1
|
Torres-Espíndola LM, Pérez-De Marcos JC, Castillejos-López M, Velasco-Hidalgo L, Cárdenas-Cardós R, De Uña-Flores A, Salinas-Lara C, Caballero-Salazar S, Fernández-Plata R, Aquíno-Gálvez A. Factors Influencing Mortality in Children with Central Nervous System Tumors: A Cohort Study on Clinical Characteristics and Genetic Markers. Genes (Basel) 2024; 15:473. [PMID: 38674407 PMCID: PMC11050576 DOI: 10.3390/genes15040473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Revised: 03/28/2024] [Accepted: 04/04/2024] [Indexed: 04/28/2024] Open
Abstract
Multidrug resistance (MDR) commonly leads to cancer treatment failure because cancer cells often expel chemotherapeutic drugs using ATP-binding cassette (ABC) transporters, which reduce drug levels within the cells. This study investigated the clinical characteristics and single nucleotide variant (SNV) in ABCB1, ABCC1, ABCC2, ABCC4, and ABCG2, and their association with mortality in pediatric patients with central nervous system tumors (CNST). Using TaqMan probes, a real-time polymerase chain reaction genotyped 15 SNPs in 111 samples. Patients were followed up until death or the last follow-up day using the Cox proportional hazards model. An association was found between the rs1045642 (ABCB1) in the recessive model (HR = 2.433, 95% CI 1.098-5.392, p = 0.029), and the ICE scheme in the codominant model (HR = 9.810, 95% CI 2.74-35.06, p ≤ 0.001), dominant model (HR = 6.807, 95% CI 2.87-16.103, p ≤ 0.001), and recessive model (HR = 6.903, 95% CI 2.915-16.544, p = 0.038) significantly increased mortality in this cohort of patients. An association was also observed between the variant rs3114020 (ABCG2) and mortality in the codominant model (HR = 5.35, 95% CI 1.83-15.39, p = 0.002) and the dominant model (HR = 4.421, 95% CI 1.747-11.185, p = 0.002). A significant association between the ICE treatment schedule and increased mortality risk in the codominant model (HR = 6.351, 95% CI 1.831-22.02, p = 0.004, HR = 9.571, 95% CI 2.856-32.07, p ≤ 0.001), dominant model (HR = 6.592, 95% CI 2.669-16.280, p ≤ 0.001), and recessive model (HR = 5.798, 95% CI 2.411-13.940, p ≤ 0.001). The genetic variants rs3114020 in the ABCG2 gene and rs1045642 in the ABCB1 gene and the ICE chemotherapy schedule were associated with an increased mortality risk in this cohort of pediatric patients with CNST.
Collapse
Affiliation(s)
| | - Juan Carlos Pérez-De Marcos
- Pharmacology Laboratory, National Institute of Pediatrics, Mexico City 04530, Mexico;
- Oncology Service, National Institute of Pediatrics, Mexico City 04530, Mexico; (L.V.-H.); (R.C.-C.)
- Red MEDICI, FESI UNAM, Tlalnepantla Edo, Mexico City 54090, Mexico
| | - Manuel Castillejos-López
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico; (M.C.-L.); (R.F.-P.)
| | - Liliana Velasco-Hidalgo
- Oncology Service, National Institute of Pediatrics, Mexico City 04530, Mexico; (L.V.-H.); (R.C.-C.)
| | - Rocío Cárdenas-Cardós
- Oncology Service, National Institute of Pediatrics, Mexico City 04530, Mexico; (L.V.-H.); (R.C.-C.)
| | - Armando De Uña-Flores
- Radiology and Imaging Service, National Institute of Pediatrics, Mexico City 04530, Mexico;
| | - Citlaltepetl Salinas-Lara
- Department of Neuropathology, National Institute of Neurology and Neurosurgery, Manuel Velasco Suárez, Mexico City 14269, Mexico;
| | | | - Rosario Fernández-Plata
- Hospital Epidemiology and Infectology Unit, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico; (M.C.-L.); (R.F.-P.)
| | - Arnoldo Aquíno-Gálvez
- Molecular Biology Laboratory, Pulmonary Fibrosis Department, National Institute of Respiratory Diseases Ismael Cosío Villegas, Mexico City 14080, Mexico
| |
Collapse
|
2
|
Cerovska E, Salek C, Kundrat D, Sestakova S, Pesek A, Brozinova I, Belickova M, Remesova H. ABC transporters are predictors of treatment failure in acute myeloid leukaemia. Biomed Pharmacother 2024; 170:115930. [PMID: 38039756 DOI: 10.1016/j.biopha.2023.115930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 11/11/2023] [Accepted: 11/20/2023] [Indexed: 12/03/2023] Open
Abstract
INTRODUCTION To date, no chemoresistance predictors are included in acute myeloid leukaemia (AML) prognostic scoring systems to distinguish responding and refractory AML patients prior to chemotherapy. ABC transporters have been described as altering AML chemosensitivity; however, a relevant study investigating their role at various molecular levels was lacking. METHODS Gene expression, genetic variants, methylation and activity of ABCA2, ABCA5, ABCB1, ABCB6, ABCC1, ABCC3 and ABCG2 were analysed in AML blasts and healthy myeloblasts. Differences between responding and refractory AML in a cohort of 113 patients treated with 3 + 7 induction therapy were explored. RESULTS ABCC3 variant rs2301837 (p = 0.049), ABCG2 variant rs11736552 (p = 0.044), higher ABCA2 (p = 0.021), ABCC1 (p = 0.017), and ABCG2 expression (p = 0.023) and a higher number of concurrently overexpressed transporters (p = 0.002) were predictive of treatment failure by multivariate analysis. Expression of ABCA5 (p = 0.003), ABCB6 (p = 0.001) and ABCC3 (p < 0.0001) increased significantly after chemotherapy. Higher ABCG2 promoter methylation correlated with lower ABCG2 expression (p = 0.0001). ABCC1 was identified as the most active transporter in AML blasts by functional analysis. CONCLUSIONS ABC transporters, especially ABCC1 seem to contribute substantially to AML chemoresistance. A detailed understanding of chemoresistance mechanisms and the clinical implications of chemosensitivity predictors may lead to alternative therapeutic approaches for AML patients with unveiled chemoresistance signatures.
Collapse
Affiliation(s)
- Ela Cerovska
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, Faculty of Science, Albertov 6, 128 00 Prague, Czech Republic
| | - Cyril Salek
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, First Faculty of Medicine, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - David Kundrat
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Sarka Sestakova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Adam Pesek
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Ivana Brozinova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic
| | - Monika Belickova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic; Charles University, First Faculty of Medicine, Katerinska 1660/32, 121 08 Prague, Czech Republic
| | - Hana Remesova
- Institute of Hematology and Blood Transfusion, U Nemocnice 2094/1, 128 00 Prague, Czech Republic.
| |
Collapse
|
3
|
Pawinska-Wasikowska K, Czogala M, Skoczen S, Surman M, Rygielska M, Ksiazek T, Pac A, Wieczorek A, Skalska-Sadowska J, Samborska M, Wachowiak J, Chaber R, Tomaszewska R, Szczepanski T, Zielezinska K, Urasinski T, Moj-Hackemer M, Kalwak K, Kozlowska M, Irga-Jaworska N, Balwierz W, Bukowska-Strakova K. Gemtuzumab ozogamicin for relapsed or primary refractory acute myeloid leukemia in children-the Polish Pediatric Leukemia and Lymphoma Study Group experience. Front Immunol 2023; 14:1268993. [PMID: 38187390 PMCID: PMC10766767 DOI: 10.3389/fimmu.2023.1268993] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 12/07/2023] [Indexed: 01/09/2024] Open
Abstract
Background Gemtuzumab ozogamicin (GO), one of the first targeted drugs used in oncology, consists of an anti-cluster of differentiation 33 (CD33) monoclonal antibody bound to a derivative of cytotoxic calicheamicin. After the drug withdrawn in 2010 due to a significantly higher rate of early deaths, GO regained approval in 2017 for the treatment of newly diagnosed, refractory, or relapsed acute myeloid leukemia (AML) in adults and children over 15 years of age. The objective of the study was a retrospective analysis of clinical characteristics, treatment outcomes, and GO toxicity profile in children with primary refractory or relapsed (R/R) AML treated in Poland from 2008 to 2022. Methods Data were collected through the Polish Registry of Acute Myeloid Leukemia. From January 2008 to December 2022, 35 children with R/R AML were treated with GO in seven centers of the Polish Pediatric Leukemia and Lymphoma Study Group. Results Most of the children (30 of 35) received only one GO cycle in combination with various chemotherapy cycles (IDA-FLA, DOXO-FLA, FLA, FLAG, and others). Eighteen children (51%) achieved complete remission (CR), 14 did not respond to treatment, and three progressed. GO therapy was followed by allogeneic hematopoietic stem cell transplantation (allo-HSCT) in 18 children in CR. The 5-year overall survival (OS) after GO therapy was 37.1% ± 8.7% for the total cohort. There was a trend toward a superior outcome in patients with strong expression of CD33 expression (over 50% positive cells) compared with that in patients with lower expression of CD33 (OS, 41.2% ± 11.9% versus 27.8% ± 13.2%; p = 0.5; 5-year event-free survival, 35.4% ± 11.6% versus 25.7% ± 12.3%; p = 0.5, respectively). Children under 15 years have better outcome (OS, 34.9% ± 10.4% versus 30% ± 14.5%, p = 0.3). The most common adverse events were bone marrow aplasia, fever of unknown origin, infections, and elevated liver enzyme elevation. Sinusoidal obstruction syndrome occurred in two children. Conclusions The use of GO in severely pretreated children, including those under 15 years of age, with previous failure of AML treatment is a feasible and effective bridging therapy to allo-HSCT with an acceptable toxicity profile.
Collapse
Affiliation(s)
- Katarzyna Pawinska-Wasikowska
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Malgorzata Czogala
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Szymon Skoczen
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Marta Surman
- Laboratory of Clinical Immunology, University Children’s Hospital of Krakow, Krakow, Poland
| | - Monika Rygielska
- Department of Pediatric Oncology and Hematology, Hematology Laboratory, University Children’s Hospital, Krakow, Poland
| | - Teofila Ksiazek
- Department of Medical Genetics, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| | - Agnieszka Pac
- Department of Epidemiology and Preventive Medicine, Faculty of Medicine, Jagiellonian University Medical College, Kraków, Poland
| | - Aleksandra Wieczorek
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Jolanta Skalska-Sadowska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magdalena Samborska
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Jacek Wachowiak
- Department of Pediatric Oncology, Hematology and Transplantology, Poznan University of Medical Sciences, Poznan, Poland
| | - Radoslaw Chaber
- Department of Pediatric Oncohematology, Clinical Province Hospital of Rzeszow, Rzeszow, Poland
- Department of Pediatrics, Institute of Medical Sciences, Medical College, University of Rzeszow, Rzeszow, Poland
| | - Renata Tomaszewska
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Tomasz Szczepanski
- Department of Pediatric Hematology and Oncology, Zabrze, Medical University of Silesia, Katowice, Poland
| | - Karolina Zielezinska
- Department of Pediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Tomasz Urasinski
- Department of Pediatrics, Hemato-Oncology and Gastroenterology, Pomeranian Medical University in Szczecin, Szczecin, Poland
| | - Malgorzata Moj-Hackemer
- Clinical Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Krzysztof Kalwak
- Clinical Department of Pediatric Bone Marrow Transplantation, Oncology and Hematology, Wroclaw Medical University, Wroclaw, Poland
| | - Marta Kozlowska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Ninela Irga-Jaworska
- Department of Pediatrics, Hematology and Oncology, Medical University of Gdansk, Gdansk, Poland
| | - Walentyna Balwierz
- Department of Pediatric Oncology and Hematology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
- Department of Pediatric Oncology and Hematology, University Children Hospital of Krakow, Krakow, Poland
| | - Karolina Bukowska-Strakova
- Department of Clinical Immunology, Institute of Pediatrics, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
4
|
Tseng S, Lee ME, Lin PC. A Review of Childhood Acute Myeloid Leukemia: Diagnosis and Novel Treatment. Pharmaceuticals (Basel) 2023; 16:1614. [PMID: 38004478 PMCID: PMC10674205 DOI: 10.3390/ph16111614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Revised: 10/31/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Acute myeloid leukemia (AML) is the second most common hematologic malignancy in children. The incidence of childhood AML is much lower than acute lymphoblastic leukemia (ALL), which makes childhood AML a rare disease in children. The role of genetic abnormalities in AML classification, management, and prognosis prediction is much more important than before. Disease classifications and risk group classifications, such as the WHO classification, the international consensus classification (ICC), and the European LeukemiaNet (ELN) classification, were revised in 2022. The application of the new information in childhood AML will be upcoming in the next few years. The frequency of each genetic abnormality in adult and childhood AML is different; therefore, in this review, we emphasize well-known genetic subtypes in childhood AML, including core-binding factor AML (CBF AML), KMT2Ar (KMT2A/11q23 rearrangement) AML, normal karyotype AML with somatic mutations, unbalanced cytogenetic abnormalities AML, NUP98 11p15/NUP09 rearrangement AML, and acute promyelocytic leukemia (APL). Current risk group classification, the management algorithm in childhood AML, and novel treatment modalities such as targeted therapy, immune therapy, and chimeric antigen receptor (CAR) T-cell therapy are reviewed. Finally, the indications of hematopoietic stem cell transplantation (HSCT) in AML are discussed.
Collapse
Affiliation(s)
- Serena Tseng
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
| | - Mu-En Lee
- School of Medicine, College of Medicine, National Yang Ming Chiao Tung University, Hsinchu 300, Taiwan;
| | - Pei-Chin Lin
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 807, Taiwan;
- Division of Pediatric Hematology and Oncology, Department of Pediatrics, Kaohsiung Medical University Hospital, Kaohsiung 807, Taiwan
| |
Collapse
|
5
|
Mecklenbrauck R, Heuser M. Resistance to targeted therapies in acute myeloid leukemia. Clin Exp Metastasis 2023; 40:33-44. [PMID: 36318439 PMCID: PMC9898349 DOI: 10.1007/s10585-022-10189-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2022] [Accepted: 10/12/2022] [Indexed: 02/04/2023]
Abstract
The introduction of new targeted therapies to the treatment algorithm of acute myeloid leukemia (AML) offers new opportunities, but also presents new challenges. Patients diagnosed with AML receiving targeted therapies as part of lower intensity regimens will relapse inevitably due to primary or secondary resistance mechanisms. In this review, we summarize the current knowledge on the main mechanisms of resistance to targeted therapies in AML. Resistance to FLT3 inhibitors is mainly mediated by on target mutations and dysregulation of downstream pathways. Switching the FLT3 inhibitor has a potential therapeutic benefit. During treatment with IDH inhibitors resistance can develop due to aberrant cell metabolism or secondary site IDH mutations. As a unique resistance mechanism the mutated IDH isotype may switch from IDH1 to IDH2 or vice versa. Resistance to gemtuzumab-ozogamicin is determined by the CD33 isotype and the degradation of the cytotoxin. The main mechanisms of resistance to venetoclax are the dysregulation of alternative pathways especially the upregulation of the BCL-2-analogues MCL-1 and BCL-XL or the induction of an aberrant cell metabolism. The introduction of therapies targeting immune processes will lead to new forms of therapy resistance. Knowing those mechanisms will help to develop strategies that can overcome resistance to treatment.
Collapse
Affiliation(s)
- Rabea Mecklenbrauck
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany
| | - Michael Heuser
- Department of Hematology, Hemostasis, Oncology and Stem Cell Transplantation Hannover Medical School, Carl-Neuberg-Str. 1, 30625, Hannover, Germany.
| |
Collapse
|
6
|
Wijnen NE, Koedijk JB, Klein K, Luesink M, Goemans BF, Zwaan CM, Kaspers GJL. Treating CD33-Positive de novo Acute Myeloid Leukemia in Pediatric Patients: Focus on the Clinical Value of Gemtuzumab Ozogamicin. Onco Targets Ther 2023; 16:297-308. [PMID: 37153641 PMCID: PMC10155714 DOI: 10.2147/ott.s263829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 04/20/2023] [Indexed: 05/10/2023] Open
Abstract
Although survival in pediatric acute myeloid leukemia (AML) has increased considerably over the past decades, refractory disease and relapse rates remain high. Refractory and relapsed disease are difficult to treat, with overall survival rates less than 40-50%. Preventing relapse should, therefore, be one of the highest priorities. Current conventional chemotherapy regimens are hard to intensify due to associated toxic complications, hence more effective therapies that do not increase toxicity are needed. A promising targeted agent is the CD33-directed antibody-drug conjugate gemtuzumab ozogamicin (GO). Because CD33 is highly expressed on leukemic cells in the majority of AML patients, GO can be useful for a broad range of patients. Better relapse-free survival (RFS) after therapy including GO has been reported in several pediatric clinical trials; however, ambiguity about the clinical value of GO in newly diagnosed children remains. Treatment with GO in de novo AML patients aged ≥1 month, in combination with standard chemotherapy is approved in the United States, whereas in Europe, GO is only approved for newly diagnosed patients aged ≥15 years. In this review, we aimed to clarify the clinical value of GO for treatment of newly diagnosed pediatric AML patients. Based on current literature, GO seems to have additional value, in terms of RFS, and acceptable toxicity when used in addition to chemotherapy during initial treatment. Moreover, in KMT2A-rearranged patients, the clinical value of GO was even more evident. Also, we addressed predictors of response, being CD33 expression and SNPs, PgP-1 and Annexin A5. The near finalized intent-to-file clinical trial in the MyeChild consortium investigates whether fractionated dosing has additional value for pediatric AML, which may pave the way for a broader application of GO in pediatric AML.
Collapse
Affiliation(s)
- Noa E Wijnen
- Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
- Correspondence: Noa E Wijnen, Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, Utrecht, 3584 CS, the Netherlands, Tel +31(0)889727272, Email
| | - Joost B Koedijk
- Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Kim Klein
- Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Wilhelmina Children’s Hospital/University Medical Center, Utrecht, the Netherlands
| | - Maaike Luesink
- Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - Bianca F Goemans
- Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
| | - C Michel Zwaan
- Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology, Erasmus MC-Sophia Children’s Hospital, Rotterdam, the Netherlands
| | - Gertjan J L Kaspers
- Pediatric Hemato-Oncology, Princess Máxima Center for Pediatric Oncology, Utrecht, the Netherlands
- Department of Pediatric Oncology, Emma Children’s Hospital, Amsterdam UMC, Vrije Universiteit, Amsterdam, the Netherlands
| |
Collapse
|
7
|
Kamath A, Srinivasamurthy SK, Chowta MN, Ullal SD, Daali Y, Chakradhara Rao US. Role of Drug Transporters in Elucidating Inter-Individual Variability in Pediatric Chemotherapy-Related Toxicities and Response. Pharmaceuticals (Basel) 2022; 15:990. [PMID: 36015138 PMCID: PMC9415926 DOI: 10.3390/ph15080990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/01/2022] [Accepted: 08/04/2022] [Indexed: 11/16/2022] Open
Abstract
Pediatric cancer treatment has evolved significantly in recent decades. The implementation of risk stratification strategies and the selection of evidence-based chemotherapy combinations have improved survival outcomes. However, there is large interindividual variability in terms of chemotherapy-related toxicities and, sometimes, the response among this population. This variability is partly attributed to the functional variability of drug-metabolizing enzymes (DME) and drug transporters (DTS) involved in the process of absorption, distribution, metabolism and excretion (ADME). The DTS, being ubiquitous, affects drug disposition across membranes and has relevance in determining chemotherapy response in pediatric cancer patients. Among the factors affecting DTS function, ontogeny or maturation is important in the pediatric population. In this narrative review, we describe the role of drug uptake/efflux transporters in defining pediatric chemotherapy-treatment-related toxicities and responses. Developmental differences in DTS and the consequent implications are also briefly discussed for the most commonly used chemotherapeutic drugs in the pediatric population.
Collapse
Affiliation(s)
- Ashwin Kamath
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Suresh Kumar Srinivasamurthy
- Department of Pharmacology, Ras Al Khaimah College of Medical Sciences, Ras Al Khaimah Medical and Health Sciences University, Ras Al Khaimah P.O. Box 11172, United Arab Emirates
| | - Mukta N Chowta
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Sheetal D Ullal
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
| | - Youssef Daali
- Department of Anaesthesiology, Pharmacology, Intensive Care and Emergency Medicine, Division of Clinical Pharmacology and Toxicology, Geneva University Hospitals, 1205 Geneva, Switzerland
| | - Uppugunduri S Chakradhara Rao
- Department of Pharmacology, Kasturba Medical College, Mangalore, Manipal Academy of Higher Education, Manipal 575001, India
- CANSEARCH Research Platform in Pediatric Oncology and Hematology, Department of Pediatrics, Gynecology and Obstetrics, University of Geneva, 1205 Geneva, Switzerland
| |
Collapse
|
8
|
Gbadamosi MO, Shastri VM, Elsayed AH, Ries R, Olabige O, Nguyen NHK, De Jesus A, Wang YC, Dang A, Hirsch BA, Alonzo TA, Gamis A, Meshinchi S, Lamba JK. A ten-gene DNA-damage response pathway gene expression signature predicts gemtuzumab ozogamicin response in pediatric AML patients treated on COGAAML0531 and AAML03P1 trials. Leukemia 2022; 36:2022-2031. [PMID: 35688939 PMCID: PMC9357169 DOI: 10.1038/s41375-022-01622-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2021] [Revised: 05/17/2022] [Accepted: 05/27/2022] [Indexed: 02/03/2023]
Abstract
Gemtuzumab ozogamicin (GO) is an anti-CD33 monoclonal antibody linked to calicheamicin, a DNA damaging agent, and is a well-established therapeutic for treating acute myeloid leukemia (AML). In this study, we used LASSO regression modeling to develop a 10-gene DNA damage response gene expression score (CalDDR-GEx10) predictive of clinical outcome in pediatric AML patients treated with treatment regimen containing GO from the AAML03P1 and AAML0531 trials (ADE + GO arm, N = 301). When treated with ADE + GO, patients with a high CalDDR-GEx10 score had lower complete remission rates (62.8% vs. 85.5%, P = 1.7 7 * 10-5) and worse event-free survival (28.7% vs. 56.5% P = 4.08 * 10-8) compared to those with a low CalDDR-GEx10 score. However, the CalDDR-GEx10 score was not associated with clinical outcome in patients treated with standard chemotherapy alone (ADE, N = 242), implying the specificity of the CalDDR-GEx10 score to calicheamicin-induced DNA damage response. In multivariable models adjusted for risk group, FLT3-status, white blood cell count, and age, the CalDDR-GEx10 score remained a significant predictor of outcome in patients treated with ADE + GO. Our findings present a potential tool that can specifically assess response to calicheamicin-induced DNA damage preemptively via assessing diagnostic leukemic cell gene expression and guide clinical decisions related to treatment using GO.
Collapse
Affiliation(s)
- Mohammed O Gbadamosi
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Vivek M Shastri
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Abdelrahman H Elsayed
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Rhonda Ries
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Oluwaseyi Olabige
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Nam H K Nguyen
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | - Angelica De Jesus
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA
| | | | - Alice Dang
- COG Statistics and Data Center, Monrovia, CA, USA
| | | | - Todd A Alonzo
- COG Statistics and Data Center, Monrovia, CA, USA
- Biostatistics Division, University of Southern California, Los Angeles, CA, USA
| | - Alan Gamis
- Department of Hematology-Oncology, Children's Mercy Hospitals and Clinics, Kansas City, MO, USA
| | - Soheil Meshinchi
- Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA, USA
| | - Jatinder K Lamba
- Department of Pharmacotherapy and Translational Research, College of Pharmacy, University of Florida, Gainesville, FL, USA.
- Center for Pharmacogenomics and Precision Medicine, University of Florida, Gainesville, FL, USA.
| |
Collapse
|
9
|
Verma D, Kumar R, Ali MS, Singh J, Arora M, Singh I, Kumari S, Bakhshi S, Sharma A, Palanichamy JK, Tanwar P, Singh AR, Chopra A. BAALC gene expression tells a serious patient outcome tale in NPM1-wild type/FLT3-ITD negative cytogenetically normal-acute myeloid leukemia in adults. Blood Cells Mol Dis 2022; 95:102662. [PMID: 35429905 DOI: 10.1016/j.bcmd.2022.102662] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2021] [Revised: 01/21/2022] [Accepted: 04/05/2022] [Indexed: 12/17/2022]
Abstract
Acute myeloid leukemia with normal cytogenetics (CN-AML) is the largest group of AML patients which is associated with a variegated patient outcome. Multiple molecular markers have been used to risk-stratify these patients. Estimation of expression of BAALC gene (Brain and Acute Leukemia, Cytoplasmic) mRNA level is one of the predictive markers which has been identified in multiple studies. In this study, we examined the clinical and prognostic value of BAALC gene expression in 149 adult CN-AML patients. We also utilized multi-omics databases to ascertain the association of BAALC gene expression with comprehensive molecular and clinicopathologic features in AML. BAALC overexpression was associated with CD34 positivity on leukemic blasts (p = 0.0026) and the absence of NPM1 gene mutation (p < 0.0001), presence of RUNX1 gene mutation (p < 0.001) and poor patient outcomes, particularly in NPM1-wild type/FLT3-ITD negative adult CN-AML patients. Additionally, BAALC expression was associated with the alteration of methylation of its promoter. Further, pathway analysis revealed that BAALC expression is correlated with MYC targets and Ras signalling. We conclude that high BAALC expression associates with poor patient outcome in NPM1-wild type/FLT3-ITD negative adult CN-AML patients.
Collapse
Affiliation(s)
| | | | | | - Jay Singh
- Laboratory Oncology, AIIMS, New Delhi, India
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Megías-Vericat JE, Martínez-Cuadrón D, Solana-Altabella A, Poveda JL, Montesinos P. Systematic Review of Pharmacogenetics of ABC and SLC Transporter Genes in Acute Myeloid Leukemia. Pharmaceutics 2022; 14:pharmaceutics14040878. [PMID: 35456712 PMCID: PMC9030330 DOI: 10.3390/pharmaceutics14040878] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 04/11/2022] [Accepted: 04/14/2022] [Indexed: 12/20/2022] Open
Abstract
Antineoplastic uptake by blast cells in acute myeloid leukemia (AML) could be influenced by influx and efflux transporters, especially solute carriers (SLCs) and ATP-binding cassette family (ABC) pumps. Genetic variability in SLC and ABC could produce interindividual differences in clinical outcomes. A systematic review was performed to evaluate the influence of SLC and ABC polymorphisms and their combinations on efficacy and safety in AML cohorts. Anthracycline intake was especially influenced by SLCO1B1 polymorphisms, associated with lower hepatic uptake, showing higher survival rates and toxicity in AML studies. The variant alleles of ABCB1 were related to anthracycline intracellular accumulation, increasing complete remission, survival and toxicity. Similar findings have been suggested with ABCC1 and ABCG2 polymorphisms. Polymorphisms of SLC29A1, responsible for cytarabine uptake, demonstrated significant associations with survival and response in Asian populations. Promising results were observed with SLC and ABC combinations regarding anthracycline toxicities. Knowledge of the role of transporter pharmacogenetics could explain the differences observed in drug disposition in the blast. Further studies including novel targeted therapies should be performed to determine the influence of genetic variability to individualize chemotherapy schemes.
Collapse
Affiliation(s)
- Juan Eduardo Megías-Vericat
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - David Martínez-Cuadrón
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
| | - Antonio Solana-Altabella
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
- Instituto de Investigación Sanitaria La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain
| | - José Luis Poveda
- Servicio de Farmacia, Área del Medicamento, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain; (J.E.M.-V.); (A.S.-A.); (J.L.P.)
| | - Pau Montesinos
- Servicio de Hematología y Hemoterapia, Hospital Universitario y Politécnico La Fe, Avda. Fernando Abril Martorell 106, 46026 Valencia, Spain;
- Correspondence: ; Tel.: +34-961-245876
| |
Collapse
|
11
|
Pinto-Merino Á, Labrador J, Zubiaur P, Alcaraz R, Herrero MJ, Montesinos P, Abad-Santos F, Saiz-Rodríguez M. Role of Pharmacogenetics in the Treatment of Acute Myeloid Leukemia: Systematic Review and Future Perspectives. Pharmaceutics 2022; 14:pharmaceutics14030559. [PMID: 35335935 PMCID: PMC8954545 DOI: 10.3390/pharmaceutics14030559] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/16/2022] [Accepted: 02/28/2022] [Indexed: 12/12/2022] Open
Abstract
Acute myeloid leukemia (AML) is a heterogeneous disease characterized by remarkable toxicity and great variability in response to treatment. Plenteous pharmacogenetic studies have already been published for classical therapies, such as cytarabine or anthracyclines, but such studies remain scarce for newer drugs. There is evidence of the relevance of polymorphisms in response to treatment, although most studies have limitations in terms of cohort size or standardization of results. The different responses associated with genetic variability include both increased drug efficacy and toxicity and decreased response or resistance to treatment. A broad pharmacogenetic understanding may be useful in the design of dosing strategies and treatment guidelines. The aim of this study is to perform a review of the available publications and evidence related to the pharmacogenetics of AML, compiling those studies that may be useful in optimizing drug administration.
Collapse
Affiliation(s)
| | - Jorge Labrador
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain; (J.L.); (R.A.)
- Haematology Department, Hospital Universitario de Burgos, 09006 Burgos, Spain
- Facultad de Ciencias de la Salud, Universidad Isabel I, 09003 Burgos, Spain
| | - Pablo Zubiaur
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (P.Z.); (F.A.-S.)
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Raquel Alcaraz
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain; (J.L.); (R.A.)
| | - María José Herrero
- Pharmacogenetics Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Pau Montesinos
- Haematology Department, Hospital Universitari i Politècnic La Fe, 46026 Valencia, Spain;
| | - Francisco Abad-Santos
- Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBERehd), 28029 Madrid, Spain; (P.Z.); (F.A.-S.)
- Clinical Pharmacology Department, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria La Princesa (IP), Universidad Autónoma de Madrid (UAM), 28006 Madrid, Spain
| | - Miriam Saiz-Rodríguez
- Department of Health Sciences, University of Burgos, 09001 Burgos, Spain;
- Research Unit, Fundación Burgos por la Investigación de la Salud (FBIS), Hospital Universitario de Burgos, 09006 Burgos, Spain; (J.L.); (R.A.)
- Correspondence: ; Tel.: +34-947-281-800 (ext. 36078)
| |
Collapse
|
12
|
High expression levels and the C3435T SNP of the ABCB1 gene are associated with lower survival in adult patients with acute myeloblastic leukemia in Mexico City. BMC Med Genomics 2021; 14:251. [PMID: 34702282 PMCID: PMC8549154 DOI: 10.1186/s12920-021-01101-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Accepted: 10/05/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Acute myeloid leukemia (AML) is a heterogeneous hematologic malignancy characterized by different genetic alterations that cause changes in the normal mechanisms of differentiation, which are associated with chemoresistance. The ABCB1 gene is part of a family of ATP-binding cassette (ABC) transporter genes involved in the progression of various types of cancer. The following work aimed to evaluate the expression levels of the ABCB1 gene and the C3435T SNP with the response to first-line treatment and survival in patients with AML. METHODS In total 135 samples were taken to isolate total RNA and DNA at the beginning of the treatment. Expression analysis by RT-qPCR and SNP C3435T assessment method were performed for real-time Polymerase chain reaction (qPCR). RESULTS The expression levels impact on the survival of patients with AML compared to low or absent levels; the CC genotype was found in 22.9%, the CT genotype was found in 47.4%, and the TT genotype was found in 29.6%, the presence of the C3435T SNP, the TT genotype also impacts with a lower survival compared to CT and CC genotypes. In addition, it was shown that the dominant model significantly impacts survival. CONCLUSION In conclusion, we have found that the overexpression of the ABCB1 gene, as well as the presence of the TT genotype of the C3435T SNP, contributes to a worse prognosis in AML.
Collapse
|
13
|
Association of race and ethnicity with clinical phenotype, genetics, and survival in pediatric acute myeloid leukemia. Blood Adv 2021; 5:4992-5001. [PMID: 34619758 PMCID: PMC9153027 DOI: 10.1182/bloodadvances.2021004735] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Accepted: 08/23/2021] [Indexed: 11/20/2022] Open
Abstract
Cytogenetic lesions in pediatric AML differ by race-ethnicity including higher rates of specific poor prognosis lesions among Black children. Racial-ethnic minorities experience worse outcomes in pediatric AML regardless of genetic disease features.
Black and Hispanic children with acute myeloid leukemia (AML) have worse outcomes compared with White children. AML is a heterogeneous disease with numerous genetic subtypes in which these disparities have not been specifically investigated. In this study, we used the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database to examine the association of race-ethnicity with leukemia cytogenetics, clinical features, and survival outcomes within major cytogenetic subgroups of pediatric AML. Compared with White non-Hispanic patients, t(8;21) AML was more prevalent among Black (odds ratio [OR], 2.22; 95% confidence interval [CI], 1.28-3.74) and Hispanic patients (OR, 1.74; 95% CI, 1.05-2.83). The poor prognosis KMT2A rearrangement t(6;11)(q27;q23) was more prevalent among Black patients (OR, 6.12; 95% CI, 1.81-21.59). Among those with KMT2Ar AML, Black race was associated with inferior event-free survival (EFS) (hazard ratio [HR], 2.31; 95% CI, 1.41-3.79) and overall survival (OS) (HR, 2.54; 1.43-4.51). Hispanic patients with KMT2Ar AML also had inferior EFS (HR, 2.20; 95% CI, 1.27-3.80) and OS (HR, 2.07; 95% CI, 1.09-3.93). Similarly, among patients with t(8;21) or inv(16) AML (ie, core-binding factor [CBF] AML), Black patients had inferior outcomes (EFS HR, 1.93; 95% CI, 1.14-3.28 and OS HR, 3.24; 95% CI, 1.60-6.57). This disparity was not detected among patients receiving gemtuzumab ozogamicin (GO). In conclusion, racial-ethnic disparities in survival outcomes among young people with AML are prominent and vary across cytogenetic subclasses. Future studies should explore the socioeconomic and biologic determinants of these disparities.
Collapse
|
14
|
Gottardi M, Simonetti G, Sperotto A, Nappi D, Ghelli Luserna di Rorà A, Padella A, Norata M, Giannini MB, Musuraca G, Lanza F, Cerchione C, Martinelli G. Therapeutic Targeting of Acute Myeloid Leukemia by Gemtuzumab Ozogamicin. Cancers (Basel) 2021; 13:cancers13184566. [PMID: 34572794 PMCID: PMC8469571 DOI: 10.3390/cancers13184566] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 09/08/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
Acute myeloid leukemia (AML) is a complex hematological malignancy characterized by genetic and clinical heterogeneity and high mortality. Despite the recent introduction of novel pharmaceutical agents in hemato-oncology, few advancements have been made in AML for decades. In the last years, the therapeutic options have rapidly changed, with the approval of innovative compounds that provide new opportunities, together with new challenges for clinicians: among them, on 1 September, 2017 the Food and Drug Administration granted approval for Gemtuzumab Ozogamicin (GO) in combination with daunorubicin and cytarabine for the treatment of adult patients affected by newly diagnosed CD33+ AML. Benefits of GO-based regimens were also reported in the pre- and post-transplantation settings. Moreover, several biomarkers of GO response have been suggested, including expression of CD33 and multidrug resistance genes, cytogenetic and molecular profiles, minimal residual disease and stemness signatures. Among them, elevated CD33 expression on blast cells and non-adverse cytogenetic or molecular risk represent largely validated predictors of good response.
Collapse
Affiliation(s)
- Michele Gottardi
- Onco Hematology, Department of Oncology, Veneto Institute of Oncology IOV, IRCCS, 31033 Padua, Italy
| | - Giorgia Simonetti
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Alessandra Sperotto
- Hematology and Transplant Center Unit, Dipartimento di Area Medica (DAME), Udine University Hospital, 33100 Udine, Italy
| | - Davide Nappi
- Department of Hematology and Cell Bone Marrow Transplantation (CBMT), Ospedale di Bolzano, 39100 Bolzano, Italy
| | - Andrea Ghelli Luserna di Rorà
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Antonella Padella
- Biosciences Laboratory, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Marianna Norata
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Maria Benedetta Giannini
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Gerardo Musuraca
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Francesco Lanza
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, 48121 Ravenna, Italy
| | - Claudio Cerchione
- Hematology Unit, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| | - Giovanni Martinelli
- Scientific Directorate, IRCCS Istituto Romagnolo per lo Studio dei Tumori (IRST) "Dino Amadori", 47014 Meldola (FC), Italy
| |
Collapse
|
15
|
The Role of Allogeneic Hematopoietic Stem Cell Transplantation in Pediatric Leukemia. J Clin Med 2021; 10:jcm10173790. [PMID: 34501237 PMCID: PMC8432223 DOI: 10.3390/jcm10173790] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 08/08/2021] [Accepted: 08/19/2021] [Indexed: 02/07/2023] Open
Abstract
Allogeneic hematopoietic stem cell transplantation (HSCT) offers potentially curative treatment for many children with high-risk or relapsed acute leukemia (AL), thanks to the combination of intense preparative radio/chemotherapy and the graft-versus-leukemia (GvL) effect. Over the years, progress in high-resolution donor typing, choice of conditioning regimen, graft-versus-host disease (GvHD) prophylaxis and supportive care measures have continuously improved overall transplant outcome, and recent successes using alternative donors have extended the potential application of allotransplantation to most patients. In addition, the importance of minimal residual disease (MRD) before and after transplantation is being increasingly clarified and MRD-directed interventions may be employed to further ameliorate leukemia-free survival after allogeneic HSCT. These advances have occurred in parallel with continuous refinements in chemotherapy protocols and the development of targeted therapies, which may redefine the indications for HSCT in the coming years. This review discusses the role of HSCT in childhood AL by analysing transplant indications in both acute lymphoblastic and acute myeloid leukemia, together with current and most promising strategies to further improve transplant outcome, including optimization of conditioning regimen and MRD-directed interventions.
Collapse
|
16
|
Minimally myelosuppressive regimen for remission induction in pediatric AML: long-term results of an observational study. Blood Adv 2021; 5:1837-1847. [PMID: 33787864 DOI: 10.1182/bloodadvances.2020003453] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 02/16/2021] [Indexed: 11/20/2022] Open
Abstract
Treatment refusal and death as a result of toxicity account for most treatment failures among children with acute myeloid leukemia (AML) in resource-constrained settings. We recently reported the results of treating children with AML with a combination of low-dose cytarabine and mitoxantrone or omacetaxine mepesuccinate with concurrent granulocyte colony-stimulating factor (G-CSF) (low-dose chemotherapy [LDC]) for remission induction followed by standard postremission strategies. We have now expanded the initial cohort and have provided long-term follow-up. Eighty-three patients with AML were treated with the LDC regimen. During the study period, another 100 children with AML received a standard-dose chemotherapy (SDC) regimen. Complete remission was attained in 88.8% and 86.4% of patients after induction in the LDC and SDC groups, respectively (P = .436). Twenty-two patients in the LDC group received SDC for the second induction course. Significantly more high-risk AML patients were treated with the SDC regimen (P = .035). There were no significant differences between the LDC and SDC groups in 5-year event-free survival (61.4% ± 8.7% vs 65.2% ± 7.4%, respectively; P = .462), overall survival (72.7% ± 6.9% vs 72.5% ± 6.2%, respectively; P = .933), and incidence of relapse (20.5% ± 4.5% vs 17.6% ± 3.9%, respectively; P = .484). Clearance of mutations based on the average variant allele frequency at complete remission in the LDC and SDC groups was 1.9% vs 0.6% (P < .001) after induction I and 0.17% vs 0.078% (P = .052) after induction II. In conclusion, our study corroborated the high remission rate reported for children with AML who received at least 1 course of LDC. The results, although preliminary, also suggest that long-term survival of these children is comparable to that of children who receive SDC regimens.
Collapse
|
17
|
Jabbour E, Paul S, Kantarjian H. The clinical development of antibody-drug conjugates - lessons from leukaemia. Nat Rev Clin Oncol 2021; 18:418-433. [PMID: 33758376 DOI: 10.1038/s41571-021-00484-2] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2021] [Indexed: 02/06/2023]
Abstract
Advances in our understanding of cancer biology have enabled drug development to progress towards better targeted therapies that are both more effective and safer owing to their lack of off-target toxicities. In this regard, antibody-drug conjugates (ADCs), which have the potential to combine the selectivity of therapeutic antibodies with the cytotoxicity of highly toxic small molecules, are a rapidly developing drug class. The complex and unique structure of an ADC, composed of a monoclonal antibody conjugated to a potent cytotoxic payload via a chemical linker, is designed to selectively target a specific tumour antigen. The success of an ADC is highly dependent on the specific properties of its components, all of which have implications for the stability, cytotoxicity, pharmacokinetics and antitumour activity of the ADC. The development of therapeutic ADCs, including gemtuzumab ozogamicin and inotuzumab ozogamicin, provided great knowledge of the refinements needed for the optimization of such agents. In this Review, we describe the key components of ADC structure and function and focus on the clinical development and subsequent utilization of two leukaemia-directed ADCs - gemtuzumab ozogamicin and inotuzumab ozogamicin - as well as on the mechanisms of resistance and predictors of response to these two agents.
Collapse
Affiliation(s)
- Elias Jabbour
- Department of Leukemia, University of Texas MD Anderson Cancer Center, Houston, TX, USA.
| | - Shilpa Paul
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Hagop Kantarjian
- Department of Clinical Pharmacy, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
18
|
Conneely SE, Stevens AM. Acute Myeloid Leukemia in Children: Emerging Paradigms in Genetics and New Approaches to Therapy. Curr Oncol Rep 2021; 23:16. [PMID: 33439382 PMCID: PMC7806552 DOI: 10.1007/s11912-020-01009-3] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/17/2020] [Indexed: 12/19/2022]
Abstract
PURPOSE OF REVIEW Acute myeloid leukemia (AML) in children remains a challenging disease to cure with suboptimal outcomes particularly when compared to the more common lymphoid leukemias. Recent advances in the genetic characterization of AML have enhanced understanding of individualized patient risk, which has also led to the development of new therapeutic strategies. Here, we review key cytogenetic and molecular features of pediatric AML and how new therapies are being used to improve outcomes. RECENT FINDINGS Recent studies have revealed an increasing number of mutations, including WT1, CBFA2T3-GLIS2, and KAT6A fusions, DEK-NUP214 and NUP98 fusions, and specific KMT2A rearrangements, which are associated with poor outcomes. However, outcomes are starting to improve with the addition of therapies such as gemtuzumab ozogamicin and FLT3 inhibitors, initially developed in adult AML. The combination of advanced risk stratification and ongoing improvements and innovations in treatment strategy will undoubtedly lead to better outcomes for children with AML.
Collapse
Affiliation(s)
- Shannon E Conneely
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA.
| | - Alexandra M Stevens
- Department of Pediatric Hematology/Oncology, Baylor College of Medicine/Texas Children's Hospital, 6701 Fannin, Suite 1510, Houston, TX, 77030, USA
| |
Collapse
|
19
|
Estey EH. Acute myeloid leukemia: 2021 update on risk-stratification and management. Am J Hematol 2020; 95:1368-1398. [PMID: 32833263 DOI: 10.1002/ajh.25975] [Citation(s) in RCA: 73] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2020] [Accepted: 08/15/2020] [Indexed: 12/11/2022]
Abstract
Management of AML involves choosing between purely palliative care, standard therapy and investigational therapy ("clinical trial"). Even most older patients likely benefit from treatment. Based on randomized trials CPX 351, midostaurin, gemtuzumab ozogamicin, and venetoclax, the latter three when combined with other drugs, should now be considered standard therapy. Knowledge of the likely results with these therapies is essential in deciding whether to recommend them or participate in a clinical trial, possibly including these drugs. Hence here, in the context of established prognostic algorithms, we review results with the recently- approved drugs compared with their predecessors and describe other potential options. We discuss benefit/risk ratios underlying the decision to offer allogeneic transplant and emphasize the importance of measurable residual disease. When first seeing a newly-diagnosed patient physicians must decide whether to offer conventional treatment or investigational therapy, the latter preferably in the context of a clinical trial. As noted below, such trials have led to changes in what today is considered "conventional" therapy compared to even 1-2 years ago. In older patients decision making has often included inquiring whether specific anti-AML therapy should be offered at all, rather than focusing on a purely palliative approach emphasizing transfusion and antibiotic support, with involvement of a palliative care specialist.
Collapse
Affiliation(s)
- Elihu H. Estey
- Division of Hematology University of Washington Seattle Washington
- Clinical Research Division Fred Hutchinson Cancer Research Center Seattle Washington
| |
Collapse
|
20
|
Short NJ, Richard‐Carpentier G, Kanagal‐Shamanna R, Patel KP, Konopleva M, Papageorgiou I, Pemmaraju N, Borthakur G, Ravandi F, DiNardo CD, Kadia TM, Kantarjian H, Lamba JK, Daver N. Impact of CD33 and ABCB1 single nucleotide polymorphisms in patients with acute myeloid leukemia and advanced myeloid malignancies treated with decitabine plus gemtuzumab ozogamicin. Am J Hematol 2020; 95:E225-E228. [PMID: 32356320 DOI: 10.1002/ajh.25854] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Revised: 04/21/2020] [Accepted: 04/23/2020] [Indexed: 01/19/2023]
Affiliation(s)
- Nicholas J. Short
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | | | - Rashmi Kanagal‐Shamanna
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Keyur P. Patel
- Department of Hematopathology The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Marina Konopleva
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Ioannis Papageorgiou
- Department of Pharmacotherapy & Translational Research The University of Florida Gainesville Florida USA
| | - Naveen Pemmaraju
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Gautam Borthakur
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Farhad Ravandi
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Courtney D. DiNardo
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Tapan M. Kadia
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Hagop Kantarjian
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| | - Jatinder K. Lamba
- Department of Pharmacotherapy & Translational Research The University of Florida Gainesville Florida USA
| | - Naval Daver
- Department of Leukemia The University of Texas MD Anderson Cancer Center Houston Texas USA
| |
Collapse
|
21
|
Fenwarth L, Fournier E, Cheok M, Boyer T, Gonzales F, Castaigne S, Boissel N, Lambert J, Dombret H, Preudhomme C, Duployez N. Biomarkers of Gemtuzumab Ozogamicin Response for Acute Myeloid Leukemia Treatment. Int J Mol Sci 2020; 21:E5626. [PMID: 32781546 PMCID: PMC7460695 DOI: 10.3390/ijms21165626] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2020] [Accepted: 08/03/2020] [Indexed: 11/27/2022] Open
Abstract
Gemtuzumab ozogamicin (GO, Mylotarg®) consists of a humanized CD33-targeted antibody-drug conjugated to a calicheamicin derivative. Growing evidence of GO efficacy in acute myeloid leukemia (AML), demonstrated by improved outcomes in CD33-positive AML patients across phase I to III clinical trials, led to the Food and Drug Administration (FDA) approval on 1 September 2017 in CD33-positive AML patients aged 2 years and older. Discrepancies in GO recipients outcome have raised significant efforts to characterize biomarkers predictive of GO response and have refined the subset of patients that may strongly benefit from GO. Among them, CD33 expression levels, favorable cytogenetics (t(8;21), inv(16)/t(16;16), t(15;17)) and molecular alterations, such as NPM1, FLT3-internal tandem duplications and other signaling mutations, represent well-known candidates. Additionally, in depth analyses including minimal residual disease monitoring, stemness expression (LSC17 score), mutations or single nucleotide polymorphisms in GO pathway genes (CD33, ABCB1) and molecular-derived scores, such as the recently set up CD33_PGx6_Score, represent promising markers to enhance GO response prediction and improve patient management.
Collapse
Affiliation(s)
- Laurène Fenwarth
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Elise Fournier
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Meyling Cheok
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Thomas Boyer
- Laboratory of Hematology, CHU Amiens, F-80054 Amiens, France;
| | - Fanny Gonzales
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Sylvie Castaigne
- Department of Hematology, CH Versailles, F-78157 Le Chesnay, France; (S.C.); (J.L.)
| | - Nicolas Boissel
- Adolescent and Young Adult Hematology Unit, Hôpital Saint-Louis, AP-HP, Université de Paris, F-75010 Paris, France;
| | - Juliette Lambert
- Department of Hematology, CH Versailles, F-78157 Le Chesnay, France; (S.C.); (J.L.)
| | - Hervé Dombret
- Department of Hematology, Hôpital Saint-Louis, AP-HP, Université de Paris, F-75010 Paris, France;
| | - Claude Preudhomme
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| | - Nicolas Duployez
- UMR 9020–UMR-S 1277–Canther–Cancer Heterogeneity, Plasticity and Resistance to Therapies, Institut de Recherche contre le Cancer de Lille, University Lille, CNRS, Inserm, CHU Lille, F-59000 Lille, France; (E.F.); (M.C.); (F.G.); (C.P.); (N.D.)
| |
Collapse
|
22
|
Short NJ, Konopleva M, Kadia TM, Borthakur G, Ravandi F, DiNardo CD, Daver N. Advances in the Treatment of Acute Myeloid Leukemia: New Drugs and New Challenges. Cancer Discov 2020; 10:506-525. [DOI: 10.1158/2159-8290.cd-19-1011] [Citation(s) in RCA: 124] [Impact Index Per Article: 31.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Revised: 10/23/2019] [Accepted: 11/20/2019] [Indexed: 11/16/2022]
|
23
|
Lanza F, Maffini E, Rondoni M, Massari E, Faini AC, Malavasi F. CD22 Expression in B-Cell Acute Lymphoblastic Leukemia: Biological Significance and Implications for Inotuzumab Therapy in Adults. Cancers (Basel) 2020; 12:E303. [PMID: 32012891 PMCID: PMC7072635 DOI: 10.3390/cancers12020303] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 01/22/2020] [Accepted: 01/24/2020] [Indexed: 12/11/2022] Open
Abstract
CD22 is a surface molecule expressed early during the ontogeny of B cells in the bone marrow and spleen, and can be found on B cells isolated from the different lymphoid compartments in humans. CD22 is expressed by most blasts from the majority (60-90%) of B-cell acute lymphoblastic leukemia (B-ALL). Current therapies in adults with newly diagnosed B-ALL are associated with complete remission (CR) rates of 50-90%. However, 30-60% of these patients relapse, and only 25-40% achieve disease-free survival of three years or more. Chemotherapy regimens for patients with refractory/relapsed B-ALL are associated with CR rates ranging from 31% to 44%. Novel immune-targeted therapies, such as blinatumomab and inotuzumab (a humanized anti-CD22 monoclonal antibody conjugated to the cytotoxic antibiotic agent calicheamicin), provide potential means of circumventing chemo-refractory B-ALL cells through novel mechanisms of action. Eighty percent of inotuzumab-treated B-ALL patients may achieve a CR state. This review is focused on the biological and clinical activities of CD22 antibodies in B-ALL, and provides evidence about the potential role played by qualitative and quantitative analysis of the CD22 molecule on individual B-ALL blasts in predicting the depletion of leukemic cells, and, ultimately, leading to better clinical response rates.
Collapse
Affiliation(s)
- Francesco Lanza
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, 48121 Ravenna, Italy; (E.M.); (M.R.)
| | - Enrico Maffini
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, 48121 Ravenna, Italy; (E.M.); (M.R.)
| | - Michela Rondoni
- Hematology Unit & Romagna Transplant Network, Ravenna Hospital, 48121 Ravenna, Italy; (E.M.); (M.R.)
| | - Evita Massari
- Clinical Pathology Unit, Hub Laboratory, Romagna Transplant Network, 47522 Cesena (FC), Italy;
| | - Angelo Corso Faini
- Department of Medical Science, University of Torino and Fondazione Ricerca Molinette, 10126 Torino, Italy; (A.C.F.); (F.M.)
| | - Fabio Malavasi
- Department of Medical Science, University of Torino and Fondazione Ricerca Molinette, 10126 Torino, Italy; (A.C.F.); (F.M.)
| |
Collapse
|
24
|
Yu B, Liu D. Gemtuzumab ozogamicin and novel antibody-drug conjugates in clinical trials for acute myeloid leukemia. Biomark Res 2019; 7:24. [PMID: 31695916 PMCID: PMC6824118 DOI: 10.1186/s40364-019-0175-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 10/18/2019] [Indexed: 01/11/2023] Open
Abstract
Targeted agents are increasingly used for the therapy of acute myeloid leukemia (AML). Gemtuzumab ozogamicin (GO) is the first antibody-drug conjugate (ADC) approved for induction therapy of AML. When used in fractionated doses, GO combined with the conventional cytarabine/anthracycline-based induction chemotherapy significantly improves the outcome of previously untreated AML patients. Single-agent GO is effective and safe for AML patient ineligible for intensive chemotherapy. Multiple combination regimens incorporating GO have also been recommended as potential alternative options. In addition, several novel ADCs targeting CD33, CD123 and CLL-1 are currently undergoing preclinical or early clinical investigations. In this review, we summarized the efficacy and limitations of GO as well as novel ADCs for adult AML patients.
Collapse
Affiliation(s)
- Bo Yu
- Department of Medicine, Lincoln Medical Center, Bronx, NY USA
| | - Delong Liu
- Department of Medicine, New York Medical College and Westchester Medical Center, Valhalla, NY USA
- Department of Oncology, The First affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|