1
|
Hedger AK, Myint W, Lee JM, Suchenski-Loustaunau D, Balachandran V, Shaqra AM, Kurt-Yilmaz N, Watts JK, Matsuo H, Schiffer CA. Next generation APOBEC3 inhibitors: Optimally designed for potency and nuclease stability. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.05.611238. [PMID: 39282427 PMCID: PMC11398451 DOI: 10.1101/2024.09.05.611238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 10/25/2024]
Abstract
APOBEC3 (or A3) enzymes have emerged as potential therapeutic targets due to their role in introducing heterogeneity in viruses and cancer, often leading to drug resistance. Inhibiting these enzymes has remained elusive as initial phosphodiester (PO) linked DNA based inhibitors lack stability and potency. We have enhanced both potency and nuclease stability, of 2'-deoxy-zebularine (dZ), substrate-based oligonucleotide inhibitors for two critical A3's: A3A and A3G. While replacing the phosphate backbone with phosphorothioate (PS) linkages increased nuclease stability, fully PS-modified inhibitors lost potency (1.4-3.7 fold) due to the structural constraints of the active site. For both enzymes, mixed PO/PS backbones enhanced potency (2.3-9.2 fold), while also vastly improving nuclease resistance. We also strategically introduced 2'-fluoro sugar modifications, creating the first nanomolar inhibitor of A3G-CTD2. With hairpin-structured inhibitors containing optimized PS patterns and LNA sugar modifications, we characterize the first single-digit nanomolar inhibitor targeting A3A. These extremely potent A3A inhibitors, were highly resistant to nuclease degradation in serum stability assays. Overall, our optimally designed A3 oligonucleotide inhibitors show improved potency and stability, compared to previous attempts to inhibit these critical enzymes, opening the door to realize the therapeutic potential of A3 inhibition.
Collapse
Affiliation(s)
- Adam K Hedger
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Wazo Myint
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Jeong Min Lee
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Diego Suchenski-Loustaunau
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Vanivilasini Balachandran
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Ala M Shaqra
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Nese Kurt-Yilmaz
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Jonathan K Watts
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
- RNA Therapeutics Institute, UMass Chan Medical School, Worcester, MA 01605, USA
| | - Hiroshi Matsuo
- Cancer Innovation Laboratory, Frederick National Laboratory for Cancer Research, Frederick, Maryland 21702, USA
| | - Celia A Schiffer
- Department of Biochemistry and Molecular Biotechnology, UMass Chan Medical School, Worcester, MA 01605, USA
| |
Collapse
|
2
|
Qin L, Li B, Wang S, Tang Y, Fahira A, Kou Y, Li T, Hu Z, Huang Z. Construction of an immune-related prognostic signature and lncRNA-miRNA-mRNA ceRNA network in acute myeloid leukemia. J Leukoc Biol 2024; 116:146-165. [PMID: 38393298 DOI: 10.1093/jleuko/qiae041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 01/22/2024] [Accepted: 01/29/2024] [Indexed: 02/25/2024] Open
Abstract
The progression of acute myeloid leukemia (AML) is influenced by the immune microenvironment in the bone marrow and dysregulated intracellular competing endogenous RNA (ceRNA) networks. Our study utilized data from UCSC Xena, The Cancer Genome Atlas Program, the Gene Expression Omnibus, and the Immunology Database and Analysis Portal. Using Cox regression analysis, we identified an immune-related prognostic signature. Genomic analysis of prognostic messenger RNA (mRNA) was conducted through Gene Set Cancer Analysis (GSCA), and a prognostic ceRNA network was constructed using the Encyclopedia of RNA Interactomes. Correlations between signature mRNAs and immune cell infiltration, checkpoints, and drug sensitivity were assessed using R software, gene expression profiling interactive analysis (GEPIA), and CellMiner, respectively. Adhering to the ceRNA hypothesis, we established a potential long noncoding RNA (lncRNA)/microRNA (miRNA)/mRNA regulatory axis. Our findings pinpointed 9 immune-related prognostic mRNAs (KIR2DL1, CSRP1, APOBEC3G, CKLF, PLXNC1, PNOC, ANGPT1, IL1R2, and IL3RA). GSCA analysis revealed the impact of copy number variations and methylation on AML. The ceRNA network comprised 14 prognostic differentially expressed lncRNAs (DE-lncRNAs), 6 prognostic DE-miRNAs, and 3 prognostic immune-related DE-mRNAs. Correlation analyses linked these mRNAs' expression to 22 immune cell types and 6 immune checkpoints, with potential sensitivity to 27 antitumor drugs. Finally, we identified a potential LINC00963/hsa-miR-431-5p/CSRP1 axis. This study offers innovative insights for AML diagnosis and treatment through a novel immune-related signature and ceRNA axis. Identified novel biomarkers, including 2 mRNAs (CKLF, PNOC), 1 miRNA (hsa-miR-323a-3p), and 10 lncRNAs (SNHG25, LINC01857, AL390728.6, AC127024.5, Z83843.1, AP002884.1, AC007038.1, AC112512, AC020659.1, AC005921.3) present promising candidates as potential targets for precision medicine, contributing to the ongoing advancements in the field.
Collapse
Affiliation(s)
- Ling Qin
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Boya Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Shijie Wang
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Yulai Tang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Aamir Fahira
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| | - Yanqi Kou
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Tong Li
- Department of Hematology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, No. 24 Jinghua Road, Jianxi District, Luoyang 471003, China
| | - Zhigang Hu
- School of Medical Technology and Engineering, Henan University of Science and Technology, No.263 Kaiyuan Avenue, Luolong District, Luoyang 471000, China
| | - Zunnan Huang
- Key Laboratory of Big Data Mining and Precision Drug Design of Guangdong Medical University, Key Laboratory of Computer-Aided Drug Design of Dongguan City, Key Laboratory for Research and Development of Natural Drugs of Guangdong Province, School of Pharmacy, Guangdong Medical University, No. 1 Xincheng Road, Songshan Lake District, Dongguan 523808, Guangdong, China
| |
Collapse
|
3
|
Hakobyan A, Meyenberg M, Vardazaryan N, Hancock J, Vulliard L, Loizou JI, Menche J. Pan-cancer analysis of the interplay between mutational signatures and cellular signaling. iScience 2024; 27:109873. [PMID: 38783997 PMCID: PMC11112613 DOI: 10.1016/j.isci.2024.109873] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Revised: 12/19/2023] [Accepted: 04/29/2024] [Indexed: 05/25/2024] Open
Abstract
Cancer is a multi-faceted disease with intricate relationships between mutagenic processes, alterations in cellular signaling, and the tissue microenvironment. To date, these processes have been largely studied in isolation. A systematic understanding of how they interact and influence each other is lacking. Here, we present a framework for systematically characterizing the interaction between pairs of mutational signatures and between signatures and signaling pathway alterations. We applied this framework to large-scale data from TCGA and PCAWG and identified multiple positive and negative interactions, both cross֊tissue and tissue֊specific, that provide new insights into the molecular routes observed in tumorigenesis and their respective drivers. This framework allows for a more fine-grained dissection of common and distinct etiology of mutational signatures. We further identified several interactions with both positive and negative impacts on patient survival, demonstrating their clinical relevance and potential for improving personalized cancer care.
Collapse
Affiliation(s)
- Anna Hakobyan
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Mathilde Meyenberg
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
| | - Nelli Vardazaryan
- Armenian Bioinformatics Institute, 3/6 Nelson Stepanyan, 0062 Yerevan, Armenia
| | - Joel Hancock
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Loan Vulliard
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
| | - Joanna I. Loizou
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Center for Cancer Research, Comprehensive Cancer Center, Medical University of Vienna, Spitalgasse 23, BT86/E 01, 1090 Vienna, Austria
| | - Jörg Menche
- CeMM Research Center for Molecular Medicine of the Austrian Academy of Sciences, Lazarettgasse 14, AKH BT25.3, 1090 Vienna, Austria
- Max Perutz Labs, Vienna Biocenter Campus (VBC), Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- University of Vienna, Center for Molecular Biology, Department of Structural and Computational Biology, Dr.-Bohr-Gasse 9, 1030 Vienna, Austria
- Faculty of Mathematics, University of Vienna, Oskar-Morgenstern-Platz 1, 1090 Vienna, Austria
- Ludwig Boltzmann Institute for Network Medicine at the University of Vienna, Augasse 2-6, 1090 Vienna, Austria
| |
Collapse
|
4
|
Ubhi T, Zaslaver O, Quaile AT, Plenker D, Cao P, Pham NA, Békési A, Jang GH, O'Kane GM, Notta F, Moffat J, Wilson JM, Gallinger S, Vértessy BG, Tuveson DA, Röst HL, Brown GW. Cytidine deaminases APOBEC3C and APOBEC3D promote DNA replication stress resistance in pancreatic cancer cells. NATURE CANCER 2024; 5:895-915. [PMID: 38448522 DOI: 10.1038/s43018-024-00742-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 02/09/2024] [Indexed: 03/08/2024]
Abstract
Gemcitabine is a potent inhibitor of DNA replication and is a mainstay therapeutic for diverse cancers, particularly pancreatic ductal adenocarcinoma (PDAC). However, most tumors remain refractory to gemcitabine therapies. Here, to define the cancer cell response to gemcitabine, we performed genome-scale CRISPR-Cas9 chemical-genetic screens in PDAC cells and found selective loss of cell fitness upon disruption of the cytidine deaminases APOBEC3C and APOBEC3D. Following gemcitabine treatment, APOBEC3C and APOBEC3D promote DNA replication stress resistance and cell survival by deaminating cytidines in the nuclear genome to ensure DNA replication fork restart and repair in PDAC cells. We provide evidence that the chemical-genetic interaction between APOBEC3C or APOBEC3D and gemcitabine is absent in nontransformed cells but is recapitulated across different PDAC cell lines, in PDAC organoids and in PDAC xenografts. Thus, we uncover roles for APOBEC3C and APOBEC3D in DNA replication stress resistance and offer plausible targets for improving gemcitabine-based therapies for PDAC.
Collapse
Affiliation(s)
- Tajinder Ubhi
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Olga Zaslaver
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Andrew T Quaile
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
| | - Dennis Plenker
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
- Xilis Inc., Durham, NC, USA
| | - Pinjiang Cao
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Nhu-An Pham
- Living Biobank, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Angéla Békési
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - Gun-Ho Jang
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Grainne M O'Kane
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Faiyaz Notta
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Division of Research, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
| | - Jason Moffat
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Julie M Wilson
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Steven Gallinger
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
- Wallace McCain Centre for Pancreatic Cancer, Princess Margaret Cancer Centre, University Health Network, Toronto, Ontario, Canada
- Lunenfeld Tanenbaum Research Institute, Mount Sinai Hospital, Toronto, Ontario, Canada
- Hepatobiliary/Pancreatic Surgical Oncology Program, University Health Network, Toronto, Ontario, Canada
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, BME Budapest University of Technology and Economics, Budapest, Hungary
- Genome Metabolism Research Group, Institute of Molecular Life Sciences, Research Centre for Natural Sciences, Hungarian Research Network, Budapest, Hungary
| | - David A Tuveson
- Lustgarten Foundation Pancreatic Cancer Research Laboratory, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, USA
| | - Hannes L Röst
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
| | - Grant W Brown
- Department of Biochemistry, University of Toronto, Toronto, Ontario, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
5
|
Kumar S, Talluri S, Zhao J, Liao C, Potluri LB, Buon L, Mu S, Shi J, Chakraborty C, Tai YT, Samur MK, Munshi NC, Shammas MA. ABL1 kinase plays an important role in spontaneous and chemotherapy-induced genomic instability in multiple myeloma. Blood 2024; 143:996-1005. [PMID: 37992230 DOI: 10.1182/blood.2023021225] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 11/02/2023] [Accepted: 11/03/2023] [Indexed: 11/24/2023] Open
Abstract
ABSTRACT Genomic instability contributes to cancer progression and is at least partly due to dysregulated homologous recombination (HR). Here, we show that an elevated level of ABL1 kinase overactivates the HR pathway and causes genomic instability in multiple myeloma (MM) cells. Inhibiting ABL1 with either short hairpin RNA or a pharmacological inhibitor (nilotinib) inhibits HR activity, reduces genomic instability, and slows MM cell growth. Moreover, inhibiting ABL1 reduces the HR activity and genomic instability caused by melphalan, a chemotherapeutic agent used in MM treatment, and increases melphalan's efficacy and cytotoxicity in vivo in a subcutaneous tumor model. In these tumors, nilotinib inhibits endogenous as well as melphalan-induced HR activity. These data demonstrate that inhibiting ABL1 using the clinically approved drug nilotinib reduces MM cell growth, reduces genomic instability in live cell fraction, increases the cytotoxicity of melphalan (and similar chemotherapeutic agents), and can potentially prevent or delay progression in patients with MM.
Collapse
Affiliation(s)
- Subodh Kumar
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Srikanth Talluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jiangning Zhao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Chengcheng Liao
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Lakshmi B Potluri
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Leutz Buon
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Shidai Mu
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| | - Jialan Shi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Chandraditya Chakraborty
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Yu-Tzu Tai
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Mehmet K Samur
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
| | - Nikhil C Munshi
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
- Department of Medicine, Harvard Medical School, Boston, MA
| | - Masood A Shammas
- The Jerome Lipper Multiple Myeloma Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA
- VA Boston Healthcare System, Boston, MA
| |
Collapse
|
6
|
Jiang Y, Wang Y, Wang Z, Zhang Y, Hou Y, Wang X. Anoikis-related genes signature development for clear cell renal cell carcinoma prognosis and tumor microenvironment. Sci Rep 2023; 13:18909. [PMID: 37919386 PMCID: PMC10622575 DOI: 10.1038/s41598-023-46398-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 10/31/2023] [Indexed: 11/04/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is one of the most common primary malignancies of the urinary tract, highly heterogeneous, and increasing in incidence worldwide. Anoikis is a specific type of programmed cell death in which solid tumor cells or normal epithelial cells that do not have metastatic properties lose adhesion to the extracellular matrix or undergo inappropriate cell adhesion-induced apoptosis. Anoikis is thought to play a critical role in tumorigenesis, maintenance, and treatment, according to an increasing amount of research. However, there is still some uncertainty regarding the general impact of anoikis-related genes (ARGs) on the prognostic importance, tumor microenvironment characteristics, and treatment reaction of ccRCC patients. For this study, we used The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus datasets to access the RNA sequencing results and clinical information from ccRCC patients. 29 ARGs related to survival were found using differential analysis and univariate Cox regression analysis. The samples were then divided into two clusters that had different immune traits via unsupervised cluster analysis using 29 prognosis-associated differently expressed ARGs. Then, to build an ARGs signature, 7 genes (PLAU, EDA2R, AFP, PLG, TUBB3, APOBEC3G, and MALAT1) were found using Least Absolute Shrinkage and Selection Operator regression analysis. The new ARGs signature demonstrated outstanding prognostic capability for ccRCC patients' overall survival. In conclusion, for ccRCC patients, we created an ARGs signature that strongly connects to immunological traits and therapy response. Clinicians may find this ARGs signature helpful in developing more individualized and detailed treatment strategies for ccRCC patients.
Collapse
Affiliation(s)
- Yinglei Jiang
- Dialysis Room, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 120000, China
| | - Ying Wang
- Dialysis Room, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 120000, China
| | - Zhengyan Wang
- Changchun University of Chinese Medicine, Changchun, 120000, China
| | - Yinzhen Zhang
- Changchun University of Chinese Medicine, Changchun, 120000, China
| | - Yulong Hou
- Changchun University of Chinese Medicine, Changchun, 120000, China
| | - Xukai Wang
- Dialysis Room, The Affiliated Hospital of Changchun University of Chinese Medicine, Changchun, 120000, China.
| |
Collapse
|
7
|
Zhang S, Guo Y, Hu Y, Gao X, Bai F, Ding Q, Hou K, Wang Z, Sun X, Zhao H, Qu Z, Xu Q. The role of APOBEC3C in modulating the tumor microenvironment and stemness properties of glioma: evidence from pancancer analysis. Front Immunol 2023; 14:1242972. [PMID: 37809064 PMCID: PMC10551170 DOI: 10.3389/fimmu.2023.1242972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Accepted: 09/04/2023] [Indexed: 10/10/2023] Open
Abstract
Background It is now understood that APOBEC3 family proteins (A3s) are essential in tumor progression, yet their involvement in tumor immunity and stemness across diverse cancer types remains poorly understood. Methods In the present study, comprehensive genome-wide statistical and bioinformatic analyses were conducted to elucidate A3 family expression patterns, establishing clinically relevant correlations with prognosis, the tumor microenvironment(TME), immune infiltration, checkpoint blockade, and stemness across cancers. Different experimental techniques were applied, including RT-qPCR, immunohistochemistry, sphere formation assays, Transwell migration assays, and wound-healing assays, to investigate the impact of A3C on low-grade glioma (LGG) and glioblastoma multiforme (GBM), as well as its function in glioma stem cells(GSCs). Results Dysregulated expression of A3s was observed in various human cancer tissues. The prognostic value of A3 expression differed across cancer types, with a link to particularly unfavorable outcomes in gliomas. A3s are associated with the the TME and stemness in multiple cancers. Additionally, we developed an independent prognostic model based on A3s expression, which may be an independent prognostic factor for OS in patients with glioma. Subsequent validation underscored a strong association between elevated A3C expression and adverse prognostic outcomes, higher tumor grades, and unfavorable histology in glioma. A potential connection between A3C and glioma progression was established. Notably, gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses implicated A3C in immune system-related diseases, with heightened A3C levels contributing to an immunosuppressive tumor microenvironment (TME) in glioma. Furthermore, in vitro experiments substantiated the role of A3C in sustaining and renewing glioma stem cells, as A3C deletion led to diminished proliferation, invasion, and migration of glioma cells. Conclusion The A3 family exhibits heterogeneous expression across various cancer types, with its expression profile serving as a predictive marker for overall survival in glioma patients. A3C emerges as a regulator of glioma progression, exerting its influence through modulation of the tumor microenvironment and regulation of stemness.
Collapse
Affiliation(s)
- Shoudu Zhang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Yugang Guo
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Yuanzheng Hu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Xiaofang Gao
- The Department of Science and Technology, Zhengzhou Revogene Ltd, Zhengzhou, Henan, China
| | - Fanghui Bai
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Qian Ding
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Kaiqi Hou
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Zongqing Wang
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| | - Xing Sun
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Hui Zhao
- The Department of Science and Technology, Zhengzhou Revogene Ltd, Zhengzhou, Henan, China
| | - Zhongyu Qu
- Department of Oncology, Nanyang central Hospital, Nanyang, Henan, China
| | - Qian Xu
- Henan Provincial Engineering Laboratory of Insects Bio-reactor, Nanyang Normal University, Nanyang, Henan, China
| |
Collapse
|
8
|
Petrilla C, Galloway J, Kudalkar R, Ismael A, Cottini F. Understanding DNA Damage Response and DNA Repair in Multiple Myeloma. Cancers (Basel) 2023; 15:4155. [PMID: 37627183 PMCID: PMC10453069 DOI: 10.3390/cancers15164155] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 08/10/2023] [Accepted: 08/11/2023] [Indexed: 08/27/2023] Open
Abstract
Multiple myeloma (MM) is a plasma cell malignancy characterized by several genetic abnormalities, including chromosomal translocations, genomic deletions and gains, and point mutations. DNA damage response (DDR) and DNA repair mechanisms are altered in MM to allow for tumor development, progression, and resistance to therapies. Damaged DNA rarely induces an apoptotic response, given the presence of ataxia-telangiectasia mutated (ATM) loss-of-function or mutations, as well as deletions, mutations, or downregulation of tumor protein p53 (TP53) and tumor protein p73 (TP73). Moreover, DNA repair mechanisms are either hyperactive or defective to allow for rapid correction of the damage or permissive survival. Medications used to treat patients with MM can induce DNA damage, by either direct effects (mono-adducts induced by melphalan), or as a result of reactive oxygen species (ROS) production by proteasome inhibitors such as bortezomib. In this review, we will describe the mechanisms of DDR and DNA repair in normal tissues, the contribution of these pathways to MM disease progression and other phenotypes, and the potential therapeutic opportunities for patients with MM.
Collapse
Affiliation(s)
| | | | | | | | - Francesca Cottini
- Division of Hematology, Department of Internal Medicine, College of Medicine, The Ohio State University, Columbus, OH 43210, USA
| |
Collapse
|
9
|
Bong IPN, Esa E. Molecular genetic aberrations in the pathogenesis of multiple myeloma. ASIAN BIOMED 2023; 17:152-162. [PMID: 37860676 PMCID: PMC10584387 DOI: 10.2478/abm-2023-0056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2023]
Abstract
Multiple myeloma (MM) is the second most common form of blood cancer characterized by clonal expansion of malignant plasma cells within the bone marrow. MM is a complex, progressive, and highly heterogeneous malignancy, which occurs via a multistep transformation process involving primary and secondary oncogenic events. Recent advances in molecular techniques have further expanded our understanding of the mutational landscape, clonal composition, and dynamic evolution patterns of MM. The first part of this review describes the key oncogenic events involved in the initiation and progression of MM, together with their prognostic impact. The latter part highlights the most prominent findings concerning genomic aberrations promoted by gene expression profiling (GEP) and next-generation sequencing (NGS) in MM. This review provides a concise understanding of the molecular pathogenesis of the MM genome and the importance of adopting emerging molecular technology in future clinical management of MM.
Collapse
Affiliation(s)
- Ivyna Pau Ni Bong
- Hematology Unit, Cancer Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| | - Ezalia Esa
- Hematology Unit, Cancer Research Center, Institute for Medical Research, National Institute of Health, Ministry of Health, Malaysia
| |
Collapse
|
10
|
Piazzi M, Bavelloni A, Salucci S, Faenza I, Blalock WL. Alternative Splicing, RNA Editing, and the Current Limits of Next Generation Sequencing. Genes (Basel) 2023; 14:1386. [PMID: 37510291 PMCID: PMC10379330 DOI: 10.3390/genes14071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Revised: 06/27/2023] [Accepted: 06/28/2023] [Indexed: 07/30/2023] Open
Abstract
The advent of next generation sequencing (NGS) has fostered a shift in basic analytic strategies of a gene expression analysis in diverse pathologies for the purposes of research, pharmacology, and personalized medicine. What was once highly focused research on individual signaling pathways or pathway members has, from the time of gene expression arrays, become a global analysis of gene expression that has aided in identifying novel pathway interactions, the discovery of new therapeutic targets, and the establishment of disease-associated profiles for assessing progression, stratification, or a therapeutic response. But there are significant caveats to this analysis that do not allow for the construction of the full picture. The lack of timely updates to publicly available databases and the "hit and miss" deposition of scientific data to these databases relegate a large amount of potentially important data to "garbage", begging the question, "how much are we really missing?" This brief perspective aims to highlight some of the limitations that RNA binding/modifying proteins and RNA processing impose on our current usage of NGS technologies as relating to cancer and how not fully appreciating the limitations of current NGS technology may negatively affect therapeutic strategies in the long run.
Collapse
Affiliation(s)
- Manuela Piazzi
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Alberto Bavelloni
- Laboratorio di Oncologia Sperimentale, IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| | - Sara Salucci
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - Irene Faenza
- Dipartimento di Scienze Biomediche e Neuromotorie (DIBINEM), Università di Bologna, 40126 Bologna, Italy
| | - William L Blalock
- "Luigi Luca Cavalli-Sforza" Istituto di Genetica Molecolare, Consiglio Nazionale delle Ricerche (IGM-CNR), 40136 Bologna, Italy
- IRCCS, Istituto Ortopedico Rizzoli, 40136 Bologna, Italy
| |
Collapse
|
11
|
Granadillo Rodríguez M, Wong L, Chelico L. Similar deamination activities but different phenotypic outcomes induced by APOBEC3 enzymes in breast epithelial cells. Front Genome Ed 2023; 5:1196697. [PMID: 37324648 PMCID: PMC10267419 DOI: 10.3389/fgeed.2023.1196697] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023] Open
Abstract
APOBEC3 (A3) enzymes deaminate cytosine to uracil in viral single-stranded DNA as a mutagenic barrier for some viruses. A3-induced deaminations can also occur in human genomes resulting in an endogenous source of somatic mutations in multiple cancers. However, the roles of each A3 are unclear since few studies have assessed these enzymes in parallel. Thus, we developed stable cell lines expressing A3A, A3B, or A3H Hap I using non-tumorigenic MCF10A and tumorigenic MCF7 breast epithelial cells to assess their mutagenic potential and cancer phenotypes in breast cells. The activity of these enzymes was characterized by γH2AX foci formation and in vitro deamination. Cell migration and soft agar colony formation assays assessed cellular transformation potential. We found that all three A3 enzymes had similar γH2AX foci formation, despite different deamination activities in vitro. Notably, in nuclear lysates, the in vitro deaminase activity of A3A, A3B, and A3H did not require digestion of cellular RNA, in contrast to that of A3B and A3H in whole-cell lysates. Their similar activities in cells, nonetheless, resulted in distinct phenotypes where A3A decreased colony formation in soft agar, A3B decreased colony formation in soft agar after hydroxyurea treatment, and A3H Hap I promoted cell migration. Overall, we show that in vitro deamination data do not always reflect cell DNA damage, all three A3s induce DNA damage, and the impact of each is different.
Collapse
|
12
|
Naumann JA, Argyris PP, Carpenter MA, Gupta HB, Chen Y, Temiz NA, Zhou Y, Durfee C, Proehl J, Koniar BL, Conticello SG, Largaespada DA, Brown WL, Aihara H, Vogel RI, Harris RS. DNA Deamination Is Required for Human APOBEC3A-Driven Hepatocellular Carcinoma In Vivo. Int J Mol Sci 2023; 24:9305. [PMID: 37298259 PMCID: PMC10253583 DOI: 10.3390/ijms24119305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/20/2023] [Accepted: 05/22/2023] [Indexed: 06/12/2023] Open
Abstract
Although the APOBEC3 family of single-stranded DNA cytosine deaminases is well-known for its antiviral factors, these enzymes are rapidly gaining attention as prominent sources of mutation in cancer. APOBEC3's signature single-base substitutions, C-to-T and C-to-G in TCA and TCT motifs, are evident in over 70% of human malignancies and dominate the mutational landscape of numerous individual tumors. Recent murine studies have established cause-and-effect relationships, with both human APOBEC3A and APOBEC3B proving capable of promoting tumor formation in vivo. Here, we investigate the molecular mechanism of APOBEC3A-driven tumor development using the murine Fah liver complementation and regeneration system. First, we show that APOBEC3A alone is capable of driving tumor development (without Tp53 knockdown as utilized in prior studies). Second, we show that the catalytic glutamic acid residue of APOBEC3A (E72) is required for tumor formation. Third, we show that an APOBEC3A separation-of-function mutant with compromised DNA deamination activity and wildtype RNA-editing activity is defective in promoting tumor formation. Collectively, these results demonstrate that APOBEC3A is a "master driver" that fuels tumor formation through a DNA deamination-dependent mechanism.
Collapse
Affiliation(s)
- Jordan A. Naumann
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Prokopios P. Argyris
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Howard Hughes Medical Institute, University of Minnesota, Minneapolis, MN 55455, USA
- Division of Oral and Maxillofacial Pathology, College of Dentistry, Ohio State University, Columbus, OH 43210, USA
| | - Michael A. Carpenter
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| | - Harshita B. Gupta
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Yanjun Chen
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Nuri A. Temiz
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Institute for Health Informatics, University of Minnesota, Minneapolis, MN 55455, USA
| | - Yufan Zhou
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Cameron Durfee
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Joshua Proehl
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
| | - Brenda L. Koniar
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Silvestro G. Conticello
- Core Research Laboratory, ISPRO, 50139 Florence, Italy;
- Institute of Clinical Physiology, National Research Council, 56124 Pisa, Italy
| | - David A. Largaespada
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Department of Pediatrics, University of Minnesota, Minneapolis, MN 55455, USA
| | - William L. Brown
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Hideki Aihara
- Department of Biochemistry, Molecular Biology and Biophysics, University of Minnesota, Minneapolis, MN 55455, USA; (J.A.N.); (P.P.A.); (W.L.B.); (H.A.)
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
| | - Rachel I. Vogel
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN 55455, USA; (N.A.T.); (B.L.K.); (D.A.L.); (R.I.V.)
- Department of Obstetrics, Gynecology, and Women’s Health, University of Minnesota, Minneapolis, MN 55455, USA
| | - Reuben S. Harris
- Department of Biochemistry and Structural Biology, University of Texas Health San Antonio, San Antonio, TX 78229, USA; (M.A.C.); (H.B.G.); (Y.C.); (Y.Z.); (C.D.); (J.P.)
- Howard Hughes Medical Institute, University of Texas Health San Antonio, San Antonio, TX 78229, USA
| |
Collapse
|
13
|
Moscvin M, Evans B, Bianchi G. Dissecting molecular mechanisms of immune microenvironment dysfunction in multiple myeloma and precursor conditions. JOURNAL OF CANCER METASTASIS AND TREATMENT 2023; 9:17. [PMID: 38213954 PMCID: PMC10783205 DOI: 10.20517/2394-4722.2022.110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/13/2024]
Abstract
Multiple myeloma (MM) is a disease of clonally differentiated plasma cells. MM is almost always preceded by precursor conditions, monoclonal gammopathy of unknown significance (MGUS), and smoldering MM (SMM) through largely unknown molecular events. Genetic alterations of the malignant plasma cells play a critical role in patient clinical outcomes. Del(17p), t(4;14), and additional chromosomal alterations such as del(1p32), gain(1q) and MYC translocations are involved in active MM evolution. Interestingly, these genetic alterations appear strikingly similar in transformed plasma cell (PC) clones from MGUS, SMM, and MM stages. Recent studies show that effectors of the innate and adaptive immune response show marked dysfunction and skewing towards a tolerant environment that favors disease progression. The MM myeloid compartment is characterized by myeloid-derived suppressor cells (MDSCs), dendritic cells as well as M2-like phenotype macrophages that promote immune evasion. Major deregulations are found in the lymphoid compartment as well, with skewing towards immune tolerant Th17 and Treg and inhibition of CD8+ cytotoxic and CD4+ activated effector T cells. In summary, this review will provide an overview of the complex cross-talk between MM plasma cells and immune cells in the microenvironment and the molecular mechanisms promoting progression from precursor states to full-blown myeloma.
Collapse
Affiliation(s)
- Maria Moscvin
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
- Department of Medicine, Stanford University, Stanford, CA 94305, USA
| | - Benjamin Evans
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
| | - Giada Bianchi
- Department of Medicine, Division of Hematology, Brigham and Womens Hospital, Boston, MA 02115, USA
- Department of Medicine, Brigham and Women’s Hospital, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
14
|
Toledo B, González-Titos A, Hernández-Camarero P, Perán M. A Brief Review on Chemoresistance; Targeting Cancer Stem Cells as an Alternative Approach. Int J Mol Sci 2023; 24:ijms24054487. [PMID: 36901917 PMCID: PMC10003376 DOI: 10.3390/ijms24054487] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 03/02/2023] Open
Abstract
The acquisition of resistance to traditional chemotherapy and the chemoresistant metastatic relapse of minimal residual disease both play a key role in the treatment failure and poor prognosis of cancer. Understanding how cancer cells overcome chemotherapy-induced cell death is critical to improve patient survival rate. Here, we briefly describe the technical approach directed at obtaining chemoresistant cell lines and we will focus on the main defense mechanisms against common chemotherapy triggers by tumor cells. Such as, the alteration of drug influx/efflux, the enhancement of drug metabolic neutralization, the improvement of DNA-repair mechanisms, the inhibition of apoptosis-related cell death, and the role of p53 and reactive oxygen species (ROS) levels in chemoresistance. Furthermore, we will focus on cancer stem cells (CSCs), the cell population that subsists after chemotherapy, increasing drug resistance by different processes such as epithelial-mesenchymal transition (EMT), an enhanced DNA repair machinery, and the capacity to avoid apoptosis mediated by BCL2 family proteins, such as BCL-XL, and the flexibility of their metabolism. Finally, we will review the latest approaches aimed at decreasing CSCs. Nevertheless, the development of long-term therapies to manage and control CSCs populations within the tumors is still necessary.
Collapse
Affiliation(s)
- Belén Toledo
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Aitor González-Titos
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
| | - Pablo Hernández-Camarero
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Correspondence: (P.H.-C.); (M.P.)
| | - Macarena Perán
- Department of Health Sciences, University of Jaén, Campus de las Lagunillas, 23071 Jaen, Spain
- Excellence Research Unit “Modeling Nature” (MNat), University of Granada, 18016 Granada, Spain
- Biopathology and Regenerative Medicine, Institute (IBIMER), University of Granada, Centre for Biomedical Research (CIBM), 18071 Granada, Spain
- Correspondence: (P.H.-C.); (M.P.)
| |
Collapse
|
15
|
Zhao A, Zhou H, Yang J, Li M, Niu T. Epigenetic regulation in hematopoiesis and its implications in the targeted therapy of hematologic malignancies. Signal Transduct Target Ther 2023; 8:71. [PMID: 36797244 PMCID: PMC9935927 DOI: 10.1038/s41392-023-01342-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2022] [Revised: 01/03/2023] [Accepted: 01/19/2023] [Indexed: 02/18/2023] Open
Abstract
Hematologic malignancies are one of the most common cancers, and the incidence has been rising in recent decades. The clinical and molecular features of hematologic malignancies are highly heterogenous, and some hematologic malignancies are incurable, challenging the treatment, and prognosis of the patients. However, hematopoiesis and oncogenesis of hematologic malignancies are profoundly affected by epigenetic regulation. Studies have found that methylation-related mutations, abnormal methylation profiles of DNA, and abnormal histone deacetylase expression are recurrent in leukemia and lymphoma. Furthermore, the hypomethylating agents and histone deacetylase inhibitors are effective to treat acute myeloid leukemia and T-cell lymphomas, indicating that epigenetic regulation is indispensable to hematologic oncogenesis. Epigenetic regulation mainly includes DNA modifications, histone modifications, and noncoding RNA-mediated targeting, and regulates various DNA-based processes. This review presents the role of writers, readers, and erasers of DNA methylation and histone methylation, and acetylation in hematologic malignancies. In addition, this review provides the influence of microRNAs and long noncoding RNAs on hematologic malignancies. Furthermore, the implication of epigenetic regulation in targeted treatment is discussed. This review comprehensively presents the change and function of each epigenetic regulator in normal and oncogenic hematopoiesis and provides innovative epigenetic-targeted treatment in clinical practice.
Collapse
Affiliation(s)
- Ailin Zhao
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Hui Zhou
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Jinrong Yang
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Meng Li
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China
| | - Ting Niu
- Department of Hematology, West China Hospital, Sichuan University, 610041, Chengdu, Sichuan, China.
| |
Collapse
|
16
|
Ogiya D, Chyra Z, Verselis SJ, O'Keefe M, Cobb J, Abiatari I, Talluri S, Sithara AA, Hideshima T, Chu MP, Hájek R, Dorfman DM, Pilarski LM, Anderson KC, Adamia S. Identification of disease-related aberrantly spliced transcripts in myeloma and strategies to target these alterations by RNA-based therapeutics. Blood Cancer J 2023; 13:23. [PMID: 36737429 PMCID: PMC9898564 DOI: 10.1038/s41408-023-00791-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 12/17/2022] [Accepted: 01/12/2023] [Indexed: 02/05/2023] Open
Abstract
Novel drug discoveries have shifted the treatment paradigms of most hematological malignancies, including multiple myeloma (MM). However, this plasma cell malignancy remains incurable, and novel therapies are therefore urgently needed. Whole-genome transcriptome analyses in a large cohort of MM patients demonstrated that alterations in pre-mRNA splicing (AS) are frequent in MM. This manuscript describes approaches to identify disease-specific alterations in MM and proposes RNA-based therapeutic strategies to eradicate such alterations. As a "proof of concept", we examined the causes of aberrant HMMR (Hyaluronan-mediated motility receptor) splicing in MM. We identified clusters of single nucleotide variations (SNVs) in the HMMR transcript where the altered splicing took place. Using bioinformatics tools, we predicted SNVs and splicing factors that potentially contribute to aberrant HMMR splicing. Based on bioinformatic analyses and validation studies, we provided the rationale for RNA-based therapeutic strategies to selectively inhibit altered HMMR splicing in MM. Since splicing is a hallmark of many cancers, strategies described herein for target identification and the design of RNA-based therapeutics that inhibit gene splicing can be applied not only to other genes in MM but also more broadly to other hematological malignancies and solid tumors as well.
Collapse
Affiliation(s)
- Daisuke Ogiya
- Department of Hematology and Oncology, Tokai University School of Medicine, Isehara, Japan
| | - Zuzana Chyra
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - Sigitas J Verselis
- Molecular Diagnostic Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Morgan O'Keefe
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Jacquelyn Cobb
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Ivane Abiatari
- Institute of Medical and Public Health Research, School of Medicine, Ilia State University, Tbilisi, Georgia
| | - Srikanth Talluri
- Molecular Diagnostic Laboratory, Dana-Farber Cancer Institute, Boston, MA, USA.,Veterans Administration Boston Healthcare System, West Roxbury, MA, USA
| | - Anjana Anilkumar Sithara
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - Teru Hideshima
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA
| | - Michael P Chu
- Department of Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Roman Hájek
- Department of Hemato-oncology, University Hospital Ostrava, Ostrava, Czech Republic.,Department of Hemato-oncology, University of Ostrava, Ostrava, Czech Republic
| | - David M Dorfman
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Linda M Pilarski
- Department of Medicine, Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Kenneth C Anderson
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA.
| | - Sophia Adamia
- Jerome Lipper Multiple Myeloma Disease Center, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA. .,Institute of Medical and Public Health Research, School of Medicine, Ilia State University, Tbilisi, Georgia. .,Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA, USA.
| |
Collapse
|
17
|
Keppler-Hafkemeyer A, Greil C, Wratil PR, Shoumariyeh K, Stern M, Hafkemeyer A, Ashok D, Hollaus A, Lupoli G, Priller A, Bischof ML, Ihorst G, Engelhardt M, Marks R, Finke J, Bertrand H, Dächert C, Muenchhoff M, Badell I, Emmerich F, Halder H, Spaeth PM, Knolle PA, Protzer U, von Bergwelt-Baildon M, Duyster J, Hartmann TN, Moosmann A, Keppler OT. Potent high-avidity neutralizing antibodies and T cell responses after COVID-19 vaccination in individuals with B cell lymphoma and multiple myeloma. NATURE CANCER 2023; 4:81-95. [PMID: 36543907 PMCID: PMC9886553 DOI: 10.1038/s43018-022-00502-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 11/24/2022] [Indexed: 12/24/2022]
Abstract
Individuals with hematologic malignancies are at increased risk for severe coronavirus disease 2019 (COVID-19), yet profound analyses of COVID-19 vaccine-induced immunity are scarce. Here we present an observational study with expanded methodological analysis of a longitudinal, primarily BNT162b2 mRNA-vaccinated cohort of 60 infection-naive individuals with B cell lymphomas and multiple myeloma. We show that many of these individuals, despite markedly lower anti-spike IgG titers, rapidly develop potent infection neutralization capacities against several severe acute respiratory syndrome coronavirus 2 variants of concern (VoCs). The observed increased neutralization capacity per anti-spike antibody unit was paralleled by an early step increase in antibody avidity between the second and third vaccination. All individuals with hematologic malignancies, including those depleted of B cells and individuals with multiple myeloma, exhibited a robust T cell response to peptides derived from the spike protein of VoCs Delta and Omicron (BA.1). Consistently, breakthrough infections were mainly of mild to moderate severity. We conclude that COVID-19 vaccination can induce broad antiviral immunity including ultrapotent neutralizing antibodies with high avidity in different hematologic malignancies.
Collapse
Affiliation(s)
- Andrea Keppler-Hafkemeyer
- Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.
| | - Christine Greil
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Paul R. Wratil
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany ,grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Khalid Shoumariyeh
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Marcel Stern
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Annika Hafkemeyer
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Driti Ashok
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Alexandra Hollaus
- grid.5252.00000 0004 1936 973XMedizinische Klinik und Poliklinik III, LMU Klinikum, LMU München, Munich, Germany
| | - Gaia Lupoli
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Alina Priller
- grid.6936.a0000000123222966Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM) School of Medicine, Munich, Germany
| | - Marie L. Bischof
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Gabriele Ihorst
- grid.5963.9Clinical Trials Unit, Faculty of Medicine and Medical Center, University of Freiburg, Freiburg, Germany
| | - Monika Engelhardt
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Reinhard Marks
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Jürgen Finke
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hannah Bertrand
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Christopher Dächert
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany ,grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Maximilian Muenchhoff
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany ,grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Irina Badell
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany ,grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| | - Florian Emmerich
- grid.5963.9Institute for Transfusion Medicine and Gene Therapy, Freiburg University Medical Center, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Hridi Halder
- grid.5252.00000 0004 1936 973XMedizinische Klinik und Poliklinik III, LMU Klinikum, LMU München, Munich, Germany
| | - Patricia M. Spaeth
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany
| | - Percy A. Knolle
- grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany ,grid.6936.a0000000123222966Institute of Molecular Immunology and Experimental Oncology, University Hospital rechts der Isar, Technical University of Munich (TUM) School of Medicine, Munich, Germany
| | - Ulrike Protzer
- grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany ,Helmholtz Munich, Munich, Germany ,grid.6936.a0000000123222966Institute of Virology, Technical University of Munich School of Medicine/Helmholtz Munich, Munich, Germany
| | - Michael von Bergwelt-Baildon
- grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5252.00000 0004 1936 973XMedizinische Klinik und Poliklinik III, LMU Klinikum, LMU München, Munich, Germany
| | - Justus Duyster
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Tanja N. Hartmann
- grid.5963.9Department of Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Andreas Moosmann
- grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany ,grid.7497.d0000 0004 0492 0584German Cancer Consortium (DKTK), partner site Freiburg, and German Cancer Research Center (DKFZ), Heidelberg, Germany ,grid.5252.00000 0004 1936 973XMedizinische Klinik und Poliklinik III, LMU Klinikum, LMU München, Munich, Germany ,Helmholtz Munich, Munich, Germany
| | - Oliver T. Keppler
- grid.5252.00000 0004 1936 973XMax von Pettenkofer Institute and Gene Center, Virology, National Reference Center for Retroviruses, LMU München, Munich, Germany ,grid.452463.2German Center for Infection Research (DZIF), Munich Partner Site, Munich, Germany
| |
Collapse
|
18
|
Wong L, Sami A, Chelico L. Competition for DNA binding between the genome protector replication protein A and the genome modifying APOBEC3 single-stranded DNA deaminases. Nucleic Acids Res 2022; 50:12039-12057. [PMID: 36444883 PMCID: PMC9757055 DOI: 10.1093/nar/gkac1121] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 10/21/2022] [Accepted: 11/08/2022] [Indexed: 11/30/2022] Open
Abstract
The human APOBEC family of eleven cytosine deaminases use RNA and single-stranded DNA (ssDNA) as substrates to deaminate cytosine to uracil. This deamination event has roles in lipid metabolism by altering mRNA coding, adaptive immunity by causing evolution of antibody genes, and innate immunity through inactivation of viral genomes. These benefits come at a cost where some family members, primarily from the APOBEC3 subfamily (APOBEC3A-H, excluding E), can cause off-target deaminations of cytosine to form uracil on transiently single-stranded genomic DNA, which induces mutations that are associated with cancer evolution. Since uracil is only promutagenic, the mutations observed in cancer genomes originate only when uracil is not removed by uracil DNA glycosylase (UNG) or when the UNG-induced abasic site is erroneously repaired. However, when ssDNA is present, replication protein A (RPA) binds and protects the DNA from nucleases or recruits DNA repair proteins, such as UNG. Thus, APOBEC enzymes must compete with RPA to access their substrate. Certain APOBEC enzymes can displace RPA, bind and scan ssDNA efficiently to search for cytosines, and can become highly overexpressed in tumor cells. Depending on the DNA replication conditions and DNA structure, RPA can either be in excess or deficient. Here we discuss the interplay between these factors and how despite RPA, multiple cancer genomes have a mutation bias at cytosines indicative of APOBEC activity.
Collapse
Affiliation(s)
- Lai Wong
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Alina Sami
- University of Saskatchewan, College of Medicine, Department of Biochemistry, Microbiology, and Immunology, Saskatoon, Saskatchewan, S7N 5E5, Canada
| | - Linda Chelico
- To whom correspondence should be addressed. Tel: +1 306 966 4318; Fax: +1 306 966 4298;
| |
Collapse
|
19
|
Duan Y, Du Y, Gu Z, Zheng X, Wang C. Prognostic value, immune signature and molecular mechanisms of the APOBEC family members APOBEC1, APOBEC3A, APOBEC3G and APOBEC3H in pancreatic adenocarcinoma. Front Mol Biosci 2022; 9:1036287. [PMID: 36339709 PMCID: PMC9631948 DOI: 10.3389/fmolb.2022.1036287] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2022] [Accepted: 10/10/2022] [Indexed: 02/26/2024] Open
Abstract
Background: Increasing evidence supports that the APOBEC family is associated with development of a variety of cancers. However, the function of APOBEC1/3A/3G/3H in pancreatic adenocarcinoma (PAAD) is still unclear. Methods: Comprehensive bioinformatic analysis using R (version 3.6.3), TISIDB, Metascape etc. were performed to study the clinicopathological characteristics, prognostic value, immune features and functional mechanisms of the APOBEC1/3A/3G/3H in PAAD. Results: APOBEC1/3A/3G/3H showed significantly elevated expression in PAAD than para-cancerous or normal tissues. Their high expression or amplification were significantly correlated with worse clinicopathological characteristics and prognosis in PAAD patients. In addition, the role of APOBEC1/3A/3G/3H in the immune regulation is diverse and complex, the high expression of APOBEC1 may inhibit the infiltration level of many kinds of immunoreactive tumor-infiltrating cells, which may be an important factor leading to immune escape of PAAD cells. Mechanistically, APOBEC1/3A/3G/3H played an activating role in multiple oncogenic pathways, including the EMT, RAS/MAPK and TSC/mTOR pathways. Moreover, we found that the expression level of APOBEC3G was positively correlated with the sensitivity of gemcitabine and doxorubicin. Conclusion: APOBEC1/3A/3G/3H play an oncogenic role in the development of PAAD and might serve as new biomarkers or therapeutic targets.
Collapse
Affiliation(s)
- Yunjie Duan
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yongxing Du
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zongting Gu
- Department of Hepatobiliary and Pancreatic Surgery and Minimally Invasive Surgery, Zhejiang Provincial People’s Hospital, Hangzhou Medical College, Hangzhou, China
| | - Xiaohao Zheng
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Chengfeng Wang
- State Key Lab of Molecular Oncology and Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
20
|
The Identification of APOBEC3G as a Potential Prognostic Biomarker in Acute Myeloid Leukemia and a Possible Drug Target for Crotonoside. Molecules 2022; 27:molecules27185804. [PMID: 36144542 PMCID: PMC9503540 DOI: 10.3390/molecules27185804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 09/01/2022] [Accepted: 09/02/2022] [Indexed: 11/16/2022] Open
Abstract
The apolipoprotein B mRNA editing enzyme catalytic subunit 3G (APOBEC3G) converts cytosine to uracil in DNA/RNA. Its role in resisting viral invasion has been well documented. However, its expression pattern and potential function in AML remain unclear. In this study, we carried out a bioinformatics analysis and revealed that the expression of APOBEC3G was significantly upregulated in AML, and high expression of APOBEC3G was significantly associated with short overall survival (OS). APOBEC3G expression was especially increased in non-M3AML, and correlated with the unfavorable cytogenetic risks. Additionally, Cox regression analyses indicated APOBEC3G is a hazard factor that cannot be ignored for OS of AML patients. In molecular docking simulations, the natural product crotonoside was found to interact well with APOBEC3G. The expression of APOBEC3G is the highest in KG-1 cells, and the treatment with crotonoside can reduce the expression of APOBEC3G. Crotonoside can inhibit the viability of different AML cells in vitro, arrest KG-1 and MV-4-11 cells in the S phase of the cell cycle and affect the expression of cycle-related proteins, and induce cell apoptosis. Therefore, APOBEC3G could be a potential drug target of crotonoside, and crotonoside can be considered as a lead compound for APOBEC3G inhibition in non-M3 AML.
Collapse
|
21
|
Tikhonov AS, Mintaev RR, Glazkova DV, Bogoslovskaya EV, Shipulin GA. HIV Restriction Factor APOBEC3G and Prospects for Its Use in Gene Therapy for HIV. Mol Biol 2022. [DOI: 10.1134/s0026893322040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
22
|
Yi Z, Ma T, Liu J, Tie W, Li Y, Bai J, Li L, Zhang L. The yin–yang effects of immunity: From monoclonal gammopathy of undetermined significance to multiple myeloma. Front Immunol 2022; 13:925266. [PMID: 35958625 PMCID: PMC9357873 DOI: 10.3389/fimmu.2022.925266] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 06/30/2022] [Indexed: 01/10/2023] Open
Abstract
Multiple myeloma (MM) is the third most common malignant neoplasm of the hematological system. It often develops from monoclonal gammopathy of undetermined significance (MGUS) and smoldering multiple myeloma (SMM) precursor states. In this process, the immune microenvironment interacts with the MM cells to exert yin and yang effects, promoting tumor progression on the one hand and inhibiting it on the other. Despite significant therapeutic advances, MM remains incurable, and the main reason for this may be related to the complex and variable immune microenvironment. Therefore, it is crucial to investigate the dynamic relationship between the immune microenvironment and tumors, to elucidate the molecular mechanisms of different factors in the microenvironment, and to develop novel therapeutic agents targeting the immune microenvironment of MM. In this paper, we review the latest research progress and describe the dual influences of the immune microenvironment on the development and progression of MM from the perspective of immune cells and molecules.
Collapse
Affiliation(s)
- Zhigang Yi
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Pediatric Orthopedics and Pediatrics Lanzhou University Second Hospital, Lanzhou, China
| | - Tao Ma
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- Department of Hematology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Jia Liu
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Wenting Tie
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Yanhong Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Jun Bai
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
| | - Lijuan Li
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| | - Liansheng Zhang
- Department of Hematology, Lanzhou University Second Hospital, Lanzhou, China
- *Correspondence: Lijuan Li, ; Liansheng Zhang,
| |
Collapse
|
23
|
Qian Y, Gong Y, Zou X, Liu Y, Chen Y, Wang R, Dai Z, Tasiheng Y, Lin X, Wang X, Luo G, Yu X, Cheng H, Liu C. Aberrant APOBEC3C expression induces characteristic genomic instability in pancreatic ductal adenocarcinoma. Oncogenesis 2022; 11:35. [PMID: 35750693 PMCID: PMC9232547 DOI: 10.1038/s41389-022-00411-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 06/08/2022] [Accepted: 06/13/2022] [Indexed: 11/12/2022] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a well-known lethal and heterogeneous disease. Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like (APOBEC) is an important mutagenic driver that has seldom been investigated in PDAC. Therefore, this study investigated the significance of APOBEC3C in PDAC. First, cytosine deamination-associated mutation signatures were identified in the PDAC cohorts from TCGA and Fudan University Shanghai Cancer Center (FUSCC) datasets, and C > X-enriched kataegis regions were identified in the FUSCC cohort (12 to 27 counts per sample). Patients were stratified according to APOBEC3C expression, and high APOBEC3C expression was found to correlate with a higher motif enrichment score of 5’-CC-3’ and an elevated kataegis count within PCSK5 and NES genes. Second, we compared APOBEC expression in PDAC and normal pancreatic tissues and found that APOBEC3C was substantially upregulated in PDAC. APOBEC3C-overexpressing cell lines were generated to substantiate the effects of APOBEC3C on PDAC genome, including alterations in single-nucleotide variant (SNV) classes (higher proportion of C > T conversions) and the formation of kataegis regions (newly occurring kataegis regions detected in ACHE and MUC6 genes). Three different PDAC cohorts (FUSCC, TCGA, and QCMG) were analysed to evaluate the prognostic value of APOBEC3C, and APOBEC3C overexpression predicted shorter survival. Finally, the APOBEC3C overexpression correalted with the PDAC tumour microenvironment (TME) remodelling, APOBEC3C expression was associated with the invasion of CD4 + T lymphocytes and CD8 + T lymphocytes (cytotoxic T lymphocytes, CTLs), indicating enhanced immune activity and validating the practicality of APOBEC3C for guiding immunotherapy.
Collapse
Affiliation(s)
- Yunzhen Qian
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Yitao Gong
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Xuan Zou
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Yu Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Yusheng Chen
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Ruijie Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Zhengjie Dai
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Yesiboli Tasiheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Xuan Lin
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Xu Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Guopei Luo
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China.,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China.,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China.,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.
| | - He Cheng
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.
| | - Chen Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, 200032, Shanghai, China. .,Department of Oncology, Shanghai Medical College, Fudan University, 200032, Shanghai, China. .,Shanghai Pancreatic Cancer Institute, 200032, Shanghai, China. .,Pancreatic Cancer Institute, Fudan University, 200032, Shanghai, China.
| |
Collapse
|