1
|
Buglione A, Alloisio G, Ciaccio C, Rodriguez DB, Dogali S, Luce M, Marini S, Cricenti A, Gioia M. GsMTx-4 venom toxin antagonizes biophysical modulation of metastatic traits in human osteosarcoma cells. Eur J Cell Biol 2024; 104:151469. [PMID: 39671774 DOI: 10.1016/j.ejcb.2024.151469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 11/22/2024] [Accepted: 12/10/2024] [Indexed: 12/15/2024] Open
Abstract
Despite their genetic diversity, metastatic cells converge on similar physical constraints during tumor progression. At the nanoscale, these forces can induce substantial molecular deformations, altering the structure and behavior of cancer cells. To address the challenges of osteosarcoma (OS), a highly aggressive cancer, we explored the mechanobiology of OS cells, in vitro. Using uniaxial-stretching technology, we examined the biophysical modulation of metastatic traits in SAOS-2, U-2 OS, and non-tumorigenic hFOB cells. Changes in cell morphology were quantified using confocal and fluorescence microscopy. To elucidate the molecular mechanisms that translate biomechanical alterations into biochemical responses, we employed Western blotting, real-time quantitative RT-PCR, reactive oxygen species ROS assay, and the mechanosensitive channel blocker Grammostola MechanoToxin4 (GsMTx-4). Our study reveals that mechanical stimulation uniquely affects OS cells, increasing nuclear size and altering the N/C ratio. We found that mechanosensitive (MS) channels are activated, leading to ROS accumulation, Src protein modulation, and histone H3 acetylation. These changes influence OS cell motility and adhesion but not proliferation. Importantly, mechanical preconditioning differentially impacts doxorubicin resistance, correlating with the Src-H3 acetylation axis. This study underscores the critical role of MS channels in OS cells and highlights the importance of mechanobiology in identifying molecular pathways that traditional biochemical approaches may not reveal. Notably, the GsMTx-4 venom peptide effectively countered mechanically induced responses, particularly by inhibiting OS cell migration, without harming healthy cells. Thus, suggesting its potential as a promising therapeutic agent for targeting osteosarcoma metastasis.
Collapse
Affiliation(s)
- Arianna Buglione
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Chiara Ciaccio
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - David Becerril Rodriguez
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Simone Dogali
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Marco Luce
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy
| | - Antonio Cricenti
- Institute of Structure Matter del Consiglio Nazionale delle Ricerche ISM-CNR, Via del Fosso del Cavaliere 100, Rome I-00133, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome Tor Vergata, Via Montpellier 1, Roma 00133, Italy.
| |
Collapse
|
2
|
Wei F, Ruan B, Dong J, Yang B, Zhang G, Kelvin Yeung WK, Wang H, Cao W, Wang Y. Asperosaponin VI inhibition of DNMT alleviates GPX4 suppression-mediated osteoblast ferroptosis and diabetic osteoporosis. J Adv Res 2024:S2090-1232(24)00554-X. [PMID: 39647633 DOI: 10.1016/j.jare.2024.11.036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2024] [Revised: 10/21/2024] [Accepted: 11/29/2024] [Indexed: 12/10/2024] Open
Abstract
INTRODUCTION Diabetic osteoporosis (DOP) is an insidious complication of diabetes with limited therapeutic options. DOP is pathologically associated with various types of regulated cell death, but the precise role of ferroptosis in the process remains poorly understood. Asperosaponin VI (AVI), known for its clinical efficacy in treating bone fractures and osteoporosis, may exert its osteoprotective effects through mechanisms involving ferroptosis, however this has not been established. OBJECTIVES This study aimed to investigate the role of AVI in modulating ferroptosis in a mouse model of DOP and to explore the underlying mechanisms. METHODS We assessed OP alterations in femurs of DOP-conditioned mice and primary bone cells. We generated a strain of osteoblast-specific Gpx4-deficient mice. A combination of micro-CT, immunohistochemistry, immunofluorescence, methylation-specific PCR (MSP), bisulfite sequencing PCR (BSP), western blotting (WB), and AVI pull-down assays were employed to elucidate the mechanism and therapeutic target of AVI in DOP. RESULTS Our findings revealed that femurs from DOP-conditioned mice exhibited significant ferroptosis and suppression of the core anti-ferroptosis factor GPX4, mainly due to hypermethylation of the Gpx4 promoter mediated by DNA methyltransferases DNMT1and DNMT3a. Notably, treatment with AVI effectively reversed the hypermethylation, restored GPX4 expression, and reduced ferroptotic pathologies associated with DOP by inhibiting DNMT1/3a. In primarily-cultured osteoblasts and osteoclasts, AVI alleviated GPX4 suppression and reduced ferroptosis in DOP-conditioned osteoblasts through a mechanism dependent on DNMT inhibition and GPX4 restoration. Importantly, the anti-ferroptotic and osteoprotective effects of AVI were abolished in osteoblastic Gpx4 haplo-deficient mice (Gpx4Ob-/+) or when GPX4 was pharmacologically inactivated with RSL3. CONCLUSIONS Our study identifies a pivotal epigenetic ferroptotic pathway that contributes significantly to DOP and uncovers a crucial pharmacological property of AVI that is potentially effective in treating patients with DOP and related osteoporotic disorders.
Collapse
Affiliation(s)
- Fanhao Wei
- Department of Graduate School, Dalian Medical University, No.9 of West Section of Lushun South Road, Dalian 116044, China; The Yangzhou School of Clinical Medicine of Dalian Medical University, 98 West Nantong Road, Yangzhou 225001, China
| | - Binjia Ruan
- Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 West Nantong Road, Yangzhou 225001, China
| | - Jian Dong
- Department of Thoracic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu 210093, China
| | - Bin Yang
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China
| | - Guofu Zhang
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China
| | - Wai Kwok Kelvin Yeung
- Department of Orthopaedics and Traumatology, School of Clinical Medicine, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China
| | - Hongwei Wang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, 22 Hankou Road, Nanjing 210093, China.
| | - Wangsen Cao
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China; Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine, 22 Hankou Road, Nanjing 210093, China; Yancheng First People's Hospital, Affiliated Hospital of Nanjing University Medical School, South People's Road, Yancheng 224006, China..
| | - Yongxiang Wang
- Department of Orthopaedics, Northern Jiangsu People's Hospital Affiliated to Yangzhou University, 98 West Nantong Road, Yangzhou 225001, China; Department of Orthopaedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou 225001, China; The Yangzhou School of Clinical Medicine of Dalian Medical University, 98 West Nantong Road, Yangzhou 225001, China; Northern Jiangsu People's Hospital, Clinical Teaching Hospital of Medical School, Nanjing University, 98 West Nantong Road, Yangzhou 225001, China.
| |
Collapse
|
3
|
Ma Q, Xiong Y, Jie Z, Li C, Wang C, Cai J, Zhang Y, Li J, You Y, Chang M, Zhang D, Qiu C, Li Y, Liu X, Wang L. Damascenone inhibits osteoclastogenesis by epigenetically modulating Nrf2-mediated ROS scavenge and counteracts OVX-induced osteoporosis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 135:156205. [PMID: 39547093 DOI: 10.1016/j.phymed.2024.156205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2024] [Revised: 10/25/2024] [Accepted: 10/28/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Bone formation and resorption regulate bone homeostasis. Excessive osteoclastogenesis enhances bone resorption and causes osteoporosis. Although medicines targeting osteoclast have been developed, these drugs have several side effects. Natural compounds have advantages in safety and efficiency, making them potential candidates for osteoporosis treatment. PURPOSE This study aims to elucidate the role of damascenone (Dama) in osteoclastogenesis and osteoporosis. STUDY DESIGN AND METHODS To demonstrate the effect of Dama on osteoclast differentiation and function, we performed multiple in vitro experiments including TRAP staining, F-actin staining, bone slice resorption assay, real-time PCR, and western bolt. Further, ROS detection, network pharmacology, microscale thermophoresis assay, and ChIP assay were conducted to elucidate the underlying molecular mechanism. Finally, the in vivo effects of Dama were verified using an ovariectomy induced osteoporosis mice model. RESULTS Dama inhibited RANKL-induced osteoclast differentiation and bone resorptive function in vitro. The expression of osteoclast-related genes and activation of MAPKs and NF-κB signaling in osteoclast were also attenuated by Dama. Meanwhile, Dama reduced intracellular ROS level via up-regulating Nrf2 expression. Network pharmacology demonstrated that HDAC2 is the potential direct target of Dama. Dama inhibited HDAC2 function and increased H3K27ac level of Nrf2, which induced Nrf2 expression and activated ROS scavenging enzymes. Inhibiting NRF2 or activating HDAC2 attenuated the effect of Dama on osteoclastogenesis. Finally, Dama injection suppressed in vivo osteoclastogenesis and ameliorated bone loss induced by OVX. CONCLUSION Dama attenuates osteoclastogenesis by epigenetically modulating Nrf2 expression and ROS scavenge. This study provides evidence for Dama being a potential treatment for osteoporosis.
Collapse
Affiliation(s)
- Qingliang Ma
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Yinuo Xiong
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhiwei Jie
- Department of Orthopedic Surgery, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Changzhen Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Congyu Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jingwen Cai
- Department of Immunology, School of Basic Medical Sciences, Shandong University, Jinan, Shandong, China
| | - Yuchen Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jinghang Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yunhao You
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Mingzheng Chang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Dapeng Zhang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Cheng Qiu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yuhua Li
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China
| | - Xinyu Liu
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China; Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China.
| | - Lianlei Wang
- Department of Orthopedics, Qilu Hospital of Shandong University, Jinan, Shandong, China.
| |
Collapse
|
4
|
Ma Z, Qiu L, Li J, Wu Z, Liang S, Zhao Y, Yang J, Hu M, Li Y. Construction a novel osteoporosis model in immune-deficient mice with natural ageing. Biochem Biophys Res Commun 2024; 735:150820. [PMID: 39406026 DOI: 10.1016/j.bbrc.2024.150820] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2024] [Revised: 10/04/2024] [Accepted: 10/10/2024] [Indexed: 11/05/2024]
Abstract
Osteoporosis (OP) predominantly affects elderly individuals. Stem cells show potential for treating OP. However, animal models with normal immune function can eliminate implanted human cells. This study utilized naturally aging NOD/SCID mice, which exhibit immunodeficiency, to create a human osteoporosis model. This approach helps to minimize the premature immune clearance of transplanted allogeneic or xenogeneic cells in preclinical studies, allowing for a more accurate replication of the clinical pharmacological and pharmacokinetic processes involved in stem cell interventions for osteoporosis. NOD/SCID mice were fed until 12, 32, and 43 weeks of age, respectively, and then euthanized. We harvested lumbar vertebra for Micro-Computed Tomography (Micro-CT) scanning and pathological examination. Additionally, we performed biomechanical testing of lumbar vertebra to assess the severity of osteoporosis. We utilized real-time RT-PCR to assess gene expression changes associated with bone metabolism, aging, inflammation, oxidative stress, and the Tgf-β1/Smad3 signaling pathway. In addition, the protein expression levels of P16, Tgf-β1 and Smad3 were detected using Western Blotting (WB). In comparison to 12-week-old mice, the 32-week-old and 43-week-old mice displayed significantly sparser and fractured trabeculae in their lumbar vertebra, lower bone mineral density (BMD), and changes in bone microstructural parameters (∗∗P < 0.01, ∗∗∗P < 0.001). Additionally, compared to 12-week-old mice, the 32-week-old and 43-week-old mice exhibited decreased expression of osteogenic genes (Alp, Opg, Sp7, Col1a1), increased expression of osteoclastic gene (Rankl), the number of TRAP-positive osteoclasts significantly increased in 32-week-old and 43-week-old mice compared to 12-week-old mice. The expression of genes related to aging and inflammatory (P16, Il-1β, Tnf-α) increases with advancing age (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). The expression of oxidative stress-related genes (Sod1, Sod2, Foxo3, Nrf2), as well as Tgf-β1 and Smad3 decreased with age (∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001). As age increases, the levels of P16 protein increase, Tgf-β1 and Smad3 proteins decrease. Our study successfully replicated osteoporosis models in NOD/SCID mice at both 32 and 43 weeks, with the latter exhibiting more severe osteoporosis. This condition seems to be driven by factors such as aging, inflammation, oxidative stress, and the Tgf-β1/Smad3 signaling pathway.
Collapse
Affiliation(s)
- Zhaoxia Ma
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Lihua Qiu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Jinyan Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Zhen Wu
- Shenzhen Zhendejici Pharmaceutical Research and Development Co., Ltd., Shenzhen, Guangdong, 518048, China
| | - Shu Liang
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China
| | - Yunhui Zhao
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Jinmei Yang
- Yunnan Jici Institute for Regenerative Medicine Co., Ltd., Kunming, Yunnan, 650101, China
| | - Min Hu
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| | - Yanjiao Li
- Yunnan Key Laboratory for Basic Research on Bone and Joint Diseases, Kunming University, Kunming, Yunnan, 650214, China.
| |
Collapse
|
5
|
Zhang X, Li H, Chen L, Wu Y, Li Y. NRF2 in age-related musculoskeletal diseases: Role and treatment prospects. Genes Dis 2024; 11:101180. [PMID: 39281838 PMCID: PMC11400624 DOI: 10.1016/j.gendis.2023.101180] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 10/06/2023] [Accepted: 10/31/2023] [Indexed: 09/18/2024] Open
Abstract
The NRF2 pathway is a metabolic- and redox-sensitive signaling axis in which the transcription factor controls the expression of a multitude of genes that enable cells to survive environmental stressors, such as oxidative stress, mainly by inducing the expression of cytoprotective genes. Basal NRF2 levels are maintained under normal physiological conditions, but when exposed to oxidative stress, cells activate the NRF2 pathway, which is crucial for supporting cell survival. Recently, the NRF2 pathway has been found to have novel functions in metabolic regulation and interplay with other signaling pathways, offering novel insights into the treatment of various diseases. Numerous studies have shown that targeting its pathway can effectively investigate the development and progression of age-related musculoskeletal diseases, such as sarcopenia, osteoporosis, osteoarthritis, and intervertebral disc degeneration. Appropriate regulation of the NRF2 pathway flux holds promise as a means to improve musculoskeletal function, thereby providing a new avenue for drug treatment of age-related musculoskeletal diseases in clinical settings. The review summarized an overview of the relationship between NRF2 and cellular processes such as oxidative stress, apoptosis, inflammation, mitochondrial dysfunction, ferroptosis, and autophagy, and explores the potential of targeted NRF2 regulation in the treatment of age-related musculoskeletal diseases.
Collapse
Affiliation(s)
- Xiangyu Zhang
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Hengzhen Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| | - Lin Chen
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yuxiang Wu
- Department of Health and Physical Education, Jianghan University, Wuhan, Hubei 430056, China
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, Hunan 410008, China
| |
Collapse
|
6
|
Liu HY, Luo YG, Zhang J, Hu YH, He HY, Li J, Mao HP, Fu SF. A literature review of Chinese traditional Baduanjin qigong for perimenopausal and postmenopausal symptoms. Medicine (Baltimore) 2024; 103:e40235. [PMID: 39496036 PMCID: PMC11537610 DOI: 10.1097/md.0000000000040235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 10/07/2024] [Indexed: 11/06/2024] Open
Abstract
This review aimed to evaluate the effectiveness and safety of Baduanjin qigong on perimenopausal and postmenopausal symptoms based on clinical trials. A literature search was conducted in 7 databases up to June 30, 2023. The information of study design and observed indicator based on perimenopausal and postmenopausal stage was extracted. We mainly analyzed the effectiveness, safety and the methodology quality. Thirty-five trials were selected, and 17 original studies were considered good methodological quality. During perimenopause, Baduanjin was mainly to treat mood disorders (63.64%, 14/22), among which 6 (42.86%, 6/14) were depression, 2 (14.29%, 2/14) were depression and anxiety, and 1 (7.14%, 1/14) was anxiety, as well as 5 (35.71%, 5/14) sleep disorders. And the exercise program had a duration of 45 to 50 minutes (57.14%, 8/14), 7 times (71.43%, 10/14) a week. The programs lasting 3 months (42.86%, 6/14), accounted for the highest proportion of the exercise program. In the postmenopausal stage, Baduanjin was used to treat osteoporosis (84.62%, 11/13). From the data available, the program with 2 to 3 times a day (81.82%, 9/11) reported the highest number of significant effects, with a maximum duration of 12 months (55.56%, 5/9), followed by 6 months (33.33%, 3/9). A total of 8 trials mentioned the adverse reactions, but none was related to Baduanjin, and the dropout of participants (1.96%, 57/2912) was also not associated with Baduanjin. There is evidence for positive effects of Baduanjin in addressing perimenopausal mental disorders and postmenopausal osteoporosis, but more research is necessary to clarify best practices and quantify results.
Collapse
Affiliation(s)
- Hong-yan Liu
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Ya-ge Luo
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jin Zhang
- College of Culture and Health Communication, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Yue-han Hu
- Huazhong University of Science and Technology, Wuhan, China
| | - Han-yu He
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Jie Li
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Hao-ping Mao
- State Key Laboratory of Component-based Chinese Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Shu-fei Fu
- Chinese Medical College, Tianjin University of Traditional Chinese Medicine, Tianjin, China
- Key Laboratory of Chinese Formulae, Ministry of Education, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| |
Collapse
|
7
|
Guisado-Cuadrado I, Romero-Parra N, Elliott-Sale KJ, Sale C, Díaz ÁE, Peinado AB. Influence of Menstrual Cycle and Oral Contraceptive Phases on Bone (re)modelling Markers in Response to Interval Running. Calcif Tissue Int 2024; 115:382-392. [PMID: 39066926 PMCID: PMC11405431 DOI: 10.1007/s00223-024-01259-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/07/2024] [Accepted: 07/15/2024] [Indexed: 07/30/2024]
Abstract
To explore how sex hormone fluctuations may affect bone metabolism, this study aimed to examine P1NP and β-CTX-1 concentrations across the menstrual and oral contraceptive (OC) cycle phases in response to running. 17β-oestradiol, progesterone, P1NP and β-CTX-1 were analysed pre- and post-exercise in eight eumenorrheic females in the early-follicular, late-follicular, and mid-luteal phases, while 8 OC users were evaluated during the withdrawal and active pill-taking phases. The running protocol consisted of 8 × 3min treadmill runs at 85% of maximal aerobic speed. 17β-oestradiol concentrations (pg·ml-1) were lower in early-follicular (47.22 ± 39.75) compared to late-follicular (304.95 ± 235.85;p = < 0.001) and mid-luteal phase (165.56 ± 80.6;p = 0.003) and higher in withdrawal (46.51 ± 44.09) compared to active pill-taking phase (10.88 ± 11.24;p < 0.001). Progesterone (ng·ml-1) was higher in mid-luteal (13.214 ± 4.926) compared to early-follicular (0.521 ± 0.365; p < 0.001) and late-follicular phase (1.677 ± 2.586;p < 0.001). In eumenorrheic females, P1NP concentrations (ng·ml-1) were higher in late-follicular (69.97 ± 17.84) compared to early-follicular (60.96 ± 16.64;p = 0.006;) and mid-luteal phase (59.122 ± 11.77;p = 0.002). β-CTX-1 concentrations (ng·ml-1) were lower in mid-luteal (0.376 ± 0.098) compared to late-follicular (0.496 ± 0.166; p = 0.001) and early-follicular phase (0.452 ± 0.148; p = 0.039). OC users showed higher post-exercise P1NP concentrations in withdrawal phase (61.75 ± 8.32) compared to post-exercise in active pill-taking phase (45.45 ± 6;p < 0.001). Comparing hormonal profiles, post-exercise P1NP concentrations were higher in early-follicular (66.91 ± 16.26;p < 0.001), late-follicular (80.66 ± 16.35;p < 0.001) and mid-luteal phases (64.57 ± 9.68;p = 0.002) to active pill-taking phase. These findings underscore the importance of studying exercising females with different ovarian hormone profiles, as changes in sex hormone concentrations affect bone metabolism in response to running, showing a higher post-exercise P1NP concentrations in all menstrual cycle phases compared with active pill-taking phase of the OC cycle.
Collapse
Affiliation(s)
- Isabel Guisado-Cuadrado
- LFE Research Group, Department of Health and Human Performance. Faculty of Physical Activity and Sport Science, Universidad Politécnica de Madrid, Calle de Martín Fierro, 7, 28040, Madrid, Spain.
| | - Nuria Romero-Parra
- LFE Research Group, Department of Health and Human Performance. Faculty of Physical Activity and Sport Science, Universidad Politécnica de Madrid, Calle de Martín Fierro, 7, 28040, Madrid, Spain
- Department of Physical Therapy, Occupational Therapy, Rehabilitation and Physical Medicine. Faculty of Health Sciences, Universidad Rey Juan Carlos, Alcorcón, Spain
| | - Kirsty J Elliott-Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Craig Sale
- Department of Sport and Exercise Sciences, Manchester Metropolitan University Institute of Sport, Manchester, UK
| | - Ángel E Díaz
- Laboratorio Clínico. S.G. Ciencias del Deporte. Consejo Superior de Deportes, Madrid, Spain
| | - Ana B Peinado
- LFE Research Group, Department of Health and Human Performance. Faculty of Physical Activity and Sport Science, Universidad Politécnica de Madrid, Calle de Martín Fierro, 7, 28040, Madrid, Spain
| |
Collapse
|
8
|
Shi X, Gao T, Yu C, Fu S, Guo T, Xu W, Li X, Wang Y, Zhang J, Jia X, Mao Y. Oxysophocarpine attenuates inflammatory osteolysis by modulating the NF-κb pathway and the reactive oxygen species-related Nrf2 signaling pathway. Inflammopharmacology 2024; 32:3461-3474. [PMID: 39150492 DOI: 10.1007/s10787-024-01552-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Accepted: 08/08/2024] [Indexed: 08/17/2024]
Abstract
BACKGROUND AND AIM Inflammatory diseases often result in bone loss due to persistent inflammation, which activates osteoclasts and increases bone resorption. Oxysophocarpine (OSC), a bioalkaloid extracted from the roots of Sophora japonica and other leguminous plants, has neuroprotective and anti-tumor properties. However, it is still uncertain whether OSC can effectively inhibit the differentiation of osteoclasts and bone resorption. Therefore, this study explored the potential role of OSC in osteoclast formation and inflammatory osteolysis and its underlying mechanisms. EXPERIMENTAL PROCEDURE This study involved inducing primary mouse bone marrow macrophages (BMMs) into osteoclasts using macrophage colony-stimulating factor (M-CSF) and receptor activator of NF-κB ligand (RANKL) and examined the effects of OSC on osteoclast (OC) differentiation, function, and intracellular reactive oxygen species (ROS) production. The impact of OSC on the expression of osteoclast-specific genes and inflammation-related factors was assessed using real-time quantitative PCR. Additionally, changes in oxidative stress-related factors, NF-κB, and MAPK signaling pathways were examined using western blotting. Finally, this study investigated the influence of OSC on a mouse cranial bone resorption model induced by titanium (Ti) particles in vivo. RESULTS OSC inhibited OC differentiation and resorption and reduces intracellular ROS levels. Moreover, OSC suppressed IL-1β, TNF-α, IL-6, and osteoclast-specific gene transcription while increasing Nrf2 and HO-1 protein expression. Furthermore, OSC inhibited the expression and autoregulation of the NFATc1 gene, ultimately leading to a reduction in Ti particle-induced bone resorption in mice. CONCLUSION OSC could be regarded as an innovative medication for the treatment of osteoclast-associated inflammatory osteolytic diseases.
Collapse
Affiliation(s)
- Xiaofeng Shi
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Tian Gao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Chaohong Yu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Shaotian Fu
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Tingxian Guo
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Wei Xu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Xiaojun Li
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yitian Wang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Jingwei Zhang
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Xinlin Jia
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China
| | - Yuanqing Mao
- Shanghai Key Laboratory of Orthopaedic Implants, Department of Orthopaedic Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, 639 Zhizaoju Road, Shanghai, 200011, People's Republic of China.
| |
Collapse
|
9
|
Li Q, Liu Q, Lin Z, Lin W, Huang F, Zhu P. Hypomethylation in promoters of PGC-1α involved in exercise-driven skeletal muscular alterations in old age. Open Life Sci 2024; 19:20220959. [PMID: 39290496 PMCID: PMC11406220 DOI: 10.1515/biol-2022-0959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/30/2024] [Accepted: 08/12/2024] [Indexed: 09/19/2024] Open
Abstract
Exercise training can significantly improve skeletal muscle mitochondrial function and has been proven to be highly relevant to alterations in skeletal muscle DNA methylation. However, it remains unclear whether late-in-life exercise has an effect on promoter methylation of PGC-1α, a key regulator of mitochondrial biogenesis. Here we employed two distinct exercise modalities, constant medium intensity exercise training (CMIT) and high-intensity interval exercise training (HIIT), to investigate their impacts on PGC-1α expression and methylation regulation in skeletal muscle of aged mice. The results revealed a notable decrease in PGC-1α expression in skeletal muscle of aged mice, accompanied by elevated methylation levels of the PGC-1α promoter, and increased DNA methyltransferase (DNMT) protein expressions. However, both forms of exercise training significantly corrected PGC-1α epigenetic changes, increased PGC-1α expression, and ameliorated skeletal muscle reduction. Furthermore, exercise training led to elevated expression of proteins related to mitochondrial biogenesis and energy metabolism in skeletal muscle, improving mitochondrial structure and function. In conclusion, late-in-life exercise improved skeletal muscle function, morphology, and mitochondria biogenesis, which may be associated with hypomethylation in promoters of PGC-1α and increased content of skeletal muscle PGC-1α. Notably, there was no clear difference between HIIT and CMIT in PGC-1α expression and skeletal muscle function.
Collapse
Affiliation(s)
- Qiaowei Li
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
- Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Hospital, Fuzhou, 350001, P. R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P. R. China
- Fujian Provincial Center for Geriatrics, Fuzhou, 350001, P. R. China
| | - Qin Liu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
- Fujian Provincial Center for Geriatrics, Fuzhou, 350001, P. R. China
| | - Zhong Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P. R. China
- Fujian Provincial Center for Geriatrics, Fuzhou, 350001, P. R. China
| | - Wenwen Lin
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, 350001, P. R. China
- Fujian Key Laboratory of Geriatrics, Fuzhou, 350001, P. R. China
| | - Feng Huang
- Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, P. R. China
- Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Hospital134 East Street, Fuzhou, 350001, P. R. China
- Fujian Key Laboratory of Geriatrics, 134 East Street, Fuzhou, 350001, P. R. China
- Fujian Provincial Center for Geriatrics, 134 East Street, Fuzhou, 350001, P. R. China
| | - Pengli Zhu
- Shengli Clinical Medical College of Fujian Medical University, 134 East Street, Fuzhou, 350001, P. R. China
- Fujian Provincial Institute of Clinical Geriatrics, Fujian Provincial Hospital134 East Street, Fuzhou, 350001, P. R. China
- Fujian Key Laboratory of Geriatrics, 134 East Street, Fuzhou, 350001, P. R. China
- Fujian Provincial Center for Geriatrics, 134 East Street, Fuzhou, 350001, P. R. China
| |
Collapse
|
10
|
Zhang N, Nao J, Zhang S, Dong X. Novel insights into the activating transcription factor 4 in Alzheimer's disease and associated aging-related diseases: Mechanisms and therapeutic implications. Front Neuroendocrinol 2024; 74:101144. [PMID: 38797197 DOI: 10.1016/j.yfrne.2024.101144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Revised: 05/16/2024] [Accepted: 05/22/2024] [Indexed: 05/29/2024]
Abstract
Ageing is inherent to all human beings, most mechanistic explanations of ageing results from the combined effects of various physiological and pathological processes. Additionally, aging pivotally contributes to several chronic diseases. Activating transcription factor 4 (ATF4), a member of the ATF/cAMP response element-binding protein family, has recently emerged as a pivotal player owing to its indispensable role in the pathophysiological processes of Alzheimer's disease and aging-related diseases. Moreover, ATF4 is integral to numerous biological processes. Therefore, this article aims to comprehensively review relevant research on the role of ATF4 in the onset and progression of aging-related diseases, elucidating its potential mechanisms and therapeutic approaches. Our objective is to furnish scientific evidence for the early identification of risk factors in aging-related diseases and pave the way for new research directions for their treatment. By elucidating the signaling pathway network of ATF4 in aging-related diseases, we aspire to gain a profound understanding of the molecular and cellular mechanisms, offering novel strategies for addressing aging and developing related therapeutics.
Collapse
Affiliation(s)
- Nan Zhang
- Department of Neurology, the Seventh Clinical College of China Medical University, No. 24 Central Street, Xinfu District, Fushun 113000, Liaoning, China.
| | - Jianfei Nao
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Shun Zhang
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| | - Xiaoyu Dong
- Department of Neurology, Shengjing Hospital of China Medical University, No. 36 Sanhao Street, Heping District, Shenyang 110000, Liaoning, China.
| |
Collapse
|
11
|
Dittmar MC, Tohidnezhad M, Fragoulis A, Bücker A, Stein M, Pufe T, Kubo Y. Pharmacological effects of methysticin and L-sulforaphane through the Nrf2/ARE signaling pathway in MLO-Y4 osteocytes: in vitro study. Ann Anat 2024; 254:152260. [PMID: 38521364 DOI: 10.1016/j.aanat.2024.152260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 02/04/2024] [Accepted: 03/19/2024] [Indexed: 03/25/2024]
Abstract
BACKGROUND Oxidative stress plays a crucial role in the pathogenesis of many skeletal diseases by inducing osteocyte death. The transcription factor nuclear factor erythroid 2-related factor 2 (Nrf2) is a master regulator of various antioxidant gene expressions through antioxidant response element (ARE) against cellular oxidative stress and can be induced by various stimulants, including the phytochemicals methysticin (MET) and L-sulforaphane (SFN). This study aimed to establish an osteocyte in vitro model to investigate the pharmacological effects of MET and SFN on the Nrf2/ARE pathway. METHODS MLO-Y4 murine osteocytes and the stably transduced MLO-Y4-SIN-lenti-ARE reporter gene cell line were used. MET and SFN were used as Nrf2 inducers. The cytotoxicity of MET, SFN, and hydrogen peroxide (H2O2) was evaluated using the CytoTox-Glo™ Assay. Time- and dose-dependent ARE induction was examined by Monoluciferase Assay. The mRNA and protein expressions of Nrf2 target markers, such as heme-oxygenase 1 (Ho-1), NADPH quinone dehydrogenase 1 (Nqo1), and thioredoxin reductase 1 (Txnrd1), were detected by RT-qPCR, Western Blot, and immunofluorescence staining, respectively. Osteogenesis markers, osteopontin, and osteocalcin were compared with and without treatment by immunofluorescence staining. RESULTS The experimental data showed that MET and SFN induced ARE activity in a time- and dose-dependent manner and increased the mRNA and protein expression of antioxidant markers compared to vehicle-treated controls. The protein expression of osteopontin and osteocalcin in the samples treated with SFN were significantly higher than without treatment, and the number of cell death treated with SFN was significantly lower than without treatment under H2O2-induced stress conditions. CONCLUSIONS Nrf2 inducers MET and SFN increased the mRNA expression of antioxidant genes through the Nrf2/ARE pathway in osteocytes. Notably, SFN increased the protein expression of osteocyte-associated osteogenic markers and suppressed cell death under H2O2-induced stress condition. Thus, Nrf2 stimulators can exert stress-relieving and osteogenic effects on osteocytes.
Collapse
Affiliation(s)
- Maja Charlotte Dittmar
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Athanassios Fragoulis
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Annette Bücker
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Matthias Stein
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, Aachen 52074, Germany; Department of Orthopaedic Surgery, Graduate School of Medical Sciences, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan.
| |
Collapse
|
12
|
Jin Z, Xu H, Sun X, Yan B, Wang L. Targeting SAT1 prevents osteoporosis through promoting osteoclast apoptosis. Biomed Pharmacother 2024; 175:116732. [PMID: 38739990 DOI: 10.1016/j.biopha.2024.116732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/26/2024] [Accepted: 05/07/2024] [Indexed: 05/16/2024] Open
Abstract
Osteoporosis is a systemic bone disease characterized by decreased bone mass that is tightly regulated by the coordinated actions of osteoclasts and osteoblasts. Apoptosis as a precise programmed cell death involves a cascade of gene expression events which are mechanistically linked to the regulation of bone metabolism. Nevertheless, the critical biomolecules involved in regulating cell apoptosis in osteoporosis remain unknown. To gain a deeper insight into the relationship between apoptosis and osteoporosis, this study integrated the sequencing results of human samples and using a machine learning workflow to overcome the limitations of a single study. Among all immune cell populations, we assessed the apoptotic level and portrayed the distinct subtypes and lineage differentiation of monocytic cells in osteoporotic tissues. Osteoclasts expressed a higher level of Spermidine/spermine-N1-Acetyltransferase1 (SAT1) during osteoclastogenesis which prevented osteoclasts apoptosis and facilitate osteoporosis progression. In addition, Berenil, one potent SAT1 inhibitor, increased osteoclast apoptosis and reversed the bone loss in the femurs of a murine ovariectomy model. In summary, Berenil promotes osteoclast apoptosis, inhibits the bone resorption and improves the abnormal bone structure in vitro and in vivo models by targeting SAT1, demonstrating its potential as a precise therapeutic strategy for clinical osteoporosis treatment.
Collapse
Affiliation(s)
- Zhichun Jin
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Hao Xu
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Xueyu Sun
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China
| | - Bin Yan
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China.
| | - Lin Wang
- Department of Orthodontics, The Affiliated Stomatological Hospital of Nanjing Medical University, Nanjing, Jiangsu 210029, China; State Key Laboratory Cultivation Base of Research, Prevention and Treatment for Oral Diseases, Nanjing Medical University, Nanjing, Jiangsu 210029, China; Jiangsu Province Engineering Research Center of Stomatological Translational Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
13
|
Shen J, Zhang S, Zhang J, Wei X, Wang Z, Han B. Osteogenic mechanism of chlorogenic acid and its application in clinical practice. Front Pharmacol 2024; 15:1396354. [PMID: 38873428 PMCID: PMC11169668 DOI: 10.3389/fphar.2024.1396354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/06/2024] [Indexed: 06/15/2024] Open
Abstract
Natural polyphenols may have a role in counteracting oxidative stress, which is associated with aging and several bone-related diseases. Chlorogenic acid (CGA) is a naturally occurring polyphenolic compound formed by the esterification of caffeic and quininic acids with osteogenic, antioxidant, and anti-inflammatory properties. This review discusses the potential of CGA to enhance osteogenesis by increasing the osteogenic capacity of mesenchymal stem cells (MSCs), osteoblast survival, proliferation, differentiation, and mineralization, as well as its ability to attenuate osteoclastogenesis by enhancing osteoclast apoptosis and impeding osteoclast regeneration. CGA can be involved in bone remodeling by acting directly on pro-osteoclasts/osteoblasts or indirectly on osteoclasts by activating the nuclear factor kB (RANK)/RANK ligand (RANKL)/acting osteoprotegerin (OPG) system. Finally, we provide perspectives for using CGA to treat bone diseases.
Collapse
Affiliation(s)
- Jiayu Shen
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Shichen Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Jiayu Zhang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Xin Wei
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Zilin Wang
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| | - Bing Han
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
- Jilin Provincial Key Laboratory of Tooth Development and Bone Remodeling, Jilin University, Changchun, China
| |
Collapse
|
14
|
Wei F, Lin K, Ruan B, Wang C, Yang L, Wang H, Wang Y. Epigallocatechin gallate protects MC3T3-E1 cells from cadmium-induced apoptosis and dysfunction via modulating PI3K/AKT/mTOR and Nrf2/HO-1 pathways. PeerJ 2024; 12:e17488. [PMID: 38827303 PMCID: PMC11141548 DOI: 10.7717/peerj.17488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 05/09/2024] [Indexed: 06/04/2024] Open
Abstract
Epigallocatechin gallate (EGCG), an active constituent of tea, is recognized for its anticancer and anti-inflammatory properties. However, the specific mechanism by which EGCG protects osteoblasts from cadmium-induced damage remains incompletely understood. Here, the action of EGCG was investigated by exposing MC3T3-E1 osteoblasts to EGCG and CdCl2 and examining their growth, apoptosis, and differentiation. It was found that EGCG promoted the viability of cadmium-exposed MC3T3-E1 cells, mitigated apoptosis, and promoted both maturation and mineralization. Additionally, CdCl2 has been reported to inhibit both the phosphoinositide 3-kinase/protein kinase B/mammalian target of rapamycin (PI3K/AKT/mTOR) and nuclear factor erythroid 2-related factor 2/heme oxygenase-1(Nrf2/HO-1) signaling pathways. EGCG treatment attenuated cadmium-induced apoptosis in osteoblasts and restored their function by upregulating both signaling pathways. The findings provide compelling evidence for EGCG's role in attenuating cadmium-induced osteoblast apoptosis and dysfunction through activating the PI3K/AKT/mTOR and Nrf2/HO-1 pathways. This suggests the potential of using EGCG for treating cadmium-induced osteoblast dysfunction.
Collapse
Affiliation(s)
- Fanhao Wei
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Kai Lin
- Nanjing University Medical School, Nanjing, China
| | - Binjia Ruan
- Nanjing University Medical School, Nanjing, China
| | | | - Lixun Yang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| | - Hongwei Wang
- Nanjing University Medical School, Nanjing, China
| | - Yongxiang Wang
- Clinical Medical College, Yangzhou University, Yangzhou, China
- Northern Jiangsu People’s Hospital Affiliated to Yangzhou University, Yangzhou, China
| |
Collapse
|
15
|
Kutac P, Jandacka D, Elavsky S, Uchytil J, Bunc V, Krajcigr M, Barot T. The effect of regular running on the bone tissue of middle-aged men and women. J Sports Med Phys Fitness 2024; 64:455-464. [PMID: 38261331 DOI: 10.23736/s0022-4707.23.15279-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2024]
Abstract
BACKGROUND Many authors consider running to be a protective physical activity (PA) in bone health. However, many studies also show inconsistencies in their results. The objective of the study is to analyze the effect of cumulative loading rate (TCL) on the bone mass of middle-aged runners and non-runners is assessed. METHODS This cross-sectional study included 322 individuals. There were 212 runners (109 male, 103 female) and those were individuals who did >10 km of running per week. There were 110 non-runners (54 male, 56 female). This group included individuals who did not adhere to the WHO (2020) recommendations for PA. The average age in the individual groups ranged from 40.9±4.1 to 42.3±4.8 years. Bone parameters were measured on the lower extremities and vertebral spine using the DXA method (Hologic QDR Horizon A). Multi-regression dependencies analysis was used to assess the results. RESULTS The results of the multi-regression dependencies analysis showed that the bone mineral content (BMC) and bone mineral density (BMD) are significantly influenced by the TCL and gender. CONCLUSIONS Therefore, we can conclude that running could be a suitable PA for preventing the reduction of BMD in the middle-aged population, especially in the lower limbs.
Collapse
Affiliation(s)
- Petr Kutac
- Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic -
| | - Daniel Jandacka
- Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Steriani Elavsky
- Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Jaroslav Uchytil
- Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Vaclav Bunc
- Faculty of Education, Charles University, Prague, Czech Republic
| | - Miroslav Krajcigr
- Department of Human Movement Studies, University of Ostrava, Ostrava, Czech Republic
| | - Tomas Barot
- Department of Mathematics with Didactics, University of Ostrava, Ostrava, Czech Republic
| |
Collapse
|
16
|
Fanelli G, Alloisio G, Lelli V, Marini S, Rinalducci S, Gioia M. Mechano-induced cell metabolism disrupts the oxidative stress homeostasis of SAOS-2 osteosarcoma cells. Front Mol Biosci 2024; 10:1297826. [PMID: 38726050 PMCID: PMC11079223 DOI: 10.3389/fmolb.2023.1297826] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Accepted: 12/18/2023] [Indexed: 05/12/2024] Open
Abstract
There has been an increasing focus on cancer mechanobiology, determining the underlying-induced changes to unlock new avenues in the modulation of cell malignancy. Our study used LC-MS untargeted metabolomic approaches and real-time polymerase chain reaction (PCR) to characterize the molecular changes induced by a specific moderate uniaxial stretch regimen (i.e., 24 h-1 Hz, cyclic stretch 0,5% elongation) on SAOS-2 osteosarcoma cells. Differential metabolic pathway analysis revealed that the mechanical stimulation induces a downregulation of both glycolysis and the tricarboxylic acid (TCA) cycle. At the same time, the amino acid metabolism was found to be dysregulated, with the mechanical stimulation enhancing glutaminolysis and reducing the methionine cycle. Our findings showed that cell metabolism and oxidative defense are tightly intertwined in mechanically stimulated cells. On the one hand, the mechano-induced disruption of the energy cell metabolism was found correlated with an antioxidant glutathione (GSH) depletion and an accumulation of reactive oxygen species (ROS). On the other hand, we showed that a moderate stretch regimen could disrupt the cytoprotective gene transcription by altering the expression levels of manganese superoxide dismutase (SOD1), Sirtuin 1 (SIRT1), and NF-E2-related factor 2 (Nrf2) genes. Interestingly, the cyclic applied strain could induce a cytotoxic sensitization (to the doxorubicin-induced cell death), suggesting that mechanical signals are integral regulators of cell cytoprotection. Hence, focusing on the mechanosensitive system as a therapeutic approach could potentially result in more effective treatments for osteosarcoma in the future.
Collapse
Affiliation(s)
- Giuseppina Fanelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Giulia Alloisio
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Veronica Lelli
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Stefano Marini
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| | - Sara Rinalducci
- Department of Ecological and Biological Sciences (DEB), University of Tuscia, Viterbo, Italy
| | - Magda Gioia
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, Rome, Italy
| |
Collapse
|
17
|
Si Y, Li Y, Gu K, Yin H, Ma Y. Icariin ameliorates osteoporosis in ovariectomized rats by targeting Cullin 3/Nrf2/OH pathway for osteoclast inhibition. Biomed Pharmacother 2024; 173:116422. [PMID: 38471268 DOI: 10.1016/j.biopha.2024.116422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/07/2024] [Accepted: 03/08/2024] [Indexed: 03/14/2024] Open
Abstract
Osteoporosis, characterized by low bone mass and bone microarchitecture breakdown, has become a growing public health problem. The increase in oxidative stress could lead to an imbalance between osteoblasts-mediated osteogenesis and osteoclast-mediated bone resorption, which gives rise to osteoporosis. Nrf2 is a master transcription factor that regulates oxidative stress and has recently been reported to take part in the development of osteoporosis. Icariin, a leading active flavonoid in herbal Epimedium pubescens, has significant antioxidant activity in and is widely applied for treating bone diseases. In this study, we aimed to explore the effect of icariin on osteoclastogenesis and its potential mechanism from the perspective of oxidative stress inhibition, using ovariectomized (OVX) rats and RANKL-induced RAW264.7 cells. Our results demonstrated that icariin-treated OVX rats exhibited higher bone density, fewer tartrate-resistant acid phosphatase (TRAP)-positive osteoclasts, and lower ROS levels in bone tissues than vehicle-treated OVX rats. Also, icariin suppressed osteoclast differentiation and inhibited the expression of osteoclastogenesis-related genes, such as NFATc1, Ctsk, Trap, and c-Fos, in RANKL-induced RAW264.7 cells. Icariin also reduced intracellular ROS levels by increasing the expression of nuclear Nrf2 and HO-1. Further mechanistic studies showed icariin inhibited Cullin 3 expression and could delay Nrf2 degradation by reducing the ubiquitination of endogenous Nrf2 in RANKL-stimulated RAW264.7 cells, and these effects were markedly reversed by cullin three overexpression. These findings suggest icariin alleviated osteoporosis by suppressing osteoclastogenesis via targeting the Cullin 3/Nrf2/OH signaling pathway. Our study implied that icariin may be a potential candidate to treat osteoporosis.
Collapse
Affiliation(s)
- Yuhao Si
- School of Acupuncture-Moxibustion and Tuina, School of Health Preservation and Rehabilitation, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Yan Li
- School of Medicine, Southeast University, Nanjing, Jiangsu Province 210009, China
| | - Kuan Gu
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| | - Heng Yin
- Department of Traumatology & Orthopedics, Wuxi Affiliated Hospital of Nanjing University of Chinese Medicine, Wuxi 214071, China; Jiangsu CM Clinical Innovation Center of Degenerative Bone & Joint Disease, Wuxi TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Wuxi, Jiangsu Province 214071, China.
| | - Yong Ma
- College of Basic Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, China
| |
Collapse
|
18
|
Hart DA. The Heterogeneity of Post-Menopausal Disease Risk: Could the Basis for Why Only Subsets of Females Are Affected Be Due to a Reversible Epigenetic Modification System Associated with Puberty, Menstrual Cycles, Pregnancy and Lactation, and, Ultimately, Menopause? Int J Mol Sci 2024; 25:3866. [PMID: 38612676 PMCID: PMC11011715 DOI: 10.3390/ijms25073866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2024] [Revised: 03/19/2024] [Accepted: 03/28/2024] [Indexed: 04/14/2024] Open
Abstract
For much of human evolution, the average lifespan was <40 years, due in part to disease, infant mortality, predators, food insecurity, and, for females, complications of childbirth. Thus, for much of evolution, many females did not reach the age of menopause (45-50 years of age) and it is mainly in the past several hundred years that the lifespan has been extended to >75 years, primarily due to public health advances, medical interventions, antibiotics, and nutrition. Therefore, the underlying biological mechanisms responsible for disease risk following menopause must have evolved during the complex processes leading to Homo sapiens to serve functions in the pre-menopausal state. Furthermore, as a primary function for the survival of the species is effective reproduction, it is likely that most of the advantages of having such post-menopausal risks relate to reproduction and the ability to address environmental stresses. This opinion/perspective will be discussed in the context of how such post-menopausal risks could enhance reproduction, with improved survival of offspring, and perhaps why such risks are preserved. Not all post-menopausal females exhibit risk for this set of diseases, and those who do develop such diseases do not have all of the conditions. The diseases of the post-menopausal state do not operate as a unified complex, but as independent variables, with the potential for some overlap. The how and why there would be such heterogeneity if the risk factors serve essential functions during the reproductive years is also discussed and the concept of sets of reversible epigenetic changes associated with puberty, pregnancy, and lactation is offered to explain the observations regarding the distribution of post-menopausal conditions and their potential roles in reproduction. While the involvement of an epigenetic system with a dynamic "modification-demodification-remodification" paradigm contributing to disease risk is a hypothesis at this point, validation of it could lead to a better understanding of post-menopausal disease risk in the context of reproduction with commonalities may also lead to future improved interventions to control such risk after menopause.
Collapse
Affiliation(s)
- David A Hart
- Department of Surgery, Faculty of Kinesiology, and McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB T2N 4N1, Canada
| |
Collapse
|
19
|
Jiang Z, Qi G, He X, Yu Y, Cao Y, Zhang C, Zou W, Yuan H. Ferroptosis in Osteocytes as a Target for Protection Against Postmenopausal Osteoporosis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2307388. [PMID: 38233202 PMCID: PMC10966575 DOI: 10.1002/advs.202307388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 12/18/2023] [Indexed: 01/19/2024]
Abstract
Ferroptosis is a necrotic form of iron-dependent regulatory cell death. Estrogen withdrawal can interfere with iron metabolism, which is responsible for the pathogenesis of postmenopausal osteoporosis (PMOP). Here, it is demonstrated that estrogen withdrawal induces iron accumulation in the skeleton and the ferroptosis of osteocytes, leading to reduced bone mineral density. Furthermore, the facilitatory effect of ferroptosis of osteocytes is verified in the occurrence and development of postmenopausal osteoporosis is associated with over activated osteoclastogenesis using a direct osteocyte/osteoclast coculture system and glutathione peroxidase 4 (GPX4) knockout ovariectomized mice. In addition, the nuclear factor erythroid derived 2-related factor-2 (Nrf2) signaling pathway is confirmed to be a crucial factor in the ferroptosis of osteocytic cells. Nrf2 regulates the expression of nuclear factor kappa-B ligand (RANKL) by regulating the DNA methylation level of the RANKL promoter mediated by DNA methyltransferase 3a (Dnmt3a), which is as an important mechanism in osteocytic ferroptosis-mediated osteoclastogenesis. Taken together, this data suggests that osteocytic ferroptosis is involved in PMOP and can be targeted to tune bone homeostasis.
Collapse
Affiliation(s)
- Zengxin Jiang
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Guobin Qi
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Xuecheng He
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yifan Yu
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Yuting Cao
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Changqing Zhang
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| | - Weiguo Zou
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
- State Key Laboratory of Cell BiologyCAS Center for Excellence in Molecular Cell SciencesShanghai Institute of Biochemistry and Cell BiologyChinese Academy of SciencesUniversity of Chinese Academy of SciencesShanghai200031China
| | - Hengfeng Yuan
- Department of OrthopaedicsShanghai Jiaotong University Affiliated Sixth People's HospitalNo. 600 Yishan RoadShanghai200233China
- Institute of Microsurgery on ExtremitiesShanghai Jiao Tong University Affiliated Sixth People's HospitalShanghai200233China
| |
Collapse
|
20
|
Ji H, Pan Q, Cao R, Li Y, Yang Y, Chen S, Gu Y, Qian D, Guo Y, Wang L, Wang Z, Xiao L. Garcinone C attenuates RANKL-induced osteoclast differentiation and oxidative stress by activating Nrf2/HO-1 and inhibiting the NF-kB signaling pathway. Heliyon 2024; 10:e25601. [PMID: 38333852 PMCID: PMC10850749 DOI: 10.1016/j.heliyon.2024.e25601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 01/30/2024] [Accepted: 01/30/2024] [Indexed: 02/10/2024] Open
Abstract
Osteoporosis is the result of osteoclast formation exceeding osteoblast production, and current osteoporosis treatments targeting excessive osteoclast bone resorption have serious adverse effects. There is a need to fully understand the mechanisms of osteoclast-mediated bone resorption, identify new drug targets, and find better drugs to treat osteoporosis. Gar C (Gar C) is a major naturally occurring phytochemical isolated from mangosteen, and is a derivative of the naturally occurring phenolic antioxidant lutein. We used an OP mouse model established by ovariectomy (OVX). We found that treatment with Gar C significantly increased bone mineral density and significantly decreased the expression of TRAP, NFATC1 and CTSK relative to untreated OP mice. We found that Garcinone C could disrupt osteoclast activation and resorption functions by inhibiting RANKL-induced osteoclast differentiation as well as inhibiting the formation of multinucleated osteoclasts. Immunoblotting showed that Gar C downregulated the expression of osteoclast-related proteins. In addition, Gar C significantly inhibited RANKL-induced ROS production and affected NF-κB activity by inhibiting phosphorylation Formylation of P65 and phosphorylation and degradation of ikba. These data suggest that Gar C significantly reduced OVX-induced osteoporosis by inhibiting osteoclastogenesis and oxidative stress in bone tissue. Mechanistically, this effect was associated with inhibition of the ROS-mediated NF-κB pathway.
Collapse
Affiliation(s)
- Hongyun Ji
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Qian Pan
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Ruihong Cao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yajun Li
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yunshang Yang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Shuangshuang Chen
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yong Gu
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Daoyi Qian
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Yang Guo
- Laboratory of New Techniques of Restoration & Reconstruction of Orthopedics and Traumatology, Nanjing University of Chinese Medicine, Nanjing, 210000, China
| | - Liangliang Wang
- Department of Orthopedics, The Affiliated Changzhou Second People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Zhirong Wang
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| | - Long Xiao
- Translational Medical Innovation Center, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
- Department of Orthopedics, Zhangjiagang TCM Hospital Affiliated to Nanjing University of Chinese Medicine, Zhangjiagang, 215600, China
| |
Collapse
|
21
|
Chen Y, Huang Y, Li J, Jiao T, Yang L. Enhancing osteoporosis treatment with engineered mesenchymal stem cell-derived extracellular vesicles: mechanisms and advances. Cell Death Dis 2024; 15:119. [PMID: 38331884 PMCID: PMC10853558 DOI: 10.1038/s41419-024-06508-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 01/24/2024] [Accepted: 01/26/2024] [Indexed: 02/10/2024]
Abstract
As societal aging intensifies, the incidence of osteoporosis (OP) continually rises. OP is a skeletal disorder characterized by reduced bone mass, deteriorated bone tissue microstructure, and consequently increased bone fragility and fracture susceptibility, typically evaluated using bone mineral density (BMD) and T-score. Not only does OP diminish patients' quality of life, but it also imposes a substantial economic burden on society. Conventional pharmacological treatments yield limited efficacy and severe adverse reactions. In contemporary academic discourse, mesenchymal stem cells (MSCs) derived extracellular vesicles (EVs) have surfaced as auspicious novel therapeutic modalities for OP. EVs can convey information through the cargo they carry and have been demonstrated to be a crucial medium for intercellular communication, playing a significant role in maintaining the homeostasis of the bone microenvironment. Furthermore, various research findings provide evidence that engineered strategies can enhance the therapeutic effects of EVs in OP treatment. While numerous reviews have explored the progress and potential of EVs in treating degenerative bone diseases, research on using EVs to address OP remains in the early stages of basic experimentation. This paper reviews advancements in utilizing MSCs and their derived EVs for OP treatment. It systematically examines the most extensively researched MSC-derived EVs for treating OP, delving not only into the molecular mechanisms of EV-based OP therapy but also conducting a comparative analysis of the strengths and limitations of EVs sourced from various cell origins. Additionally, the paper emphasizes the technical and engineering strategies necessary for leveraging EVs in OP treatment, offering insights and recommendations for future research endeavors.
Collapse
Affiliation(s)
- Yiman Chen
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Yuling Huang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Jia Li
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China
| | - Taiwei Jiao
- Department of Gastroenterology and Endoscopy, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
| | - Lina Yang
- Departments of Geriatrics, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
- Department of International Physical Examination Center, The First Hospital of China Medical University, Shenyang, 110001, Liaoning, PR China.
| |
Collapse
|
22
|
Tang L, Zhang YY, Liu WJ, Fu Q, Zhao J, Liu YB. DNA methylation of promoter region inhibits galectin-1 expression in BMSCs of aged mice. Am J Physiol Cell Physiol 2024; 326:C429-C441. [PMID: 38105757 DOI: 10.1152/ajpcell.00334.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 12/01/2023] [Accepted: 12/14/2023] [Indexed: 12/19/2023]
Abstract
Senile osteoporosis increases fracture risks. Bone marrow stromal cells (BMSCs) are sensitive to aging. Deep insights into BMSCs aging are vital to elucidate the mechanisms underlying age-related bone loss. Recent advances showed that osteoporosis is associated with aberrant DNA methylation of many susceptible genes. Galectin-1 (Gal-1) has been proposed as a mediator of BMSCs functions. In our previous study, we showed that Gal-1 was downregulated in aged BMSCs and global deletion of Gal-1 in mice caused bone loss via impaired osteogenesis potential of BMSCs. Gal-1 promoter is featured by CpG islands. However, there are no reports concerning the DNA methylation status in Gal-1 promoter during osteoporosis. In the current study, we sought to investigate the role of DNA methylation in Gal-1 downregulation in aged BMSCs. The potential for anti-bone loss therapy based on modulating DNA methylation is explored. Our results showed that Dnmt3b-mediated Gal-1 promoter DNA hypermethylation plays an important role in Gal-1 downregulation in aged BMSCs, which inhibited β-catenin binding on Gal-1 promoter. Bone loss of aged mice was alleviated in response to in vivo deletion of Dnmt3b from BMSCs. Finally, when bone marrow of young wild-type (WT) mice or young Dnmt3bPrx1-Cre mice was transplanted into aged WT mice, Gal-1 level in serum and trabecular bone mass were elevated in recipient aged WT mice. Our study will benefit for deeper insights into the regulation mechanisms of Gal-1 expression in BMSCs during osteoporosis development, and for the discovery of new therapeutic targets for osteoporosis via modulating DNA methylation status.NEW & NOTEWORTHY There is Dnmt3b-mediated DNA methylation in Gal-1 promoter in aged bone marrow stromal cell (BMSC). DNA methylation causes Gal-1 downregulation and osteogenesis attenuation of aged BMSC. DNA methylation blocks β-catenin binding on Gal-1 promoter. Bone loss of aged mice is alleviated by in vivo deletion of Dnmt3b from BMSC.
Collapse
Affiliation(s)
- Liang Tang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Yang-Yang Zhang
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Wen-Jun Liu
- Department of Orthopedic Surgery, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Qiang Fu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jian Zhao
- Department of Orthopedics, Second Affiliated Hospital of Naval Medical University, Shanghai, People's Republic of China
| | - Yan-Bin Liu
- Department of Orthopedics, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| |
Collapse
|
23
|
Bao J, Wang Z, Yang Y, Yu X, Yuan W, Sun W, Chen L. Interleukin-17 alleviates erastin-induced alveolar bone loss by suppressing ferroptosis via interaction between NRF2 and p-STAT3. J Clin Periodontol 2024; 51:233-250. [PMID: 37961757 DOI: 10.1111/jcpe.13898] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 08/22/2023] [Accepted: 10/20/2023] [Indexed: 11/15/2023]
Abstract
AIM To investigate the relationship between interleukin-17 (IL-17), ferroptosis and osteogenic differentiation. MATERIALS AND METHODS We first analysed the changes in ferroptosis-related molecules in experimental periodontitis models. The effects of erastin, a small-molecule ferroptosis inducer, and IL-17 on alveolar bone loss and repair in animal models were then investigated. Primary mouse mandibular osteoblasts were exposed to erastin and IL-17 in vitro. Ferroptosis- and osteogenesis-related genes and proteins were detected. Further, siRNA, immunofluorescence co-localization and immunoprecipitation were used to confirm the roles of the nuclear factor erythroid-2-related factor 2 (NRF2) and phosphorylated signal transducer and activator of transcription 3 (p-STAT3), as well as their interaction. RESULTS The levels of NRF2, glutathione peroxidase 4 and solute carrier family 7 member 11 were lower in the ligated tissues than in normal periodontal tissues. Alveolar bone loss in an in vivo experimental periodontitis model was aggravated by erastin and alleviated by IL-17. In vitro, IL-17 ameliorated erastin-inhibited osteogenic differentiation by reversing ferroptosis. Altered NRF2 expression correlated with changes in ferroptosis-related molecules and osteogenesis. Furthermore, the physical interaction between NRF2 and p-STAT3 was confirmed in the nucleus. In IL-17 + erastin-stimulated osteoblasts, the p-STAT3-NRF2 complex might actively participate in the downstream transcription of ferroptosis- and osteogenesis-related genes. CONCLUSIONS IL-17 administration conferred resistance to erastin-induced osteoblast ferroptosis and osteogenesis. The possible mechanism may involve p-STAT3 directly interacting with NRF2.
Collapse
Affiliation(s)
- Jiaqi Bao
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
- Cancer Institute, The Second Affiliated Hospital of Zhejiang University, School of Medicine, Hangzhou, China
| | - Zhongxiu Wang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Yuting Yang
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xufei Yu
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenlin Yuan
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Weilian Sun
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Lili Chen
- Department of Periodontology, The Second Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
24
|
Al-Kuraishy HM, Al-Gareeb AI, Eldahshan OA, Abdelkhalek YM, El Dahshan M, Ahmed EA, Sabatier JM, Batiha GES. The possible role of nuclear factor erythroid-2-related factor 2 activators in the management of Covid-19. J Biochem Mol Toxicol 2024; 38:e23605. [PMID: 38069809 DOI: 10.1002/jbt.23605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 07/06/2023] [Accepted: 11/21/2023] [Indexed: 01/18/2024]
Abstract
COVID-19 is caused by a novel SARS-CoV-2 leading to pulmonary and extra-pulmonary manifestations due to oxidative stress (OS) development and hyperinflammation. COVID-19 is primarily asymptomatic though it may cause acute lung injury (ALI), acute respiratory distress syndrome (ARDS), systemic inflammation, and thrombotic events in severe cases. SARS-CoV-2-induced OS triggers the activation of different signaling pathways, which counterbalances this complication. One of these pathways is nuclear factor erythroid 2-related factor 2 (Nrf2), which induces a series of cellular interactions to mitigate SARS-CoV-2-mediated viral toxicity and OS-induced cellular injury. Nrf2 pathway inhibits the expression of pro-inflammatory cytokines and the development of cytokine storm in COVID-19. Therefore, Nrf2 activators may play an essential role in reducing SARS-CoV-2 infection-induced inflammation by suppressing NLRP3 inflammasome in COVID-19. Furthermore, Nrf2 activators can attenuate endothelial dysfunction (ED), renin-angiotensin system (RAS) dysregulation, immune thrombosis, and coagulopathy. Thus this mini-review tries to clarify the possible role of the Nrf2 activators in the management of COVID-19. Nrf2 activators could be an effective therapeutic strategy in the management of Covid-19. Preclinical and clinical studies are recommended in this regard.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Ali I Al-Gareeb
- Department of Clinical Pharmacology and Medicine, College of Medicine, ALmustansiriyia University, Iraq
| | - Omayma A Eldahshan
- Department of Pharmacognosy, Faculty of Pharmacy, Ain Shams University, Abbassia, Cairo, Egypt
| | | | - Magdy El Dahshan
- Department of Internal Medicine, Faculty of Medicine, Al Azhar University, Cairo, Egypt
| | - Eman A Ahmed
- Department of Pharmacology, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, Egypt
| | - Jean-Marc Sabatier
- Institut de Neurophysiopathologie (INP), CNRS UMR 7051, Faculté des Sciences Médicales et Paramédicales, Aix-Marseille Université, Marseille, France
| | - Gaber E-S Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, AlBeheira, Egypt
| |
Collapse
|
25
|
Xu QF, Zhang H, Zhao Y, Liu D, Wei J, Jiang L, Liu YJ, Zhu XY. Increased R-spondin 3 contributes to aerobic exercise-induced protection against renal vascular endothelial hyperpermeability and acute kidney injury. Acta Physiol (Oxf) 2023; 239:e14036. [PMID: 37607126 DOI: 10.1111/apha.14036] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 07/11/2023] [Accepted: 08/08/2023] [Indexed: 08/24/2023]
Abstract
AIM Exercise training exerts protective effects against sepsis-associated multiple organ dysfunction. This study aimed to investigate whether aerobic exercise protected against sepsis-associated acute kidney injury (AKI) via modulating R-spondin 3 (RSPO3) expression. METHODS To investigate the effects of aerobic exercise on lipopolysaccharide (LPS)-induced AKI, LPS (20 mg/kg) was intraperitoneally injected after six weeks of treadmill training. To investigate the role of RSPO3 in LPS-induced AKI, wild-type (WT) or inducible endothelial cell-specific RSPO3 knockout (RSPO3EC-/- ) mice were intraperitoneally injected with 12 mg/kg LPS. RSPO3 was intraperitoneally injected 30 min before LPS treatment. RESULTS Aerobic exercise-trained mice were more resistant to LPS-induced body weight loss and hypothermia and had a significant higher survival rate than sedentary mice exposed to LPS. Exercise training restored the LPS-induced decreases in serum and renal RSPO3 levels. Exercise or RSPO3 attenuated, whereas inducible endothelial cell-specific RSPO3 knockout exacerbated LPS-induced renal glycocalyx loss, endothelial hyperpermeability, inflammation, and AKI. Bioinformatics analysis results revealed significant increases in the expression of matrix metalloproteinases (MMPs) in kidney tissues of mice exposed to sepsis or endotoxaemia, which was validated in renal tissue from LPS-exposed mice and LPS-treated human microvascular endothelial cells (HMVECs). Both RSPO3 and MMPs inhibitor restored LPS-induced downregulation of tight junction protein, adherens junction protein, and glycocalyx components, thus ameliorating LPS-induced endothelial leakage. Exercise or RSPO3 reversed LPS-induced upregulation of MMPs in renal tissues. CONCLUSION Increased renal expression of RSPO3 contributes to aerobic exercise-induced protection against LPS-induced renal endothelial hyperpermeability and AKI by suppressing MMPs-mediated disruption of glycocalyx and tight and adherens junctions.
Collapse
Affiliation(s)
- Qing-Feng Xu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
- Department of Physiology, Navy Medical University, Shanghai, China
| | - Hui Zhang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Ying Zhao
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Di Liu
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Juan Wei
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Lai Jiang
- Department of Anesthesiology and Surgical Intensive Care Unit, Xinhua Hospital, Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Yu-Jian Liu
- Shanghai Frontiers Science Research Base of Exercise and Metabolic Health, The Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China
| | - Xiao-Yan Zhu
- Department of Physiology, Navy Medical University, Shanghai, China
| |
Collapse
|
26
|
Che J, Yang X, Jin Z, Xu C. Nrf2: A promising therapeutic target in bone-related diseases. Biomed Pharmacother 2023; 168:115748. [PMID: 37865995 DOI: 10.1016/j.biopha.2023.115748] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Revised: 10/15/2023] [Accepted: 10/17/2023] [Indexed: 10/24/2023] Open
Abstract
Nuclear factor erythroid-2-related factor 2 (Nrf2) plays an important role in maintaining cellular homeostasis, as it suppresses cell damage caused by external stimuli by regulating the transcription of intracellular defense-related genes. Accumulating evidence has highlighted the crucial role of reduction-oxidation (REDOX) imbalance in the development of bone-related diseases. Nrf2, a transcription factor linked to nuclear factor-erythrocyte 2, plays a pivotal role in the regulation of oxidative stress and induction of antioxidant defenses. Therefore, further investigation of the mechanism and function of Nrf2 in bone-related diseases is essential. Considerable evidence suggests that increased nuclear transcription of Nrf2 in response to external stimuli promotes the expression of intracellular antioxidant-related genes, which in turn leads to the inhibition of bone remodeling imbalance, improved fracture recovery, reduced occurrence of osteoarthritis, and greater tumor resistance. Certain natural extracts can selectively target Nrf2, potentially offering therapeutic benefits for osteogenic arthropathy. In this article, the biological characteristics of Nrf2 are reviewed, the intricate interplay between Nrf2-regulated REDOX imbalance and bone-related diseases is explored, and the potential preventive and protective effects of natural products targeting Nrf2 in these diseases are elucidated. A comprehensive understanding of the role of Nrf2 in the development of bone-related diseases provides valuable insights into clinical interventions and can facilitate the discovery of novel Nrf2-targeting drugs.
Collapse
Affiliation(s)
- Jingmin Che
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Xiaoli Yang
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| | - Zhankui Jin
- Department of Orthopedics, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China.
| | - Cuixiang Xu
- Shaanxi Provincial Key Laboratory of Infection and Immune Diseases, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China; Shaanxi Engineering Research Center of Cell Immunology, Shaanxi Provincial People's Hospital, Xi'an, Shaanxi, China
| |
Collapse
|
27
|
Kuang J, Xu M, Xu C, Wang Y, Ni C, Wei S, Liu Z, Kong M, Zhou Q, Yao M, Ni H. miR-199a-3p mediates bone cancer pain through upregulation of dnmt3a expression in spinal dorsal horn neurons. Biochem Biophys Res Commun 2023; 682:97-103. [PMID: 37804593 DOI: 10.1016/j.bbrc.2023.09.069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Accepted: 09/23/2023] [Indexed: 10/09/2023]
Abstract
Due to its complex pathological mechanisms, bone cancer pain (BCP) has become an increasingly challenging clinical issue, there is an urgent need to identify the underlying mechanisms of BCP. In our present study, we found that decreased expression of miR-199a-3p in spinal dorsal horn (SDH) neurons contributed to BCP hypersensitivity. Intrathecal administration of miR-199a-3p agomir alleviated the initiation of tumor inoculation induced pain hypersensitivity and suppressed the expression of DNMT3A. Subsequently, luciferase assays confirmed direct binding between miR-199a-3p and Dnmt3a mRNA. AAV-DNMT3A-shRNA microinjection relieved mechanical hyperalgesia and upregulated the expression of Nrf2 levels in BCP. In naïve rats, Overexpression of DNMT3A yielded the opposite effects. Finally, increase of DNMT3A by lentiviral vector abolished miR-199a-3p-mediated alleviation hypersensitivity effects on BCP progression. Taken these together, our findings highlighted a novel contribution of miR-199a-3p to BCP and provided a fresh outlook on potential mechanism research for BCP.
Collapse
Affiliation(s)
- Jiao Kuang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Miao Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Chengfei Xu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Yahui Wang
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Chaobo Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Shirong Wei
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Zhihao Liu
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Min Kong
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Qinghe Zhou
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China
| | - Ming Yao
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China.
| | - Huadong Ni
- Department of Anesthesiology and Pain Research Center, The Affiliated Hospital of Jiaxing University, 1882 Zhonghuan South Road, Jiaxing, 314001, China.
| |
Collapse
|
28
|
Su G, Zhang D, Li T, Pei T, Yang J, Tu S, Liu S, Ren J, Zhang Y, Duan M, Yang X, Shen Y, Zhou C, Xie J, Liu X. Annexin A5 derived from matrix vesicles protects against osteoporotic bone loss via mineralization. Bone Res 2023; 11:60. [PMID: 37940665 PMCID: PMC10632518 DOI: 10.1038/s41413-023-00290-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/23/2023] [Accepted: 08/31/2023] [Indexed: 11/10/2023] Open
Abstract
Matrix vesicles (MVs) have shown strong effects in diseases such as vascular ectopic calcification and pathological calcified osteoarthritis and in wound repair of the skeletal system due to their membranous vesicle characteristics and abundant calcium and phosphorus content. However, the role of MVs in the progression of osteoporosis is poorly understood. Here, we report that annexin A5, an important component of the matrix vesicle membrane, plays a vital role in bone matrix homeostasis in the deterioration of osteoporosis. We first identified annexin A5 from adherent MVs but not dissociative MVs of osteoblasts and found that it could be sharply decreased in the bone matrix during the occurrence of osteoporosis based on ovariectomized mice. We then confirmed its potential in mediating the mineralization of the precursor osteoblast lineage via its initial binding with collagen type I to achieve MV adhesion and the subsequent activation of cellular autophagy. Finally, we proved its protective role in resisting bone loss by applying it to osteoporotic mice. Taken together, these data revealed the importance of annexin A5, originating from adherent MVs of osteoblasts, in bone matrix remodeling of osteoporosis and provided a new strategy for the treatment and intervention of bone loss.
Collapse
Affiliation(s)
- Guanyue Su
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Demao Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tiantian Li
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Tong Pei
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Shasha Tu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Sijun Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Jie Ren
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yaojia Zhang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Mengmeng Duan
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Xinrui Yang
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Yang Shen
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China
| | - Chenchen Zhou
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China
| | - Jing Xie
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, Chengdu, 610041, China.
| | - Xiaoheng Liu
- Institute of Biomedical Engineering, West China School of Basic Medical Sciences & Forensic Medicine, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
29
|
Almaguer J, Hindle A, Lawrence JJ. The Contribution of Hippocampal All-Trans Retinoic Acid (ATRA) Deficiency to Alzheimer's Disease: A Narrative Overview of ATRA-Dependent Gene Expression in Post-Mortem Hippocampal Tissue. Antioxidants (Basel) 2023; 12:1921. [PMID: 38001775 PMCID: PMC10669734 DOI: 10.3390/antiox12111921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 10/04/2023] [Accepted: 10/05/2023] [Indexed: 11/26/2023] Open
Abstract
There is accumulating evidence that vitamin A (VA) deficiency contributes to the pathogenesis and progression of Alzheimer's disease (AD). All-trans retinoic acid (ATRA), a metabolite of VA in the brain, serves distinct roles in the human hippocampus. Agonists of retinoic acid receptors (RAR), including ATRA, promote activation of the non-amyloidogenic pathway by enhancing expression of α-secretases, providing a mechanistic basis for delaying/preventing amyloid beta (Aβ) toxicity. However, whether ATRA is actually deficient in the hippocampi of patients with AD is not clear. Here, using a publicly available human transcriptomic dataset, we evaluated the extent to which ATRA-sensitive genes are dysregulated in hippocampal tissue from post-mortem AD brains, relative to age-matched controls. Consistent with ATRA deficiency, we found significant dysregulation of many ATRA-sensitive genes and significant upregulation of RAR co-repressors, supporting the idea of transcriptional repression of ATRA-mediated signaling. Consistent with oxidative stress and neuroinflammation, Nrf2 and NfkB transcripts were upregulated, respectively. Interestingly, transcriptional targets of Nrf2 were not upregulated, accompanied by upregulation of several histone deacetylases. Overall, our investigation of ATRA-sensitive genes in the human hippocampus bolsters the scientific premise of ATRA depletion in AD and that epigenetic factors should be considered and addressed as part of VA supplementation.
Collapse
Affiliation(s)
- Joey Almaguer
- Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - Ashly Hindle
- Department of Pharmacology and Neuroscience and Garrison Institute on Aging, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA;
| | - J. Josh Lawrence
- Department of Pharmacology and Neuroscience, Garrison Institute on Aging, Center of Excellence for Translational Neuroscience and Therapeutics, and Center of Excellence for Integrated Health, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
30
|
Gao H, Zhao Y, Zhao L, Wang Z, Yan K, Gao B, Zhang L. The Role of Oxidative Stress in Multiple Exercise-Regulated Bone Homeostasis. Aging Dis 2023; 14:1555-1582. [PMID: 37196112 PMCID: PMC10529750 DOI: 10.14336/ad.2023.0223] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 02/23/2023] [Indexed: 05/19/2023] Open
Abstract
Bone is a tissue that is active throughout the lifespan, and its physiological activities, such as growth, development, absorption, and formation, are always ongoing. All types of stimulation that occur in sports play an important role in regulating the physiological activities of bone. Here, we track the latest research progress locally and abroad, summarize the recent, relevant research results, and systematically summarize the effects of different types of exercise on bone mass, bone strength and bone metabolism. We found that different types of exercise have different effects on bone health due to their unique technical characteristics. Oxidative stress is an important mechanism mediating the exercise regulation of bone homeostasis. Excessive high-intensity exercise does not benefit bone health but induces a high level of oxidative stress in the body, which has a negative impact on bone tissue. Regular moderate exercise can improve the body's antioxidant defense ability, inhibit an excessive oxidative stress response, promote the positive balance of bone metabolism, delay age-related bone loss and deterioration of bone microstructures and have a prevention and treatment effect on osteoporosis caused by many factors. Based on the above findings, we provide evidence for the role of exercise in the prevention and treatment of bone diseases. This study provides a systematic basis for clinicians and professionals to reasonably formulate exercise prescriptions and provides exercise guidance for patients and the general public. This study also provides a reference for follow-up research.
Collapse
Affiliation(s)
- Haoyang Gao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yilong Zhao
- Putuo Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Linlin Zhao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Zhikun Wang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Kai Yan
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Bo Gao
- Institute of Orthopedic Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Lingli Zhang
- College of Athletic Performance, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
31
|
Wang M, Cui K, Guo J, Mu W. Curculigoside attenuates osteoporosis through regulating DNMT1 mediated osteoblast activity. In Vitro Cell Dev Biol Anim 2023; 59:649-657. [PMID: 37880555 DOI: 10.1007/s11626-023-00813-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023]
Abstract
This work aims to study the function of curculigoside in osteoporosis and explore whether DNMT1 is closely involved in osteoblast activity. After OB-6 osteoblasts were treated with hydrogen peroxide (H2O2), a curculigoside treatment group was set up and a series of biological tests including MTT, flow cytometry, western blotting, ROS fluorescence intensity, mitochondrial membrane potential, and ELISA experiments were performed to verify the effect of curculigoside on the activity of osteoblasts. Then, alkaline phosphatase (ALP) activity, alizarin red staining, PCR, and western blotting assays were performed to detect the effects of curculigoside on osteoblast function. By constructing DNMT1 knockdown and overexpression OB-6 cell lines, the effect of DNMT1 on osteoblast function was verified. In addition, the expression level of Nrf2 in each group was detected to speculate the mechanism of DNMT1 in osteoporosis. The cell activity and level of bcl-2 and SOD were significantly increased; the cell apoptosis, ROS fluorescence intensity, mitochondrial membrane potential, MDA and level of caspase-3, Bax, and CAT was reduced in curculigoside treatment group compared with H2O2-induced OB-6 osteoblasts. Meanwhile, the ALP activity, number and area of bone mineralized nodules, and gene and protein expression of OSX and OPG were significantly elevated in curculigoside group. Moreover, DNMT1 knockdown had a similar promotion effect on osteoblast function as curculigoside, and DNMT1 overexpression could reverse the promotion effect of curculigoside on osteoblast function. Further mechanistic studies speculated that DNMT1 might play a role in osteoporosis by affecting Nrf2 methylation. Curculigoside enhances osteoblast activity through DNMT1 controls of Nrf2 methylation.
Collapse
Affiliation(s)
- Mingliang Wang
- Shandong University of Traditional Chinese Medicine, Jinan, 250000, China.
- Department of Orthopedic Trauma, Rizhao Hospital of Traditional Chinese Medicine, No. 35 Wanghai Road, Donggang District, Rizhao, 276800, China.
| | - Kaiying Cui
- Department of Orthopedic Spine, Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, 250000, China
| | - Jie Guo
- Maternity and Child Health Care of Rizhao, Rizhao, 276800, China
| | - Weidong Mu
- Department of Orthopedic Trauma, Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 324, Jing Wu Wei Qi Road, Huaiyin District, Jinan, 250000, China.
| |
Collapse
|
32
|
Yao H, Du Y, Jiang B, Liao Y, Zhao Y, Yin M, Li T, Sheng Y, Ji Y, Du M. Sulforaphene suppresses RANKL-induced osteoclastogenesis and LPS-induced bone erosion by activating Nrf2 signaling pathway. Free Radic Biol Med 2023; 207:48-62. [PMID: 37423561 DOI: 10.1016/j.freeradbiomed.2023.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 07/04/2023] [Accepted: 07/06/2023] [Indexed: 07/11/2023]
Abstract
BACKGROUND AND PURPOSE Inflammatory disorders have been found to induce bone loss through sustained and persistent activation of osteoclast differentiation, leading to heightened bone resorption. The current pharmacological interventions for combating bone loss to harbor adverse effects or contraindications. There is a pressing need to identify drugs with fewer side effects. EXPERIMENTAL APPROACH The effect and underlying mechanism of sulforaphene (LFS) on osteoclast differentiation were illustrated in vitro and in vivo with RANKL-induced Raw264.7 cell line osteoclastogenesis and lipopolysaccharide (LPS)-induced bone erosion model. KEY RESULTS In this study, LFS has been shown to effectively impede the formation of mature osteoclasts induced from both Raw264.7 cell line and bone marrow macrophages (BMMs), mainly at the early stage. Further mechanistic investigations uncovered that LFS suppressed AKT phosphorylation. SC-79, a potent AKT activator, was found to reverse the inhibitory impact of LFS on osteoclast differentiation. Moreover, transcriptome sequencing analysis revealed that treatment with LFS led to a significant upregulation in the expression of nuclear factor erythroid 2-related factor 2 (Nrf2) and antioxidant-related genes. Then it's validated that LFS could promote NRF2 expression and nuclear translocation, as well as effectively resist oxidative stress. NRF2 knockdown reversed the suppression effect of LFS on osteoclast differentiation. In vivo experiments provide convincing evidence that LFS is protective against LPS-induced inflammatory osteolysis. CONCLUSION AND IMPLICATIONS These well-grounded and promising findings suggest LFS as a promising agent to addressing oxidative-stress related diseases and bone loss disorders.
Collapse
Affiliation(s)
- Hantao Yao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yangge Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Bulin Jiang
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yilin Liao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoyu Zhao
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Mengjie Yin
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Ting Li
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yue Sheng
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Yaoting Ji
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| | - Minquan Du
- The State Key Laboratory Breeding Base of Basic Science of Stomatology (Hubei-MOST) and Key Laboratory of Oral Biomedicine Ministry of Education, School and Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
33
|
Riegger J, Schoppa A, Ruths L, Haffner-Luntzer M, Ignatius A. Oxidative stress as a key modulator of cell fate decision in osteoarthritis and osteoporosis: a narrative review. Cell Mol Biol Lett 2023; 28:76. [PMID: 37777764 PMCID: PMC10541721 DOI: 10.1186/s11658-023-00489-y] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 09/11/2023] [Indexed: 10/02/2023] Open
Abstract
During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.
Collapse
Affiliation(s)
- Jana Riegger
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany.
| | - Astrid Schoppa
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Leonie Ruths
- Division for Biochemistry of Joint and Connective Tissue Diseases, Department of Orthopedics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Melanie Haffner-Luntzer
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| | - Anita Ignatius
- Institute of Orthopedic Research and Biomechanics, Ulm University Medical Center, 89081, Ulm, Germany
| |
Collapse
|
34
|
Zhang Q, Yang J, Hu N, Liu J, Yu H, Pan H, Chen D, Ruan C. Small-molecule amines: a big role in the regulation of bone homeostasis. Bone Res 2023; 11:40. [PMID: 37482549 PMCID: PMC10363555 DOI: 10.1038/s41413-023-00262-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/14/2023] [Accepted: 03/31/2023] [Indexed: 07/25/2023] Open
Abstract
Numerous small-molecule amines (SMAs) play critical roles in maintaining bone homeostasis and promoting bone regeneration regardless of whether they are applied as drugs or biomaterials. On the one hand, SMAs promote bone formation or inhibit bone resorption through the regulation of key molecular signaling pathways in osteoblasts/osteoclasts; on the other hand, owing to their alkaline properties as well as their antioxidant and anti-inflammatory features, most SMAs create a favorable microenvironment for bone homeostasis. However, due to a lack of information on their structure/bioactivity and underlying mechanisms of action, certain SMAs cannot be developed into drugs or biomaterials for bone disease treatment. In this review, we thoroughly summarize the current understanding of SMA effects on bone homeostasis, including descriptions of their classifications, biochemical features, recent research advances in bone biology and related regulatory mechanisms in bone regeneration. In addition, we discuss the challenges and prospects of SMA translational research.
Collapse
Affiliation(s)
- Qian Zhang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jirong Yang
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Nan Hu
- Department of Nephrology, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518020, Guangdong, China
| | - Juan Liu
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Huan Yu
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
| | - Haobo Pan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
- Shenzhen Healthemes Biotechnology Co., Ltd., Shenzhen, 518102, China
| | - Di Chen
- Research Center for Computer-Aided Drug Discovery, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
| | - Changshun Ruan
- Research Center for Human Tissue and Organs Degeneration, Institute of Biomedicine and Biotechnology, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055, China.
- University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
35
|
Bu T, Huang J, Yu Y, Sun P, Yang K. Whey Protein Hydrolysate Ameliorated High-Fat-Diet Induced Bone Loss via Suppressing Oxidative Stress and Regulating GSK-3β/Nrf2 Signaling Pathway. Nutrients 2023; 15:2863. [PMID: 37447191 DOI: 10.3390/nu15132863] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Revised: 06/11/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Long-term hypercaloric intake such as a high-fat diet (HFD) could act as negative regulators on bone remodeling, thereby inducing bone loss and bone microarchitecture destruction. Currently, food-derived natural compounds represent a promising strategy to attenuate HFD-induced bone loss. We previously prepared a whey protein hydrolysate (WPH) with osteogenic capacity. In this study, we continuously isolated and identified an osteogenic and antioxidant octapeptide TPEVDDA from WPH, which significantly promoted the alkaline phosphatase activities on MC3T3-E1 cells and exerted DPPH radical scavenging capacity. We then established an HFD-fed obese mice model with significantly imbalanced redox status and reduced bone mass and further evaluated the effects of different doses of WPH on ameliorating the HFD-induced bone loss and oxidative damages. Results showed that the administration of 2% and 4% WPH for 12 weeks significantly restored perirenal fat mass, improved serum lipid levels, reduced oxidative stress, and promoted the activity of antioxidant enzymes; meanwhile, WPH significantly preserved bone mass and bone mechanical properties, attenuated the degradation of trabecular microstructure, and regulated serum bone metabolism biomarkers. The protein levels of Runx2, Nrf2, and HO-1, as well as the phosphorylation level of GSK-3β in tibias, were notably activated by WPH. Overall, we found that the potential mechanism of WPH on ameliorating the HFD-induced bone loss mainly through its antioxidant and osteogenic capacity by activating Runx2 and GSK-3β/Nrf2 signaling pathway, demonstrating the potential of WPH to be used as a nutritional strategy for obesity and osteoporosis.
Collapse
Affiliation(s)
- Tingting Bu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Ju Huang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Yue Yu
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Peilong Sun
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| | - Kai Yang
- Department of Food Science and Technology, Zhejiang University of Technology, Hangzhou 310014, China
| |
Collapse
|
36
|
Fasipe B, Li S, Laher I. Exercise and vascular function in sedentary lifestyles in humans. Pflugers Arch 2023:10.1007/s00424-023-02828-6. [PMID: 37272982 DOI: 10.1007/s00424-023-02828-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 05/30/2023] [Accepted: 05/31/2023] [Indexed: 06/06/2023]
Abstract
People with sedentary lifestyles engage in minimal or no physical activity. A sedentary lifestyle promotes dysregulation of cellular redox balance, diminishes mitochondrial function, and increases NADPH oxidase activity. These changes collectively increase cellular oxidative stress, which alters endothelial function by oxidizing LDL-C, reducing NO production, and causing eNOS uncoupling. Reduced levels of nitric oxide (NO) leads to vasoconstriction, vascular remodeling, and vascular inflammation. Exercise modulates reactive oxygen species (ROS) to modify NRF2-KEAP signaling, leading to the activation of NRF2 to alleviate oxidative stress. While regular moderate exercise activates NRF2 through ROS production, high-intensity intermittent exercise stimulates NRF2 activation to a greater degree by reducing KEAP levels, which can be more beneficial for sedentary individuals. We review the damaging effects of a sedentary lifestyle on the vascular system and the health benefits of regular and intermittent exercise.
Collapse
Affiliation(s)
- Babatunde Fasipe
- Faculty of Basic Clinical Sciences, Department of Pharmacology and Therapeutics, Bowen University, Iwo, Nigeria
| | - Shunchang Li
- Institute of Sports Medicine and Health, Chengdu Sport University, Chengdu, 610041, China
| | - Ismail Laher
- Faculty of Medicine, Department of Anesthesiology, Pharmacology and Therapeutics, The University of British Columbia, 2176 Health Sciences Mall, Vancouver, Canada.
| |
Collapse
|
37
|
Yano N, Fedulov AV. Targeted DNA Demethylation: Vectors, Effectors and Perspectives. Biomedicines 2023; 11:biomedicines11051334. [PMID: 37239005 DOI: 10.3390/biomedicines11051334] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 04/21/2023] [Accepted: 04/27/2023] [Indexed: 05/28/2023] Open
Abstract
Aberrant DNA hypermethylation at regulatory cis-elements of particular genes is seen in a plethora of pathological conditions including cardiovascular, neurological, immunological, gastrointestinal and renal diseases, as well as in cancer, diabetes and others. Thus, approaches for experimental and therapeutic DNA demethylation have a great potential to demonstrate mechanistic importance, and even causality of epigenetic alterations, and may open novel avenues to epigenetic cures. However, existing methods based on DNA methyltransferase inhibitors that elicit genome-wide demethylation are not suitable for treatment of diseases with specific epimutations and provide a limited experimental value. Therefore, gene-specific epigenetic editing is a critical approach for epigenetic re-activation of silenced genes. Site-specific demethylation can be achieved by utilizing sequence-dependent DNA-binding molecules such as zinc finger protein array (ZFA), transcription activator-like effector (TALE) and clustered regularly interspaced short palindromic repeat-associated dead Cas9 (CRISPR/dCas9). Synthetic proteins, where these DNA-binding domains are fused with the DNA demethylases such as ten-eleven translocation (Tet) and thymine DNA glycosylase (TDG) enzymes, successfully induced or enhanced transcriptional responsiveness at targeted loci. However, a number of challenges, including the dependence on transgenesis for delivery of the fusion constructs, remain issues to be solved. In this review, we detail current and potential approaches to gene-specific DNA demethylation as a novel epigenetic editing-based therapeutic strategy.
Collapse
Affiliation(s)
- Naohiro Yano
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| | - Alexey V Fedulov
- Department of Surgery, Rhode Island Hospital, Alpert Medical School of Brown University, 593 Eddy Street, Providence, RI 02903, USA
| |
Collapse
|
38
|
Fragoulis A, Tohidnezhad M, Kubo Y, Wruck CJ, Craveiro RB, Bock A, Wolf M, Pufe T, Jahr H, Suhr F. The Contribution of the Nrf2/ARE System to Mechanotransduction in Musculoskeletal and Periodontal Tissues. Int J Mol Sci 2023; 24:ijms24097722. [PMID: 37175428 PMCID: PMC10177782 DOI: 10.3390/ijms24097722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 04/17/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Mechanosensing plays an essential role in maintaining tissue functions. Across the human body, several tissues (i.e., striated muscles, bones, tendons, ligaments, as well as cartilage) require mechanical loading to exert their physiological functions. Contrary, mechanical unloading triggers pathological remodeling of these tissues and, consequently, human body dysfunctions. At the cellular level, both mechanical loading and unloading regulate a wide spectrum of cellular pathways. Among those, pathways regulated by oxidants such as reactive oxygen species (ROS) represent an essential node critically controlling tissue organization and function. Hence, a sensitive balance between the generation and elimination of oxidants keeps them within a physiological range. Here, the Nuclear Factor-E2-related factor 2/Antioxidant response element (Nrf2/ARE) system plays an essential role as it constitutes the major cellular regulation against exogenous and endogenous oxidative stresses. Dysregulations of this system advance, i.a., liver, neurodegenerative, and cancer diseases. Herein, we extend our comprehension of the Nrf2 system to the aforementioned mechanically sensitive tissues to explore its role in their physiology and pathology. We demonstrate the relevance of it for the tissues' functionality and highlight the imperative to further explore the Nrf2 system to understand the physiology and pathology of mechanically sensitive tissues in the context of redox biology.
Collapse
Affiliation(s)
- Athanassios Fragoulis
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Yusuke Kubo
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Christoph Jan Wruck
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Rogerio Bastos Craveiro
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Anna Bock
- Department of Oral and Maxillofacial Surgery, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Michael Wolf
- Department of Orthodontics, Dental Clinic, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Thomas Pufe
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
| | - Holger Jahr
- Department of Anatomy and Cell Anatomy, Uniklinik RWTH Aachen, RWTH Aachen University, 52074 Aachen, Germany
- Institute of Structural Mechanics and Lightweight Design, RWTH Aachen University, 52062 Aachen, Germany
| | - Frank Suhr
- Division of Molecular Exercise Physiology, Faculty of Life Sciences: Food, Nutrition and Health, University of Bayreuth, 95326 Kulmbach, Germany
| |
Collapse
|
39
|
Smith N, Shirazi S, Cakouros D, Gronthos S. Impact of Environmental and Epigenetic Changes on Mesenchymal Stem Cells during Aging. Int J Mol Sci 2023; 24:ijms24076499. [PMID: 37047469 PMCID: PMC10095074 DOI: 10.3390/ijms24076499] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 03/22/2023] [Accepted: 03/28/2023] [Indexed: 03/31/2023] Open
Abstract
Many crucial epigenetic changes occur during early skeletal development and throughout life due to aging, disease and are heavily influenced by an individual’s lifestyle. Epigenetics is the study of heritable changes in gene expression as the result of changes in the environment without any mutation in the underlying DNA sequence. The epigenetic profiles of cells are dynamic and mediated by different mechanisms, including histone modifications, non-coding RNA-associated gene silencing and DNA methylation. Given the underlining role of dysfunctional mesenchymal tissues in common age-related skeletal diseases such as osteoporosis and osteoarthritis, investigations into skeletal stem cells or mesenchymal stem cells (MSC) and their functional deregulation during aging has been of great interest and how this is mediated by an evolving epigenetic landscape. The present review describes the recent findings in epigenetic changes of MSCs that effect growth and cell fate determination in the context of aging, diet, exercise and bone-related diseases.
Collapse
Affiliation(s)
- Nicholas Smith
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Suzanna Shirazi
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
| | - Dimitrios Cakouros
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| | - Stan Gronthos
- Mesenchymal Stem Cell Laboratory, School of Biomedicine, Faculty of Health and Medical Sciences, University of Adelaide, Adelaide, SA 5001, Australia
- Precision Medicine Theme, South Australian Health and Medical Research Institute, Adelaide, SA 5001, Australia
- Correspondence: (D.C.); (S.G.); Tel.: +61-8-8128-4395 (S.G.)
| |
Collapse
|
40
|
Probucol suppresses osteoclastogenesis via activating Nrf2 signaling and ameliorates ovariectomy-induced bone loss. Int Immunopharmacol 2023; 116:109820. [PMID: 36758295 DOI: 10.1016/j.intimp.2023.109820] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 01/18/2023] [Accepted: 01/28/2023] [Indexed: 02/09/2023]
Abstract
Osteoporosis is a systemic and endocrine bone disorder distinguished by declined bone mineral density, compromised bone strength, and destruction of trabecular structure. The abnormally excessive osteoclastogenesis and bone erosion play imperative roles in the progression of osteoporosis. However, treatment of osteoporosis is far from satisfactory due to poor adherence to existing medications and adverse reactions, there is an urgent to develop novel therapies for osteoporosis. Probucol, a synthetic compound with two characteristic phenolic rings, owns anti-inflammatory and antioxidant properties. Accumulating evidence have indicated that intracellular reactive oxygen species (ROS) is closely related to osteoclastogenesis. Hence, we investigated the potential effects of probucol on osteoclastogenesis in vivo and in vitro. In this study, TRAP staining and bone slice resorption assay showed that probucol suppressed RANKL-induced osteoclast formation and function. The mRNA and protein levels of osteoclastogenesis marker genes were reduced by probucol in a concentration-dependent manner. Besides, probucol suppressed osteoclast differentiation by inhibiting ROS production, MAPKs and NF-κB signaling pathways, while Nrf2 silencing reversed the inhibitory effect of probucol on osteoclast formation and function. Consistent with the above findings, in vivo experiments demonstrated that probucol visibly alleviated bone loss caused by estrogen deficiency. In brief, these results showed the potential of anti-oxidant compound probucol in the treatment of osteoporosis, highlighting Nrf2 as a promising target in osteoclast-related disease.
Collapse
|
41
|
Guo J, Huang X, Dou L, Yan M, Shen T, Tang W, Li J. Aging and aging-related diseases: from molecular mechanisms to interventions and treatments. Signal Transduct Target Ther 2022; 7:391. [PMID: 36522308 PMCID: PMC9755275 DOI: 10.1038/s41392-022-01251-0] [Citation(s) in RCA: 360] [Impact Index Per Article: 120.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 11/03/2022] [Accepted: 11/10/2022] [Indexed: 12/23/2022] Open
Abstract
Aging is a gradual and irreversible pathophysiological process. It presents with declines in tissue and cell functions and significant increases in the risks of various aging-related diseases, including neurodegenerative diseases, cardiovascular diseases, metabolic diseases, musculoskeletal diseases, and immune system diseases. Although the development of modern medicine has promoted human health and greatly extended life expectancy, with the aging of society, a variety of chronic diseases have gradually become the most important causes of disability and death in elderly individuals. Current research on aging focuses on elucidating how various endogenous and exogenous stresses (such as genomic instability, telomere dysfunction, epigenetic alterations, loss of proteostasis, compromise of autophagy, mitochondrial dysfunction, cellular senescence, stem cell exhaustion, altered intercellular communication, deregulated nutrient sensing) participate in the regulation of aging. Furthermore, thorough research on the pathogenesis of aging to identify interventions that promote health and longevity (such as caloric restriction, microbiota transplantation, and nutritional intervention) and clinical treatment methods for aging-related diseases (depletion of senescent cells, stem cell therapy, antioxidative and anti-inflammatory treatments, and hormone replacement therapy) could decrease the incidence and development of aging-related diseases and in turn promote healthy aging and longevity.
Collapse
Affiliation(s)
- Jun Guo
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Xiuqing Huang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Lin Dou
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Mingjing Yan
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China
| | - Tao Shen
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Weiqing Tang
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| | - Jian Li
- The Key Laboratory of Geriatrics, Beijing Institute of Geriatrics, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology of National Health Commission, Beijing, 100730, China.
| |
Collapse
|
42
|
Kubo Y, Gonzalez JAH, Beckmann R, Weiler M, Pahlavani H, Saldivar MC, Szymanski K, Rosenhain S, Fragoulis A, Leeflang S, Slowik A, Gremse F, Wolf M, Mirzaali MJ, Zadpoor AA, Wruck CJ, Pufe T, Tohidnezhad M, Jahr H. Nuclear factor erythroid 2-related factor 2 (Nrf2) deficiency causes age-dependent progression of female osteoporosis. BMC Musculoskelet Disord 2022; 23:1015. [PMID: 36434613 PMCID: PMC9700883 DOI: 10.1186/s12891-022-05942-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 11/02/2022] [Indexed: 11/26/2022] Open
Abstract
BACKGROUND Nuclear factor erythroid 2-related factor 2 (Nrf2) is a crucial transcription factor for cellular redox homeostasis. The association of Nrf2 with elderly female osteoporotic has yet to be fully described. The aim was to elucidate a potential age-dependent Nrf2 contribution to female osteoporosis in mice. METHODS Eighteen female wild type (WT) and 16 Nrf2-knockout (KO) mice were sacrificed at different ages (12 weeks = young mature adult and 90 weeks = old) to analyze their femurs. The morphological properties (trabecular and cortical) were evaluated by micro-computed tomography (μCT) and compared to gold standard histochemistry analysis. The quasi-static compression tests were performed to calculate the mechanical properties of bones. Additionally, the population of bone resorbing cells and aromatase expression by osteocytes was immunohistochemically evaluated and empty osteocyte lacunae was counted in cortical bone. RESULTS Old Nrf2-KO mice revealed a significantly reduced trabecular bone mineral density (BMD), cortical thickness, cortical area, and bone fraction compared to old WT mice, regardless of no significant difference in skeletally mature young adult mice between WT and KO. Specifically, while all old WT mice showed thin metaphyseal trabeculae, trabecular bone was completely absent in 60% of old KO mice. Additionally, old KO mice showed significantly more osteoclast-like cells and fewer aromatase-positive osteocytes than WT mice, whereas the occurrence of empty osteocyte lacunae did not differ between both groups. Nrf2-KO mice further showed an age-dependently reduced fracture resilience compared to age-matched WT mice. CONCLUSION Our results suggest that chronic Nrf2 loss can lead to age-dependent progression of female osteoporosis.
Collapse
Affiliation(s)
- Yusuke Kubo
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Jesus Abraham Herrera Gonzalez
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Rainer Beckmann
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Marek Weiler
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Uniklinik RWTH Aachen, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Helda Pahlavani
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Mauricio Cruz Saldivar
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Katharina Szymanski
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Stefanie Rosenhain
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Uniklinik RWTH Aachen, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Athanassios Fragoulis
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Sander Leeflang
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Alexander Slowik
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Felix Gremse
- grid.412301.50000 0000 8653 1507Institute for Experimental Molecular Imaging, Helmholtz Institute for Biomedical Engineering, Uniklinik RWTH Aachen, Forckenbeckstraße 55, 52074 Aachen, Germany
| | - Michael Wolf
- grid.412301.50000 0000 8653 1507Department of Orthodontics, Uniklinik RWTH Aachen, Pauwelsstraße 30, 52074 Aachen, Germany
| | - Mohammad Javad Mirzaali
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Amir Abbas Zadpoor
- grid.5292.c0000 0001 2097 4740Department of Biomechanical Engineering, Faculty of Mechanical, Maritime, and Materials Engineering, Delft University of Technology (TU Delft), Mekelweg 2, 2628 CD Delft, The Netherlands
| | - Christoph Jan Wruck
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Thomas Pufe
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Mersedeh Tohidnezhad
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany
| | - Holger Jahr
- grid.412301.50000 0000 8653 1507Department of Anatomy and Cell Biology, Uniklinik RWTH Aachen, Wendlingweg 2, 52074 Aachen, Germany ,grid.1957.a0000 0001 0728 696XInstitute of Structural Mechanics and Lightweight Design, RWTH Aachen University, Wüllnerstraße 7, 52062 Aachen, Germany
| |
Collapse
|
43
|
Phytol Suppresses Osteoclast Differentiation and Oxidative Stress through Nrf2/HO-1 Regulation in RANKL-Induced RAW264.7 Cells. Cells 2022; 11:cells11223596. [PMID: 36429027 PMCID: PMC9688212 DOI: 10.3390/cells11223596] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Revised: 11/10/2022] [Accepted: 11/11/2022] [Indexed: 11/16/2022] Open
Abstract
Osteoporosis is a systemic skeletal disorder where osteoclasts are prevalent among osteoblasts. Oxidative stress is one of the main causes of osteoporosis, and nuclear factor erythroid-2-related factor 2 (Nrf2) is the master regulator of antioxidant responses. Phytol, a diterpene isolated from Stevia rebaudiana leaves, has many biological effects, including antimicrobial, antioxidant, and anti-inflammatory effects. This study investigated the crosstalk between Nrf2 and osteoclast differentiation in the presence of phytol. Phytol inhibited osteoclast differentiation through TRAP-positive and F-actin formation. The expression of anti-nuclear factor of activated T cells-c1 (NFATc1) and c-Fos was suppressed by phytol, as shown using Western blot and RT-PCR analysis. Phytol inhibited oxidative stress by suppressing reactive oxidant species (ROS) accumulation while recovering antioxidant enzymes, including superoxide dismutase and catalase. Additionally, phytol ameliorated osteoclast-specific differentiation, function, and oxidative stress through Nrf2 regulation by siRNA transfection. In conclusion, these data demonstrate the inhibitory effect of phytol on osteoclast differentiation through Nrf2 regulation, suggesting its potential use in oxidative stress-related osteoporosis and bone diseases.
Collapse
|
44
|
Zhang L, Zheng YL, Wang R, Wang XQ, Zhang H. Exercise for osteoporosis: A literature review of pathology and mechanism. Front Immunol 2022; 13:1005665. [PMID: 36164342 PMCID: PMC9509020 DOI: 10.3389/fimmu.2022.1005665] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/18/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoporosis (OP) is a disease that weakens bones and has a high morbidity rate worldwide, which is prevalent among the elderly, particularly, women of postmenopausal age. The dynamic balance between bone formation and resorption is necessary for normal bone metabolism. Many factors, including aging, estrogen deficiency, and prolonged immobilization, disrupt normal apoptosis, autophagy, and inflammation, leading to abnormal activation of osteoclasts, which gradually overwhelm bone formation by bone resorption. Moderate exercise as an effective non-drug treatment helps increase bone formation and helps relieve OP. The possible mechanisms are that exercise affects apoptosis and autophagy through the release of exercise-stimulated myohormone and the secretion of anti-inflammatory cytokines via mechanical force. In addition, exercise may also have an impact on the epigenetic processes involved in bone metabolism. Mechanical stimulation promotes bone marrow mesenchymal stem cells (BMSCs) to osteogenic differentiation by altering the expression of non-coding RNAs. Besides, by reducing DNA methylation, the mechanical stimulus can also alter the epigenetic status of osteogenic genes and show associated increased expression. In this review, we reviewed the possible pathological mechanisms of OP and summarized the effects of exercise on bone metabolism, and the mechanisms by which exercise alleviates the progression of OP, to provide a reference for the prevention and treatment of OP.
Collapse
Affiliation(s)
- Lin Zhang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Yi-Li Zheng
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Rui Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
| | - Xue-Qiang Wang
- Department of Sport Rehabilitation, Shanghai University of Sport, Shanghai, China
- Department of Rehabilitation Medicine, Shanghai Shangti Orthopaedic Hospital, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| | - Hao Zhang
- Department of Orthopedics, Changhai Hospital Affiliated to the Navy Military Medical University, Shanghai, China
- *Correspondence: Xue-Qiang Wang, ; Hao Zhang,
| |
Collapse
|
45
|
The Role of Nrf2 in Pulmonary Fibrosis: Molecular Mechanisms and Treatment Approaches. Antioxidants (Basel) 2022; 11:antiox11091685. [PMID: 36139759 PMCID: PMC9495339 DOI: 10.3390/antiox11091685] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 08/21/2022] [Accepted: 08/26/2022] [Indexed: 11/21/2022] Open
Abstract
Pulmonary fibrosis is a chronic, progressive, incurable interstitial lung disease with high mortality after diagnosis and remains a global public health problem. Despite advances and breakthroughs in understanding the pathogenesis of pulmonary fibrosis, there are still no effective methods for the prevention and treatment of pulmonary fibrosis. The existing treatment options are imperfect, expensive, and have considerable limitations in effectiveness and safety. Hence, there is an urgent need to find novel therapeutic targets. The nuclear factor erythroid 2-related factor 2 (Nrf2) is a central regulator of cellular antioxidative responses, inflammation, and restoration of redox balance. Accumulating reports reveal that Nrf2 activators exhibit potent antifibrosis effects and significantly attenuate pulmonary fibrosis in vivo and in vitro. This review summarizes the current Nrf2-related knowledge about the regulatory mechanism and potential therapies in the process of pulmonary fibrosis. Nrf2 orchestrates the activation of multiple protective genes that target inflammation, oxidative stress, fibroblast–myofibroblast differentiation (FMD), and epithelial–mesenchymal transition (EMT), and the mechanisms involve Nrf2 and its downstream antioxidant, Nrf2/HO−1/NQO1, Nrf2/NOX4, and Nrf2/GSH signaling pathway. We hope to indicate potential for Nrf2 system as a therapeutic target for pulmonary fibrosis.
Collapse
|
46
|
Dong J, Zhang L, Ruan B, Lv Z, Wang H, Wang Y, Jiang Q, Cao W. NRF2 is a critical regulator and therapeutic target of metal implant particle-incurred bone damage. Biomaterials 2022; 288:121742. [PMID: 36030105 DOI: 10.1016/j.biomaterials.2022.121742] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 08/02/2022] [Accepted: 08/09/2022] [Indexed: 11/02/2022]
Abstract
Aseptic metal implant loosening due to wear particle-induced bone damage is a major complication of total joint arthroplasty often leading to revision surgery, of which the key regulators mediating the processes are not clearly defined. Here we reported that in a mouse model of calvarial osteolysis, titanium particles (TiPs) and cobalt-chromium-molybdenum particles induced severe osteolysis accompanied by marked suppression of a master redox transcriptional factor NRF2 (Nuclear factor erythroid derived 2-related factor 2). Nfe2l2 knockout mice treated with TiPs developed worse osteolytic alterations compared with wild-type mice. On the contrary, NRF2 restoration by an NRF2 agonist TBHQ (tert-butylhydroquinone) effectively alleviated the osteolysis and the abnormal expression of NRF2 downstream antioxidant enzymes, inflammatory cytokines and osteogenic factors. Further, TiPs induced adverse osteoblastogenesis and osteoclastogenesis in cultured bone cells, which were substantially blocked by TBHQ in an NRF2 inhibition-sensitive manner. Consistently, the osteoprotective effects of TBHQ observed in wild-type mice were largely limited in Nfe2l2 knockout mice. Collectively, our data suggest that NRF2 suppression is a critical causal event of metal wear particle-incurred osteolysis, and the strategies reinstating NRF2 are effective to lessen the bone damage and potentially reduce the incidence of metal implant loosening.
Collapse
Affiliation(s)
- Jian Dong
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing 210008, China
| | - Lijun Zhang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. 22 Hankou Road, Nanjing, 210093, China
| | - Binjia Ruan
- Department of Orthopedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225001, China
| | - Zhongyang Lv
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing 210008, China
| | - Hongwei Wang
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. 22 Hankou Road, Nanjing, 210093, China
| | - Yongxiang Wang
- Department of Orthopedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225001, China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School. 321 Zhongshan Road, Nanjing 210008, China.
| | - Wangsen Cao
- Nanjing University Medical School, Jiangsu Key Lab of Molecular Medicine. 22 Hankou Road, Nanjing, 210093, China; Department of Orthopedics, Northern Jiangsu People's Hospital, 98 West Nantong Road, Yangzhou, 225001, China.
| |
Collapse
|
47
|
Gu H, Ru Y, Wang W, Cai G, Gu L, Ye J, Zhang WB, Wang L. Orexin-A Reverse Bone Mass Loss Induced by Chronic Intermittent Hypoxia Through OX1R-Nrf2/HIF-1α Pathway. Drug Des Devel Ther 2022; 16:2145-2160. [PMID: 35818538 PMCID: PMC9270907 DOI: 10.2147/dddt.s363286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Accepted: 05/24/2022] [Indexed: 11/28/2022] Open
Abstract
Background Recent studies suggest that there is a potential connection between obstructive sleep apnea (OSA) and osteoporosis through dysregulation of bone metabolism. Orexin-A, a neuroprotective peptide secreted by the hypothalamus, is at a lower level in the plasma of OSA patients, which regulates appetite, energy expenditure and sleep-wake states. However, the protective effect of orexin-A on bone metabolism in OSA is unclear. Purpose To investigate whether the activation of OX1R by orexin-A can reverse bone mass loss induced by chronic intermittent hypoxia (CIH). Methods Mice were randomly divided into the normoxia group and CIH group. Within the CIH or normoxia groups, treatment groups were given a subcutaneous injection of either orexin-A or saline vehicle once every day for 4 weeks and then femurs were removed for micro-CT scans. Histology and immunohistochemical staining were performed to observe and calculate the changes in femurs as a result of hypoxia. Cell immunofluorescence and immunohistochemical staining were used to detect the expression of orexin receptors in MC3T3-E1 cells or in bones. CCK-8 assay, ALP assay kit and alizarin red staining were used to detect the viability, alkaline phosphatase (ALP) activity, and capacity of mineralization, respectively. The effect of orexin-A on osteogenic differentiation of MC3T3-E1 cells was evaluated using qRT-PCR, Western blot and cell staining. Results CIH led to a decrease in the amount and density of trabecular bone, downregulated OCN expression while increasing osteoclast numbers in femurs and inhibited the expression of RUNX2, OSX, OPN and Nrf2 in MC3T3-E1 cells. Orexin-A treatment alleviated these CIH-induced effects by combining to OX1R. The level of HIF-1α was elevated both in CIH and orexin-A treatment groups. Conclusion CIH environment inhibits osteogenesis and orexin-A can reverse bone mass loss induced by CIH through OX1R-Nrf2/HIF-1α pathway.
Collapse
Affiliation(s)
- Hong Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Yiwen Ru
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Wei Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Guanhui Cai
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Lanxin Gu
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Junjie Ye
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
| | - Wei-Bing Zhang
- Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, People′s Republic of China
- Department of Stomatology, Medical Center of Soochow University, Suzhou, People′s Republic of China
- Correspondence: Wei-Bing Zhang, Department of Stomatology, Dushu Lake Hospital Affiliated to Soochow University, 9 Chongwen Road, Suzhou, 215000, People′s Republic of China, Tel +86-512-67505200, Email
| | - Lin Wang
- Jiangsu Key Laboratory of Oral Diseases, Nanjing Medical University, Nanjing, People′s Republic of China
- Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, Nanjing, People′s Republic of China
- Lin Wang, Department of Orthodontics, Affiliated Hospital of Stomatology, Nanjing Medical University, 136 Hanzhong Road, Nanjing, 210029, People′s Republic of China, Tel +86-025-69593060, Email
| |
Collapse
|
48
|
Zhang L, Chen X, Cai P, Sun H, Shen S, Guo B, Jiang Q. Reprogramming Mitochondrial Metabolism in Synovial Macrophages of Early Osteoarthritis by a Camouflaged Meta-Defensome. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2202715. [PMID: 35671349 DOI: 10.1002/adma.202202715] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Revised: 05/30/2022] [Indexed: 06/15/2023]
Abstract
Osteoarthritis (OA) is a low-grade inflammatory and progressive joint disease, and its progression is closely associated with an imbalance in M1/M2 synovial macrophages. Repolarizing pro-inflammatory M1 macrophages into the anti-inflammatory M2 phenotype is emerging as a strategy to alleviate OA progression but is compromised by unsatisfactory efficiency. In this study, the reprogramming of mitochondrial dysfunction is pioneered with a camouflaged meta-Defensome, which can transform M1 synovial macrophages into the M2 phenotype with a high efficiency of 82.3%. The meta-Defensome recognizes activated macrophages via receptor-ligand interactions and accumulates in the mitochondria through electrostatic attractions. These meta-Defensomes are macrophage-membrane-coated polymeric nanoparticles decorated with dual ligands and co-loaded with S-methylisothiourea and MnO2 . Meta-Defensomes are demonstrated to successfully reprogram the mitochondrial metabolism of M1 macrophages by scavenging mitochondrial reactive oxygen species and inhibiting mitochondrial NO synthase, thereby increasing mitochondrial transcription factor A expression and restoring aerobic respiration. Furthermore, meta-Defensomes are intravenously injected into collagenase-induced osteoarthritis mice and effectively suppress synovial inflammation and progression of early OA, as evident from the Osteoarthritis Research Society International score. Therefore, reprogramming the mitochondrial metabolism can serve as a novel and practical approach to repolarize M1 synovial macrophages. The camouflaged meta-Defensomes are a promising therapeutic agent for impeding OA progression in tclinic.
Collapse
Affiliation(s)
- Lei Zhang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Xiang Chen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Pingqiang Cai
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
- Chemistry and Biomedicine Innovation Center, Nanjing University, Nanjing, 210093, P. R. China
| | - Han Sun
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Siyu Shen
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Baosheng Guo
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| | - Qing Jiang
- State Key Laboratory of Pharmaceutical Biotechnology, Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Branch of National Clinical Research Center for Orthopedics, Sports Medicine and Rehabilitation, 321 Zhongshan Road, Nanjing, Jiangsu, 210008, P. R. China
| |
Collapse
|
49
|
Target Nuclear Factor Erythroid 2-Related Factor 2 in Pulmonary Hypertension: Molecular Insight into Application. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2022; 2022:7845503. [PMID: 35707273 PMCID: PMC9192195 DOI: 10.1155/2022/7845503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 04/07/2022] [Accepted: 04/08/2022] [Indexed: 11/17/2022]
Abstract
Nuclear factor erythroid 2-related factor 2 (Nrf2) is a key transcription factor involved in maintaining redox balance and activates the expression of downstream antioxidant enzymes. Nrf2 has received wide attention considering its crucial role in oxidative and electrophilic stress. Large amounts of studies have demonstrated the protective role of Nrf2 activation in various pulmonary hypertension (pH) models. Additionally, various kinds of natural phytochemicals acting as Nrf2 activators prevent the development of pH and provide a novel and promising therapeutic insight for the treatment of pH. In the current review, we give a brief introduction of Nrf2 and focus on the role and mechanism of Nrf2 in the pathophysiology of pH and then review the relevant research of Nrf2 agonists in pH in both experimental research and clinical trials.
Collapse
|
50
|
Physical-Exercise-Induced Antioxidant Effects on the Brain and Skeletal Muscle. Antioxidants (Basel) 2022; 11:antiox11050826. [PMID: 35624690 PMCID: PMC9138070 DOI: 10.3390/antiox11050826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 04/18/2022] [Accepted: 04/19/2022] [Indexed: 02/06/2023] Open
Abstract
Erythroid-related nuclear factor 2 (NRF2) and the antioxidant-responsive-elements (ARE) signaling pathway are the master regulators of cell antioxidant defenses, playing a key role in maintaining cellular homeostasis, a scenario in which proper mitochondrial function is essential. Increasing evidence indicates that the regular practice of physical exercise increases cellular antioxidant defenses by activating NRF2 signaling. This manuscript reviewed classic and ongoing research on the beneficial effects of exercise on the antioxidant system in both the brain and skeletal muscle.
Collapse
|