmunotherapy for Cancer Treatment. Int J Nanomedicine 2024; 19:4533-4568. [PMID: 38799699 PMCID: PMC11127654 DOI: 10.2147/ijn.s455213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 05/07/2024] [Indexed: 05/29/2024] Open
Abstract
Until now, there has been a lack of effective strategies for cancer treatment. Immunotherapy has high potential in treating several cancers but its efficacy is limited as a monotherapy. Chemoimmunotherapy (CIT) holds promise to be widely used in cancer treatment. Therefore, identifying their involvement and potential synergy in CIT approaches is decisive. Nano-based drug delivery systems (NDDSs) are ideal delivery systems because they can simultaneously target immune cells and cancer cells, promoting drug accumulation, and reducing the toxicity of the drug. In this review, we first introduce five current immunotherapies, including immune checkpoint blocking (ICB), adoptive cell transfer therapy (ACT), cancer vaccines, oncolytic virus therapy (OVT) and cytokine therapy. Subsequently, the immunomodulatory effects of chemotherapy by inducing immunogenic cell death (ICD), promoting tumor killer cell infiltration, down-regulating immunosuppressive cells, and inhibiting immune checkpoints have been described. Finally, the NDDSs-mediated collaborative drug delivery systems have been introduced in detail, and the development of NDDSs-mediated CIT nanoparticles has been prospected.
Collapse
Affiliation(s)
- Xiaoxue Lang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Xiangtao Wang
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Meihua Han
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
| | - Yifei Guo
- Institute of Medicinal Plant Development, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of Bioactive Substances and Resources Utilization of Chinese Herbal Medicine, Ministry of Education, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, People’s Republic of China
- Key Laboratory of New Drug Discovery Based on Classic Chinese Medicine Prescription, Chinese Academy of Medical Sciences, Beijing, People’s Republic of China
- Beijing Key Laboratory of Innovative Drug Discovery of Traditional Chinese Medicine (Natural Medicine) and Translational Medicine, Beijing, People’s Republic of China
| |
Collapse
|
11
|
Guo H, Guo M, Xia Z, Shao Z. Membrane-coated nanoparticles as a biomimetic targeted delivery system for tumour therapy. BIOMATERIALS TRANSLATIONAL 2024; 5:33-45. [PMID: 39220664 PMCID: PMC11362346 DOI: 10.12336/biomatertransl.2024.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Revised: 12/05/2023] [Accepted: 12/18/2023] [Indexed: 09/04/2024]
Abstract
Drug therapy towards tumours often causes adverse effects because of their non-specific nature. Membrane-coated technology and membrane-coated nanoparticles provide an advanced and promising platform of targeted and safe delivery. By camouflaging the nanoparticles with natural derived or artificially modified cell membranes, the nano-payloads are bestowed with properties from cell membranes such as longer circulation, tumour or inflammation-targeting, immune stimulation, augmenting the performance of traditional therapeutics. In this review, we review the development of membrane coating technology, and summarise the technical details, physicochemical properties, and research status of membrane-coated nanoparticles from different sources in tumour treatment. Finally, we also look forward to the prospects and challenges of transforming membrane coating technology from experiment into clinical use. Taken together, membrane-coated nanoparticles are bound to become one of the most potential anti-tumour strategies in the future.
Collapse
Affiliation(s)
- Haoyu Guo
- Department of Orthopaedic, Beijing Jishuitan Hospital, Capital Medical University, Beijing, China
- Department of Orthopaedic, Beijing Jishuitan Hospital, Fourth Medical College of Peking University, Beijing, China
| | - Mingke Guo
- Department of Orthopaedics, Affiliated Hospital of NCO School of Army Medical University, Shijiazhuang, Hebei Province, China
| | - Zhidao Xia
- Centre for Nanohealth, ILS2, Medical School, Swansea University, Swansea, UK
| | - Zengwu Shao
- Department of Orthopaedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei Province, China
| |
Collapse
|
12
|
Lin Y, Guan X, Su J, Chen S, Fu X, Xu X, Deng X, Chang J, Qin A, Shen A, Zhang L. Cell Membrane-Camouflaged Nanoparticles Mediated Nucleic Acids Delivery. Int J Nanomedicine 2023; 18:8001-8021. [PMID: 38164266 PMCID: PMC10758188 DOI: 10.2147/ijn.s433737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 12/16/2023] [Indexed: 01/03/2024] Open
Abstract
Nucleic acids have emerged as promising therapeutic agents for many diseases because of their potential in modulating gene expression. However, the delivery of nucleic acids remains a significant challenge in gene therapy. Although viral vectors have shown high transfection efficiency, concerns regarding teratogenicity or carcinogenicity have been raised. Non-viral vehicles, including cationic polymers, liposomes, and inorganic materials possess advantages in terms of safety, ease of preparation, and low cost. Nevertheless, they also face limitations related to immunogenicity, quick clearance in vivo, and lack of targeting specificity. On the other hand, bioinspired strategies have shown increasing potential in the field of drug delivery, yet there is a lack of comprehensive reviews summarizing the rapid development of bioinspired nanoparticles based on the cell membrane camouflage to construct the nucleic acids vehicles. Herein, we enumerated the current difficulties in nucleic acid delivery with various non-viral vehicles and provided an overview of bioinspired strategies for nucleic acid delivery.
Collapse
Affiliation(s)
- Yinshan Lin
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaoling Guan
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jianfen Su
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Sheng Chen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xihua Fu
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
| | - Xiaowei Xu
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Xiaohua Deng
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Jishuo Chang
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Aiping Qin
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Ao Shen
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| | - Lingmin Zhang
- Pharmacy Department & Panyu Institute of Infectious Diseases, Guangzhou Panyu Central Hospital, Guangzhou, Guangdong, 511400, People’s Republic of China
- Guangdong Provincial Key Laboratory of Molecular Target & Clinical Pharmacology, the NMPA and State Key Laboratory of Respiratory Disease, School of Pharmaceutical Sciences and the Fifth Affiliated Hospital, Guangzhou Medical University, Guangzhou, Guangdong, 511436, People’s Republic of China
| |
Collapse
|
13
|
Lim M, Fletcher NL, Saunus JM, McCart Reed AE, Chittoory H, Simpson PT, Thurecht KJ, Lakhani SR. Targeted Hyperbranched Nanoparticles for Delivery of Doxorubicin in Breast Cancer Brain Metastasis. Mol Pharm 2023; 20:6169-6183. [PMID: 37970806 PMCID: PMC10699306 DOI: 10.1021/acs.molpharmaceut.3c00558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 10/30/2023] [Accepted: 10/30/2023] [Indexed: 11/19/2023]
Abstract
Breast cancer brain metastases (BM) are associated with a dismal prognosis and very limited treatment options. Standard chemotherapy is challenging in BM patients because the high dosage required for an effective outcome causes unacceptable systemic toxicities, a consequence of poor brain penetration, and a short physiological half-life. Nanomedicines have the potential to circumvent off-target toxicities and factors limiting the efficacy of conventional chemotherapy. The HER3 receptor is commonly expressed in breast cancer BM. Here, we investigate the use of hyperbranched polymers (HBP) functionalized with a HER3 bispecific-antibody fragment for cancer cell-specific targeting and pH-responsive release of doxorubicin (DOX) to selectively deliver and treat BM. We demonstrated that DOX-release from the HBP carrier was controlled, gradual, and greater in endosomal acidic conditions (pH 5.5) relative to physiologic pH (pH 7.4). We showed that the HER3-targeted HBP with DOX payload was HER3-specific and induced cytotoxicity in BT474 breast cancer cells (IC50: 17.6 μg/mL). Therapeutic testing in a BM mouse model showed that HER3-targeted HBP with DOX payload impacted tumor proliferation, reduced tumor size, and prolonged overall survival. HER3-targeted HBP level detected in ex vivo brain samples was 14-fold more than untargeted-HBP. The HBP treatments were well tolerated, with less cardiac and oocyte toxicity compared to free DOX. Taken together, our HER3-targeted HBP nanomedicine has the potential to deliver chemotherapy to BM while reducing chemotherapy-associated toxicities.
Collapse
Affiliation(s)
- Malcolm Lim
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Nicholas L. Fletcher
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Jodi M. Saunus
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Amy E. McCart Reed
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Haarika Chittoory
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Peter T. Simpson
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
| | - Kristofer J. Thurecht
- Centre
for Advanced Imaging, The University of
Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Training Centre for Innovation in Biomedical Imaging
Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Research Council Centre of Excellence in Convergent Bio-Nano Science
and Technology, The University of Queensland,
Brisbane, St. Lucia, Queensland 4072, Australia
- Australian
Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, St. Lucia, Queensland 4072, Australia
| | - Sunil R. Lakhani
- UQ
Centre for Clinical Research, Faculty of Medicine, The University of Queensland, Brisbane, Herston, Queensland 4006, Australia
- Pathology
Queensland, Royal Brisbane and Women’s
Hospital, Herston, Queensland 4006, Australia
| |
Collapse
|
14
|
Xiong Z, An Q, Chen L, Xiang Y, Li L, Zheng Y. Cell or cell derivative-laden hydrogels for myocardial infarction therapy: from the perspective of cell types. J Mater Chem B 2023; 11:9867-9888. [PMID: 37751281 DOI: 10.1039/d3tb01411h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/27/2023]
Abstract
Myocardial infarction (MI) is a global cardiovascular disease with high mortality and morbidity. To treat acute MI, various therapeutic approaches have been developed, including cells, extracellular vesicles, and biomimetic nanoparticles. However, the clinical application of these therapies is limited due to low cell viability, inadequate targetability, and rapid elimination from cardiac sites. Injectable hydrogels, with their three-dimensional porous structure, can maintain the biomechanical stabilization of hearts and the transplantation activity of cells. However, they cannot regenerate cardiomyocytes or repair broken hearts. A better understanding of the collaborative relationship between hydrogel delivery systems and cell or cell-inspired therapy will facilitate advancing innovative therapeutic strategies against MI. Following that, from the perspective of cell types, MI progression and recent studies on using hydrogel to deliver cell or cell-derived preparations for MI treatment are discussed. Finally, current challenges and future prospects of cell or cell derivative-laden hydrogels for MI therapy are proposed.
Collapse
Affiliation(s)
- Ziqing Xiong
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qi An
- Department of Cardiovascular Surgery, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Liqiang Chen
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yucheng Xiang
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Lian Li
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, Sichuan, China.
| | - Yaxian Zheng
- Department of Pharmacy, Affiliated Hospital of Southwest Jiaotong University, The Third People's Hospital of Chengdu, Chengdu, Sichuan, China.
- Institute of Biomedical Engineering, College of Medicine, Southwest Jiaotong University, Chengdu, Sichuan, China
| |
Collapse
|
15
|
Shoeibi A, Karimi E, Zareian M, Oskoueian E. Enhancing Healthcare Outcomes and Modulating Apoptosis- and Antioxidant-Related Genes through the Nano-Phytosomal Delivery of Phenolics Extracted from Allium ampeloprasum. Genes (Basel) 2023; 14:1547. [PMID: 37628599 PMCID: PMC10454362 DOI: 10.3390/genes14081547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 07/17/2023] [Accepted: 07/26/2023] [Indexed: 08/27/2023] Open
Abstract
The application of nano drug delivery systems, particularly those utilizing natural bioactive compounds with anticancer properties, has gained significant attention. In this study, a novel nano-phytosome-loaded phenolic rich fraction (PRF) derived from Allium ampeloprasum L. was developed. The antitumor activity of the formulation was evaluated in BALB/c mice with TUBO colon carcinoma. The PRF-loaded nano-phytosome (PRF-NPs) exhibited a sphere-shaped structure (226 nm) and contained a diverse range of phenolic compounds. Animal trials conducted on TUBO tumor-bearing mice demonstrated that treatment with PRF-NPs at a dosage of 50 mg TPC/Kg/BW resulted in significant improvements in body weight and food intake, while reducing liver enzymes and lipid peroxidation. The expression of apoptosis-related genes, such as Bax and caspase-3, was upregulated, whereas Bcl2 was significantly downregulated (p < 0.05). Furthermore, the expression of GPx and SOD genes in the liver was notably increased compared to the control group. The findings suggest that the phytosomal encapsulation of the phenolic rich fraction derived from Allium ampeloprasum L. can enhance the bioavailability of natural phytochemicals and improve their antitumor properties. The development of PRF-NPs as a nano drug delivery system holds promise for effective breast cancer treatment.
Collapse
Affiliation(s)
- Ali Shoeibi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Ehsan Karimi
- Department of Biology, Mashhad Branch, Islamic Azad University, Mashhad, Iran
| | - Mohsen Zareian
- Department of Life Sciences, Chalmers University of Technology, Göteborg, Sweden
| | - Ehsan Oskoueian
- Industrial and Mineral Research Center, Arka Industrial Cluster, Mashhad, Iran
| |
Collapse
|
16
|
Marques C, Hajipour MJ, Marets C, Oudot A, Safavi-Sohi R, Guillemin M, Borchard G, Jordan O, Saviot L, Maurizi L. Identification of the Proteins Determining the Blood Circulation Time of Nanoparticles. ACS NANO 2023. [PMID: 37379064 DOI: 10.1021/acsnano.3c02041] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/29/2023]
Abstract
The therapeutic efficacy and adverse impacts of nanoparticles (NPs) are strongly dependent on their systemic circulation time. The corona proteins adsorbed on the NPs determine their plasma half-lives, and hence, it is crucial to identify the proteins shortening or extending their circulation time. In this work, the in vivo circulation time and corona composition of superparamagnetic iron oxide nanoparticles (SPIONs) with different surface charges/chemistries were analyzed over time. SPIONs with neutral and positive charges showed the longest and shortest circulation times, respectively. The most striking observation was that corona-coated NPs with similar opsonin/dysopsonin content showed different circulation times, implying these biomolecules are not the only contributing factors. Long-circulating NPs adsorb higher concentrations of osteopontin, lipoprotein lipase, coagulation factor VII, matrix Gla protein, secreted phosphoprotein 24, alpha-2-HS-glycoprotein, and apolipoprotein C-I, while short-circulating NPs adsorb higher amounts of hemoglobin. Therefore, these proteins may be considered to be determining factors governing the NP systemic circulation time.
Collapse
Affiliation(s)
- Cintia Marques
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Mohammad Javad Hajipour
- Department of Radiology, Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California 94304, United States
| | - Célia Marets
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| | - Alexandra Oudot
- Plateforme d'Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Reihaneh Safavi-Sohi
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Mélanie Guillemin
- Plateforme d'Imagerie Préclinique, Service de Médecine Nucléaire, Centre Georges François Leclerc, 21000 Dijon, France
| | - Gerrit Borchard
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Olivier Jordan
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
- Section of Pharmaceutical Sciences, University of Geneva, 1 Rue Michel Servet, 1211 Geneva, Switzerland
| | - Lucien Saviot
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| | - Lionel Maurizi
- Laboratoire Interdisciplinaire Carnot de Bourgogne (ICB), UMR 6303 CNRS - Université de Bourgogne Franche-Comté, BP 47870, Dijon Cedex F-21078, France
| |
Collapse
|
17
|
Wang X, Xia Z, Wang H, Wang D, Sun T, Hossain E, Pang X, Liu Y. Cell-membrane-coated nanoparticles for the fight against pathogenic bacteria, toxins, and inflammatory cytokines associated with sepsis. Theranostics 2023; 13:3224-3244. [PMID: 37351162 PMCID: PMC10283065 DOI: 10.7150/thno.81520] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 05/05/2023] [Indexed: 06/24/2023] Open
Abstract
Sepsis is the main cause of death in patients suffering from serious illness. Yet, there is still no specific treatment for sepsis, and management relies on infection control. Cell membrane-coated nanoparticles (MNPs) are a new class of biomimetic nanoparticles based on covering the surface of synthetic nanoparticles (NPs) with natural cell membranes. They retain the physicochemical properties of synthetic nanomaterials and inherit the specific properties of cellular membranes, showing excellent biological compatibility, enhanced biointerfacing capabilities, capacity to hold cellular functions and characteristics, immunological escape, and longer half-life when in circulation. Additionally, they prevent the decomposition of the encapsulated drug and active targeting. Over the years, studies on MNPs have multiplied and a breakthrough has been achieved for cancer therapy. Nevertheless, the use of "bio"-related approaches is still rare for treating sepsis. Herein, we discussed current state-of-the-art on MNPs for the treatment of bacterial sepsis by combining the pathophysiology and therapeutic benefits of sepsis, i.e., pathogenic bacteria, bacteria-producing toxins, and inflammatory cytokines produced in the dysregulated inflammatory response associated with sepsis.
Collapse
Affiliation(s)
- Xiaoyi Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Zongping Xia
- Department of Clinical Systems Biology Laboratories, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Huaili Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Dao Wang
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Tongwen Sun
- Department of Integrated ICU, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Eamran Hossain
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| | - Xin Pang
- School of Pharmacy, Henan University of Chinese Medicine, Zhengzhou 450046, China
| | - Yufeng Liu
- Henan Key Laboratory of Pediatric Hematology and Oncology Medicine, Department of Pediatrics, The First Affiliated Hospital of Zhengzhou University, Zhengzhou 450052, China
| |
Collapse
|
18
|
Han D, Wang F, Qiao Z, Wang B, Zhang Y, Jiang Q, Liu M, Zhuang Y, An Q, Bai Y, Shangguan J, Zhang J, Liang G, Shen D. Neutrophil membrane-camouflaged nanoparticles alleviate inflammation and promote angiogenesis in ischemic myocardial injury. Bioact Mater 2023; 23:369-382. [DOI: 10.1016/j.bioactmat.2022.11.016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Revised: 11/07/2022] [Accepted: 11/22/2022] [Indexed: 11/29/2022] Open
|
19
|
Chen X, Teng S, Li J, Qiao X, Zhao W, Xue Z, Shi X, Wang Y, Yang W, Wang T. Gadolinium (III)-Chelated Deformable Mesoporous Organosilica Nanoparticles as Magnetic Resonance Imaging Contrast Agent. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2211578. [PMID: 36880582 DOI: 10.1002/adma.202211578] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 02/21/2023] [Indexed: 05/19/2023]
Abstract
Magnetic resonance imaging (MRI) contrast agents, such as Magnevist (Gd-DTPA), are routinely used for detecting tumors at an early stage. However, the rapid clearance by the kidney of Gd-DTPA leads to short blood circulation time, which limits further improvement of the contrast between tumorous and normal tissue. Inspired by the deformability of red blood cells, which improves their blood circulation, this work fabricates a novel MRI contrast agent by incorporating Gd-DTPA into deformable mesoporous organosilica nanoparticles (D-MON). In vivo distribution shows that the novel contrast agent is able to depress rapid clearance by the liver and spleen, and the mean residence time is 20 h longer than Gd-DTPA. Tumor MRI studies demonstrated that the D-MON-based contrast agent is highly enriched in the tumor tissue and achieves prolonged high-contrast imaging. D-MON significantly improves the performance of clinical contrast agent Gd-DTPA, exhibiting good potential in clinical applications.
Collapse
Affiliation(s)
- Xiangyu Chen
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Shiyong Teng
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
| | - Jinming Li
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Xuezhi Qiao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Zhengjie Xue
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| | - Xudong Shi
- NHC Key Laboratory of Human Disease Comparative Medicine, Institute of Laboratory Animal Sciences, Peking Union Medicine College, Chinese Academy of Medical Sciences, Beijing, 100021, P. R. China
| | - Yuguang Wang
- Center of Digital Dentistry, Peking University School and Hospital of Stomatology NHC Research Center of Engineering and Technology for Computerized Dentistry, Beijing, 100081, P. R. China
| | - Wensheng Yang
- State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun, 130022, P. R. China
| | - Tie Wang
- Life and Health Intelligent Research Institute, Tianjin University of Technology, Tianjin, 300384, P. R. China
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences CAS, Beijing, 100049, P. R. China
| |
Collapse
|
20
|
Luo Z, Sun L, Bian F, Wang Y, Yu Y, Gu Z, Zhao Y. Erythrocyte-Inspired Functional Materials for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2206150. [PMID: 36581585 PMCID: PMC9951328 DOI: 10.1002/advs.202206150] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/03/2022] [Indexed: 05/30/2023]
Abstract
Erythrocytes are the most abundant cells in the blood. As the results of long-term natural selection, their specific biconcave discoid morphology and cellular composition are responsible for gaining excellent biological performance. Inspired by the intrinsic features of erythrocytes, various artificial biomaterials emerge and find broad prospects in biomedical applications such as therapeutic delivery, bioimaging, and tissue engineering. Here, a comprehensive review from the fabrication to the applications of erythrocyte-inspired functional materials is given. After summarizing the biomaterials mimicking the biological functions of erythrocytes, the synthesis strategies of particles with erythrocyte-inspired morphologies are presented. The emphasis is on practical biomedical applications of these bioinspired functional materials. The perspectives for the future possibilities of the advanced erythrocyte-inspired biomaterials are also discussed. It is hoped that the summary of existing studies can inspire researchers to develop novel biomaterials; thus, accelerating the progress of these biomaterials toward clinical biomedical applications.
Collapse
Affiliation(s)
- Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Lingyu Sun
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Feika Bian
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yu Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yunru Yu
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| | - Zhuxiao Gu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhou325001China
| |
Collapse
|
21
|
Chen H, Lei P, Ji H, Yang Q, Peng B, Ma J, Fang Y, Qu L, Li H, Wu W, Jin L, Sun D. Advances in Escherichia coli Nissle 1917 as a customizable drug delivery system for disease treatment and diagnosis strategies. Mater Today Bio 2023; 18:100543. [PMID: 36647536 PMCID: PMC9840185 DOI: 10.1016/j.mtbio.2023.100543] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/02/2023] [Accepted: 01/05/2023] [Indexed: 01/07/2023] Open
Abstract
With the in-depth and comprehensive study of bacteria and their related ecosystems in the human body, bacterial-based drug delivery system has become an emerging biomimetic platform that can retain the innate biological functions. Benefiting from its good biocompatibility and ideal targeting ability as a biological carrier, Escherichia coli Nissle 1917 (ECN) has been focused on the treatment strategies of inflammatory bowel disease and tumor. The advantage of a bacterial carrier is that it can express exogenous protein while also acting as a natural capsule by releasing drug slowly as a result of its own colonization impact. In order to survive in harsh environments such as the digestive tract and tumor microenvironment, ECN can be modified or genetically engineered to enhance its function and host adaptability. The adoption of ECN carries or expresses drugs which are essential for accurate diagnosis and treatment. This review briefly describes the properties of ECN, the relationship between ECN and inflammation and tumor, and the strategy of using surface modification and genetic engineering to modify ECN as a delivery carrier for disease treatment.
Collapse
Affiliation(s)
- Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Hao Ji
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, 325000, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Yimeng Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
| | - Linkai Qu
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- College of Life Sciences, Jilin Agricultural University, Changchun, 130118, China
| | - Hua Li
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Wei Wu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants, Bioengineering College of Chongqing University, Chongqing, 400044, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and WenZhouOuTai Medical Laboratory Co.,Ltd Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, 325035, China
- Wenzhou City and Kunlong Technology Co., Ltd., Joint Doctoral Innovation Station, Wenzhou Association for Science and Technology, Wenzhou, 325000, China
| |
Collapse
|
22
|
Gong Y, Liu H, Ke S, Zhuo L, Wang H. Latest advances in biomimetic nanomaterials for diagnosis and treatment of cardiovascular disease. Front Cardiovasc Med 2023; 9:1037741. [PMID: 36684578 PMCID: PMC9846151 DOI: 10.3389/fcvm.2022.1037741] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 12/09/2022] [Indexed: 01/05/2023] Open
Abstract
Cardiovascular disease remains one of the leading causes of death in China, with increasingly serious negative effects on people and society. Despite significant advances in preventing and treating cardiovascular diseases, such as atrial fibrillation/flutter and heart failure over the last few years, much more remains to be done. Therefore, developing innovative methods for identifying and managing cardiovascular disorders is critical. Nanomaterials provide multiple benefits in biomedicine, primarily better catalytic activity, drug loading, targeting, and imaging. Biomimetic materials and nanoparticles are specially combined to synthesize biomimetic nanoparticles that successfully reduce the nanoparticles' toxicity and immunogenicity while enhancing histocompatibility. Additionally, the biological targeting capability of nanoparticles facilitates the diagnosis and therapy of cardiovascular disease. Nowadays, nanomedicine still faces numerous challenges, which necessitates creating nanoparticles that are highly selective, toxic-free, and better clinically applicable. This study reviews the scientific accomplishments in this field over the past few years covering the classification, applications, and prospects of noble metal biomimetic nanozymes and biomimetic nanocarriers.
Collapse
Affiliation(s)
- Yuxuan Gong
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Huaying Liu
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Shen Ke
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China
| | - Li Zhuo
- Department of Nephrology, China-Japan Friendship Hospital, Beijing, China,Li Zhuo,
| | - Haibin Wang
- College of Life Sciences and Bioengineering, School of Physical Science and Engineering, Beijing Jiaotong University, Beijing, China,*Correspondence: Haibin Wang,
| |
Collapse
|
23
|
Rodrigues CF, Fernandes N, de Melo‐Diogo D, Correia IJ, Moreira AF. Cell-Derived Vesicles for Nanoparticles' Coating: Biomimetic Approaches for Enhanced Blood Circulation and Cancer Therapy. Adv Healthc Mater 2022; 11:e2201214. [PMID: 36121767 PMCID: PMC11481079 DOI: 10.1002/adhm.202201214] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 09/11/2022] [Indexed: 01/28/2023]
Abstract
Cancer nanomedicines are designed to encapsulate different therapeutic agents, prevent their premature release, and deliver them specifically to cancer cells, due to their ability to preferentially accumulate in tumor tissue. However, after intravenous administration, nanoparticles immediately interact with biological components that facilitate their recognition by the immune system, being rapidly removed from circulation. Reports show that less than 1% of the administered nanoparticles effectively reach the tumor site. This suboptimal pharmacokinetic profile is pointed out as one of the main factors for the nanoparticles' suboptimal therapeutic effectiveness and poor translation to the clinic. Therefore, an extended blood circulation time may be crucial to increase the nanoparticles' chances of being accumulated in the tumor and promote a site-specific delivery of therapeutic agents. For that purpose, the understanding of the forces that govern the nanoparticles' interaction with biological components and the impact of the physicochemical properties on the in vivo fate will allow the development of novel and more effective nanomedicines. Therefore, in this review, the nano-bio interactions are summarized. Moreover, the application of cell-derived vesicles for extending the blood circulation time and tumor accumulation is reviewed, focusing on the advantages and shortcomings of each cell source.
Collapse
Affiliation(s)
- Carolina F. Rodrigues
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Natanael Fernandes
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Duarte de Melo‐Diogo
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - Ilídio J. Correia
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
| | - André F. Moreira
- CICS‐UBI – Health Sciences Research CentreUniversidade da Beira InteriorAv. Infante D. HenriqueCovilhã6200‐506Portugal
- CPIRN‐UDI/IPG – Center of Potential and Innovation in Natural Resources, Research Unit for Inland DevelopmentInstituto Politécnico da GuardaAvenida Dr. Francisco de Sá CarneiroGuarda6300‐559Portugal
| |
Collapse
|
24
|
Wang H, Yao Q, Zhu W, Yang Y, Gao C, Han C, Chu X. Biomimetic Antidote Nanoparticles: a Novel Strategy for Chronic Heavy Metal Poisoning. AAPS PharmSciTech 2022; 24:12. [PMID: 36451071 DOI: 10.1208/s12249-022-02466-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/09/2022] [Indexed: 12/03/2022] Open
Abstract
Chronic lead poisoning has become a major factor in global public health. Chelation therapy is usually used to manage lead poisoning. Dimercaptosuccinic acid (DMSA) is a widely used heavy metal chelation agent. However, DMSA has the characteristics of poor water solubility, low oral bioavailability, and short half-life, which limit its clinical application. Herein, a long-cycle slow-release nanodrug delivery system was constructed. We successfully coated the red blood cell membrane (RBCM) onto the surface of dimercaptosuccinic acid polylactic acid glycolic acid copolymer (PLGA) nanoparticles (RBCM-DMSA-NPs), which have a long cycle and detoxification capabilities. The NPs were characterized and observed by particle size meters and transmission electron microscopy. The results showed that the particle size of RBCM-DMSA-NPs was approximately 146.66 ± 2.41 nm, and the zeta potential was - 15.34 ± 1.60 mV. The homogeneous spherical shape and clear core-shell structure of the bionic nanoparticles were observed by transmission electron microscopy. In the animal tests, the area under the administration time curve of RBCM-DMSA-NPs was 156.52 ± 2.63 (mg/L·h), which was 5.21-fold and 2.36-fold that of free DMSA and DMSA-NPs, respectively. Furthermore, the median survival of the RBCM-DMSA-NP treatment group (47 days) was 3.61-fold, 1.32-fold, and 1.16-fold for the lead poisoning group, free DMSA, and DMSA-NP groups, respectively. The RBCM-DMSA-NP treatment significantly extended the cycle time of the drug in the body and improved the survival rate of mice with chronic lead poisoning. Histological analyses showed that RBCM-DMSA-NPs did not cause significant systemic toxicity. These results indicated that RBCM-DMSA-NPs could be a potential candidate for long-term chronic lead exposure treatment.
Collapse
Affiliation(s)
- Hao Wang
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China.,State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Qing Yao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Wenquan Zhu
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China
| | - Yang Yang
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Chunsheng Gao
- State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Beijing, 100850, China
| | - Cuiyan Han
- College of Pharmacy, Qiqihar Medical University, 161006, Qiqihar, China.
| | - Xiaoyang Chu
- Department of Stomatology, Fifth Medical Center of Chinese, PLA General Hospital, Beijing, 10071, China.
| |
Collapse
|
25
|
Supramolecular erythrocytes-hitchhiking drug delivery system for specific therapy of acute pneumonia. J Control Release 2022; 350:777-786. [PMID: 35995300 DOI: 10.1016/j.jconrel.2022.08.029] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 07/26/2022] [Accepted: 08/14/2022] [Indexed: 12/15/2022]
Abstract
Acute pneumonia is an inflammatory syndrome often associated with severe multi-organ dysfunction and high mortality. The therapeutic efficacy of current anti-inflammatory medicines is greatly limited due to the short systemic circulation and poor specificity in the lungs. New drug delivery systems (DDS) are urgently needed to efficiently transport anti-inflammatory drugs to the lungs. Here, we report an inflammation-responsive supramolecular erythrocytes-hitchhiking DDS to extend systemic circulation of the nanomedicine via hitchhiking red blood cells (RBCs) and specifically "drop off" the payloads in the inflammatory lungs. β-cyclodextrin (β-CD) modified RBCs and ferrocene (Fc) modified liposomes (NP) were prepared and co-incubated to attach NP to RBCs via β-CD/Fc host-guest interactions. RBCs extended the systemic circulation of the attached NP, meanwhile, the NP may get detached from RBCs due to the high ROS level in the inflammatory lungs. In acute pneumonia mice, this strategy delivered curcumin specifically to the lungs and effectively alleviated the inflammatory syndrome.
Collapse
|
26
|
Chen X, Gao M, An S, Zhao L, Han W, Wan W, Chen J, Ma S, Cai W, Cao Y, Ding D, Yang YY, Cheng L, Zheng Y. Enhancing adoptive T cell therapy for solid tumor with cell-surface anchored immune checkpoint inhibitor nanogels. NANOMEDICINE : NANOTECHNOLOGY, BIOLOGY, AND MEDICINE 2022; 45:102591. [PMID: 35907618 DOI: 10.1016/j.nano.2022.102591] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Revised: 07/10/2022] [Accepted: 07/19/2022] [Indexed: 06/15/2023]
Abstract
The efficacy of Adoptive Cell Therapy (ACT) for solid tumor is still mediocre. This is mainly because tumor cells can hijack ACT T cells' immune checkpoint pathways to exert immunosuppression in the tumor microenvironment. Immune Checkpoint Inhibitors such as anti-PD-1 (aPD1) can counter the immunosuppression, but the synergizing effects of aPD1 to ACT was still not satisfactory. Here we demonstrate an approach to safely anchor aPD1-formed nanogels onto T cell surface via bio-orthogonal click chemistry before adoptive transfer. The spatial-temporal co-existence of aPD1 with ACT T cells and the responsive drug release significantly improved the treatment outcome of ACT in murine solid tumor model. The average tumor weight of the group treated by cell-surface anchored aPD1 was only 18 % of the group treated by equivalent dose of free aPD1 and T cells. The technology can be broadly applicable in ACTs employing natural or Chimeric Antigen Receptor (CAR) T cells.
Collapse
Affiliation(s)
- Xingye Chen
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Mengqian Gao
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Shan An
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Lei Zhao
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wenqing Han
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wenjun Wan
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Jin Chen
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Siqi Ma
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Wenhua Cai
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Yanni Cao
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Dawei Ding
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China
| | - Yi Yan Yang
- Agency for Science Technology and Research, Institute of Bioengineering and Bioimaging, 31 Biopolis Way, Singapore 138669, Singapore
| | - Lifang Cheng
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China.
| | - Yiran Zheng
- College of Pharmaceutical Sciences, Soochow University, 199 Ren Ai Road, Suzhou Industrial Park, Suzhou 215123, PR China.
| |
Collapse
|
27
|
Khalili L, Dehghan G, Sheibani N, Khataee A. Smart active-targeting of lipid-polymer hybrid nanoparticles for therapeutic applications: Recent advances and challenges. Int J Biol Macromol 2022; 213:166-194. [PMID: 35644315 DOI: 10.1016/j.ijbiomac.2022.05.156] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 05/18/2022] [Accepted: 05/22/2022] [Indexed: 12/24/2022]
Abstract
The advances in producing multifunctional lipid-polymer hybrid nanoparticles (LPHNs) by combining the biomimetic behavior of liposomes and architectural advantages of polymers have provided great opportunities for selective and efficient therapeutics delivery. The constructed LPHNs exhibit different therapeutic efficacies for special uses based on characteristics of different excipients. However, the high mechanical/structural stability of hybrid nano-systems could be viewed as both a negative property and a positive feature, where the concomitant release of drug molecules in a controllable manner is required. In addition, difficulties in scaling up the LPHNs production, due to involvement of several criteria, limit their application for biomedical fields, especially in monitoring, bioimaging, and drug delivery. To address these challenges bio-modifications have exhibited enormous potential to prepare reproducible LPHNs for site-specific therapeutics delivery, diagnostic and preventative applications. The ever-growing surface bio-functionality has provided continuous vitality to this biotechnology and has also posed desirable biosafety to nanoparticles (NPs). As a proof-of-concept, this manuscript provides a crucial review of coated lipid and polymer NPs displaying excellent surface functionality and architectural advantages. We also provide a description of structural classifications and production methodologies, as well as the biomedical possibilities and translational obstacles in the development of surface modified nanocarrier technology.
Collapse
Affiliation(s)
- Leila Khalili
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran
| | - Gholamreza Dehghan
- Department of Biology, Faculty of Natural Sciences, University of Tabriz, 51666-16471 Tabriz, Iran.
| | - Nader Sheibani
- Department of Ophthalmology and Visual Sciences, Cell and Regenerative Biology, and Biomedical Engineering, University of Wisconsin School of Medicine, Madison, WI, USA
| | - Alireza Khataee
- Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, 51666-16471 Tabriz, Iran; Department of Materials Science and Nanotechnology Engineering, Faculty of Engineering, Near East University, 99138 Nicosia, Mersin 10, Turkey.
| |
Collapse
|
28
|
Biomimetic approaches for targeting tumor inflammation. Semin Cancer Biol 2022; 86:555-567. [DOI: 10.1016/j.semcancer.2022.04.007] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 03/31/2022] [Accepted: 04/20/2022] [Indexed: 02/08/2023]
|
29
|
Tian S, Welte T, Mai J, Liu Y, Ramirez M, Shen H. Identification of an Aptamer With Binding Specificity to Tumor-Homing Myeloid-Derived Suppressor Cells. Front Pharmacol 2022; 12:752934. [PMID: 35126104 PMCID: PMC8814529 DOI: 10.3389/fphar.2021.752934] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 12/31/2021] [Indexed: 11/23/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) play a critical role in tumor growth and metastasis. Since they constantly infiltrate into the tumor tissue, these cells are considered as an ideal carrier for tumor-targeted drug delivery. We recently identified a DNA-based thioaptamer (T1) with tumor accumulating activity, demonstrated its potential on tumor targeting and drug delivery. In the current study, we have carried out structure-activity relationship analysis to further optimize the aptamer. In the process, we have identified a sequence-modified aptamer (M1) that shows an enhanced binding affinity to MDSCs over the parental T1 aptamer. In addition, M1 can penetrate into the tumor tissue more effectively by hitchhiking on MDSCs. Taken together, we have identified a new reagent for enhanced tumor-targeted drug delivery.
Collapse
Affiliation(s)
- Shaohui Tian
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States,Department of Gastrointestinal Surgery, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Thomas Welte
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Junhua Mai
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Yongbin Liu
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Maricela Ramirez
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States
| | - Haifa Shen
- Department of Nanomedicine, Houston Methodist Academic Institute, Houston, TX, United States,Weill Cornell Medical College, White Plains, NY, United States,*Correspondence: Haifa Shen,
| |
Collapse
|
30
|
Souri M, Soltani M, Moradi Kashkooli F, Kiani Shahvandi M. Engineered strategies to enhance tumor penetration of drug-loaded nanoparticles. J Control Release 2021; 341:227-246. [PMID: 34822909 DOI: 10.1016/j.jconrel.2021.11.024] [Citation(s) in RCA: 79] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/15/2021] [Accepted: 11/16/2021] [Indexed: 02/06/2023]
Abstract
Nanocarriers have been widely employed in preclinical studies and clinical trials for the delivery of anticancer drugs. The most important causes of failure in clinical translation of nanocarriers is their inefficient accumulation and penetration which arises from special characteristics of tumor microenvironment such as insufficient blood supply, dense extracellular matrix, and elevated interstitial fluid pressure. Various strategies such as engineering extracellular matrix, optimizing the physicochemical properties of nanocarriers have been proposed to increase the depth of tumor penetration; however, these strategies have not been very successful so far. Novel strategies such as transformable nanocarriers, transcellular transport of peptide-modified nanocarriers, and bio-inspired carriers have recently been emerged as an advanced generation of drug carriers. In this study, the latest developments of nanocarrier-based drug delivery to solid tumor are presented with their possible limitations. Then, the prospects of advanced drug delivery systems are discussed in detail.
Collapse
Affiliation(s)
- Mohammad Souri
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran; Department of Electrical and Computer Engineering, University of Waterloo, ON, Canada; Centre for Biotechnology and Bioengineering (CBB), University of Waterloo, Waterloo, ON, Canada; Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| | | | | |
Collapse
|
31
|
Nanocarriers as a Tool for the Treatment of Colorectal Cancer. Pharmaceutics 2021; 13:pharmaceutics13081321. [PMID: 34452282 PMCID: PMC8399070 DOI: 10.3390/pharmaceutics13081321] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2021] [Revised: 07/13/2021] [Accepted: 07/20/2021] [Indexed: 12/13/2022] Open
Abstract
Nanotechnology is a promising tool for the treatment of cancer. In the past decades, major steps have been made to bring nanotechnology into the clinic in the form of nanoparticle-based drug delivery systems. The great hope of drug delivery systems is to reduce the side effects of chemotherapeutics while simultaneously increasing the efficiency of the therapy. An increased treatment efficiency would greatly benefit the quality of life as well as the life expectancy of cancer patients. However, besides its many advantages, nanomedicines have to face several challenges and hurdles before they can be used for the effective treatment of tumors. Here, we give an overview of the hallmarks of cancer, especially colorectal cancer, and discuss biological barriers as well as how drug delivery systems can be utilized for the effective treatment of tumors and metastases.
Collapse
|