1
|
Wang Q, Lu W, Lu L, Wu R, Wu D. miR-575/RIPK4 axis modulates cell cycle progression and proliferation by inactivating the Wnt/β-catenin signaling pathway through inhibiting RUNX1 in colon cancer. Mol Cell Biochem 2024; 479:1747-1766. [PMID: 38480605 DOI: 10.1007/s11010-024-04938-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/10/2024] [Indexed: 07/18/2024]
Abstract
Receptor interacting protein serine/threonine kinase 4 (RIPK4) is widely involved in human cancer development. Nevertheless, its role in colon cancer (COAD) has not been elucidated till now. Our research aimed at exploring the function and underlying molecular mechanism of RIPK4 in COAD progression. Through bioinformatic analyses and RT-qPCR, RIPK4 was discovered to be increased in COAD cells and tissues, and its high level predicted poor prognosis. Loss-of-function assays revealed that RIPK4 silencing suppressed COAD cell growth, induced cell cycle arrest, and enhanced cell apoptosis. In vivo experiments also proved that tumor growth was inhibited by silencing of RIPK4. Luciferase reporter assay validated that RIPK4 was targeted and negatively regulated by miR-575. Western blotting demonstrated that Wnt3a, phosphorylated (p)-GSK-3β, and cytoplasmic and nuclear β-catenin protein levels, β-catenin nuclear translocation, and Cyclin D1, CDK4, Cyclin E, and c-Myc protein levels were reduced by RIPK4 knockdown, which however was reversed by treatment with LiCl, the Wnt/β-catenin pathway activator. LiCl also offset the influence of RIPK4 knockdown on COAD cell growth, cell cycle process, and apoptosis. Finally, RIPK4 downregulation reduced RUNX1 level, which was upregulated in COAD and its high level predicted poor prognosis. RIPK4 is positively associated with RUNX1 in COAD. Overexpressing RUNX1 antagonized the suppression of RIPK4 knockdown on RUNX1, Wnt3a, p-GSK-3β, cytoplasmic β-catenin, nuclear β-catenin, Cyclin D1, CDK4, Cyclin E, and c-Myc levels. Collectively, miR-575/RIPK4 axis repressed COAD progression via inactivating the Wnt/β-catenin pathway through downregulating RUNX1.
Collapse
Affiliation(s)
- Qun Wang
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China.
- Colorectal Cancer Clinical Research Center of Hubei Province, Wuhan, 430079, China.
| | - Weijun Lu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
| | - Li Lu
- Colorectal Cancer Clinical Research Center of Wuhan, Wuhan, 430079, China
- Department of Gastrointestinal Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430079, China
| | - Ruopu Wu
- Tianjin Medical University, Tianjin, 300070, China
| | - Dongde Wu
- Department of Hepatopancreatobiliary Surgery, Hubei Cancer Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 16 Zhuodaoquan South Road, Hongshan District, Wuhan, 430079, China.
| |
Collapse
|
2
|
Doré S, Ali M, Sorin M, McDowell SAC, Desharnais L, Breton V, Yu MW, Arabzadeh A, Ryan MI, Milette S, Quail DF, Walsh LA. Exploring the prognostic significance of arm-level copy number alterations in triple-negative breast cancer. Oncogene 2024; 43:2015-2024. [PMID: 38744952 PMCID: PMC11196216 DOI: 10.1038/s41388-024-03051-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 04/22/2024] [Accepted: 04/24/2024] [Indexed: 05/16/2024]
Abstract
Somatic copy number alterations (SCNAs) are prevalent in cancer and play a significant role in both tumorigenesis and therapeutic resistance. While focal SCNAs have been extensively studied, the impact of larger arm-level SCNAs remains poorly understood. Here, we investigated the association between arm-level SCNAs and overall survival in triple-negative breast cancer (TNBC), an aggressive subtype of breast cancer lacking targeted therapies. We identified frequent arm-level SCNAs, including 21q gain and 7p gain, which correlated with poor overall survival in TNBC patients. Further, we identified the expression of specific genes within these SCNAs associated with survival. Notably, we found that the expression of RIPK4, a gene located on 21q, exhibited a strong correlation with poor overall survival. In functional assays, we demonstrated that targeting Ripk4 in a murine lung metastatic TNBC model significantly reduced tumor burden, improved survival, and increased CD4+ and CD8+ T cell infiltration. RIPK4 enhanced the survival of triple-negative breast cancer cells at secondary sites, thereby facilitating the formation of metastatic lesions. Our findings highlight the significance of arm-level SCNAs in breast cancer progression and identify RIPK4 as a putative driver of TNBC metastasis and immunosuppression.
Collapse
Affiliation(s)
- Samuel Doré
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mariam Ali
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Mark Sorin
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Sheri A C McDowell
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Lysanne Desharnais
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Valérie Breton
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Human Genetics, McGill University, Montreal, QC, Canada
| | - Miranda W Yu
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
| | - Azadeh Arabzadeh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
| | - Malcolm I Ryan
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Surgery, McGill University Health Center, Montreal, QC, Canada
| | - Simon Milette
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Daniela F Quail
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada
- Department of Physiology, Faculty of Medicine, McGill University, Montreal, QC, Canada
- Department of Experimental Medicine, McGill University, Montreal, QC, Canada
| | - Logan A Walsh
- Rosalind and Morris Goodman Cancer Institute, McGill University, Montreal, QC, Canada.
- Department of Human Genetics, McGill University, Montreal, QC, Canada.
| |
Collapse
|
3
|
Madej E, Lisek A, Brożyna AA, Cierniak A, Wronski N, Deptula M, Wardowska A, Wolnicka-Glubisz A. The involvement of RIPK4 in TNF-α-stimulated IL-6 and IL-8 production by melanoma cells. J Cancer Res Clin Oncol 2024; 150:209. [PMID: 38656555 PMCID: PMC11043103 DOI: 10.1007/s00432-024-05732-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 03/28/2024] [Indexed: 04/26/2024]
Abstract
PURPOSE The receptor-interacting protein kinase (RIPK4) has an oncogenic function in melanoma, regulates NF-κB and Wnt/β-catenin pathways, and is sensitive to the BRAF inhibitors: vemurafenib and dabrafenib which lead to its decreased level. As its role in melanoma remains not fully understood, we examined the effects of its downregulation on the transcriptomic profile of melanoma. METHODS Applying RNA-seq, we revealed global alterations in the transcriptome of WM266.4 cells with RIPK4 silencing. Functional partners of RIPK4 were evaluated using STRING and GeneMANIA databases. Cells with transient knockdown (via siRNA) and stable knockout (via CRISPR/Cas9) of RIPK4 were stimulated with TNF-α. The expression levels of selected proteins were assessed using Western blot, ELISA, and qPCR. RESULTS Global analysis of gene expression changes indicates a complex role for RIPK4 in regulating adhesion, migration, proliferation, and inflammatory processes in melanoma cells. Our study highlights potential functional partners of RIPK4 such as BIRC3, TNF-α receptors, and MAP2K6. Data from RIPK4 knockout cells suggest a putative role for RIPK4 in modulating TNF-α-induced production of IL-8 and IL-6 through two distinct signaling pathways-BIRC3/NF-κB and p38/MAPK. Furthermore, increased serum TNF-α levels and the correlation of RIPK4 with NF-κB were revealed in melanoma patients. CONCLUSION These data reveal a complex role for RIPK4 in regulating the immune signaling network in melanoma cells and suggest that this kinase may represent an alternative target for melanoma-targeted adjuvant therapy.
Collapse
Affiliation(s)
- Ewelina Madej
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna Lisek
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
| | - Anna A Brożyna
- Department of Human Biology, Insitute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska1, 87-100, Toruń, Poland
| | - Agnieszka Cierniak
- Department of Biochemistry, Faculty of Medicine and Health Sciences, Andrzej Frycz Modrzewski Krakow University, Kraków, Poland
| | - Norbert Wronski
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland
- Doctoral School of Exact and Natural Sciences, Jagiellonian University, Kraków, Poland
| | - Milena Deptula
- Laboratory of Tissue Engineering and Regenerative Medicine, Division of Embryology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Anna Wardowska
- Department of Physiopathology, Faculty of Medicine, Medical University of Gdańsk, Gdańsk, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387, Kraków, Poland.
| |
Collapse
|
4
|
Yin X, Zhao S, Zhang M, Xing J, Zhou J, Gao W, Chen L, Zhang Y, Lin L, Lu M, Li W, Shang J, Zhu X. m6A-modified RIPK4 facilitates proliferation and cisplatin resistance in epithelial ovarian cancer. Gynecol Oncol 2024; 180:99-110. [PMID: 38086167 DOI: 10.1016/j.ygyno.2023.11.034] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/14/2023] [Accepted: 11/29/2023] [Indexed: 02/18/2024]
Abstract
BACKGROUND Cisplatin (DDP)-based chemotherapy is a common chemotherapeutic regimen for the treatment of advanced epithelial ovarian cancer (EOC). However, most patients rapidly develop chemoresistance. N6-methyladenosine (m6A) is a pervasive RNA modification, and its specific role and potential mechanism in the regulation of chemosensitivity in EOC remain unclear. METHODS The expression of RIPK4 and its clinicopathological impact were evaluated in EOC cohorts. The biological effects of RIPK4 were investigated using in vitro and in vivo models. RNA m6A quantification was used to measure total m6A levels in epithelial ovarian cancer cells. Luciferase reporter, MeRIP-qPCR, RIP-qPCR and actinomycin-D assays were used to investigate RNA/RNA interactions and m6A modification of RIPK4 mRNA. RESULTS We demonstrated that RIPK4, an upregulated mRNA in EOC, acts as an oncogene in EOC cells by promoting tumor cell proliferation and DDP resistance at the clinical, database, cellular, and animal model levels. Mechanistically, METTL3 facilitates m6A modification, and YTHDF1 recognizes the specific m6A-modified site to prevent RIPK4 RNA degradation and upregulate RIPK4 expression. This induces NF-κB activation, resulting in tumor growth and DDP resistance in vitro and in vivo. CONCLUSIONS Collectively, the present findings reveal a novel mechanism underlying the induction of DDP resistance by m6A-modified RIPK4, that may contribute to overcoming chemoresistance in EOC.
Collapse
Affiliation(s)
- Xinming Yin
- Department of Gynecology, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Shijie Zhao
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Mengxue Zhang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Center for Reproductive Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Jie Xing
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Jiamin Zhou
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wujiang Gao
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Lu Chen
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Yajiao Zhang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Li Lin
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Minjun Lu
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Wenxin Li
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Junyu Shang
- Department of Central Laboratory, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China
| | - Xiaolan Zhu
- Reproductive Medicine Center, The Fourth Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, China; Institute of Reproductive Sciences, Jiangsu university, Zhenjiang, Jiangsu, China.
| |
Collapse
|
5
|
Wronski N, Madej E, Grabacka M, Brożyna AA, Wolnicka-Glubisz A. RIPK4 downregulation impairs Wnt3A-stimulated invasiveness via Wnt/β-catenin signaling in melanoma cells and tumor growth in vivo. Cell Signal 2024; 113:110938. [PMID: 37871667 DOI: 10.1016/j.cellsig.2023.110938] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 10/12/2023] [Accepted: 10/20/2023] [Indexed: 10/25/2023]
Abstract
PURPOSE The role of Wnt signaling in oncogenesis and drug resistance is well known. Receptor-interacting protein kinase (RIPK4) contributing to the increased activity of many signaling pathways, including Wnt/β-catenin, may be an important target for designing new drugs for metastatic melanoma, but its role in melanoma is not fully understood. METHODS We tested the effect of genetic manipulation of RIPK4 (CRISPR/Cas9) on xenograft growth. In addition, immunohistochemistry was used to detect active β-catenin, Ki67 and necrosis in xenografts. Wnt signaling pathway activity was examined using Western blot and Top-Flash. The effect of RIPK4 knockout on melanoma cells in vitro stimulated Wnt3A on wound overgrowth, migration and invasion ability was then evaluated. RESULTS Our study showed that CRISPR/Cas9-mediated RIPK4 knockout (KO) significantly reduced tumor growth in a mouse model of melanoma, particularly of WM266.4 cells. RIPK4 KO tumors exhibited lower percentages of Ki67+ cells as well as reduced necrotic area and decreased levels of active β-catenin. In addition, we observed that RIPK4 knockout impaired Wnt3A-induced activation of LRP6 and β-catenin, as manifested by a decrease in the transcriptional activity of β-catenin in Top-Flash in both tested melanoma cell lines, A375 and WM266.4. Prolonged incubation (48 h) with Wnt3A showed reduced level of MMP9, C-myc, and increased SOX10, proteins whose transcription is also dependent on β-catenin activity. Moreover, RIPK4 knockout led to the inhibition of scratch overgrowth, migration and invasion of these cells compared to their controls. CONCLUSION RIPK4 knockdown inhibits melanoma tumor growth and Wnt3A stimulated migration and invasion indicating that RIPK4 might be a potential target for melanoma therapy.
Collapse
Affiliation(s)
- Norbert Wronski
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland; Doctoral School of Exact and Natural Sciences, Jagiellonian University, Krakow, Poland
| | - Ewelina Madej
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland
| | - Maja Grabacka
- Department of Biotechnology and General Technology of Foods, Faculty of Food Technology, University of Agriculture, Balicka 122, 30-149 Krakow, Poland
| | - Anna A Brożyna
- Department of Human Biology, Institute of Biology, Faculty of Biological and Veterinary Sciences, Nicolaus Copernicus University, Lwowska 1, 87-100 Toruń, Poland
| | - Agnieszka Wolnicka-Glubisz
- Department of Biophysics and Cancer Biology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Gronostajowa 7, 30-387 Krakow, Poland.
| |
Collapse
|
6
|
Urwyler-Rösselet C, Tanghe G, Devos M, Hulpiau P, Saeys Y, Declercq W. Functions of the RIP kinase family members in the skin. Cell Mol Life Sci 2023; 80:285. [PMID: 37688617 PMCID: PMC10492769 DOI: 10.1007/s00018-023-04917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Revised: 07/08/2023] [Accepted: 08/08/2023] [Indexed: 09/11/2023]
Abstract
The receptor interacting protein kinases (RIPK) are a family of serine/threonine kinases that are involved in the integration of various stress signals. In response to several extracellular and/or intracellular stimuli, RIP kinases engage signaling cascades leading to the activation of NF-κB and mitogen-activated protein kinases, cell death, inflammation, differentiation and Wnt signaling and can have kinase-dependent and kinase-independent functions. Although it was previously suggested that seven RIPKs are part of the RIPK family, phylogenetic analysis indicates that there are only five genuine RIPKs. RIPK1 and RIPK3 are mainly involved in controlling and executing necroptosis in keratinocytes, while RIPK4 controls proliferation and differentiation of keratinocytes and thereby can act as a tumor suppressor in skin. Therefore, in this review we summarize and discuss the functions of RIPKs in skin homeostasis as well as the signaling pathways involved.
Collapse
Affiliation(s)
- Corinne Urwyler-Rösselet
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Biology, Institute of Molecular Health Sciences, ETH Zurich, 8093, Zurich, Switzerland
| | - Giel Tanghe
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Michael Devos
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium
- VIB Center for Inflammation Research, Ghent, Belgium
| | - Paco Hulpiau
- VIB Center for Inflammation Research, Ghent, Belgium
- Howest University of Applied Sciences, Brugge, Belgium
| | - Yvan Saeys
- VIB Center for Inflammation Research, Ghent, Belgium
- Department of Applied Mathematics and Computer Science, Ghent University, Ghent, Belgium
| | - Wim Declercq
- Department of Biomedical Molecular Biology, Ghent University, Ghent, Belgium.
- VIB Center for Inflammation Research, Ghent, Belgium.
| |
Collapse
|
7
|
Abeesh P, Guruvayoorappan C. Inhibition of tumor-specific angiogenesis by AS1411 aptamer functionalized Withaferin A loaded PEGylated nanoliposomes by targeting nucleolin. Biochem Biophys Res Commun 2023; 673:106-113. [PMID: 37379799 DOI: 10.1016/j.bbrc.2023.05.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 05/17/2023] [Indexed: 06/30/2023]
Abstract
Angiogenesis is a vital process for tumor growth and metastasis. Inhibition of angiogenesis is a promising strategy in cancer treatment. In this study, we analyzed the anti-angiogenic activity of AS1411 functionalized Withaferin A encapsulated PEGylated nanoliposomes (ALW) using both in vitro and in vivo models. AS1411 aptamer functionalized nanoliposomes are an efficient drug delivery system for carrying chemotherapeutic agents to target cancer cells, and Withaferin A (WA) is a steroidal lactone known for potent anti-angiogenic activity. ALW showed significant inhibition in the migration and tube formation of endothelial cells, which are critical events in angiogenesis. In vivo angiogenesis study using ALW showed remarkable inhibition of tumor-directed capillary formation by altered serum cytokines, VEGF, GM-CSF, and NO levels. ALW treatment downregulated the gene expression of Matrix metalloproteinase (MMP)-2, MMP-9, VEGF, NF-kB and upregulated the expression of tissue inhibitor of metalloproteinase (TIMP)-1. Our results demonstrate that ALW inhibits tumor-specific angiogenesis by gene expression of NF-κB, VEGF, MMP-2, and MMP-9. The present study shows that using ALW can offer an attractive strategy for inhibiting tumor angiogenesis.
Collapse
Affiliation(s)
- Prathapan Abeesh
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Post, Thiruvananthapuram, Kerala, 695011, India; Research Centre, University of Kerala, India
| | - Chandrasekaran Guruvayoorappan
- Laboratory of Immunopharmacology and Experimental Therapeutics, Division of Cancer Research, Regional Cancer Centre, Medical College Post, Thiruvananthapuram, Kerala, 695011, India; Research Centre, University of Kerala, India.
| |
Collapse
|
8
|
Wu X, Xu J, Yang X, Wang D, Xu X. Integrating Transcriptomics and Metabolomics to Explore the Novel Pathway of Fusobacterium nucleatum Invading Colon Cancer Cells. Pathogens 2023; 12:pathogens12020201. [PMID: 36839472 PMCID: PMC9967813 DOI: 10.3390/pathogens12020201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 01/18/2023] [Accepted: 01/27/2023] [Indexed: 01/31/2023] Open
Abstract
Colorectal cancer (CRC) is a malignancy with a very high incidence and mortality rate worldwide. Fusobacterium nucleatum bacteria and their metabolites play a role in inducing and promoting CRC; however, no studies on the exchange of information between Fusobacterium nucleatum extracellular vesicles (Fnevs) and CRC cells have been reported. Our research shows that Fusobacterium nucleatum ATCC25586 secretes extracellular vesicles carrying active substances from parental bacteria which are endocytosed by colon cancer cells. Moreover, Fnevs promote the proliferation, migration, and invasion of CRC cells and inhibit apoptosis; they also improve the ability of CRC cells to resist oxidative stress and SOD enzyme activity. The genes differentially expressed after transcriptome sequencing are mostly involved in the positive regulation of tumor cell proliferation. After detecting differential metabolites using liquid chromatography-tandem mass spectrometry, Fnevs were found to promote cell proliferation by regulating amino acid biosynthesis in CRC cells and metabolic pathways such as central carbon metabolism, protein digestion, and uptake in cancer. In summary, this study not only found new evidence of the synergistic effect of pathogenic bacteria and colon cancer tumor cells, but also provides a new direction for the early diagnosis and targeted treatment of colon cancer.
Collapse
Affiliation(s)
- Xinyu Wu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Jinzhao Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoying Yang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Danping Wang
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
| | - Xiaoxi Xu
- Key Laboratory of Dairy Science, Ministry of Education, Northeast Agricultural University, Harbin 150030, China
- College of Food Science, Northeast Agricultural University, Harbin 150030, China
- Correspondence: ; Tel.: +86-0451-55191827
| |
Collapse
|
9
|
Ermine K, Yu J, Zhang L. Role of Receptor Interacting Protein (RIP) kinases in cancer. Genes Dis 2022; 9:1579-1593. [PMID: 36157481 PMCID: PMC9485196 DOI: 10.1016/j.gendis.2021.10.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 10/18/2021] [Accepted: 10/26/2021] [Indexed: 12/25/2022] Open
Abstract
The Receptor Interacting Protein (RIP) kinase family consists of seven Serine/Threonine kinases, which plays a key signaling role in cell survival and cell death. Each RIP family member contains a conserved kinase domain and other domains that determine the specific kinase function through protein-protein interactions. RIP1 and RIP3 are best known for their critical roles in necroptosis, programmed necrosis and a non-apoptotic inflammatory cell death process. Dysregulation of RIP kinases contributes to a variety of pathogenic conditions such as inflammatory diseases, neurological diseases, and cancer. In cancer cells, alterations of RIP kinases at genetic, epigenetic and expression levels are frequently found, and suggested to promote tumor progression and metastasis, escape of antitumor immune response, and therapeutic resistance. However, RIP kinases can be either pro-tumor or anti-tumor depending on specific tumor types and cellular contexts. Therapeutic agents for targeting RIP kinases have been tested in clinical trials mainly for inflammatory diseases. Deregulated expression of these kinases in different types of cancer suggests that they represent attractive therapeutic targets. The focus of this review is to outline the role of RIP kinases in cancer, highlighting potential opportunities to manipulate these proteins in cancer treatment.
Collapse
Affiliation(s)
- Kaylee Ermine
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| | - Jian Yu
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
| | - Lin Zhang
- Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15213, USA
- UPMC Hillman Cancer Center, Pittsburgh, PA 15213, USA
| |
Collapse
|
10
|
Zhong GY, Tan JN, Huang J, Zhou SN, Yu JH, Zhong L, Hou D, Zhi SL, Zeng JT, Li HM, Zheng CL, Yang B, Han FH. LncRNA LINC01537 Promotes Gastric Cancer Metastasis and Tumorigenesis by Stabilizing RIPK4 to Activate NF-κB Signaling. Cancers (Basel) 2022; 14:5237. [PMID: 36358656 PMCID: PMC9657364 DOI: 10.3390/cancers14215237] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 10/20/2022] [Accepted: 10/21/2022] [Indexed: 10/30/2023] Open
Abstract
Many studies reported that long noncoding RNAs (lncRNAs) play a critical role in gastric cancer (GC) metastasis and tumorigenesis. However, the underlying mechanisms of lncRNAs in GC remain unexplored to a great extent. LINC01537 expression level was detected using quantitative reverse transcription-polymerase chain reaction (qRT-PCR) and immunohistochemistry (IHC). Its biological roles in GC were then investigated using functional experiments. In order to investigate the underlying mechanism of LINC01537 in GC, RNA pull-down, RNA immunoprecipitation, and ubiquitination assays were performed. LINC01537 was significantly overexpressed in GC tissues and associated with a poor prognosis. Functional experimental results revealed that LINC01537 promoted the proliferation, invasion, and migration of GC cells. The animal experiments revealed that LINC01537 promoted tumorigenesis and metastasis in vivo. Mechanistically, LINC01537 stabilizes RIPK4 by reducing the binding of RIPK4 to TRIM25 and reducing its ubiquitination degradation, thereby promoting the expression of the NF-κB signaling pathway. According to our findings, the LINC01537-RIPK4-NF-κB axis promoted GC metastasis and tumorigenesis.
Collapse
Affiliation(s)
- Guang-Yu Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jia-Nan Tan
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jing Huang
- Thyroid and Parathyroid Surgery Center, West China Hospital of Sichuan University, Chengdu 610041, China
| | - Sheng-Ning Zhou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Hao Yu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Lin Zhong
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Dong Hou
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Shi-Lin Zhi
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Jin-Tao Zeng
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Hong-Ming Li
- Department of Colorectal Surgery, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou 510120, China
| | - Chu-Lian Zheng
- Department of Operation Room, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Bin Yang
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| | - Fang-Hai Han
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510275, China
| |
Collapse
|
11
|
Li G, Xu Z, Peng J, Yan Y, Liu Y, Zhang X, Qiu Y, Fu C. The RIPK family: expression profile and prognostic value in lung adenocarcinoma. Aging (Albany NY) 2022; 14:5946-5958. [PMID: 35907206 PMCID: PMC9365553 DOI: 10.18632/aging.204195] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 07/21/2022] [Indexed: 11/25/2022]
Abstract
Receptor interacting protein kinases (RIPKs) are a family of serine/threonine kinases which are supposed to regulate tumor generation and progression. Rare study illustrates the roles and functions of RIPKs family in lung adenocarcinoma (LUAD) comprehensively. Our results indicated that the expression of RIPK2 higher in LUAD patients while RIPK5 (encoded by gene DSTYK) expression was lower. Only RIPK2 had a strong correlation with pathological stage in LUAD patients. Kaplan-Meier plotter revealed that LUAD patients with low RIPK2 or RIPK3 level showed better overall survival (OS), but worse when LUAD patients with high RIPK5. Further, lower expression of RIPK2 and higher expression of RIPK1, RIPK4 and RIPK5 prompted a longer disease free survival (DFS). Genetic alterations based on cBioPortal revealing 16% alteration rates of RIPK2, as well as RIPK5. We also found that the functions of RIPKs family were linked to cellular senescence, protein serine/threonine kinase activity, apoptosis process et al. TIMER database indicated that the RIPKs family members had distinct relationships with the infiltration of six types of immune cells (macrophages, neutrophils, CD8+ T-cells, B-cells, CD4+ T-cells and dendritic cells). Moreover, RIPK2 could be observed as an independent prognostic factor with Cox proportional hazard model analysis. DiseaseMeth databases revealed that the global methylation levels of RIPK2 increased in LUAD patients. Thus, the findings above will enhance the understanding of RIPKs family in LUAD pathology and progression, providing novel insights into RIPKs-core therapy for LUAD patients.
Collapse
Affiliation(s)
- Guo Li
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China.,Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Zhijie Xu
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Pathology, Xiangya Changde Hospital, Changde 415000, China.,National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Jinwu Peng
- Department of Pathology, Xiangya Hospital, Central South University, Changsha 410008, China.,Department of Pathology, Xiangya Changde Hospital, Changde 415000, China
| | - Yuanliang Yan
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yong Liu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China.,Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Xin Zhang
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China.,Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Yuanzheng Qiu
- Department of Otolaryngology Head and Neck Surgery, Xiangya Hospital, Central South University, Changsha 410008, China.,Otolaryngology Major Disease Research Key Laboratory of Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China.,Clinical Research Center for Laryngopharyngeal and Voice Disorders in Hunan Province, Xiangya Hospital, Central South University, Changsha 410008, China
| | - Chencheng Fu
- Department of Pathology, Xiangya Changde Hospital, Changde 415000, China
| |
Collapse
|
12
|
Rojas A, Schneider I, Lindner C, Gonzalez I, Morales M. The RAGE/multiligand axis: a new actor in tumor biology. Biosci Rep 2022; 42:BSR20220395. [PMID: 35727208 PMCID: PMC9251583 DOI: 10.1042/bsr20220395] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 06/02/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
The receptor for advanced glycation end-products (RAGE) is a multiligand binding and single-pass transmembrane protein which actively participates in several chronic inflammation-related diseases. RAGE, in addition to AGEs, has a wide repertoire of ligands, including several damage-associated molecular pattern molecules or alarmins such as HMGB1 and members of the S100 family proteins. Over the last years, a large and compelling body of evidence has revealed the active participation of the RAGE axis in tumor biology based on its active involvement in several crucial mechanisms involved in tumor growth, immune evasion, dissemination, as well as by sculpturing of the tumor microenvironment as a tumor-supportive niche. In the present review, we will detail the consequences of the RAGE axis activation to fuel essential mechanisms to guarantee tumor growth and spreading.
Collapse
Affiliation(s)
- Armando Rojas
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ivan Schneider
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Cristian Lindner
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Ileana Gonzalez
- Biomedical Research Labs., Universidad Catolica del Maule, Facultad de Medicina, 3605 San Miguel Ave., Talca, Chile
| | - Miguel A. Morales
- Department of Molecular and Clinical Pharmacology Program, Institute of Biomedical Sciences, Universidad de Chile, Santiago 8320000, Chile, Santiago, Chile
| |
Collapse
|
13
|
Tang F, Yu H, Wang X, Shi J, Chen Z, Wang H, Wan Z, Fu Q, Hu X, Zuhaer Y, Liu T, Yang Z, Peng J. NCAPG promotes tumorigenesis of bladder cancer through NF-κB signaling pathway. Biochem Biophys Res Commun 2022; 622:101-107. [PMID: 35843088 DOI: 10.1016/j.bbrc.2022.07.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 06/29/2022] [Accepted: 07/03/2022] [Indexed: 11/02/2022]
Abstract
The non-SMC condensin I complex subunit G (NCAPG) is a subunit of the condensin complex, many studies have shown that NCAPG is aberrantly expressed in different tumors and closely associated with poor prognosis, but its role in bladder cancer is unclear. In this paper, we found that NCAPG expression was upregulated in bladder cancer in tumor-related databases, and further verified the expression of NCAPG in bladder cancer tissues as well as bladder cancer cell lines by tissue microarray, qPCR, and WB. Next, we explored the changes in bladder cancer cell proliferation as well as migration after NCAPG knockdown by cell growth curve, colony formation, soft agar assay, and xenograft model. Finally, we examined the changes in downstream signaling pathways after NCAPG knockdown using RNA-Seq, and we found that the NF-κB signaling pathway was inhibited with NCAPG gene knockdown, which was verified by luciferase reporter assay as well as WB. In conclusion, our results illustrate that NCAPG knockdown can inhibit the proliferation of bladder cancer cells through the NF-κB signaling pathway. This finding demonstrates that NCAPG could be a potential target for the treatment of bladder cancer.
Collapse
Affiliation(s)
- Feng Tang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hua Yu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xia Wang
- Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China; Departmentof Public Health, Wuhan University Hospital, Wuhan University, Wuhan, China
| | - Jiageng Shi
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhizhuang Chen
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Hao Wang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ziyu Wan
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Qiqi Fu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Xuan Hu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yisha Zuhaer
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Tao Liu
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhonghua Yang
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jianping Peng
- Department of Urology, Zhongnan Hospital of Wuhan University, Wuhan, China; Medical Science Research Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
14
|
Priya S, Burns MB, Ward T, Mars RAT, Adamowicz B, Lock EF, Kashyap PC, Knights D, Blekhman R. Identification of shared and disease-specific host gene-microbiome associations across human diseases using multi-omic integration. Nat Microbiol 2022; 7:780-795. [PMID: 35577971 PMCID: PMC9159953 DOI: 10.1038/s41564-022-01121-z] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 04/06/2022] [Indexed: 12/19/2022]
Abstract
While gut microbiome and host gene regulation independently contribute to gastrointestinal disorders, it is unclear how the two may interact to influence host pathophysiology. Here we developed a machine learning-based framework to jointly analyse paired host transcriptomic (n = 208) and gut microbiome (n = 208) profiles from colonic mucosal samples of patients with colorectal cancer, inflammatory bowel disease and irritable bowel syndrome. We identified associations between gut microbes and host genes that depict shared as well as disease-specific patterns. We found that a common set of host genes and pathways implicated in gastrointestinal inflammation, gut barrier protection and energy metabolism are associated with disease-specific gut microbes. Additionally, we also found that mucosal gut microbes that have been implicated in all three diseases, such as Streptococcus, are associated with different host pathways in each disease, suggesting that similar microbes can affect host pathophysiology in a disease-specific manner through regulation of different host genes. Our framework can be applied to other diseases for the identification of host gene-microbiome associations that may influence disease outcomes.
Collapse
Affiliation(s)
- Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, MN, USA
| | - Michael B Burns
- Department of Biology, Loyola University Chicago, Chicago, IL, USA
| | - Tonya Ward
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
| | - Ruben A T Mars
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Beth Adamowicz
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Eric F Lock
- Division of Biostatistics, School of Public Health, University of Minnesota, Minneapolis, MN, USA
| | - Purna C Kashyap
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, Mayo Clinic, Rochester, MN, USA
| | - Dan Knights
- BioTechnology Institute, College of Biological Sciences, University of Minnesota, Minneapolis, MN, USA
- Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN, USA
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
15
|
Crocin Inhibits Angiogenesis and Metastasis in Colon Cancer via TNF-α/NF-kB/VEGF Pathways. Cells 2022; 11:cells11091502. [PMID: 35563808 PMCID: PMC9104358 DOI: 10.3390/cells11091502] [Citation(s) in RCA: 58] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Revised: 04/22/2022] [Accepted: 04/28/2022] [Indexed: 02/01/2023] Open
Abstract
Angiogenesis and metastasis play pivotal roles in the progression of cancer. We recently discovered that crocin, a dietary carotenoid derived from the Himalayan crocus, inhibited the growth of colon cancer cells. However, the exact role of crocin on the angiogenesis and metastasis in colorectal cancer remains unclear. In the present study, we demonstrated that crocin significantly reduces the viability of colon cancer cells (HT-29, Caco-2) and human umbilical vein endothelial cells (HUVEC), but was not toxic to human colon epithelial (HCEC) cells. Furthermore, pre-treatment of human carcinoma cells (HT-29 and Caco-2) with crocin inhibited cell migration, invasion, and angiogenesis in concentration -dependent manner. Further studies demonstrated that crocin inhibited TNF-α, NF-κB and VEGF pathways in colon carcinoma cell angiogenesis and metastasis. Crocin also inhibited cell migration, invasion, and tube formation in human umbilical vein endothelial cells (HUVEC) in a concentration -dependent manner. We also observed that crocin significantly reduced the secretion of VEGF and TNF-α induced activation of NF-kB by human colon carcinoma cells. In the absence of TNF-α, a concentration-dependent reduction in NF-kB was observed. Many of these observations were confirmed by in vivo angiogenesis models, which showed that crocin significantly reduced the progression of tumour growth. Collectively, these finding suggest that crocin inhibits angiogenesis and colorectal cancer cell metastasis by targeting NF-kB and blocking TNF-α/NF-κB/VEGF pathways.
Collapse
|
16
|
Halib N, Pavan N, Trombetta C, Dapas B, Farra R, Scaggiante B, Grassi M, Grassi G. An Overview of siRNA Delivery Strategies for Urological Cancers. Pharmaceutics 2022; 14:pharmaceutics14040718. [PMID: 35456552 PMCID: PMC9030829 DOI: 10.3390/pharmaceutics14040718] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/18/2022] [Accepted: 03/24/2022] [Indexed: 02/05/2023] Open
Abstract
The treatment of urological cancers has been significantly improved in recent years. However, for the advanced stages of these cancers and/or for those developing resistance, novel therapeutic options need to be developed. Among the innovative strategies, the use of small interfering RNA (siRNA) seems to be of great therapeutic interest. siRNAs are double-stranded RNA molecules which can specifically target virtually any mRNA of pathological genes. For this reason, siRNAs have a great therapeutic potential for human diseases including urological cancers. However, the fragile nature of siRNAs in the biological environment imposes the development of appropriate delivery systems to protect them. Thus, ensuring siRNA reaches its deep tissue target while maintaining structural and functional integrity represents one of the major challenges. To reach this goal, siRNA-based therapies require the development of fine, tailor-made delivery systems. Polymeric nanoparticles, lipid nanoparticles, nanobubbles and magnetic nanoparticles are among nano-delivery systems studied recently to meet this demand. In this review, after an introduction about the main features of urological tumors, we describe siRNA characteristics together with representative delivery systems developed for urology applications; the examples reported are subdivided on the basis of the different delivery materials and on the different urological cancers.
Collapse
Affiliation(s)
- Nadia Halib
- Department of Basic Sciences & Oral Biology, Faculty of Dentistry, Universiti Sains Islam Malaysia, Kuala Lumpur 55100, Malaysia;
| | - Nicola Pavan
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Carlo Trombetta
- Urology Clinic, Department of Medical, Surgical and Health Science, University of Trieste, I-34149 Trieste, Italy; (N.P.); (C.T.)
| | - Barbara Dapas
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Rossella Farra
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Bruna Scaggiante
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
| | - Mario Grassi
- Department of Engineering and Architecture, Trieste University, Via Valerio 6, I-34127 Trieste, Italy;
| | - Gabriele Grassi
- Department of Life Sciences, Cattinara University Hospital, Trieste University, Strada di Fiume 447, I-34149 Trieste, Italy; (B.D.); (R.F.); (B.S.)
- Correspondence: ; Tel.: +39-040-399-3227
| |
Collapse
|
17
|
RIPK4 Is an Immune Regulating-Associated Biomarker for Ovarian Cancer and Possesses Generalization Value in Pan-Cancer. J Immunol Res 2022; 2022:7599098. [PMID: 35310605 PMCID: PMC8926548 DOI: 10.1155/2022/7599098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 11/25/2022] Open
Abstract
Ovarian cancer (OC) is the most lethal gynecologic cancer. Many studies have reported that RIPK4 (receptor interacting serine/threonine kinase 4) displayed a dysregulated level in many types of tumors. However, its expressions and functions in OC were rarely reported. The levels of RIPK4 were detected in OC and nontumor specimens using TCGA and GEO datasets. The prognostic values of RIPK4 in patients were determined using Kaplan-Meier methods and Kaplan-Meier assays. GO assays and KEGG pathway assays were carried out for functional enrichments. CIBERSORT was applied for estimating the fractions of immune cell types. Finally, RIPK4 was validated in pan-cancer. In this study, our group found that RIPK4 exhibited a higher level of RIPK4 in OC specimens than nontumor specimens. Survival studies revealed that patients with high RIPK4 expressions showed a shorter overall survival than those with low RIPK4 expression. Multivariate assays further confirmed that RIPK4 expression was an independent prognostic element for OC. KEGG pathway analysis displayed that the dysregulated genes in specimens with high RIPK4 expressions were enriched in focal adhesion, proteoglycans in cancer, central carbon metabolism in cancer, and insulin secretion. Correlation analyses showed that several TICs were positively correlated with RIPK4 expression. The pan-cancer validation results showed that RIPK4 was associated with survival in five tumors. Overall, our findings suggested RIPK4 as a prognostic marker in OC.
Collapse
|
18
|
Xu J, Wu D, Zhang B, Pan C, Guo Y, Wei Q. Depletion of RIPK4 parallels higher malignancy potential in cutaneous squamous cell carcinoma. PeerJ 2022; 10:e12932. [PMID: 35186499 PMCID: PMC8841032 DOI: 10.7717/peerj.12932] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 01/23/2022] [Indexed: 01/11/2023] Open
Abstract
BACKGROUND The RIPK4 (receptor-interacting protein kinase 4), a member of the RIPK family, acts as an important regulator of epidermal differentiation, cutaneous inflammation, and cutaneous wound repair. However, Until now, the role of RIPK4 in tumorigenesis remains elusive. There have been no studies exploring the effects of RIPK4 on the signaling pathway in cutaneous squamous cell carcinoma (SCC). It remains unknown whether RIPK4 expression, which can affect the degree of epidermal differentiation can also influence the radiosensitivity of skin SCC. It is urgent to fully elucidate the biological mechanism by which RIPK4 promotes carcinogenesis in skin SCC and determine whether RIPK4 expression levels predicts the sensitivity to radiotherapy in skin SCC. METHODS Human skin SCC cell line, A431, was transfected with either small interfering RNAs (siRNAs) targeting RIPK4 (siR-RIPK4) or negative control siRNA (siR-NC). Western blotting was used to detect the expression of RIPK4 and Raf/MEK/ERK pathway-related proteins. The cells were irradiated using an X-ray irradiator at 6 MV with different radiation doses (0, 2, 6, and 10 Gy). Cell proliferation analysis, colony formation assay, transwell cell migration and invasion assay, cell cycle and apoptosis analysis were conducted to investigate the effect of RIPK4 silencing on skin SCC malignancy and radiosensitivity. RESULTS RIPK4 protein expression was significantly decreased in the A431 cells transfected with siR-RIPK4, compared with the A431 cells transfected with siR-NC. RIPK4 silencing facilitated the proliferation, colony formation, migration, and invasion ability of A431 cell line, while cell cycle progression or cell apoptosis were not significantly influenced. In contrast with the previous literature, Raf/MEK/ERK pathway was not effected by RIPK4 knockdown in skin SCC. RIPK4 knockdown could not reverse the radiation resistance of A431 cells to irradiation in vitro. CONCLUSIONS In general, although depletion of RIPK4 cannot reverse the radiation resistance of A431 cells in vitro, it parallels higher malignancy potential in cutaneous SCC. To our knowledge, this is the first report of the effects of RIPK4 expression on the Raf/MEK/ERK signaling pathway and radiosensitivity in cutaneous SCC. The better understanding of the molecular mechanism of RIPK4 in cutaneous SCC may provide a promising biomarker for skin SCC prognosis and treatment.
Collapse
Affiliation(s)
- Jing Xu
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Dongping Wu
- Department of Radiation Oncology, Shaoxing People’s Hospital, Shaoxing Hospital of Zhejiang University, Shaoxing, China
| | - Bicheng Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Chi Pan
- Department of Breast Surgey, The Second Affiliated Hospital, Zhejiang University, College of Medicine, Hangzhou, China
| | - Yinglu Guo
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, The Second Affiliated Hospital and Cancer Institute (National Ministry of Education Key Laboratory of Cancer Prevention and Intervention), Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Madej E, Ryszawy D, Brożyna AA, Czyz M, Czyz J, Wolnicka-Glubisz A. Deciphering the Functional Role of RIPK4 in Melanoma. Int J Mol Sci 2021; 22:ijms222111504. [PMID: 34768934 PMCID: PMC8583870 DOI: 10.3390/ijms222111504] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Revised: 10/22/2021] [Accepted: 10/22/2021] [Indexed: 11/17/2022] Open
Abstract
The receptor-interacting protein kinase 4 (RIPK4) plays an important role in the development and maintenance of various tissues including skin, but its role in melanoma has not been reported. Using patient-derived cell lines and clinical samples, we show that RIPK4 is expressed in melanomas at different levels. This heterogenous expression, together with very low level of RIPK4 in melanocytes, indicates that the role of this kinase in melanoma is context-dependent. While the analysis of microarray data has revealed no straightforward correlation between the stage of melanoma progression and RIPK4 expression in vivo, relatively high levels of RIPK4 are in metastatic melanoma cell lines. RIPK4 down-regulation by siRNA resulted in the attenuation of invasive potential as assessed by time-lapse video microscopy, wound-healing and transmigration assays. These effects were accompanied by reduced level of pro-invasive proteins such as MMP9, MMP2, and N-cadherin. Incubation of melanoma cells with phorbol ester (PMA) increased PKC-1β level and hyperphosphorylation of RIPK4 resulting in degradation of RIPK4. Interestingly, incubation of cells with PMA for short and long durations revealed that cell migration is controlled by the NF-κB signaling in a RIPK4-dependent (RIPK4high) or independent (RIPK4low) manner depending on cell origin (distant or lymph node metastasis) or phenotype (mesenchymal or epithelial).
Collapse
Affiliation(s)
- Ewelina Madej
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland;
| | - Damian Ryszawy
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland; (D.R.); (J.C.)
| | - Anna A. Brożyna
- Faculty of Biological and Veterinary Sciences, Institute of Biology, Department of Human Biology, Nicolaus Copernicus University, 1 Lwowska Street, 87-100 Torun, Poland;
| | - Malgorzata Czyz
- Department of Molecular Biology of Cancer Lodz, Medical University of Lodz, 6/8 Mazowiecka Street, 92-215 Lodz, Poland;
| | - Jaroslaw Czyz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Cell Biology, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland; (D.R.); (J.C.)
| | - Agnieszka Wolnicka-Glubisz
- Faculty of Biochemistry, Biophysics and Biotechnology, Department of Biophysics, Jagiellonian University, 7 Gronostajowa Street, 30-387 Krakow, Poland;
- Correspondence: ; Tel.: +48-12-664-65-26; Fax: +48-12-664-69
| |
Collapse
|
20
|
Jin A, Zhang L, Fang G, Chen Y. Receptor interacting protein kinase 4 promotes cell proliferation, migration, and invasion in ovarian cancer via targeting protein kinase C delta. Drug Dev Res 2021; 83:407-415. [PMID: 34414590 DOI: 10.1002/ddr.21871] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Revised: 08/06/2021] [Accepted: 08/09/2021] [Indexed: 11/10/2022]
Abstract
Receptor interacting protein kinase 4 (RIPK4) has been reported to function as an oncogenic role in several types of cancers. The aim of this study was to evaluate the role of RIPK4 in ovarian cancer (OC) cells and to elucidate the mechanism behind this effect. In this study, the GEPIA database was used to analyze the RIPK4 expressions in OC tissues and overall survival. qRT-PCR and western blot assay were performed to detect the expressions of RIPK4 and protein kinase C delta (PRKCD) in OC cells. In addition, cell proliferation was assessed by CCK-8 and colony formation assay while cell invasion and migration were evaluated by transwell, wound healing and western blot assay. The interaction of RIPK4 and PRKCD was analyzed by the STRING database and the bioGRID database, and verified with co-immunoprecipitation. Herein, we describe that RIPK4 expression was upregulated in OC tissues and cells and was associated with poor overall survival. RIPK4 silencing repressed the proliferation, migration, and invasion of OC cells. Mechanistically, PRKCD was highly expressed in OC cells and was combined with RIPK4. PRKCD was highly positively associated with RIPK4 in OC and was regulated by RIPK4. Moreover, PRKCD overexpression reversed the inhibitory effects of RIPK4 silencing on OC cell proliferation, migration, and invasion. RIPK4 functions as an oncogene in OC cells via at least partially binding to PRKCD, which might represent a novel therapeutic strategy for improving survival for patients with OC.
Collapse
Affiliation(s)
- Aihong Jin
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Longhui Zhang
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Guangguang Fang
- Department of Gynecology, The Second People's Hospital of Shenzhen, Shenzhen, China
| | - Yinzi Chen
- Department of Obstetrics and Gynecology, Ruian People's Hospital of Zhejiang Province, Ruian, China
| |
Collapse
|
21
|
Zhao L, Jiang L, Zhang M, Zhang Q, Guan Q, Li Y, He M, Zhang J, Wei M. NF-κB-activated SPRY4-IT1 promotes cancer cell metastasis by downregulating TCEB1 mRNA via Staufen1-mediated mRNA decay. Oncogene 2021; 40:4919-4929. [PMID: 34163032 PMCID: PMC8321898 DOI: 10.1038/s41388-021-01900-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/10/2021] [Accepted: 06/08/2021] [Indexed: 01/09/2023]
Abstract
Previous study demonstrated that most long non-coding RNAs (lncRNAs) function as competing endogenous RNAs or molecular sponges to negatively modulate miRNA and regulate tumor development. However, the molecular mechanisms of lncRNAs in cancer are not fully understood. Our study describes the role of the lncRNA SPRY4 intronic transcript 1 (SPRY4-IT1) in cancer metastasis by mechanisms related to Staufen1 (STAU1)-mediated mRNA decay (SMD). Briefly, we found that, high SPRY4-IT1 expression was associated with aggressiveness and poor outcome in human colorectal, breast and ovarian cancer tissues. In addition, functional assays revealed that SPRY4-IT1 significantly promoted colorectal, breast and ovarian cancer metastasis in vitro and in vivo. Mechanistically, microarray analyses identified several differentially-expressed genes upon SPRY4-IT1 overexpression in HCT 116 colorectal cancer cells. Among them, the 3'-UTR of transcription elongation factor B subunit 1 (TCEB1) mRNA can base-pair with the Alu element in the 3'-UTR of SPRY4-IT1. Moreover, SPRY4-IT1 was found to bind STAU1, promote STAU1 recruitment to the 3'-UTR of TCEB1 mRNA, and affect TCEB1 mRNA stability and expression, resulting in hypoxia-inducible factor 1α (HIF-1α) upregulation, and thereby affecting cancer cell metastasis. In addition, STAU1 depletion abrogated TCEB1 SMD and alleviated the pro-metastatic effect of SPRY4-IT1 overexpression. Significantly, we revealed that SPRY4-IT1 is also transactivated by NF-κB/p65, which activates SPRY4-IT1 to inhibit TCEB1 expression, and subsequently upregulate HIF-1α. In conclusion, our results highlight a novel mechanism of cytoplasmic lncRNA SPRY4-IT1 in which SPRY4-IT1 affecting TCEB1 mRNA stability via STAU1-mediated degradation during cancer metastasis.
Collapse
Affiliation(s)
- Lin Zhao
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Longyang Jiang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Ming Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qiang Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Qiutong Guan
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Yalun Li
- Department of Anorectal Surgery, The First Hospital of China Medical University, Shenyang, China
| | - Miao He
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China
| | - Jingdong Zhang
- Medical Oncology Department of Gastrointestinal Cancer, Liaoning Cancer Hospital & Institute, Cancer Hospital of China Medical University, Shenyang, China.
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
- Liaoning Key Laboratory of molecular targeted anti-tumor drug development and evaluation, China Medical University No.77 Puhe Road, Shenyang North New Area, Shenyang City, 110122, Liaoning, China.
| |
Collapse
|
22
|
Wang Y, Wu J, Luo W, Zhang H, Shi G, Shen Y, Zhu Y, Ma C, Dai B, Ye D, Zhu Y. ALPK2 acts as tumor promotor in development of bladder cancer through targeting DEPDC1A. Cell Death Dis 2021; 12:661. [PMID: 34210956 PMCID: PMC8249393 DOI: 10.1038/s41419-021-03947-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 06/08/2021] [Accepted: 06/16/2021] [Indexed: 12/30/2022]
Abstract
Bladder cancer is one of the most common malignant tumors in the urinary system. The development and improvement of treatment efficiency require the deepening of the understanding of its molecular mechanism. This study investigated the role of ALPK2, which is rarely studied in malignant tumors, in the development of bladder cancer. Our results showed the upregulation of ALPK2 in bladder cancer, and data mining of TCGA database showed the association between ALPK2 and pathological parameters of patients with bladder cancer. In vitro and in vivo experiments demonstrated that knockdown of ALPK2 could inhibit bladder cancer development through regulating cell proliferation, cell apoptosis, and cell migration. Additionally, DEPDC1A is identified as a potential downstream of ALPK2 with direct interaction, whose overexpression/downregulation can inhibit/promote the malignant behavioral of bladder cancer cells. Moreover, the overexpression of DEPDC1A can rescue the inhibitory effects of ALPK2 knockdown on bladder cancer. In conclusion, ALPK2 exerts a cancer-promoting role in the development of bladder cancer by regulating DEPDC1A, which may become a promising target to improve the treatment strategy of bladder cancer.
Collapse
Affiliation(s)
- Yuchen Wang
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Jie Wu
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Wenjie Luo
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Hailiang Zhang
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Guohai Shi
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Yijun Shen
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Yao Zhu
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Chunguang Ma
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Bo Dai
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China
| | - Dingwei Ye
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China.
| | - Yiping Zhu
- Department of Urology, Fundan University Shanghai Cancer Center, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China.
- Department of Oncology, Shanghai Medical College, Fudan University, No. 270 Dongan Road, 200032, Shanghai, People's Republic of China.
| |
Collapse
|
23
|
Liu J, Zhang Y, Zeng H, Wang L, Zhang Q, Wu P, Liu X, Xie H, Xiang W, Liu B, Liu J, Liu X, Xie J, Tang J, Long Z, He L, Xiao M, Xiang L, Cao K. Fe-doped chrysotile nanotubes containing siRNAs to silence SPAG5 to treat bladder cancer. J Nanobiotechnology 2021; 19:189. [PMID: 34162370 PMCID: PMC8220725 DOI: 10.1186/s12951-021-00935-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2021] [Accepted: 06/11/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND For certain human cancers, sperm associated antigen 5 (SPAG5) exerts important functions for their development and progression. However, whether RNA interference (RNAi) targeting SPAG5 has antitumor effects has not been determined clinically. RESULTS The results indicated that Fe-doped chrysotile nanotubes (FeSiNTs) with a relatively uniform outer diameter (15-25 nm) and inner diameter (7-8 nm), and a length of several hundred nanometers, which delivered an siRNA against the SPAG5 oncogene (siSPAG5) efficiently. The nanomaterials were designed to prolong the half-life of siSPAG5 in blood, increase tumor cell-specific uptake, and maximize the efficiency of SPAG5 silencing. In vitro, FeSiNTs carrying siSPAG5 inhibited the growth, migration, and invasion of bladder cancer cells. In vivo, the FeSiNTs inhibited growth and metastasis in three models of bladder tumors (a tail vein injection lung metastatic model, an in-situ bladder cancer model, and a subcutaneous model) with no obvious toxicities. Mechanistically, we showed that FeSiNTs/siSPAG5 repressed PI3K/AKT/mTOR signaling, which suppressed the growth and progression of tumor cells. CONCLUSIONS The results highlight that FeSiNTs/siSPAG5 caused no activation of the innate immune response nor any systemic toxicity, indicating the possible therapeutic utility of FeSiNTs/siSPAG5 to deliver siSPAG5 to treat bladder cancer.
Collapse
Affiliation(s)
- Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Yi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, 410013, China
| | - Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Qun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, Changsha, 410008, China
| | - Xiaoming Liu
- Department of Digestive, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Hongyi Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Biao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jiahao Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Xuewen Liu
- Department of Oncology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Jianfei Xie
- Department of Nursing, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Jin Tang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, 410013, China
| | - Mengqing Xiao
- Department of Oncology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Liang Xiang
- Department of Oncology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha, 410013, Hunan, China.
| |
Collapse
|
24
|
Hu C, Wu Z, Huang Z, Hao X, Wang S, Deng J, Yin Y, Tan C. Nox2 impairs VEGF-A-induced angiogenesis in placenta via mitochondrial ROS-STAT3 pathway. Redox Biol 2021; 45:102051. [PMID: 34217063 PMCID: PMC8258686 DOI: 10.1016/j.redox.2021.102051] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 06/04/2021] [Accepted: 06/16/2021] [Indexed: 02/06/2023] Open
Abstract
Aberrant placental angiogenesis is associated with fetal intrauterine growth restriction (IUGR), but the mechanism underlying abnormal placental angiogenesis remains largely unknown. Here, lower vessel density and higher expression of NADPH oxidases 2 (Nox2) were observed in the placentae for low birth weight (LBW) fetuses versus normal birth weight (NBW) fetuses, with a negative correlation between Nox2 and placental vessel density. Moreover, it was revealed for the first time that Nox2 deficiency facilitates angiogenesis in vitro and in vivo, and vascular endothelial growth factor-A (VEGF-A) has an essential role in Nox2-controlled inhibition of angiogenesis in porcine vascular endothelial cells (PVECs). Mechanistically, Nox2 inhibited phospho-signal transducer and activator of transcription 3 (p-STAT3) in the nucleus by inducing the production of mitochondrial reactive oxygen species (ROS). Dual-luciferase assay confirmed that knockdown of Nox2 reduces the expression of VEGF-A in an STAT3 dependent manner. Our results indicate that Nox2 is a potential target for therapy by increasing VEGF-A expression to promote angiogenesis and serves as a prognostic indicator for fetus with IUGR.
Collapse
Affiliation(s)
- Chengjun Hu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China; Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences, Haikou, 571101, China
| | - Zifang Wu
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Zihao Huang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Xiangyu Hao
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Shuqi Wang
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Jinping Deng
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China
| | - Yulong Yin
- National Engineering Laboratory for Pollution Control and Waste Utilization in Livestock and Poultry Production, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, 410125, China
| | - Chengquan Tan
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, Institute of Subtropical Animal Nutrition and Feed, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.
| |
Collapse
|
25
|
Overexpression of RIPK4 Predicts Poor Prognosis and Promotes Metastasis in Ovarian Cancer. BIOMED RESEARCH INTERNATIONAL 2021; 2021:6622439. [PMID: 34124253 PMCID: PMC8192190 DOI: 10.1155/2021/6622439] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 05/02/2021] [Accepted: 05/24/2021] [Indexed: 02/07/2023]
Abstract
This study was conducted to evaluate the prognostic value of receptor-interacting protein kinase 4 (RIPK4) in ovarian cancer (OC) and its role in tumorigenesis. RNA expression and the corresponding clinical data were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. The relationship between clinical-pathological characteristics and RIPK4 expression was analyzed using the Wilcoxon signed-rank test and logistic regression. The Cox regression and the Kaplan-Meier method were used to evaluate the relationship between clinicopathological features and overall survival (OS). Gene set enrichment analysis (GSEA) was performed using Molecular Signatures Database. Scratch assay, transwell assay, and cell transfection were used to verify the function of RIPK4. Overexpression of RIPK4 was associated with the stage of OC and distant metastasis. Survival analysis revealed that patients with OC and higher expression of RIPK4 had a poorer prognosis. Univariate and multivariate analyses indicated that high expression of RIPK4 was associated with poor OS, as well as age and stage of OC. The areas under the curve (AUC) at 1, 4, and 8 years were 0.737, 0.634, and 0.669, respectively, according to the established OS prediction model. GSEA revealed that adherens junction, cadherin binding, and Wnt signaling pathway were enriched in the high RIPK4 expression group. Cell transfection confirmed RIPK4 was involved in the Wnt signaling pathway. RIPK4 can act as a potential prognostic molecular marker for poor survival in OC. Moreover, RIPK4 is associated with tumor metastasis and implicated in the regulation of the Wnt signaling pathway.
Collapse
|
26
|
Xiao J, Gong L, Xiao M, He D, Xiang L, Wang Z, Cheng Y, Deng L, Cao K. LINC00467 Promotes Tumor Progression via Regulation of the NF-kb Signal Axis in Bladder Cancer. Front Oncol 2021; 11:652206. [PMID: 34123804 PMCID: PMC8194349 DOI: 10.3389/fonc.2021.652206] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2021] [Accepted: 05/07/2021] [Indexed: 12/31/2022] Open
Abstract
Purpose Long non-coding RNAs (lncRNAs) play an important role in the occurrence and development of bladder cancer, but the underlying molecular mechanisms remain largely unknown. In this study, we found that LINC00467 was significantly highly expressed in bladder cancer through bioinformatic analysis. The present study aimed to explore the role of LINC00467 in bladder cancer and its possible underlying molecular mechanisms. Methods The expression of LINC00467 was obtained from GEO (GSE31189), the TCGA database, and qRT-PCR. The role of LINC00467 in bladder cancer was assessed both in vitro and in vivo. RIP, RNA pulldown, and CO-IP were used to demonstrate the potential mechanism by which LINC00467 regulates the progression of bladder cancer. Results Through the analysis of GEO (GSE133624) and the TCGA database, it was found that LINC00467 was highly expressed in bladder cancer tissues and that the expression of LINC00467 was significantly negatively correlated with patient prognosis. Cell and animal experiments suggest that LINC00467 promotes the proliferation and invasion of bladder cancer cells. On the one hand, LINC00467 can directly bind to NF-kb-p65 mRNA to stabilize its expression. On the other hand, LINC00467 can directly bind to NF-kb-p65 to promote its translocation into the nucleus to activate the NF-κB signaling pathway, which promotes the progression of bladder cancer. Conclusions LINC00467 is highly expressed in bladder cancer and can promote the progression of bladder cancer by regulating the NF-κB signaling pathway. Therefore, targeting LINC00467 is very likely to provide a new strategy for the treatment of bladder cancer and for improving patient prognosis.
Collapse
Affiliation(s)
- Jiawei Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhanwang Wang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
27
|
Xiong Y, Zu X, Wang L, Li Y, Chen M, He W, Qi L. The VIM-AS1/miR-655/ZEB1 axis modulates bladder cancer cell metastasis by regulating epithelial-mesenchymal transition. Cancer Cell Int 2021; 21:233. [PMID: 33902589 PMCID: PMC8074428 DOI: 10.1186/s12935-021-01841-y] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Accepted: 02/17/2021] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Invasive bladder tumors cause a worse prognosis in patients and remain a clinical challenge. Epithelial-mesenchymal transition (EMT) is associated with bladder cancer metastasis. In the present research, we attempted to demonstrate a novel mechanism by which a long noncoding RNA (lncRNA)-miRNA-mRNA axis regulates EMT and metastasis in bladder cancer. METHODS Immunofluorescence (IF) staining was used to detect Vimentin expression. The protein expression of ZEB1, Vimentin, E-cadherin, and Snail was investigated by using immunoblotting assays. Transwell assays were performed to detect the invasive capacity of bladder cancer cells. A wound healing assay was used to measure the migratory capacity of bladder cancer cells. RESULTS Herein, we identified lncRNA VIM-AS1 as a highly- expressed lncRNA in bladder cancer, especially in metastatic bladder cancer tissues and high-metastatic bladder cancer cell lines. By acting as a ceRNA for miR-655, VIM-AS1 competed with ZEB1 for miR-655 binding, therefore eliminating the miR-655-mediated suppression of ZEB1, finally promoting EMT in both high- and low-metastatic bladder cancer cells and enhancing cancer cell metastasis. CONCLUSIONS In conclusion, the VIM-AS1/miR-655/ZEB1 axis might be a promising target for improving bladder cancer metastasis via an EMT-related mechanism.
Collapse
Affiliation(s)
- Yaoyao Xiong
- Department of Cardiopulmonary Bypass, The Second Xiangya Hospital, Central South University, Changsha, 410011, Hunan, China
| | - Xiongbing Zu
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Long Wang
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Yuan Li
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Minfeng Chen
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| | - Wei He
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China.
| | - Lin Qi
- Department of Urology, Xiangya Hospital, Central South University, No. 87 Xiangya Road, Kaifu District, Changsha, 410008, Hunan, China
| |
Collapse
|
28
|
Downregulation of RIPK4 Expression Inhibits Epithelial-Mesenchymal Transition in Ovarian Cancer through IL-6. J Immunol Res 2021; 2021:8875450. [PMID: 33855091 PMCID: PMC8019379 DOI: 10.1155/2021/8875450] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 11/29/2020] [Accepted: 02/28/2021] [Indexed: 12/12/2022] Open
Abstract
RIPK4 has been implicated in multiple cancer types, but its role in ovarian cancer (OC) has not been clearly elucidated. Our data from Gene Expression Profiling Interactive Analysis, RT-PCR, and immunohistochemical analysis showed that RIPK4 was expressed at higher levels in OC tissues and cells than in normal ovarian tissues and cells. Increased RIPK4 expression in OC markedly correlated with a worse overall survival than lower RIPK4 expression levels (hazard rate (HR) 1.5 (1.45–1.87); P = 0.001). In functional experiments, RIPK4 downregulation significantly inhibited metastatic behaviours in OC cells. Subsequently, based on data from 593 OC patients in the TCGA database, gene set enrichment analysis revealed that RIPK4 was involved in epithelial-mesenchymal transition (EMT) in OC. At the molecular level, silencing RIPK4 significantly downregulated vimentin, N-cadherin, and Twist expression but induced an increase in the protein level of E-cadherin and inhibited the IL-6 and STAT3 levels. Moreover, IL-6 levels were significantly decreased in RIPK4-silenced OC cells (P < 0.05). The addition of IL-6 to OC cells rescued the suppressive effect of RIPK4 knockdown on EMT. Thus, our data illustrate that downregulation of RIPK4 expression can restrain EMT in OC by inhibiting IL-6. This finding may provide a novel diagnostic and therapeutic target for improving the poor prognoses of OC patients.
Collapse
|
29
|
Lei J, He ZY, Wang J, Hu M, Zhou P, Lian CL, Hua L, Wu SG, Zhou J. Identification of MEG8/miR-378d/SOBP axis as a novel regulatory network and associated with immune infiltrates in ovarian carcinoma by integrated bioinformatics analysis. Cancer Med 2021; 10:2924-2939. [PMID: 33742531 PMCID: PMC8026926 DOI: 10.1002/cam4.3854] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 12/31/2022] Open
Abstract
Background To investigate the potential molecular mechanism of ovarian cancer (OC) evolution and immunological correlation using the integrated bioinformatics analysis. Methods Data from the Gene Expression Omnibus was used to gain differentially expressed genes (DEGs). Gene Ontology and Kyoto Encyclopedia of Gene and Genome pathway analysis were completed by utilizing the Database for Annotation, Visualization, and Integrated Discovery. After multiple validations via The Cancer Genome Atlas (TCGA), Genotype‐Tissue Expression (GTEx) projects, the Human Protein Atlas, Kaplan–Meier (KM) plotter, and immune logical relationships of the key gene SOBP were evaluated based on Tumor Immune Estimation Resource, and Gene Set Enrichment Analysis (GSEA) software. Finally, the lncRNAs‐miRNAs‐mRNAs subnetwork was predicted by starBase, TargetScan, miRBD, and LncBase, individually. Correlation of expression and prognosis for mRNAs, miRNAs, and lncRNAs were confirmed by TCGA, Gene Expression Profiling Interactive Analysis 2 (GEPIA 2), starBase, and KM. Results A total of 192 shared DEGs were discovered from the four data sets, including 125 upregulated and 67 downregulated genes. Functional enrichment analysis presented that they were mainly enriched in cartilage development, pathway in PI3 K‐Akt signaling pathway. Lower expression of SOBP was the independent prognostic factor for inferior prognosis in OC patients. The downregulation of SOBP enhanced the infiltration levels of B cells, CD8+ T cells, Macrophage, Neutrophil, and Dendritic cells. GSEA also disclosed low SOBP showed a significantly associated with the activation of various immune‐related pathways. Finally, we first reported that the MEG8/miR‐378d/SOBP axis was linked to the development and prognosis of OC through regulating the cytokines pathway. Conclusions Our study establishes a novel MEG8/miR‐378d/SOBP axis in the development and prognosis of OC, and the triple subnetwork probably affects the progression of the OC by regulating the cytokines pathway.
Collapse
Affiliation(s)
- Jian Lei
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Zhen-Yu He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center of Cancer Medicine, Guangzhou, People's Republic of China
| | - Jun Wang
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Min Hu
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Ping Zhou
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Chen-Lu Lian
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Li Hua
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - San-Gang Wu
- Department of Radiation Oncology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Juan Zhou
- Department of Obstetrics and Gynecology, the First Affiliated Hospital of Xiamen University, Xiamen, People's Republic of China
| |
Collapse
|
30
|
Vural S, Palmisano A, Reinhold WC, Pommier Y, Teicher BA, Krushkal J. Association of expression of epigenetic molecular factors with DNA methylation and sensitivity to chemotherapeutic agents in cancer cell lines. Clin Epigenetics 2021; 13:49. [PMID: 33676569 PMCID: PMC7936435 DOI: 10.1186/s13148-021-01026-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2020] [Accepted: 02/10/2021] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Altered DNA methylation patterns play important roles in cancer development and progression. We examined whether expression levels of genes directly or indirectly involved in DNA methylation and demethylation may be associated with response of cancer cell lines to chemotherapy treatment with a variety of antitumor agents. RESULTS We analyzed 72 genes encoding epigenetic factors directly or indirectly involved in DNA methylation and demethylation processes. We examined association of their pretreatment expression levels with methylation beta-values of individual DNA methylation probes, DNA methylation averaged within gene regions, and average epigenome-wide methylation levels. We analyzed data from 645 cancer cell lines and 23 cancer types from the Cancer Cell Line Encyclopedia and Genomics of Drug Sensitivity in Cancer datasets. We observed numerous correlations between expression of genes encoding epigenetic factors and response to chemotherapeutic agents. Expression of genes encoding a variety of epigenetic factors, including KDM2B, DNMT1, EHMT2, SETDB1, EZH2, APOBEC3G, and other genes, was correlated with response to multiple agents. DNA methylation of numerous target probes and gene regions was associated with expression of multiple genes encoding epigenetic factors, underscoring complex regulation of epigenome methylation by multiple intersecting molecular pathways. The genes whose expression was associated with methylation of multiple epigenome targets encode DNA methyltransferases, TET DNA methylcytosine dioxygenases, the methylated DNA-binding protein ZBTB38, KDM2B, SETDB1, and other molecular factors which are involved in diverse epigenetic processes affecting DNA methylation. While baseline DNA methylation of numerous epigenome targets was correlated with cell line response to antitumor agents, the complex relationships between the overlapping effects of each epigenetic factor on methylation of specific targets and the importance of such influences in tumor response to individual agents require further investigation. CONCLUSIONS Expression of multiple genes encoding epigenetic factors is associated with drug response and with DNA methylation of numerous epigenome targets that may affect response to therapeutic agents. Our findings suggest complex and interconnected pathways regulating DNA methylation in the epigenome, which may both directly and indirectly affect response to chemotherapy.
Collapse
Affiliation(s)
- Suleyman Vural
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
| | - Alida Palmisano
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA
- General Dynamics Information Technology (GDIT), 3150 Fairview Park Drive, Falls Church, VA, 22042, USA
| | - William C Reinhold
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Yves Pommier
- Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, NIH, Bethesda, MD, 20892, USA
| | - Beverly A Teicher
- Molecular Pharmacology Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, Bethesda, MD, 20892, USA
| | - Julia Krushkal
- Biometric Research Program, Division of Cancer Treatment and Diagnosis, National Cancer Institute, 9609 Medical Center Dr., Rockville, MD, 20850, USA.
| |
Collapse
|
31
|
Cai L, Ye L, Hu X, He W, Zhuang D, Guo Q, Shu K, Jie Y. MicroRNA miR-330-3p suppresses the progression of ovarian cancer by targeting RIPK4. Bioengineered 2021; 12:440-449. [PMID: 33487072 PMCID: PMC8291835 DOI: 10.1080/21655979.2021.1871817] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Previous studies reported that miR-330-3p was involved in the progression of several cancers, but the potential roles of miR-330-3p in ovarian cancer (OC) were unclear. In the current study, we aimed to explore the expression pattern and functions of miR-330-3p in OC. The expression level of miR-330-3p in OC tissues and cell lines was detected using RT-qPCR. The proliferation, migration and invasion of OC cells were detected using CCK-8 assay and transwell assay, respectively. Bioinformatics analysis and luciferase reporter assay were used to analyze the targeted binding
site of miR-330-3p and RIPK4. The results showed that miR-330-3p was significantly downregulated in OC tissues and cell lines. Overexpression of miR-330-3p inhibited the proliferation, migration and invasion of OC cells. Mechanistically, a dual-luciferase reported assay showed that RIPK4 is a target gene of miR-330-3p. Furthermore, rescue experiments revealed that miR-330-3p suppressed the proliferation, migration and invasion of OC cells by targeting RIPK4. In summary, our findings indicated that miR-330-3p suppressed the progression of OC by targeting RIPK4. Our results indicated that miR-330-3p/RIPK4 axis might act as a novel therapeutic target for OC treatment.
Collapse
Affiliation(s)
- Li Cai
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Lu Ye
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Xiaoqing Hu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Wenfeng He
- Jiangxi Key Laboratory of Molecular Medicine, The Second Affiliated Hospital of Nanchang University , Nanchang, Jiangxi, China
| | - Debao Zhuang
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Qi Guo
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Kuanyong Shu
- Department of Oncology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China
| | - Youkun Jie
- Department of Pathology, Jiangxi Maternal and Child Health Hospital , Nanchang, Jiangxi, China.,Department of Psychiatry, Jiangxi Mental Hospital/Affiliated Mental Hospital of Nanchang University , Nanchang, Jiangxi, China
| |
Collapse
|
32
|
Han C, Wang Z, Chen S, Li L, Xu Y, Kang W, Wei C, Ma H, Wang M, Jin X. Berbamine Suppresses the Progression of Bladder Cancer by Modulating the ROS/NF- κB Axis. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:8851763. [PMID: 33520087 PMCID: PMC7817266 DOI: 10.1155/2021/8851763] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 11/27/2020] [Accepted: 12/22/2020] [Indexed: 01/23/2023]
Abstract
Berbamine (BBM), one of the bioactive ingredients extracted from Berberis plants, has attracted intensive attention because of its significant antitumor activity against various malignancies. However, the exact role and potential molecular mechanism of berbamine in bladder cancer (BCa) remain unclear. In the present study, our results showed that berbamine inhibited cell viability, colony formation, and proliferation. Additionally, berbamine induced cell cycle arrest at S phase by a synergistic mechanism involving stimulation of P21 and P27 protein expression as well as downregulation of CyclinD, CyclinA2, and CDK2 protein expression. In addition to suppressing epithelial-mesenchymal transition (EMT), berbamine rearranged the cytoskeleton to inhibit cell metastasis. Mechanistically, the expression of P65, P-P65, and P-IκBα was decreased upon berbamine treatment, yet P65 overexpression abrogated the effects of berbamine on the proliferative and metastatic potential of BCa cells, which indicated that berbamine attenuated the malignant biological activities of BCa cells by inhibiting the NF-κB pathway. More importantly, berbamine increased the intracellular reactive oxygen species (ROS) level through the downregulation of antioxidative genes such as Nrf2, HO-1, SOD2, and GPX-1. Following ROS accumulation, the intrinsic apoptotic pathway was triggered by an increase in the ratio of Bax/Bcl-2. Furthermore, berbamine-mediated ROS accumulation negatively regulated the NF-κB pathway to a certain degree. Consistent with our in vitro results, berbamine successfully inhibited tumor growth and blocked the NF-κB pathway in our xenograft model. To summarize, our data demonstrated that berbamine exerts antitumor effects via the ROS/NF-κB signaling axis in bladder cancer, which provides a basis for further comprehensive study and presents a potential candidate for clinical treatment strategies against bladder cancer.
Collapse
Affiliation(s)
- Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Shuxiao Chen
- Department of Vascular Surgery, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Lin Li
- Department of Orthopedics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chunxiao Wei
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Hongbin Ma
- Department of Hepatobiliary, The First Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150000, China
| | - Muwen Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Xunbo Jin
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
33
|
Alsagaby SA, Vijayakumar R, Premanathan M, Mickymaray S, Alturaiki W, Al-Baradie RS, AlGhamdi S, Aziz MA, Alhumaydhi FA, Alzahrani FA, Alwashmi AS, Al Abdulmonem W, Alharbi NK, Pepper C. Transcriptomics-Based Characterization of the Toxicity of ZnO Nanoparticles Against Chronic Myeloid Leukemia Cells. Int J Nanomedicine 2020; 15:7901-7921. [PMID: 33116508 PMCID: PMC7568638 DOI: 10.2147/ijn.s261636] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2020] [Accepted: 08/19/2020] [Indexed: 12/13/2022] Open
Abstract
INTRODUCTION Zinc oxide nanoparticles (ZnO NPs) have recently attracted attention as potential anti-cancer agents. To the best of our knowledge, the toxicity of ZnO NPs against human chronic myeloid leukemia cells (K562 cell line) has not been studied using transcriptomics approach. OBJECTIVE The goals of this study were to evaluate the capability of ZnO NPs to induce apoptosis in human chronic myeloid leukemia cells (K562 cells) and to investigate the putative mechanisms of action. METHODS We used viability assay and flowcytometry coupled with Annexin V-FITC and propidium iodide to investigate the toxicity of ZnO NPs on K562 cells and normal peripheral blood mononuclear cells. Next we utilized a DNA microarray-based transcriptomics approach to characterize the ZnO NPs-induced changes in the transcriptome of K562 cells. RESULTS ZnO NPs exerted a selective toxicity (mainly by apoptosis) on the leukemic cells (p≤0.005) and altered their transcriptome; 429 differentially expressed genes (DEGs) with fold change (FC)≥4 and p≤0.008 with corrected p≤0.05 were identified in K562 cells post treatment with ZnO NPs. The over-expressed genes were implicated in "response to zinc", "response to toxic substance" and "negative regulation of growth" (corrected p≤0.05). In contrast, the repressed genes positively regulated "cell proliferation", "cell migration", "cell adhesion", "receptor signaling pathway via JAK-STAT" and "phosphatidylinositol 3-kinase signaling" (corrected p≤0.05). Lowering the FC to ≥1.5 with p≤0.05 and corrected p≤0.1 showed that ZnO NPs over-expressed the anti-oxidant defense system, drove K562 cells to undergo mitochondrial-dependent apoptosis, and targeted NF-κB pathway. CONCLUSION Taken together, our findings support the earlier studies that reported anti-cancer activity of ZnO NPs and revealed possible molecular mechanisms employed by ZnO NPs to induce apoptosis in K562 cells.
Collapse
Affiliation(s)
- Suliman A Alsagaby
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Rajendran Vijayakumar
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Mariappan Premanathan
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Suresh Mickymaray
- Department of Biology, College of Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Wael Alturaiki
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Raid S Al-Baradie
- Department of Medical Laboratory Sciences, College of Applied Medical Sciences, Majmaah University, Majmaah11932, Saudi Arabia
| | - Saleh AlGhamdi
- Clinical Research Department, Research Center, King Fahad Medical City, Riyadh, Saudi Arabia
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
| | - Mohammad A Aziz
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Colorectal Cancer Research Program, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Fahad A Alhumaydhi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Faisal A Alzahrani
- Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah21589, Saudi Arabia
| | - Ameen S Alwashmi
- Department of Medical Laboratories, College of Applied Medical Sciences, Qassim University, Buraydah, Kingdom of Saudi Arabia
| | - Waleed Al Abdulmonem
- Department of Pathology, College of Medicine, Qassim University, Buraidah, Saudi Arabia
| | - Naif Khalaf Alharbi
- King Saud Bin Abdulaziz University for Health Sciences, Riyadh11426, Saudi Arabia
- Department of Infectious Disease Research, King Abdullah International Medical Research Center, Riyadh, Saudi Arabia
| | - Chris Pepper
- Brighton and Sussex Medical School, University of Sussex, Brighton, UK
| |
Collapse
|
34
|
Tian B, Xiao Y, Ma J, Ou W, Wang H, Wu J, Tang J, Zhang B, Liao X, Yang D, Wu Z, Li X, Zhou Y, Su M, Wang W. Parthenolide Inhibits Angiogenesis in Esophageal Squamous Cell Carcinoma Through Suppression of VEGF. Onco Targets Ther 2020; 13:7447-7458. [PMID: 32801767 PMCID: PMC7398702 DOI: 10.2147/ott.s256291] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2020] [Accepted: 07/02/2020] [Indexed: 01/05/2023] Open
Abstract
Background Parthenolide (PT), the effective active ingredient of the medicinal plant, feverfew (Tanacetum parthenium), has been used as an anti-inflammatory drug due to its involvement in the inhibition of the NF-кB pathway. Moreover, recent studies have demonstrated the anti-tumor effect of PT in several cancers. However, the effect of PT on esophageal carcinoma remains unclear to date. In this study, we examined the inhibitory effects of PT and its underlying mechanism of action in human esophageal squamous cell carcinoma (ESCC) cells – Eca109 and KYSE-510. Methods The proliferation ability of Eca109 and KYSE-510 treated with PT was detected using the Cell Counting Kit-8 and colony forming assay. The Transwell assay and the wound healing assay were used to analyze the cell invasion and migration ability, respectively. The tube formation assay was used to investigate the effect of PT on tube formation of endothelial cells. The expression level of NF-кB, AP-1 and VEGF was analyzed by Western blot. Results We demonstrated that PT attenuates the proliferation and migration ability of ESCC cells in vitro and also inhibits tumor growth in the mouse xenograft model. In addition, PT exhibited anti-angiogenesis activity by weakening the proliferation, invasion and tube formation of endothelial cells in vitro and reduced microvessel density in the xenograft tumors. Further studies revealed that PT reduced the expression level of NF-кB, AP-1 and VEGF in ESCC cells. Conclusion Collectively, the results of our study demonstrated that PT exerts anti-tumor and anti-angiogenesis effects possibly by inhibiting the NF-кB/AP-1/VEGF signaling pathway on esophageal carcinoma and might serve as a promising therapeutic agent for ESCC.
Collapse
Affiliation(s)
- Bo Tian
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yuhang Xiao
- Department of Pharmacy, Xiangya Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Junliang Ma
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Wei Ou
- Department of Pharmacy, The First People's Hospital of Yue Yang, Yue Yang, People's Republic of China
| | - Hui Wang
- Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Jie Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Jinming Tang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Baihua Zhang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Xiaojuan Liao
- Department of Pharmacy, The Second Affiliated Hospital of Hunan University of Chinese Medicine, Changsha, People's Republic of China
| | - Desong Yang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Zhining Wu
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Xu Li
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Yong Zhou
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Min Su
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| | - Wenxiang Wang
- Department of the 2nd Thoracic Surgery, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China.,Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, People's Republic of China
| |
Collapse
|
35
|
Xu J, Wei Q, He Z. Insight Into the Function of RIPK4 in Keratinocyte Differentiation and Carcinogenesis. Front Oncol 2020; 10:1562. [PMID: 32923402 PMCID: PMC7457045 DOI: 10.3389/fonc.2020.01562] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 07/20/2020] [Indexed: 12/22/2022] Open
Abstract
The receptor-interacting protein kinase 4 (RIPK4), a member of the RIPK family, was originally described as an interaction partner of protein kinase C (PKC) β and PKCδ. RIPK4 is identified as a key regulator of keratinocyte differentiation, cutaneous inflammation, and cutaneous wound repair. The mechanism by which RIPK4 integrates upstream signals to initiate specific responses remains elusive. Previous studies have indicated that RIPK4 can regulate several signaling pathways, including the NF-κB, Wnt/β-catenin, and RAF/MEK/ERK pathways. Furthermore, RIPK4-related biological signaling pathways interact with each other to form a complex network. Mounting evidence suggests that RIPK4 is aberrantly expressed in various kinds of cancers. In several types of squamous cell carcinoma (SCC), the mutations that drive aggressive SCC have been found in RIPK4. In addition, the function of RIPK4 in carcinogenesis is probably tissue-specific, since RIPK4 can play a dual role as both a tumor promoter and a tumor suppressor in different tumor types. Therefore, RIPK4 may represent as an independent prognostic factor and a promising novel therapeutic target, which can be used to identify the risks of patients and guide personalized treatments. In future, RIPK4-interacting pathways and precise molecular targets need to be investigated in order to further elucidate the mechanisms underlying epidermal differentiation and carcinogenesis.
Collapse
Affiliation(s)
- Jing Xu
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qichun Wei
- Department of Radiation Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhixing He
- Institute of Basic Research in Clinical Medicine, College of Basic Medical Science, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
36
|
Wang L, Zhang Q, Wu P, Xiang W, Xie D, Wang N, Deng M, Cao K, Zeng H, Xu Z, Xiaoming Liu, He L, Long Z, Tan J, Wang J, Liu B, Liu J. SLC12A5 interacts and enhances SOX18 activity to promote bladder urothelial carcinoma progression via upregulating MMP7. Cancer Sci 2020; 111:2349-2360. [PMID: 32449280 PMCID: PMC7385366 DOI: 10.1111/cas.14502] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2020] [Revised: 05/16/2020] [Accepted: 05/20/2020] [Indexed: 12/21/2022] Open
Abstract
Solute carrier family 12 member 5 (SLC12A5) has an oncogenic role in bladder urothelial carcinoma. The present study aimed to characterize the molecular mechanisms of SLC12A5 in bladder urothelial carcinoma pathogenesis. Functional assays identified that in bladder urothelial carcinoma SLC12A5 interacts with and stabilizes SOX18, and then upregulates matrix metalloproteinase 7 (MMP7). In vivo and in vitro assays were performed to confirm the effect of SLC12A5’s interaction with SOX18 on MMP7‐mediated bladder urothelial carcinoma progression. SLC12A5 was upregulated in human bladder tumors, and correlated with the poor survival of patients with bladder urothelial carcinoma tumor invasion and metastasis, promoted by SLC12A5 overexpression. We demonstrated that SLC12A5 interacted with SOX18, and then upregulated MMP7, thus enhancing tumor progression. Importantly, SLC12A5 expression correlated positively with SOX18 and MMP7 expression in bladder urothelial carcinoma. Furthermore, SLC12A5 expression was suppressed by miR‐133a‐3p. Ectopic expression of SLC12A5 partly abolished miR‐133a‐3p‐mediated suppression of cell migration. SLC12A5‐SOX18 complex‐mediated upregulation on MMP7 was important in bladder urothelial carcinoma progression. The miR‐133a‐3p/SLC12A5/SOX18/MMP7 signaling axis was critical for progression, and provided an effective therapeutic approach against bladder urothelial carcinoma.
Collapse
Affiliation(s)
- Long Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Qun Zhang
- Department of Radiotherapy, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, Changsha, China
| | - Wei Xiang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Dan Xie
- Department of Pathology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ning Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Minhua Deng
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ke Cao
- Department of Oncology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Hongliang Zeng
- Research Institute of Chinese Medicine, Hunan Academy of Chinese Medicine, Changsha, China
| | - Zhenzhou Xu
- Department of Urology, Hunan Cancer Hospital, Changsha, China
| | - Xiaoming Liu
- Department of Digestive, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jing Tan
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jinrong Wang
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Bin Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
37
|
Gong L, Xiao M, He D, Hu Y, Zhu Y, Xiang L, Bao Y, Liu X, Zeng Q, Liu J, Zhou M, Zhou Y, Cheng Y, Zhang Y, Deng L, Zhu R, Lan H, Cao K. WDHD1 Leads to Cisplatin Resistance by Promoting MAPRE2 Ubiquitination in Lung Adenocarcinoma. Front Oncol 2020; 10:461. [PMID: 32426268 PMCID: PMC7212426 DOI: 10.3389/fonc.2020.00461] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Accepted: 03/13/2020] [Indexed: 12/23/2022] Open
Abstract
Ubiquitin ligases have been shown to regulate drug sensitivity. This study aimed to explore the role of the ubiquitin ligase WD repeat and HMG-box DNA binding protein 1 (WDHD1) in regulating cisplatin sensitivity in lung adenocarcinoma (LUAD). A quantitative analysis of the global proteome identified differential protein expression between LUAD A549 cells and the cisplatin-resistant strain A549/DDP. Public databases revealed the relationship between ubiquitin ligase expression and the prognosis of patients with LUAD. Quantitative real-time polymerase chain reaction and Western blotting were used to estimate the WDHD1 expression levels. Analysis of public databases predicted the substrate of WDHD1. Western blotting detected the effect of WDHD1 on microtubule-associated protein RP/EB family member 2 (MAPRE2) and DSTN. Functional analysis of MAPRE2 verified the interaction between WDHD1 and MAPRE2, as well as the interacting sites by methyl-thiazolyl-tetrazolium assay and flow cytometry, immunoprecipitation, protein stability, and immunofluorescence. Cell and animal experiments confirmed the effect of WDHD1 and MAPRE2 on cisplatin sensitivity in LUAD. Clinical data evaluated the impact of WDHD1 expression level on cisplatin sensitivity. Quantitative analysis of the global proteome revealed ubiquitin-dependent protein catabolism to be more active in A549/DDP cells than in A549 cells. WDHD1 expression was higher in A549/DDP cells than in A549 cells, and knocking out WDHD1 increased the sensitivity of A549/DDP cells to cisplatin. WDHD1 overexpression negatively correlated with the overall survival of LUAD patients. We observed that MAPRE2 was upregulated when WDHD1 was knocked out. A MAPRE2 knockout in A549 cells resulted in increased cell viability while decreasing apoptosis when the A549 cells exposed to cisplatin. WDHD1 and MAPRE2 were found to interact in the nucleus, and WDHD1 promoted the ubiquitination of MAPRE2. Following cisplatin exposure, the WDHD1 and MAPRE2 knockout groups facilitated cell proliferation and migration, inhibited apoptosis in A549/DDP cells, decreased apoptosis, and increased tumor size and growth rate in animal experiments. Immunohistochemistry showed that Ki67 levels increased, and levels of apoptotic indicators significantly decreased in the WDHD1 and MAPRE2 knockout groups. Clinical data confirmed that WDHD1 overexpression negatively correlated with cisplatin sensitivity. Thus, the ubiquitin ligase WDHD1 induces cisplatin resistance in LUAD by promoting MAPRE2 ubiquitination.
Collapse
Affiliation(s)
- Lian Gong
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Mengqing Xiao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Dong He
- Department of Respiratory, The Second People's Hospital of Hunan Province, Changsha, China
| | - Yi Hu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yuxing Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liang Xiang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ying Bao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Xiaoming Liu
- Department of Gastroenterology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Qinghai Zeng
- Department of Dermatology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Jianye Liu
- Department of Urology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ming Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, China
| | - Yanhong Zhou
- Cancer Research Institute and Key Laboratory of Carcinogenesis of the Chinese Ministry of Health, Central South University, Changsha, China
| | - Yaxin Cheng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Yeyu Zhang
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Liping Deng
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Rongrong Zhu
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Hua Lan
- Department of Gynaecology, Third Xiangya Hospital of Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital of Central South University, Changsha, China
| |
Collapse
|
38
|
Bao L, Zhao Y, Liu C, Cao Q, Huang Y, Chen K, Song Z. The Identification of Key Gene Expression Signature and Biological Pathways in Metastatic Renal Cell Carcinoma. J Cancer 2020; 11:1712-1726. [PMID: 32194783 PMCID: PMC7052876 DOI: 10.7150/jca.38379] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 12/02/2019] [Indexed: 12/17/2022] Open
Abstract
Purpose: To investigate the potential mechanisms contributing to metastasis of clear cell renal cell carcinoma (ccRCC), screen the hub genes, associated pathways of metastatic ccRCC and identify potential biomarkers. Methods: The ccRCC metastasis gene expression profile GSE47352 was employed to analyze the differentially expressed genes (DEGs). DAVID was performed to assess Gene ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses. The protein-protein interaction (PPI) network and modules were constructed. The function pathway, prognostic and diagnostic analysis of these hub genes was picked out to estimate their potential effects on metastasis of ccRCC. Results: A total of 873 DEGs were identified (503 upregulated genes and 370 downregulated genes). Meanwhile, top 20 hub genes were displayed. GO analysis showed that the top 20 hub genes were enriched in regulation of phosphatidylinositol 3-kinase signaling, positive regulation of DNA replication, protein autophosphorylation, protein tyrosine kinase activity, etc. KEGG analysis indicated these hub genes were enriched in the Ras signaling pathway, PI3K-Akt signaling pathway, HIF-1 signaling pathway, Pathways in cancer, etc. The GO and KEGG enrichment analyses for the hub genes disclosed important biological features of metastatic ccRCC. PPI network showed the interaction of top 20 hub genes. Gene Set Enrichment Analysis (GSEA) revealed that some of the hub genes was associated with metastasis, epithelial mesenchymal transition (EMT), hypoxia cancer and adipogenesis of ccRCC. Some top hub genes were distinctive and new discoveries compared with that of the existing associated researches. Conclusions: Our analysis uncovered that changes in signal pathways such as Ras signaling pathway, PI3K-Akt signaling pathway, etc. may be the main signatures of metastatic ccRCC. We identified several candidate biomarkers related with overall survival (OS) and disease-free survival (DFS) of ccRCC patients. Accordingly, they might be novel therapeutic targets and used as potential biomarkers for diagnosis, prognosis of ccRCC.
Collapse
Affiliation(s)
- Lin Bao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ye Zhao
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - ChenChen Liu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Qi Cao
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Yu Huang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Ke Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, China
| | - Zhengshuai Song
- Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology
| |
Collapse
|
39
|
Liu J, Zhang Y, Zeng Q, Zeng H, Liu X, Wu P, Xie H, He L, Long Z, Lu X, Xiao M, Zhu Y, Bo H, Cao K. Delivery of RIPK4 small interfering RNA for bladder cancer therapy using natural halloysite nanotubes. SCIENCE ADVANCES 2019; 5:eaaw6499. [PMID: 31579820 PMCID: PMC6760933 DOI: 10.1126/sciadv.aaw6499] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2019] [Accepted: 09/03/2019] [Indexed: 05/28/2023]
Abstract
RNA interference (RNAi) technology can specifically silence the expression of a target gene and has emerged as a promising therapeutic method to treat cancer. In the present study, we showed that natural halloysite nanotube (HNT)-assisted delivery of an active small interfering RNA (siRNA) targeting receptor-interacting protein kinase 4 ( RIPK4 ) efficiently silenced its expression to treat bladder cancer. The HNTs/siRNA complex increased the serum stability of the siRNA, increased its circulation lifetime in blood, and promoted the cellular uptake and tumor accumulation of the siRNA. The siRNA markedly down-regulated RIPK4 expression in bladder cancer cells and bladder tumors, thus inhibiting tumorigenesis and progression in three bladder tumor models (a subcutaneous model, an in situ bladder tumor model, and a lung metastasis model), with no adverse effects. Thus, we revealed a simple but effective method to inhibit bladder cancer using RIPK4 silencing, indicating a promising therapeutic method for bladder cancer.
Collapse
Affiliation(s)
- Jianye Liu
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Yi Zhang
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hongliang Zeng
- Hunan Key Laboratory of Pharmacodynamics and Safety Evaluation of New Drugs, Changsha 410331, China
| | - Xiaoming Liu
- Department of Digestive, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Pei Wu
- Department of Operation Center, The Second Xiangya Hospital of Central South University, Changsha 410011, China
| | - Hongyi Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha 410083, China
| | - Leye He
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Zhi Long
- Department of Urology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
- Institute of Prostate Disease of Central South University, Changsha 410013, China
| | - Xiaoyong Lu
- Department of Urology, Hunan Aerospace Hospital, Changsha 410205, China
| | - Mengqing Xiao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Yuxing Zhu
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| | - Hao Bo
- Institute of Reproductive and Stem Cell Engineering, Central South University, Changsha 410008, China
| | - Ke Cao
- Department of Onology, The Third Xiangya Hospital of Central South University, Changsha 410013, China
| |
Collapse
|
40
|
Wang J, Zhang Q, Zhu Q, Liu C, Nan X, Wang F, Fang L, Liu J, Xie C, Fu S, Song B. Identification of methylation-driven genes related to prognosis in clear-cell renal cell carcinoma. J Cell Physiol 2019; 235:1296-1308. [PMID: 31273792 PMCID: PMC6899764 DOI: 10.1002/jcp.29046] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2019] [Accepted: 06/13/2019] [Indexed: 12/16/2022]
Abstract
With the participation of the existing treatment methods, the prognosis of advanced clear‐cell renal cell carcinoma (ccRCC) is poor. More evidence indicates the presence of methylation in ccRCC cancer cells, but there is a lack of studies on methylation‐driven genes in ccRCC. We analyzed the open data of ccRCC in The Cancer Genome Atlas database to obtain ccRCC‐related methylation‐driven genes, and then carried out pathway enrichment, survival, and joint survival analyses. More important, we deeply explored the correlation between differential methylation sites and the expression of these driving genes. Finally, we screened 29 methylation‐driven genes via MethylMix, of which six were significantly associated with the survival of ccRCC patients. This study demonstrated that the effect of hypermethylation or hypomethylation on prognosis is different, and the level of methylation of key methylation sites is associated with gene expression. We identified methylation‐driven genes independently predicting prognosis in ccRCC, which offers theoretical support in bioinformatics for the study of methylation in ccRCC and a new perspective for the epigenetic study of ccRCC.
Collapse
Affiliation(s)
- Jia Wang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Zibo Maternal and Child Health Hospital, Zibo, China.,Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qiujing Zhang
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Qingqing Zhu
- School of Medicine and Life Sciences, University of Jinan-Shandong Academy of Medical Sciences, Jinan, China.,Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chengxiang Liu
- Department of Oncology, Jinan Jigang Hospital, Jinan, China
| | - Xueli Nan
- Department of Oncology, Wu Di People Hospital, Binzhou, China
| | - Fuxia Wang
- Department of Oncology, YunCheng Conuntry People's Hospital, YunCheng, China
| | - Lihua Fang
- Department of Oncology, Chang Qing District People's Hospital, Jinan, China
| | - Jie Liu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Chao Xie
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Shuai Fu
- Department of Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| | - Bao Song
- Basic Laboratory, Shandong Cancer Hospital and Institute, Shandong First Medical University and Shandong Academy of Medical Sciences, Jinan, China
| |
Collapse
|
41
|
Dai H, Chen H, Xu J, Zhou J, Shan Z, Yang H, Zhou X, Guo F. The ubiquitin ligase CHIP modulates cellular behaviors of gastric cancer cells by regulating TRAF2. Cancer Cell Int 2019; 19:132. [PMID: 31130821 PMCID: PMC6524225 DOI: 10.1186/s12935-019-0832-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Accepted: 04/20/2019] [Indexed: 12/13/2022] Open
Abstract
Background CHIP is an E3 ubiquitin ligase that plays contrast roles in diverse human malignancies, depending on its targets. To date, the mechanisms underlying the function of CHIP in gastric cancer remains unclear. Here, we aim to further clarify the effects of CHIP on the development and progression of gastric cancer and explore its potential target. Methods Stably transfected CHIP-shRNA and TRAF2-shRNA AGS gastric cancer cell lines were established using Lipofectamine 2000. Cell growth was measured by an xCelligence real-time monitoring system and colony formation assay. Cell proliferation was detected using CCK-8, Ki-67, or CFSE assays. Apoptosis was detected by TUNEL assay or Annexin V/PI-staining followed by flow cytometric analysis. Cell cycle distribution was detected by PI-staining followed by flow cytometric analysis. Cell migration and invasion abilities were measured by a real-time xCelligence system, Transwell insert, and scratch assays. The expression of cell cycle-related proteins, apoptosis-related proteins, AKT, ERK, NF-κB signaling subunits, MMP2, MMP9, and Integrin β-1 were detected by Western blotting analysis. NF-κB DNA-binding capability was quantified using an ELISA-based NF-κB activity assay. Gastric cancer tissue microarray was analyzed to investigate the expression of both CHIP and TRAF2, and their clinical significance. Results The CHIP-silencing in the AGS cells was oncogenic evidenced by the appearance of capable of anchorage-independent growth. The CHIP-silencing significantly enhanced the AGS cell proliferation capability likely due to the induced phosphorylation of ERK. The CHIP-silencing significantly inhibited apoptosis due to increased expression of Bcl-2. The CHIP-silencing promoted the AGS cell migration and invasion abilities, likely by regulating the expression of Integrin β-1. TRAF2 expression was markedly decreased in the CHIP-overexpressing cells at protein level, but not at mRNA level. The TRAF2-silencing markedly inhibited the proliferation ability of the AGS cells, the defected cell proliferation and enhanced apoptosis were involved in. The TRAF2-silencing also attenuated the cell migration and invasion capacities of the AGS cells. Furthermore, the expression of CHIP was downregulated while the expression of TRAF2 was upregulated in gastric cancer tissues. TRAF2 expression is independent prognostic factors of gastric cancer. The expression of CHIP and TRAF2 was negatively correlated in the gastric cancer tissue. Lower CHIP or higher TRAF2 was significantly linked to shorter overall survival in gastric cancer patients. Conclusions TRAF2 influenced diverse aspects of cellular behavior of gastric cancer cells, including cell growth, migration, and invasion, which was in contrast to the functions of CHIP. TRAF2 could be considered as an independent prognostic factor in gastric cancer patients. It is possible that TRAF2 was a substrate of CHIP and CHIP regulated the TRAF2/NF-κB axis, which modulated diverse cellular behaviors in the AGS gastric cancer cells. Electronic supplementary material The online version of this article (10.1186/s12935-019-0832-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Hanjue Dai
- 1Oncology center, Changzhou Second People's Hospital Affiliated Nanjing Medical University, Changzhou, 213003 China
| | - Hao Chen
- Department of Oncology, The Second People's Hospital of Taizhou, Taizhou, 225500 China
| | - Jingjing Xu
- 3Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Jun Zhou
- 3Center for Clinical Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Zhili Shan
- 4Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Hengying Yang
- 4Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Xiaojun Zhou
- 4Department of General Surgery, The First Affiliated Hospital of Soochow University, Suzhou, 215006 China
| | - Feng Guo
- 5Department of Oncology, Nanjing Medical University Affiliated Suzhou Hospital, Baita West Road 16, Suzhou, 215001 China
| |
Collapse
|
42
|
Bo H, Cao K, Tang R, Zhang H, Gong Z, Liu Z, Liu J, Li J, Fan L. A network-based approach to identify DNA methylation and its involved molecular pathways in testicular germ cell tumors. J Cancer 2019; 10:893-902. [PMID: 30854095 PMCID: PMC6400810 DOI: 10.7150/jca.27491] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2018] [Accepted: 12/05/2018] [Indexed: 12/13/2022] Open
Abstract
Background: Testicular germ cell tumors (TGCT) is the most common testicular malignancy threaten young male reproductive health. This study aimed to identify aberrantly methylated-differentially expressed genes and pathways in TGCT by comprehensive bioinformatics analysis. Methods: Data of gene expression microarrays (GSE3218, GSE18155) and gene methylation microarrays (GSE72444) were collected from GEO database. Integrated analysis acquired aberrantly methylated-genes. Functional and pathway enrichment analysis were performed using DAVID database. Protein-protein interaction (PPI) network was constructed by STRING and App Mcode was used for module analysis. GEPIA platform and DiseaseMeth database were used for confirming the expression and methylation levels of hub genes. Finally, Human Protein Atlas database was performed to evaluate the prognostic significance. Results: Totally 604 hypomethylation-high expression and 147 hypermethylation-low genes were identified. The high expressed genes were enriched in biological processes of cell proliferation and migration. The top 8 hub genes of PPI network were GAPDH, VEGFA, PTPRC, RIPK4, MMP9, CSF1R, KRAS and FN1. After validation in GEPIA platform, all hub genes were elevated in TGCT tissues. Only MMP9, CSF1R and PTPRC showed hypomethylation-high expression status, which predicted the poor outcome of TGCT patients. Conclusion: Our study indicated possible aberrantly methylated-differentially expressed genes and pathways in TGCT by bioinformatics analysis, which may provide novel insights for unraveling pathogenesis of TGCT.
Collapse
Affiliation(s)
- Hao Bo
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Ke Cao
- Department of Oncology, Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Ruiling Tang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Han Zhang
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China
| | - Zhaojian Gong
- Department of Oral and Maxillofacial Surgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhizhong Liu
- Hunan Cancer Hospital and The Affliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Jianye Liu
- Department of Urology, The Third Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Jingjing Li
- Department of Plastic Surgery of Third Xiangya Hospital, Central South University, Changsha, China
| | - Liqing Fan
- Institute of Reproductive and Stem Cell Engineering, School of Basic Medical Science, Central South University, Changsha, China.,Reproductive & Genetic Hospital of CITIC-Xiangya, Changsha, China
| |
Collapse
|