1
|
Ma L, Xie L, Wu Q, Jin L, Li J, Tang L, Zhang L, Chen L, Qiu Z. Targeting the S100A9/P38 MAPK/HSPB1 axis as a novel approach for aortic dissection therapy. Int Immunopharmacol 2025; 149:114225. [PMID: 39904041 DOI: 10.1016/j.intimp.2025.114225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2024] [Revised: 01/02/2025] [Accepted: 02/01/2025] [Indexed: 02/06/2025]
Abstract
INTRODUCTION Aortic dissection (AD) is caused by inflammatory responses and extracellular matrix (ECM) degradation processes, in which S100A9, a proinflammatory protein, may play a role. This study explored the role S100A9/P38 MAPK/HSPB1 signaling axis in AD pathogenesis and the therapeutic potential of targeting this pathway. METHODS S100A9 expression in the aortic tissues of patients with AD/healthy controls were analyzed using bioinformatics, ELISA, qPCR, western blotting, and immunohistochemistry. In an AD mouse model induced by β-aminopropionitrile and angiotensin II (Ang-II), S100A9 expression was inhibited using specific inhibitors to assess its relationship with AD, and proteomics were performed to explore the pathways related to S100A9 expression. Human aortic vascular smooth muscle cells (HVSMC) were treated with Ang-II, S100A9 knockdown, P38 MAPK inhibitors, and HSPB1 knockdown, and experimental methods were used to assess changes in inflammatory cytokines, ECM remodeling, cell proliferation, and apoptosis. Rescue experiments validated the role of the S100A9/P38 MAPK/HSPB1 axis. RESULTS S100A9 was significantly upregulated in patients with AD, while levels of inflammatory cytokines and matrix metalloproteinases (MMPs) were elevated. S100a9 inhibition reduced the incidence of AD, improved survival, and stabilized the aortic structure in mice, with reduced collagen deposition and SMC apoptosis in vitro. S100A9 knockdown reduces Ang-II-induced HVSMC proliferation, apoptosis resistance, and ECM degradation. Mechanistic studies revealed that the S100A9/P38 MAPK/HSPB1 axis regulates inflammatory cytokine and MMPs release. CONCLUSION S100A9 regulates inflammation and ECM degradation through the P38 MAPK/HSPB1 axis, influencing HVSMC proliferation and apoptosis and promoting AD development. This pathway may be a promising therapeutic target for AD treatment.
Collapse
Affiliation(s)
- Likang Ma
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou Fujian China
| | - Linfeng Xie
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou Fujian China
| | - Qingsong Wu
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou Fujian China
| | - Lei Jin
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou Fujian China
| | - Jiakang Li
- The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences Fujian Medical University Fuzhou China
| | - Lele Tang
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou Fujian China
| | - Li Zhang
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; The Key Laboratory of Fujian Province Universities on Ion Channel and Signal Transduction in Cardiovascular Diseases, Department of Physiology and Pathophysiology, The School of Basic Medical Sciences Fujian Medical University Fuzhou China.
| | - Liangwan Chen
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou Fujian China.
| | - Zhihuang Qiu
- Department of Cardiovascular Surgery Fujian Medical University Union Hospital Fuzhou Fujian China; Key Laboratory of Cardio-Thoracic Surgery (Fujian Medical University) Fujian Province University Fuzhou Fujian China.
| |
Collapse
|
2
|
Cui D, Li M, Liu M, Shen M, Liu Y, Wang K, Tang H, Lu X, Li S, Yao J, Zhang G. Synergistic effect and mechanism of monoacylglycerol lipase inhibitor and Icaritin in the treatment of ulcerative colitis. Int Immunopharmacol 2024; 142:113155. [PMID: 39276456 DOI: 10.1016/j.intimp.2024.113155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Revised: 08/29/2024] [Accepted: 09/09/2024] [Indexed: 09/17/2024]
Abstract
Ulcerative colitis (UC) is a chronic, relapsing nonspecific intestinal inflammatory disease. It is difficult for a single drug to treat UC effectively and maintain long-term efficacy. There is an urgent need to find new drugs and treatment strategies. MAGL11 is a new kind of single acylglycerol lipase (MAGL) inhibitor. Icaritin (Y003) is the major metabolite of icariin in vivo. Several studies have confirmed the role of MAGL inhibitors and icariin in anti-inflammatory and regulation of intestinal stability. Therefore, this study adopted a new strategy of combining MAGL inhibitor with Icaritin to further explore the role and mechanism of drugs in the treatment of UC. Enzyme-linked immunosorbent assay (ELISA), hematoxylin-eosin staining (HE), immunohistochemical (IHC) and Western blot were used to detect the synergistic protective effects of MAGL11 and Y003 on intestinal pathological injury, intestinal mucosal permeability and inflammation in UC mice. 16S rDNA sequencing was used to detect the synergistic effect of MAGL11 and Y003 on gut microbiota. The effects of MAGL11 and Y003 combined therapy on serum and fecal metabolism of UC mice were analyzed by untargeted metabolomics. Proteomics method was applied to investigate the molecular mechanisms underlying MAGL11 and Y003 synergy in the treatment of UC. The results showed that MAGL11 and Y003 could synergistically improve the clinical symptoms, reduce intestinal inflammation and pathological damage, and improve intestinal mucosal permeability in UC mice. The mechanism study found that MAGL11 and Y003 could synergistically inhibit Toll-like receptors 4 (TLR4) / Myeloid differentiation primary response gene (Myd88)/Nuclear factor kappa-B (NF-κB) pathway and further regulate gut microbiota imbalance and metabolic disorders to treat UC.
Collapse
Affiliation(s)
- Deyu Cui
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Meng Li
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Mingfei Liu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China
| | - Mengmeng Shen
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China
| | - Yifan Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China
| | - Kun Wang
- School of Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan 250355, China
| | - Hongguang Tang
- School of Pharmacy, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xiaoyan Lu
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China
| | - Shirong Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, China.
| | - Jingchun Yao
- State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China.
| | - Guimin Zhang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, China; State Key Laboratory of Integration and Innovation of Classic Formula and Modern Chinese Medicine, Lunan Pharmaceutical Group Co. Ltd., Linyi 276005, China.
| |
Collapse
|
3
|
Chen Y, Liang CL, Liu H, Chen H, He Y, Lin J, He Z, Qiu F, Yang B, Lu C, Dai Z. Percutaneous Delivery of Hederacoside C-Loaded Nanoliposome Gel Alleviates Psoriasiform Skin Inflammation through the CCL17/Treg Axis. ACS APPLIED MATERIALS & INTERFACES 2024; 16:48969-48981. [PMID: 39233638 DOI: 10.1021/acsami.4c06720] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/06/2024]
Abstract
Psoriasis is a chronic, recurrent, and inflammatory skin disease. Topical agents, which can avoid the adverse effects of systemic treatment, are the first-choice therapy for patients with mild-to-moderate psoriasis. Hederacoside C (HSC) with anti-inflammatory properties has been used to treat some inflammatory diseases. We speculated that HSC might also be effective for psoriasis treatment. However, topical application of HSC for psoriasis treatment is challenging because of its low water solubility and poor skin permeability. Therefore, it is important to effectively deliver HSC percutaneously using certain biomaterials. Here we constructed a hydroxypropyl-β-cyclodextrin-coated liposome gel formulation for the loading and percutaneously delivering of HSC, referred to as HSC-Lipo@gel. The characterization, stability, release properties, and mechanical or transdermal features of the HSC-Lipo@gel were evaluated. Its therapeutic potential was also demonstrated using mouse models of IMQ-induced psoriasis. We found that HSC-Lipo@gel effectively improved the skin permeability of HSC with the property of good stability and sustained release. Importantly, HSC-Lipo@gel showed higher efficacy than HSC@gel without liposomes in alleviating psoriatic skin lesions. It attenuated epidermal hyperplasia and suppressed expression of IL-17A, TNF-α, IL-6, and IL-23 in lesional skin. Interestingly, HSC-Lipo@gel reduced the expression of CC chemokine ligand 17 (CCL17), but not CCL22, in the skin. Especially, HSC-Lipo@gel inhibited CCL17 expression by skin dendritic cells while increasing regulatory T cells (Tregs) in both skin and draining lymph nodes of psoriatic mice. Administration of CCL17 resulted in severe skin lesions and reduced CD4+FoxP3+ Tregs in psoriatic mice previously treated with HSC-Lipo@gel. Finally, HSC or HSC-Lipo also suppressed the CCL17 production by dendritic cells in vitro. Therefore, HSC-Lipo@gel alleviated psoriasiform skin inflammation by increasing cutaneous Tregs via downregulation of the expression of CCL17, but not CCL22. Thus, HSC-Lipo@gel may be a stable, highly permeable, and effective system for topical treatment of psoriasis.
Collapse
Affiliation(s)
- Yuchao Chen
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, P. R. China
| | - Chun-Ling Liang
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, P. R. China
| | - Huazhen Liu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, P. R. China
| | - Haiming Chen
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, P. R. China
| | - Yuming He
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
| | - Jingru Lin
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
| | - Zenghua He
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
| | - Feifei Qiu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, P. R. China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences, University of Leicester, Leicester LE1 9HN, U.K
| | - Chuanjian Lu
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, P. R. China
| | - Zhenhua Dai
- Joint Immunology Program, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong 510006, P. R. China
- Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong 510006, P. R. China
| |
Collapse
|
4
|
Zhang MQ, Huang LH, Gong MC, Hong WM, Xie R, Wang J, Zhou LL, Chen ZH. Dual targeting total saponins of Pulsatilla of natural polymer crosslinked gel beads with multiple therapeutic effects for ulcerative colitis. Eur J Pharm Biopharm 2024; 199:114309. [PMID: 38704102 DOI: 10.1016/j.ejpb.2024.114309] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 04/18/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
Oral colon targeted drug delivery system (OCTDDS) is desirable for the treatment of ulcerative colitis (UC). In this study, we designed a partially oxidized sodium alginate-chitosan crosslinked microsphere for UC treatment. Dissipative particle dynamics (DPD) was used to study the formation and enzyme response of gel beads from a molecular perspective. The formed gel beads have a narrow particle size distribution, a compact structure, low cytotoxicity and great colon targeting in vitro and in vivo. Animal experiments demonstrated that gel beads promoted colonic epithelial barrier integrity, decreased the level of pro-inflammatory factors, accelerated the recovery of intestinal microbial homeostasis in UC rats and restored the intestinal metabolic disorders. In conclusion, our gel bead is a promising approach for the treatment of UC and significant for the researches on the pathogenesis and treatment mechanism of UC.
Collapse
Affiliation(s)
- Min-Quan Zhang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Liang-Hui Huang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Min-Cheng Gong
- Jiangxi Pharmaceutical School, Nanchang 330001, PR China
| | - Wei-Man Hong
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Rong Xie
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Jin Wang
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China
| | - Liang-Liang Zhou
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China; Engineering Center of Jiangxi University for Fine Chemicals, School of Pharmacy, Jiangxi Science & Technology Normal University, Nanchang 330013, PR China.
| | - Zhen-Hua Chen
- Jiangxi Province Key Laboratory of Drug Design and Evaluation, School of Pharmacy, Jiangxi Science and Technology Normal University, Nanchang 330013, PR China.
| |
Collapse
|
5
|
Lv L, Li Q, Wang K, Zhao J, Deng K, Zhang R, Chen Z, Khan IA, Gui C, Feng S, Yang S, Liu Y, Xu Q. Discovery of a New Anti-Inflammatory Agent from Anemoside B4 Derivatives and Its Therapeutic Effect on Colitis by Targeting Pyruvate Carboxylase. J Med Chem 2024; 67:7385-7405. [PMID: 38687956 DOI: 10.1021/acs.jmedchem.4c00222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Anemoside B4 (AB4), a triterpenoidal saponin from Pulsatilla chinensis, shows significant anti-inflammatory activity, and may be used for treating inflammatory bowel disease (IBD). Nevertheless, its application is limited due to its high molecular weight and pronounced water solubility. To discover new effective agents for treating IBD, we synthesized 28 AB4 derivatives and evaluated their cytotoxic and anti-inflammatory activities in vitro. Among them, A3-6 exhibited significantly superior anti-inflammatory activity compared to AB4. It showed a significant improvement in the symptoms of DSS-induced colitis in mice, with a notably lower oral effective dose compared to AB4. Furthermore, we discovered that A3-6 bound with pyruvate carboxylase (PC), then inhibited PC activity, reprogramming macrophage function, and alleviated colitis. These findings indicate that A3-6 is a promising therapeutic candidate for colitis, and PC may be a potential new target for treating colitis.
Collapse
Affiliation(s)
- Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiurong Li
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Jianping Zhao
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Kejun Deng
- School of Life Science and Technology, Center for Informational Biology, University of Electronic Science and Technology of China, Chengdu, Sichuan 610054, China
| | - Ran Zhang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Zhong Chen
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Ikhlas A Khan
- National Center for Natural Products Research, School of Pharmacy, University of Mississippi, University, Mississippi 38677, United States
| | - Chunshan Gui
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suxiang Feng
- Academy of Chinese Medicine Sciences, Henan University of Chinese Medicine, Zhengzhou, Henan 450018, China
| | - Shilin Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| |
Collapse
|
6
|
Wu H, Li C, Wang Y, Zhang M, Wu D, Shao J, Wang T, Wang C. Transcriptomics Reveals Effect of Pulsatilla Decoction Butanol Extract in Alleviating Vulvovaginal Candidiasis by Inhibiting Neutrophil Chemotaxis and Activation via TLR4 Signaling. Pharmaceuticals (Basel) 2024; 17:594. [PMID: 38794163 PMCID: PMC11124330 DOI: 10.3390/ph17050594] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/26/2024] Open
Abstract
The Pulsatilla decoction is a well-known herbal remedy used in clinical settings for treating vulvovaginal candidiasis (VVC). However, the specific mechanism that makes it effective is still unclear. Recent studies have shown that in cases of VVC, neutrophils recruited to the vagina, influenced by heparan sulfate (HS), do not successfully engulf Candida albicans (C. albicans). Instead, they release many inflammatory factors that cause damage to the vaginal mucosa. This study aims to understand the molecular mechanism by which the n-butanol extract of Pulsatilla decoction (BEPD) treats VVC through transcriptomics. High-performance liquid chromatography was used to identify the primary active components of BEPD. A VVC mouse model was induced using an estrogen-dependent method and the mice were treated daily with BEPD (20 mg/kg, 40 mg/kg, and 80 mg/kg) for seven days. The vaginal lavage fluid of the mice was analyzed for various experimental indices, including fungal morphology, fungal burden, degree of neutrophil infiltration, and cytokines. Various assessments were then performed on mouse vaginal tissues, including pathological assessment, immunohistochemistry, immunofluorescence, Western blot (WB), quantitative real-time PCR, and transcriptome assays. Our results showed that BEPD reduced vaginal redness and swelling, decreased white discharge, inhibited C. albicans hyphae formation, reduced neutrophil infiltration and fungal burden, and attenuated vaginal tissue damage compared with the VVC model group. The high-dose BEPD group even restored the damaged vaginal tissue to normal levels. The medium- and high-dose groups of BEPD also significantly reduced the levels of IL-1β, IL-6, TNF-α, and LDH. Additionally, transcriptomic results showed that BEPD regulated several chemokine (CXCL1, CXCL3, and CXCL5) and S100 alarmin (S100A8 and S100A9) genes, suggesting that BEPD may treat VVC by affecting chemokine- and alarmin-mediated neutrophil chemotaxis. Finally, we verified that BEPD protects the vaginal mucosa of VVC mice by inhibiting neutrophil recruitment and chemotaxis in an animal model of VVC via the TLR4/MyD88/NF-κB pathway. This study provides further evidence to elucidate the mechanism of BEPD treatment of VVC.
Collapse
Affiliation(s)
- Hui Wu
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
| | - Can Li
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
| | - Yemei Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Mengxiang Zhang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Daqiang Wu
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Jing Shao
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Tianming Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| | - Changzhong Wang
- School of Integrated Traditional and Western Medicine, Anhui University of Chinese Medicine, Hefei 230012, China; (H.W.); (C.L.); (Y.W.); (M.Z.); (D.W.); (J.S.); (T.W.)
- Institute of Integrated Traditional Chinese and Western Medicine, Anhui Academy of Chinese Medicine, Hefei 230012, China
| |
Collapse
|
7
|
Liu N, Niu M, Luo S, Lv L, Quan X, Wang C, Meng Z, Yuan J, Xu Q, Liu Y. Rosamultin ameliorates radiation injury via promoting DNA injury repair and suppressing oxidative stress in vitro and in vivo. Chem Biol Interact 2024; 393:110938. [PMID: 38484825 DOI: 10.1016/j.cbi.2024.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2023] [Revised: 02/19/2024] [Accepted: 02/29/2024] [Indexed: 03/23/2024]
Abstract
Radiotherapy remains the preferred treatment option for cancer patients with the advantages of broad indications and significant therapeutic effects. However, ionizing radiation can also damage normal tissues. Unfortunately, there are few anti-radiation damage drugs available on the market for radiotherapy patients. Our previous study showed that rosamultin had antioxidant and hepatoprotective activities. However, its anti-radiation activity has not been evaluated. Irradiating small intestinal epithelial cells and mice with whole-body X-rays radiation were used to evaluate the in vitro and in vivo effects of rosamultin, respectively. Intragastric administration of rosamultin improved survival, limited leukocyte depletion, and reduced damage to the spleen and small intestine in irradiated mice. Rosamultin reversed the downregulation of the apoptotic protein BCL-2 and the upregulation of BAX in irradiated mouse small intestine tissue and in irradiation-induced small intestinal epithelial cells. DNA-PKcs antagonists reversed the promoting DNA repair effects of rosamulin. Detailed mechanistic studies revealed that rosamultin promoted Translin-associated protein X (TRAX) into the nucleus. Knockdown of TRAX reduced the protective effect of rosamultin against DNA damage. In addition, rosamultin reduced irradiation-induced oxidative stress through promoting Nrf2/HO-1 signaling pathway. To sum up, in vitro and in vivo experiments using genetic knockdown and pharmacological activation demonstrated that rosamultin exerts radioprotection via the TRAX/NHEJ and Nrf2/HO pathways.
Collapse
Affiliation(s)
- Ning Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Mengxin Niu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Saiyan Luo
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Lijuan Lv
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Xiaoxiao Quan
- Scientific Experimental Center of Guangxi University of Chinese Medicine, Nanning, China
| | - Chang Wang
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Zhiyun Meng
- Beijing Institute of Radiation Medicine, 100850, China
| | - Jingquan Yuan
- State Key Laboratory of Radiation Medicine and Protection, School of Radiation Medicine and Protection, Medical College of Soochow University, Soochow University, Suzhou, Jiangsu, 215123, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu, 215123, China; Institute of Chinese Medicine Innovation and Translation, Soochow University, Suzhou, Jiangsu, 215123, China.
| |
Collapse
|
8
|
Bai J, Wang Y, Li F, Wu Y, Chen J, Li M, Wang X, Lv B. Research advancements and perspectives of inflammatory bowel disease: A comprehensive review. Sci Prog 2024; 107:368504241253709. [PMID: 38778725 PMCID: PMC11113063 DOI: 10.1177/00368504241253709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/25/2024]
Abstract
Inflammatory bowel disease (IBD) is a chronic inflammatory disease with increasing incidence, such as Crohn's disease and ulcerative colitis. The accurate etiology and pathogenesis of IBD remain unclear, and it is generally believed that it is related to genetic susceptibility, gut microbiota, environmental factors, immunological abnormalities, and potentially other factors. Currently, the mainstream therapeutic drugs are amino salicylic acid agents, corticosteroids, immunomodulators, and biological agents, but the remission rates do not surpass 30-60% of patients in a real-life setting. As a consequence, there are many studies focusing on emerging drugs and bioactive ingredients that have higher efficacy and long-term safety for achieving complete deep healing. This article begins with a review of the latest, systematic, and credible summaries of the pathogenesis of IBD. In addition, we provide a summary of the current treatments and drugs for IBD. Finally, we focus on the therapeutic effects of emerging drugs such as microRNAs and lncRNAs, nanoparticles-mediated drugs and natural products on IBD and their mechanisms of action.
Collapse
Affiliation(s)
- Junyi Bai
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Ying Wang
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Fuhao Li
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yueyao Wu
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Jun Chen
- The First Affiliated Hospital of Zhejiang Chinese Medical University (Zhejiang Provincial Hospital of Chinese Medicine), Hangzhou, Zhejiang, China
| | - Meng Li
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xi Wang
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| | - Bin Lv
- Department of Gastroenterology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, China
- Key Laboratory of Digestive Pathophysiology of Zhejiang Province, The First Affiliated Hospital of Zhejiang Chinese Medical University, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
9
|
Qiao Z, Liao M, Xiao M, Luo S, Wang K, Niu M, Jiang H, Sun S, Xu G, Xu N, Xu Q, Liu Y. Ephrin B3 exacerbates colitis and colitis-associated colorectal cancer. Biochem Pharmacol 2024; 220:116004. [PMID: 38142837 DOI: 10.1016/j.bcp.2023.116004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 12/17/2023] [Accepted: 12/19/2023] [Indexed: 12/26/2023]
Abstract
Ephrin B3, a member of Eph/ephrin family, contributes to embryogenesis and carcinogenesis, but few studies have suggested whether this ligand has regulatory effect on colitis. This study was to determine whether ephrin B3 played a role in colitis and colonic carcinogenesis. Dextran sodium sulfate (DSS)-induced colitis and azoxymethane (AOM)/DSS-induced colitis-associated carcinogenesis model was established in Efnb3-deficient (Efnb3-/-) mice. Label-free quantitative proteomics were performed to identify the Efnb3-regulated proteins. Our results showed that Efnb3 knock out reduced the symptoms of DSS-induced colitis, such as disease activity index (DAI), inflammatory factors release, and dysfunction of the intestinal barrier. Quantitative proteomics revealed that Efnb3 regulated 95 proteins which clustered in the platelet degranulation, response to elevated platelet cytosolic Ca2+, MAPK signaling for integrins such as ITGB4. Furthermore, ephrin B3 inactived ITGB4/AKT signal pathway and then promoted epithelial barrier dysfunction. Simultaneously, ephrin B3 promoted Gremlin-1/NF-κB signal pathway and thereby increased inflammatory factors release. In addition, the higher level of Efnb3 in colon cancer patients is correlated with worse survival. Efnb3-/- mice exhibited susceptibility to AOM/DSS-induced colorectal cancer. Our finding discovered that Efnb3 played an important role in the development of colitis and colitis-associated colorectal cancer. Efnb3 deficiency improved the intestinal barrier by ITGB4 and suppressed inflammation via Gremlin-1/NF-κB signal pathway, which may provide a novel therapeutic strategy for the treatment of colitis and colitis-associated colorectal cancer.
Collapse
Affiliation(s)
- Zhen Qiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Min Liao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mingyue Xiao
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Saiyan Luo
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Kexin Wang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Mengxin Niu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Honglv Jiang
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Suya Sun
- Department of Neurology, Institute of Neurology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China; Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Guoqiang Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - NanJie Xu
- Department of Anatomy, Histology and Embryology, Neuroscience Division, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Qiongming Xu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China
| | - Yanli Liu
- Department of Pharmacognosy, College of Pharmaceutical Sciences, Soochow University, Suzhou, Jiangsu 215123, China.
| |
Collapse
|
10
|
Xiao M, Luo R, Liang Q, Jiang H, Liu Y, Xu G, Gao H, Zheng Y, Xu Q, Yang S. Anemoside B4 inhibits SARS-CoV-2 replication in vitro and in vivo. CHINESE HERBAL MEDICINES 2024; 16:106-112. [PMID: 38375049 PMCID: PMC10874757 DOI: 10.1016/j.chmed.2023.09.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 08/05/2023] [Accepted: 09/23/2023] [Indexed: 02/21/2024] Open
Abstract
Objective Anemoside B4 (AB4), the most abundant triterpenoidal saponin isolated from Pulsatilla chinensis, inhibited influenza virus FM1 or Klebsiella pneumoniae-induced pneumonia. However, the anti-SARS-CoV-2 effect of AB4 has not been unraveled. Therefore, this study aimed to determine the antiviral activity and potential mechanism of AB4 in inhibiting human coronavirus SARS-CoV-2 in vivo and in vitro. Methods The cytotoxicity of AB4 was evaluated using the Cell Counting Kit-8 (CCK8) assay. SARS-CoV-2 infected HEK293T, HPAEpiC, and Vero E6 cells were used for in vitro assays. The antiviral effect of AB4 in vivo was evaluated by SARS-CoV-2-infected hACE2-IRES-luc transgenic mouse model. Furthermore, label-free quantitative proteomics and bioinformatic analysis were performed to explore the potential antiviral mechanism of action of AB4. Type I IFN signaling-associated proteins were assessed using Western blotting or immumohistochemical staining. Results The data showed that AB4 reduced the propagation of SARS-CoV-2 along with the decreased Nucleocapsid protein (N), Spike protein (S), and 3C-like protease (3CLpro) in HEK293T cells. In vivo antiviral activity data revealed that AB4 inhibited viral replication and relieved pneumonia in a SARS-CoV-2 infected mouse model. We further disclosed that the antiviral activity of AB4 was associated with the enhanced interferon (IFN)-β response via the activation of retinoic acid-inducible gene I (RIG-1) like receptor (RLP) pathways. Additionally, label-free quantitative proteomic analyses discovered that 17 proteins were significantly altered by AB4 in the SARS-CoV-2 coronavirus infections cells. These proteins mainly clustered in RNA metabolism. Conclusion Our results indicated that AB4 inhibited SARS-CoV-2 replication through the RLR pathways and moderated the RNA metabolism, suggesting that it would be a potential lead compound for the development of anti-SARS-CoV-2 drugs.
Collapse
Affiliation(s)
- Mingyue Xiao
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Ronghua Luo
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qinghua Liang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Honglv Jiang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Yanli Liu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Guoqiang Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
- Jiangsu Key Laboratory of Neuropsychiatric Diseases and Jiangsu Key Laboratory of Preventive and Translational Medicine for Geriatric Diseases, Soochow University, Suzhou 215123, China
| | - Hongwei Gao
- College of Pharmacy, Guangxi University of Chinese Medicine, Nanning 530000, China
| | - Yongtang Zheng
- Key Laboratory of Animal Models and Human Disease Mechanisms of Chinese Academy of Sciences, KIZ-CUHK Joint Laboratory of Bioresources and Molecular Research in Common Diseases, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, China
| | - Qiongming Xu
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| | - Shilin Yang
- College of Pharmaceutical Sciences, Soochow University, Suzhou 215123, China
| |
Collapse
|
11
|
Weng X, Luo X, Dai X, Lv Y, Zhang S, Bai X, Bao X, Wang Y, Zhao C, Zeng M, Hu S, Li J, Jia H, Yu B. Apigenin inhibits macrophage pyroptosis through regulation of oxidative stress and the NF-κB pathway and ameliorates atherosclerosis. Phytother Res 2023; 37:5300-5314. [PMID: 37526050 DOI: 10.1002/ptr.7962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Revised: 06/21/2023] [Accepted: 07/02/2023] [Indexed: 08/02/2023]
Abstract
Pyroptosis plays an important role in inflammatory diseases such as viral hepatitis and atherosclerosis. Apigenin exhibits various bioactivities, particularly anti-inflammation, but its effect on pyroptosis remains unclear. The aim of this study is to investigate the effect of apigenin on pyroptosis and explore its potential against inflammatory diseases. THP-1 macrophages treated by lipopolysaccharides/adenosine 5'-triphosphate were used as the in vitro pyroptosis model. Western blot was used to detect the expression of NLRP3 inflammasome components and key regulators. Immunofluorescence was used to observe ROS production and intracellular location of p65. The potential of apigenin against inflammatory diseases was evaluated using atherosclerotic mice. Plaque progression was observed by pathological staining. Immunofluorescence was used to observe the expression of NLRP3 inflammasome components in plaques. The results showed that apigenin inhibited NLRP3 inflammasome activation. Apigenin reduced ROS overproduction and inhibited p65 nuclear translocation. Additionally, apigenin decreased the expression of NLRP3 inflammasome components in the plaque. Plaque progression was inhibited by apigenin. In conclusion, apigenin exhibited a preventive effect on macrophage pyroptosis by reducing oxidative stress and inhibiting the NF-κB pathway. Apigenin may alleviate atherosclerosis at least partially by inhibiting macrophage pyroptosis. These findings suggest apigenin to be a promising therapeutic agent for inflammatory diseases.
Collapse
Affiliation(s)
- Xiuzhu Weng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xing Luo
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xinyu Dai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ying Lv
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Shan Zhang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xiaoxuan Bai
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Xiaoyi Bao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ying Wang
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Chen Zhao
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ming Zeng
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Sining Hu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Ji Li
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Haibo Jia
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| | - Bo Yu
- Department of Cardiology, The Second Affiliated Hospital of Harbin Medical University, Harbin, People's Republic of China
- National Key Laboratory of Frigid Zone Cardiovascular Diseases, Harbin, People's Republic of China
| |
Collapse
|
12
|
Hong Z, Shi C, Hu X, Chen J, Li T, Zhang L, Bai Y, Dai J, Sheng J, Xie J, Tian Y. Walnut Protein Peptides Ameliorate DSS-Induced Ulcerative Colitis Damage in Mice: An in Silico Analysis and in Vivo Investigation. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2023; 71:15604-15619. [PMID: 37815395 DOI: 10.1021/acs.jafc.3c04220] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/11/2023]
Abstract
Walnut (Juglans regia L.) is a food with food-medicine homology, whose derived protein peptides have been shown to have anti-inflammatory activity in vitro. However, the effects and mechanisms of walnut protein peptides on ulcerative colitis (UC) in vivo have not been systematically and thoroughly investigated. In this study, we applied virtual screening and network pharmacology screening of bioactive peptides to obtain three novel WPPs (SHTLP, HYNLN, and LGTYP) that may alleviate UC through TLR4-MAPK signaling. In vivo studies have shown that WPPs improve intestinal mucosal barrier dysfunction and reduce inflammation by inhibiting activation of the TLR4-MAPK pathway. In addition, WPPs restore intestinal microbial homeostasis by reducing harmful bacteria (Helicobacter and Bacteroides) and increasing the relative abundance of beneficial bacteria (Candidatus_Saccharimonas). Our study showed that the WPPs obtained by virtual screening were effective in ameliorating colitis, which has important implications for future screening of bioactive peptides from medicinal food homologues as drugs or dietary supplements.
Collapse
Affiliation(s)
- Zishan Hong
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Chongying Shi
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Xia Hu
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jinlian Chen
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Tingting Li
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Li Zhang
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Yuying Bai
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Engineering Research Center for Edible and Medicinal Homologous Functional Food, Yunnan Agricultural University, Kunming 650201, China
| | - Jingjing Dai
- School of Tea and Coffee, Puer University, Puer 665000, China
| | - Jun Sheng
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Key Laboratory of Pu-er Tea Science, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
| | - Jing Xie
- College of Food Science and Technology, Yunnan Agricultural University, Kunming 650201, China
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
| | - Yang Tian
- Engineering Research Center of Development and Utilization of Food and Drug Homologous Resources, Ministry of Education, Yunnan Agricultural University, Kunming 650201, China
- Yunnan Provincial Key Laboratory of Precision Nutrition and Personalized Food Manufacturing, Yunnan Agricultural University, Kunming 650201, China
- School of Tea and Coffee, Puer University, Puer 665000, China
| |
Collapse
|