1
|
Wang Y, Hu Y, Wang M, Wang M, Xu Y. The Role of Breast Cancer Cells in Bone Metastasis: Suitable Seeds for Nourishing Soil. Curr Osteoporos Rep 2024; 22:28-43. [PMID: 38206556 DOI: 10.1007/s11914-023-00849-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/18/2023] [Indexed: 01/12/2024]
Abstract
PURPOSE OF REVIEW The purpose of this review was to describe the characteristics of breast cancer cells prone to developing bone metastasis and determine how they are regulated by the bone microenvironment. RECENT FINDINGS The bone is a site of frequent breast cancer metastasis. Bone metastasis accounts for 70% of advanced breast cancer cases and remains incurable. It can lead to skeletal-related events, such as bone fracture and pain, and seriously affect the quality of life of patients. Breast cancer cells escape from the primary lesion and spread to the bone marrow in the early stages. They can then enter the dormant state and restore tumourigenicity after several years to develop overt metastasis. In the last few years, an increasing number of studies have reported on the factors promoting bone metastasis of breast cancer cells, both at the primary and metastatic sites. Identifying factors associated with bone metastasis aids in the early recognition of bone metastasis tendency. How to target these factors and minimize the side effects on the bone remains to be further explored.
Collapse
Affiliation(s)
- Yiou Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Yue Hu
- Department of Outpatient, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mozhi Wang
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Mengshen Wang
- Department of General Surgery, The Affiliated Hospital of Xuzhou Medical University, Xuzhou, China
| | - Yingying Xu
- Department of Breast Surgery, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
2
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. Aluminium bioaccumulation in colon cancer, impinging on epithelial-mesenchymal-transition and cell death. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 908:168335. [PMID: 37939965 DOI: 10.1016/j.scitotenv.2023.168335] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 10/10/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023]
Abstract
We investigated the presence of aluminium (Al) in human colon cancer samples and its potential association with biological processes involved in cancer progression, such as epithelial to mesenchymal transition (EMT) and cell death. 25 consecutive colon samples were collected from patients undergoing colonic resection. Both neoplastic and normal mucosa were collected from each patient and subjected to histological, ultrastructural and immunohistochemical analyses. Moreover, colon samples from two Al-positive patients underwent multi-omic analyses, including whole genome sequencing and RNA sequencing (RNAseq). Morin staining, used to identify in situ aluminium bioaccumulation, showed the presence of Al in tumor areas of 24 % of patients. Transmission electron microscopy and energy-dispersive X-ray microanalysis confirmed the presence of Al specifically in intracytoplasmic electrondense nanodeposits adjacent to mitochondria of colon cancer cells. Immunohistochemical analyses for vimentin and nuclear β-catenin were performed to highlight the occurrence of the EMT phenomenon in association to Al bioaccumulation. Al-positive samples showed a significant increase in both the number of vimentin-positive and nuclear β-catenin-positive cancer cells compared to Al-negative samples. Moreover, Al-positive samples exhibited a significant decrease in the number of apoptotic cells, as well as the expression of the anti-apoptotic molecule BCL-2. Multi-omic analyses revealed a higher tumor mutational burden (TMB) in Al-positive colon cancers (n = 2) compared to a control cohort (n = 100). Additionally, somatic mutations in genes associated with EMT (GATA3) and apoptosis (TP53) were observed in Al-positive colon cancers. In conclusion, this study provides the first evidence of Al bioaccumulation in colon cancer and its potential role in modulating molecular pathways involved in cancer progression, such as EMT and apoptosis. Understanding the molecular mechanisms underlying Al toxicity might contribute to improve strategies for prevention, early detection, and targeted therapies for the management of colon cancer patients.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, INAIL Research, Monte Porzio Catone, Rome 00078, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133 Rome, Italy.
| |
Collapse
|
3
|
Bonfiglio R, Sisto R, Casciardi S, Palumbo V, Scioli MP, Palumbo A, Trivigno D, Giacobbi E, Servadei F, Melino G, Mauriello A, Scimeca M. The impact of toxic metal bioaccumulation on colorectal cancer: Unravelling the unexplored connection. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 906:167667. [PMID: 37813250 DOI: 10.1016/j.scitotenv.2023.167667] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 10/03/2023] [Accepted: 10/06/2023] [Indexed: 10/11/2023]
Abstract
Colorectal cancer is a major public health concern, with increasing incidence and mortality rates worldwide. Environmental factors, including exposure to toxic metals, such as lead, chromium, cadmium, aluminium, copper, arsenic and mercury, have been suggested to play a significant role in the development and progression of this neoplasia. In particular, the bioaccumulation of toxic metals can play a significant role in colorectal cancer by regulating biological phenomenon associated to both cancer occurrence and progression, such as cell death and proliferation. Also, frequently these metals can induce DNA mutations in well-known oncogenes. This review provides a critical analysis of the current evidence, highlighting the need for further research to fully grasp the complex interplay between toxic metal bioaccumulation and colorectal cancer. Understanding the contribution of toxic metals to colorectal cancer occurrence and progression is essential for the development of targeted preventive strategies and social interventions, with the ultimate goal of reducing the burden of this disease.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Renata Sisto
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Stefano Casciardi
- Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, National Institute for Insurance against Accidents at Work (INAIL), Rome, Italy.
| | - Valeria Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Maria Paola Scioli
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Alessia Palumbo
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Francesca Servadei
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| | - Manuel Scimeca
- Department of Experimental Medicine, Torvergata Oncoscience Research, University of Rome "Tor Vergata", Via Montpellier 1, 00133 Rome, Italy.
| |
Collapse
|
4
|
Yadav P, Makwana S, Bansal S, Soni S, Mahapatra MK, Bandyopadhayaya S, Tailor R, Shrivastava SK, Sharma LK, Mandal CC. Metformin prevents osteoblast-like potential and calcification in lung cancer A549 cells. J Biochem Mol Toxicol 2023; 37:e23454. [PMID: 37409753 DOI: 10.1002/jbt.23454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2023] [Revised: 06/21/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
In spite of recent advances made in understanding its progression, cancer is still a leading cause of death across the nations. Molecular pathophysiology of these cancer cells largely differs depending on cancer types and even within the same tumor. Pathological mineralization/calcification is seen in various tissues including breast, prostate, and lung cancer. Osteoblast-like cells derived after trans-differentiation of mesenchymal cells usually drive calcium deposition in various tissues. This study aims to explore the presence of osteoblast-like potential in lung cancer cells and its prevention. ALP assay, ALP staining, nodule formation, RT-PCR, RT-qPCR, and western blot analysis experiments were carried out in lung cancer A549 cells to achieve said objective. Expressions of various osteoblast markers (e.g., ALP, OPN, RUNX2, and Osterix) along with osteoinducer genes (BMP-2 and BMP-4) were observed in A549 cells. Moreover, ALP activity and ability leading to nodule formation revealed the presence of osteoblast-like potential in lung cancer cells. Here, BMP-2 treatment increased expressions of osteoblast transcription factors such as RUNX2 and Osterix, enhanced ALP activity, and augmented calcification in this cell line. It was also observed that antidiabetic metformin inhibited BMP-2 mediated increase in osteoblast-like potential and calcification in these cancer cells. The current study noted that metformin blocked BMP-2 mediated increase in epithelial to mesenchymal transition (EMT) in A549 cells. The above findings for the first time unravel that A549 cells possess osteoblast-like potential which drives lung cancer calcification. Metformin might prevent BMP-2 induced osteoblast-like phenotype of the lung cancer cells with concomitant inhibition of EMT to inhibit lung cancer tissue calcification.
Collapse
Affiliation(s)
- Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sweta Makwana
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shivani Bansal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Manas K Mahapatra
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Shreetama Bandyopadhayaya
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Rashmi Tailor
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| | - Sandeep K Shrivastava
- Centre for Innovation, Research & Development, Dr. B. Lal Clinical Laboratory Pvt Ltd., Jaipur, Rajasthan, India
| | - Lokendra K Sharma
- Department of Molecular Medicine and Biotechnology, Sanjay Gandhi Post Graduate Institute of Medical Sciences, Lucknow, Uttar Pradesh, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, Ajmer, Rajasthan, India
| |
Collapse
|
5
|
Han Y, Rovella V, Smirnov A, Buonomo OC, Mauriello A, Perretta T, Shi Y, Woodmsith J, Bischof J, Melino G, Candi E, Bernassola F. A BRCA2 germline mutation and high expression of immune checkpoints in a TNBC patient. Cell Death Discov 2023; 9:370. [PMID: 37813891 PMCID: PMC10562433 DOI: 10.1038/s41420-023-01651-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 08/23/2023] [Accepted: 09/13/2023] [Indexed: 10/11/2023] Open
Abstract
Triple-negative breast cancer (TNBC) is the most aggressive subtype of mammary carcinoma. Here, we describe a case of an 81-year-old female diagnosed with ductal triple negative breast cancer with a germline pathogenic variant in BReast CAncer gene2 (BRCA2). Genetic testing also revealed the presence of four somatic mutations in the ephrin type-A receptor 3 (EphA3), TP53, BRCA1-associated protein (BAP1), and MYB genes. The BRCA2, TP53, and BAP1 gene mutations are highly predictive of a defective homologous recombination repair system and subsequent chromosomal instability in this patient. Coherently, the patient displayed a strong homologous recombination deficiency signature and high tumor mutational burden status, which are generally associated with increased probability of immune neoantigens formation and presentation, and with tumor immunogenicity. Analysis of immune checkpoint revealed high expression of programmed cell death ligand 1 (PD-L1), programmed cell death ligand 2 (PD-L2), programmed death 1 (PD1), and cytotoxic T-lymphocyte-associated protein 4 (CTLA 4), suggesting that the patient might likely benefit from immunotherapies. Altogether, these findings support an unveiled link between BRCA2 inactivation, HR deficiency and increased expression of immune checkpoints in TNBC. This clinical case highlights the importance of screening TNBC patients for genetic mutations and TMB biomarkers in order to predict the potential efficacy of immunotherapy.
Collapse
Affiliation(s)
- Yuyi Han
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Department of Ophthalmology, The Affiliated Hospital of Jiangnan University, 214000, Wuxi, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Artem Smirnov
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy
| | - Oreste Claudio Buonomo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Tommaso Perretta
- Department of Diagnostic Imaging and Interventional Radiology, Policlinico Tor Vergata University, Rome, 00133, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | | | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Eleonora Candi
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
- Biochemistry Laboratory, Istituto Dermopatico Immacolata (IDI-IRCCS), 00100, Rome, Italy.
| | - Francesca Bernassola
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
6
|
Soni S, Yadav P, Mandal CC. Metformin ameliorates BMP2 induced adipocyte-like property in breast cancer cells. Biochem Biophys Res Commun 2023; 672:201-208. [PMID: 37406485 DOI: 10.1016/j.bbrc.2023.06.044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2023] [Accepted: 06/14/2023] [Indexed: 07/07/2023]
Abstract
Neighboring adipocytes of tumor cells/cancer associated adipocytes supply many factors and fatty acids as fuel to cancer cells for inducing cancer progression and development. Epithelial breast cancer cells also differentiate into several cell types to meet various demands. This study reports that breast cancer cells exhibit inherent adipocyte-like property which is further enhanced in presence of BMP2. Antidiabetic metformin inhibits BMP2 induced adipocyte-like potential in breast cancer cells. Interestingly, breast cancer cells not only show lipid accumulation but also have ability to release lipid content. Thus, this study centers around the presence of the adipocyte cell-like property in breast cancer cells, the significance of BMP2 and metformin that may be explored in designing therapeutics against breast cancer.
Collapse
Affiliation(s)
- Sneha Soni
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India
| | - Pooja Yadav
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India
| | - Chandi C Mandal
- Department of Biochemistry, School of Life Sciences, Central University of Rajasthan, 305817, India.
| |
Collapse
|
7
|
Mauriello S, Treglia M, Pallocci M, Bonfiglio R, Giacobbi E, Passalacqua P, Cammarano A, D’Ovidio C, Marsella LT, Scimeca M. Antigenicity Preservation Is Related to Tissue Characteristics and the Post-Mortem Interval: Immunohistochemical Study and Literature Review. Healthcare (Basel) 2022; 10:healthcare10081495. [PMID: 36011152 PMCID: PMC9408092 DOI: 10.3390/healthcare10081495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/16/2022] Open
Abstract
The main aim of this study was to investigate the post-mortem proteolytic degradation process of selected tissue antigens and correlate it to the post-mortem interval. During the autopsy of 12 cadavers (time interval ranging 1 day–2 years after death) samples of skin, liver, kidney, and spleen were collected. All samples were formalin-fixed and paraffin-embedded. Four µm paraffin sections were used for hematoxylin–eosin staining and immunohistochemical analysis (Ki67, Vimentin, Pan cytokeratin, and CD20). Data reported here show that immunohistochemical reactivity preservation was related to the characteristics of the tissues. In particular, the most resistant tissue was the skin, where the autolysis phenomena were not appreciable before 5 days. On the contrary, the liver and the spleen underwent early autolysis, while the kidney displayed an early autolysis of the tubules and a late one of the glomeruli. As concerns specific antigens, immunoreactivity was lost earliest for nuclear antigens as compared to cytoplasmic ones. In conclusion, our results demonstrate that immunohistochemical detection of specific antigens may be useful in estimating the post-mortem interval, especially when we need to know whether the post-mortem interval is a few days or more than 7–10 days.
Collapse
Affiliation(s)
- Silvestro Mauriello
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Michele Treglia
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Margherita Pallocci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
- Correspondence:
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Erica Giacobbi
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Pierluigi Passalacqua
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Andrea Cammarano
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Cristian D’Ovidio
- Department of Medicine and Aging Sciences, University of Chieti-Pescara “G. D’Annunzio”, Section of Legal Medicine, 66100 Chieti, Italy
| | - Luigi Tonino Marsella
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy
| |
Collapse
|
8
|
Urbano N, Scimeca M, Bonanno E, Bonfiglio R, Mauriello A, Schillaci O. [ 99Tc]Sestamibi bioaccumulation induces apoptosis in prostate cancer cells: an in vitro study. Mol Cell Biochem 2022; 477:2319-2326. [PMID: 35524874 PMCID: PMC9499905 DOI: 10.1007/s11010-022-04439-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 04/08/2022] [Indexed: 12/03/2022]
Abstract
The main aim of this preliminary in vitro study was to evaluate both the uptake of [99Tc]Sestamibi into prostate cancer cells and the relationship among [99Tc]Sestamibi bioaccumulation, cancer cells proliferation and apoptosis. An in vitro study in which PC3 prostate cancer cell line was cultured with increasing doses of decayed sestamibi has been developed. Specifically, PC3 cells were incubated with three different concentrations of [99Tc]Sestamibi: 10 µg/mL, 1 µg/mL, and 0.1 µg/mL Expression of apoptotic caspase-3 and AIF, as well as the ultrastructure of PC3 cells, were evaluated at T0 and after 24, 48, 72, and 120 h following [99Tc]Sestamibi incubation. Data here reported showed the bioaccumulation of sestamibi in prostate cancer cells. As concern the cancer cell homeostasis, the treatment of PC3 cells with [99Tc]Sestamibi strongly influenced the cells proliferation. Indeed, a significant reduction in the number of mitosis was observed. Noteworthy, the accumulation of sestamibi in prostate cancer cells was associated with the appearance of morphological signs of apoptosis. The increase in AIF and caspase 3 expression in prostate cancer cells treated with 10 µg/mL of [99Tc]Sestamibi confirmed that this radiopharmaceutical can trigger the apoptosis. To the best of our knowledge, this preliminary study reported for the first time in vitro data about the uptake of sestamibi in prostate cancer cells. The evidence about the accumulation of sestamibi in prostate cancer cells and its role in the apoptosis process could open new clinical perspectives on the use of this radiopharmaceutical in both the diagnosis and treatment of prostate cancers.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico "Tor Vergata", Viale Oxford 81, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome Tor Vergata, Via Montpellier 01, 00133, Rome, Italy. .,San Raffaele Open University of Rome, Via di Val Cannuta 247, 00166, Rome, Italy.
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, Tor Vergata Oncoscience Research (TOR), University of Rome Tor Vergata, Via Montpellier 01, 00133, Rome, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 01, 00133, Rome, Italy.,IRCCS Neuromed, Via Atinense, 18, 8607, Pozzilli, Italy
| |
Collapse
|
9
|
Wang S, Jiang H, Zheng C, Gu M, Zheng X. Secretion of BMP-2 by tumor-associated macrophages (TAM) promotes microcalcifications in breast cancer. BMC Cancer 2022; 22:34. [PMID: 34983451 PMCID: PMC8729115 DOI: 10.1186/s12885-021-09150-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 12/23/2021] [Indexed: 01/14/2023] Open
Abstract
Introduction Breast microcalcifications is a characteristic feature in diagnostic imaging and a prognostic factor of breast cancer. However, the underlying mechanisms of breast microcalcifications formation are not fully understood. Previous studies have shown that upregulation of bone morphogenetic protein 2 (BMP-2) is associated with the occurrence of microcalcifications and tumor-associated macrophages (TAMs) in the tumor microenvironment can secrete BMP-2. The aim of this study is to elucidate the role of secretion of BMP-2 by TAMs in promoting microcalcifications of breast cancer through immunohistochemical staining and co-culturing of breast cancer cells with TAMs. Methods A total of 272 patients diagnosed with primary invasive breast cancer from January 2010 to January 2012 in the First Hospital of China Medical University were included in this study. Immunohistochemical staining of CD68 (marker of entire macrophages), CD168 (marker of the M2-like macrophages) and BMP-2 were performed on 4-μm tissue microarray (TMA) sections. Following induction, THP-1 cells were differentiated to M2-like TAMs and were then co-cultured with breast cancer cells (MCF-7). Calcifications and BMP-2 expression were analyzed by Alizarin Red S staining and western blot, respectively. Results Immunohistochemical analysis showed that the expression of CD168 was significantly increased in tissues with microcalcifications and was correlated with the expression of BMP-2 and poor prognosis. The formation of cellular microcalcifications and BMP-2 expression were significantly increased in MCF-7 cells co-cultured with TAMs compared with MCF-7 cells alone. Conclusions These findings support the hypothesis that TAMs secrete BMP-2 to induce microcalcifications in breast cancer cells and influence prognosis via multiple pathways including BMP-2 and its downstream factors. Supplementary Information The online version contains supplementary material available at 10.1186/s12885-021-09150-3.
Collapse
Affiliation(s)
- Shuo Wang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Haiyang Jiang
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Caiwei Zheng
- University of Miami Miller School of Medicine, Miami, FL, USA
| | - Ming Gu
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China
| | - Xinyu Zheng
- Department of Breast Surgery, First Affiliated Hospital, China Medical University, 155 North Nanjing Street, Shenyang, 110001, Liaoning, China. .,Lab 1, Cancer Institute, First Affiliated Hospital, China Medical University, Shenyang, Liaoning, China.
| |
Collapse
|
10
|
Urbano N, Scimeca M, Bonfiglio R, Mauriello A, Bonanno E, Schillaci O. [99mTc]Tc-Sestamibi Bioaccumulation Can Induce Apoptosis in Breast Cancer Cells: Molecular and Clinical Perspectives. APPLIED SCIENCES 2021; 11:2733. [DOI: 10.3390/app11062733] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/29/2023]
Abstract
The aim of this study was to investigate the possible role of [99mTc]Tc-Sestamibi in the regulation of cancer cell proliferation and apoptosis. To this end, the in vivo values of [99mTc]Tc-Sestamibi uptake have been associated with the in-situ expression of both Ki67 and caspase-3. For in vitro investigations, BT-474 cells were incubated with three different concentrations of [99mTc]Tc-Sestamibi: 10 µg/mL, 1 µg/mL, and 0.1 µg/mL. Expression of caspase-3 and Ki67, as well as the ultrastructure of cancer cells, was evaluated at T0 and after 24, 48, 72, and 120 h after [99mTc]Tc-Sestamibi incubation. Ex vivo data strengthened the known association between sestamibi uptake and Ki67 expression. Linear regression analysis showed a significant association between sestamibi uptake and the number of apoptotic cells evaluated as caspase-3-positive breast cancer cells. As concerning the in vitro data, a significant decrease of the proliferation index was observed in breast cancer cells incubated with a high concentration of [99mTc]Tc-Sestamibi (10 µg/mL). Amazingly, a significant increase in caspase-3-positive cells in cultures incubated with 10 µg/mL [99mTc]Tc-Sestamibi was observed. This study suggested the possible role of sestamibi in the regulation of pathophysiological processes involved in breast cancer.
Collapse
|
11
|
Gentile M, Centonza A, Lovero D, Palmirotta R, Porta C, Silvestris F, D'Oronzo S. Application of "omics" sciences to the prediction of bone metastases from breast cancer: State of the art. J Bone Oncol 2021; 26:100337. [PMID: 33240786 PMCID: PMC7672315 DOI: 10.1016/j.jbo.2020.100337] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/23/2020] [Accepted: 10/29/2020] [Indexed: 11/28/2022] Open
Abstract
Breast cancer (BC) is the most frequent malignancy and the first cause of cancer-related death in women. The majority of patients with advanced BC develop skeletal metastases which may ultimately lead to serious complications, termed skeletal-related events, that often dramatically impact on quality of life and survival. Therefore, the identification of biomarkers able to stratify BC patient risk to develop bone metastases (BM) is fundamental to define personalized diagnostic and therapeutic strategies, possibly at the earliest stages of the disease. In this regard, the advent of "omics" sciences boosted the investigation of several putative biomarkers of BC osteotropism, including deregulated genes, proteins and microRNAs. The present review revisits the current knowledge on BM development in BC and the most recent studies exploring potential BM-predicting biomarkers, based on the application of omics sciences to the study of primary breast malignancies.
Collapse
Key Words
- ADAMTS1, a disintegrin-like and metalloproteinase with thrombospondin type 1
- ALP, alkaline phosphatase
- BALP (BSAP), bone-specific alkaline phosphatase
- BC, breast cancer
- BM, bone metastases
- BOLCs, breast osteoblast-like cells
- BTM, bone turnover markers
- Biomarkers
- Bone metastases
- Breast cancer
- CAPG, capping-protein
- CCN3, cellular communication network factor 3
- CDH11, cadherin-11
- CNV, copy number variation
- CTGF, connective tissue-derived growth factor
- CTSK, cathepsin K
- CTX, C-telopeptide
- CXCL, C-X-C-ligand
- CXCR, C–X–C motif chemokine receptor
- DEGs, differentially expressed genes
- DOCK4, dedicator of cytokinesis protein 4
- DPD, deoxypyridoline
- DTC, disseminated tumour cells
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERRα, estrogen-related receptor alpha
- FAK, focal adhesion kinase
- FGF, fibroblast growth factor
- FST, follistatin
- GIPC1, PDZ domain-containing protein member 1
- HR, hazard ratio
- Her, human epidermal growth factor
- ICAM-1, intercellular adhesion molecule 1
- IGF, insulin-like growth factor
- IHC, immunohistochemistry
- IL, interleukin
- LC/MS/MS, liquid chromatography/mass spectrometry/mass spectrometry
- MAF, v-maf avian muscolo aponeurotic fibro-sarcoma oncogene homolog
- MDA-MB, MD Anderson metastatic BC
- MMP1, matrix metalloproteinase-1
- NTX, N-telopeptide
- OPG, osteoprotegerin
- Omics sciences
- Osteotropism
- P1CP, pro-collagen type I C-terminal
- P1NP, pro-collagen type I N-terminal
- PDGF, platelet-derived growth factor
- PRG1, proteoglycan-1
- PTH-rP, parathyroid hormone-related protein
- PYD, pyridoline
- PgR, progesterone receptor
- PlGF, placental growth factor
- RANK, receptor activator of nuclear factor к-B
- RT-PCR, real time-PCR
- SILAC-MS, stable isotope labelling by amino acids in cell culture-mass spectrometry
- SNPs, single nucleotide polymorphisms
- SPP1, osteopontin
- SREs, skeletal-related events
- TCGA, the cancer genome atlas
- TGF-β, transforming growth factor beta
- TNF-α, tumor necrosis factor-α
- TRACP-5b, tartrate resistant acid phosphatase-5b
- VEGF, vascular endothelial growth factor
- ZNF217, zinc-finger protein 217
- miRNAs, microRNAs
- ncRNAs, noncoding RNA
Collapse
Affiliation(s)
- Marica Gentile
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Antonella Centonza
- “Casa Sollievo della Sofferenza” Onco-hematologic Department, Medical Oncology Unit, Viale Cappuccini 1, 71013 San Giovanni Rotondo, Italy
| | - Domenica Lovero
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Raffaele Palmirotta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Camillo Porta
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Franco Silvestris
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| | - Stella D'Oronzo
- Department of Biomedical Sciences and Human Oncology, University of Bari Aldo Moro, Piazza Giulio Cesare 11, 70124 Bari, Italy
| |
Collapse
|
12
|
The impact of oral contraceptive use on breast cancer risk: State of the art and future perspectives in the era of 4P medicine. Semin Cancer Biol 2021; 72:11-18. [PMID: 33454355 DOI: 10.1016/j.semcancer.2020.10.008] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Revised: 10/17/2020] [Accepted: 10/20/2020] [Indexed: 12/21/2022]
Abstract
Breast cancer is the most commonly occurring cancer in women, the second most frequent cancer overall, and it causes the greatest number of cancer-related deaths among women. The significant increased concern of breast cancer worldwide may be attributed to the prolonged life expectancy and the adoption of the western lifestyle with its related risks factors. A woman's risk for breast cancer is linked to her reproductive history and with her lifetime hormonal exposure. Among the known risk factors for breast cancer, several studies investigated the possible role of the assumption of hormonal "pills" in both breast cancer incidence and development. Nevertheless, data about the association between the assumption of oral contraceptives and breast cancer incidence are still controversial and not conclusive. Given the public health importance of breast cancer and the popularity of hormonal "pills" as contraceptive, the impact of oral contraceptive use on breast cancer risk assumes relevance from both a clinical and a social point of view. Therefore, in this review we wanted to illustrate this issue by addressing the following major themes: a) the role of sex steroid hormones in female breast development and carcinogenesis; b) the clinical impact of hormonal oral contraception according to the state of the art literature; c) the actual scientific debate and future perspectives.
Collapse
|
13
|
Molecular Aspects and Prognostic Significance of Microcalcifications in Human Pathology: A Narrative Review. Int J Mol Sci 2020; 22:ijms22010120. [PMID: 33374380 PMCID: PMC7795544 DOI: 10.3390/ijms22010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The presence of calcium deposits in human lesions is largely used as imaging biomarkers of human diseases such as breast cancer. Indeed, the presence of micro- or macrocalcifications is frequently associated with the development of both benign and malignant lesions. Nevertheless, the molecular mechanisms involved in the formation of these calcium deposits, as well as the prognostic significance of their presence in human tissues, have not been completely elucidated. Therefore, a better characterization of the biological process related to the formation of calcifications in different tissues and organs, as well as the understanding of the prognostic significance of the presence of these calcium deposits into human tissues could significantly improve the management of patients characterized by microcalcifications associated lesions. Starting from these considerations, this narrative review highlights the most recent histopathological and molecular data concerning the formation of calcifications in breast, thyroid, lung, and ovarian diseases. Evidence reported here could deeply change the current point of view concerning the role of ectopic calcifications in the progression of human diseases and also in the patients’ management. In fact, the presence of calcifications can suggest an unfavorable prognosis due to dysregulation of normal tissues homeostasis.
Collapse
|
14
|
Breast Cancer and Microcalcifications: An Osteoimmunological Disorder? Int J Mol Sci 2020; 21:ijms21228613. [PMID: 33203195 PMCID: PMC7696282 DOI: 10.3390/ijms21228613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 11/02/2020] [Accepted: 11/09/2020] [Indexed: 12/11/2022] Open
Abstract
The presence of microcalcifications in the breast microenvironment, combined with the growing evidences of the possible presence of osteoblast-like or osteoclast-like cells in the breast, suggest the existence of active processes of calcification in the breast tissue during a woman’s life. Furthermore, much evidence that osteoimmunological disorders, such as osteoarthritis, rheumatoid arthritis, or periodontitis influence the risk of developing breast cancer in women exists and vice versa. Antiresorptive drugs benefits on breast cancer incidence and progression have been reported in the past decades. More recently, biological agents targeting pro-inflammatory cytokines used against rheumatoid arthritis also demonstrated benefits against breast cancer cell lines proliferation, viability, and migratory abilities, both in vitro and in vivo in xenografted mice. Hence, it is tempting to hypothesize that breast carcinogenesis should be considered as a potential osteoimmunological disorder. In this review, we compare microenvironments and molecular characteristics in the most frequent osteoimmunological disorders with major events occurring in a woman’s breast during her lifetime. We also highlight what the use of bone anabolic drugs, antiresorptive, and biological agents targeting pro-inflammatory cytokines against breast cancer can teach us.
Collapse
|
15
|
Adjuvant denosumab in early breast cancer. Lancet Oncol 2020; 21:e122. [PMID: 32135106 DOI: 10.1016/s1470-2045(20)30019-x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2020] [Revised: 01/10/2020] [Accepted: 01/10/2020] [Indexed: 01/01/2023]
|
16
|
BMP-2 Variants in Breast Epithelial to Mesenchymal Transition and Microcalcifications Origin. Cells 2020; 9:cells9061381. [PMID: 32498363 PMCID: PMC7348762 DOI: 10.3390/cells9061381] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 06/01/2020] [Indexed: 12/17/2022] Open
Abstract
This study aims to investigate the possible different roles of the BMP-2 variants, cytoplasmic and nuclear variant, in both epithelial to mesenchymal transition and in microcalcifications origin in human breast cancers. To this end, the in situ expression of cytoplasmic and nuclear BMP-2 was associated with the expression of the main epithelial to mesenchymal transition biomarkers (e-cadherin and vimentin) and molecules involved in bone metabolisms (RUNX2, RANKL, SDF-1) by immunohistochemistry. In addition, the expression of cytoplasmic and nuclear BMP-2 was associated with the presence of microcalcifications. Our data showed a significant association among the number of cytoplasmic BMP-2-positive cells and the number of both vimentin (positive association) and e-cadherin (negative association) positive breast cells. Conversely, no associations were found concerning the nuclear BMP-2-positive breast cells. Surprisingly, the opposite result was obtained by analyzing the variants of BMP-2 and both the expression of RANKL and SDF-1 and the presence of microcalcifications. Specifically, the presence of microcalcifications was related to the expression of nuclear BMP-2 variant rather than the cytoplasmic one, as well as a strong association between the number of nuclear BMP-2 and the expression of the main breast osteoblast-like cells (BOLCs) biomarkers. To further corroborate these data, an in vitro experiment for demonstrating the co-expression of nBMP-2 and RANKL or vimentin or SDF-1 in breast cancer cells that acquire the capability to produce microcalcifications was developed. These investigations confirmed the association between the nBMP-2 expression and both RANKL and SDF-1. The data supports the idea that whilst cytoplasmic BMP-2 can be involved in epithelial to mesenchymal transition phenomenon, the nuclear variant is related to the essential mechanisms for the formation of breast microcalcifications. In conclusion, from these experimental and translational perspectives, the complexity of BMP-2 signaling will require a detailed understanding of the involvement of specific BMP-2 variants in breast cancers.
Collapse
|
17
|
Breast-Specific Gamma Imaging with [ 99mTc]Tc-Sestamibi: An In Vivo Analysis for Early Identification of Breast Cancer Lesions Expressing Bone Biomarkers. J Clin Med 2020; 9:jcm9030747. [PMID: 32164267 PMCID: PMC7141303 DOI: 10.3390/jcm9030747] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 02/07/2023] Open
Abstract
The main purpose of this pilot investigation was to evaluate the possible relationship among [99mTc]Tc-Sestamibi uptake, the presence of breast osteoblast-like cells, and the expression of molecules involved in bone metabolism, such as estrogen receptor, bone morphogenetic proteins-2, and PTX3. To this end, forty consecutive breast cancer patients who underwent both breast-specific gamma imaging with [99mTc]Tc-Sestamibi and breast bioptic procedure were retrospectively enrolled. From each diagnostic paraffin block collected in the study, histological diagnosis, immunohistochemical investigations, and energy dispersive X-ray microanalysis were performed. Our data highlight the possible use of breast-specific gamma imaging with [99mTc]Tc-Sestamibi for the early detection of breast cancer lesions expressing bone biomarkers in the presence of breast osteoblast-like cells. Specifically, we show a linear association among sestamibi uptake, the presence of breast osteoblast-like cells, and the expression of estrogen receptor, bone morphogenetics proteins-2, and PTX3. Notably, we also observed an increase of [99mTc]Tc-Sestamibi in breast cancer lesions with magnesium-substituted hydroxyapatite. In conclusion, in this pilot study we evaluated data from the nuclear medicine unit and anatomic pathology department on breast cancer osteotropism, identifying a new possible interpretation of Breast Specific Gamma Imaging with [99mTc]Tc-Sestamibi analysis.
Collapse
|
18
|
Scimeca M, Trivigno D, Bonfiglio R, Ciuffa S, Urbano N, Schillaci O, Bonanno E. Breast cancer metastasis to bone: From epithelial to mesenchymal transition to breast osteoblast-like cells. Semin Cancer Biol 2020; 72:155-164. [PMID: 32045651 DOI: 10.1016/j.semcancer.2020.01.004] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2019] [Revised: 01/13/2020] [Accepted: 01/13/2020] [Indexed: 02/06/2023]
Abstract
In this review we highlighted the newest aspects concerning the physiopathology of breast cancer metastatization into the bone including: a) in situ biomarkers of breast cancer metastatic diseases, b) biological processes related to the origin of metastatic cells (epithelial to mesenchymal transition), c) the nature and the possible role of Breast Osteoblast-Like Cells in the formation of bone lesions and d) the prognostic value of breast microcalcifications for the bone metastatic disease. In addition, the more recent data about the biology of breast cancer metastatic process and the origin and function of Breast Osteoblast-Like Cells have been analyzed to propose the use of molecular imaging investigations able to identify early neoplastic lesions with high propensity to form bone metastasis in vivo.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano, Mi, Italy; Saint Camillus International University of Health Sciences, Via di Sant'Alessandro, 8, 00131 Rome, Italy.
| | - Donata Trivigno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy
| | - Sara Ciuffa
- Department of Clinical Sciences and Translational Medicine, University of Rome "Tor Vergata", 00133, Rome, Italy
| | | | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome, 00133, Italy; "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
19
|
Urbano N, Scimeca M, Tancredi V, Bonanno E, Schillaci O. 99mTC-sestamibi breast imaging: Current status, new ideas and future perspectives. Semin Cancer Biol 2020; 84:302-309. [PMID: 31982511 DOI: 10.1016/j.semcancer.2020.01.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2019] [Revised: 01/14/2020] [Accepted: 01/15/2020] [Indexed: 02/06/2023]
Abstract
Here we proposed the most recent innovations in the use of Breast Specific Gamma Imaging with 99mTc-sestamibi for the management of breast cancer patients. To this end, we reported the recent discoveries concerning: a) the implementation of both instrumental devices and software, b) the biological mechanisms involved in the 99mTc-sestamibi uptake in breast cancer cells, c) the evaluation of Breast Specific Gamma Imaging with 99mTc-sestamibi as predictive markers of metastatic diseases. In this last case, we also reported preliminary data about the capability of Breast Specific Gamma Imaging with 99mTc-sestamibi to identify breast cancer lesions with high propensity to form bone metastatic lesions due to the presence of Breast Osteoblast-Like Cells.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine, Policlinico "Tor Vergata", Viale Oxford, 81, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; University of San Raffaele, Via di Val Cannuta 247, 00166, Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano (Mi), Italy; UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy
| | - Virginia Tancredi
- Department of Systems Medicine, School of Sport and Exercise Sciences, University of Rome Tor Vergata, Rome, Italy; Centre of Space Biomedicine, University of Rome Tor Vergata, Rome, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Via Montpellier, 1, 00133, Rome, Italy; Diagnostica Medica' & 'Villa dei Platani', Neuromed Group, Avellino, 83100, Italy
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, 00133, Rome, Italy; IRCCS Neuromed, Pozzilli (Is), 86077, Italy.
| |
Collapse
|
20
|
Tot T, Gere M, Hofmeyer S, Bauer A, Pellas U. The clinical value of detecting microcalcifications on a mammogram. Semin Cancer Biol 2019; 72:165-174. [PMID: 31733292 DOI: 10.1016/j.semcancer.2019.10.024] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/30/2019] [Indexed: 12/22/2022]
Abstract
Many breast lesions are associated with microcalcifications that are detectable by mammography. In most cases, radiologists are able to distinguish calcifications usually associated with benign diseases from those associated with malignancy. In addition to their value in the early detection of breast carcinoma and accurate radiological diagnosis, the presence of microcalcifications often affects the extent of surgical intervention. Certain types of microcalcifications are associated with negative genetic and molecular characteristics of the tumor and unfavorable prognosis. Microcalcifications localized in the larger ducts (duct-centric, casting-type microcalcifications) represent an independent negative prognostic marker compared to lesions containing other types of microcalcifications and to non-calcified lesions. In this review, we summarize the theoretical and methodological background for understanding the clinical impact and discuss the diagnostic and prognostic value of microcalcifications detected in the breast by mammography.
Collapse
Affiliation(s)
- Tibor Tot
- Pathology & Cytology Dalarna, County Hospital Falun and Center for Clinical Research Dalarna, Falun, Sweden.
| | - Maria Gere
- Pathology & Cytology Dalarna, County Hospital Falun, Falun, Sweden
| | - Syster Hofmeyer
- Pathology & Cytology Dalarna, County Hospital Falun, Falun, Sweden
| | - Annette Bauer
- Pathology & Cytology Dalarna, County Hospital Dalarna, Falun, Sweden
| | | |
Collapse
|
21
|
Scimeca M, Bonfiglio R, Menichini E, Albonici L, Urbano N, De Caro MT, Mauriello A, Schillaci O, Gambacurta A, Bonanno E. Microcalcifications Drive Breast Cancer Occurrence and Development by Macrophage-Mediated Epithelial to Mesenchymal Transition. Int J Mol Sci 2019; 20:E5633. [PMID: 31718020 PMCID: PMC6888678 DOI: 10.3390/ijms20225633] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 11/08/2019] [Accepted: 11/09/2019] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND This study aims to investigate: (a) the putative association between the presence of microcalcifications and the expression of both epithelial-to-mesenchymal transition and bone biomarkers, (b) the role of microcalcifications in the breast osteoblast-like cells (BOLCs) formation, and (c) the association between microcalcification composition and breast cancer progression. METHODS We collected 174 biopsies on which we performed immunohistochemical and ultrastructural analysis. In vitro experiments were performed to demonstrate the relationship among microcalcification, BOLCs development, and breast cancer occurrence. Ex vivo investigations demonstrated the significant increase of breast osteoblast-like cells in breast lesions with microcalcifications with respect to those without microcalcifications. RESULTS In vitro data displayed that in the presence of calcium oxalate and activated monocytes, breast cancer cells undergo epithelial to mesenchymal transition. Also, in this condition, cells acquired an osteoblast phenotype, thus producing hydroxyapatite. To further confirm in vitro data, we studied 15 benign lesions with microcalcification from patients that developed a malignant condition in the same breast quadrant. Immunohistochemical analysis showed macrophages' polarization in benign lesions with calcium oxalate. CONCLUSIONS Altogether, our data shed new light about the role of microcalcifications in breast cancer occurrence and progression.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
- San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milan, Italy
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro, 8, 00131 Rome, Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Erika Menichini
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Loredana Albonici
- Department of Clinical Sciences and Translational Medicine, University of Rome “Tor Vergata”, 00133 Rome, Italy;
| | | | - Maria Teresa De Caro
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
| | - Alessandro Mauriello
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.S.); (M.T.D.C.); (O.S.)
- Istituto di Ricovero e Cura a Carattere Scientifico (IRCCS) Neuromed, 86077 Pozzilli, Italy
| | - Alessandra Gambacurta
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
| | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (R.B.); (E.M.); (A.M.); (A.G.)
- “Diagnostica Medica” and “Villa dei Platani”, 83100 Avellino, Italy
| |
Collapse
|
22
|
Urbano N, Scimeca M, Crocco A, Mauriello A, Bonanno E, Schillaci O. 18F-Choline PET/CT Identifies High-Grade Prostate Cancer Lesions Expressing Bone Biomarkers. J Clin Med 2019; 8:jcm8101657. [PMID: 31614564 PMCID: PMC6832450 DOI: 10.3390/jcm8101657] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Revised: 09/30/2019] [Accepted: 10/07/2019] [Indexed: 12/12/2022] Open
Abstract
The main aim of this study was to investigate the possible association between 18F–choline uptake and histopathological features of prostate biopsies such as the Gleason Group and the expression of both epithelial to mesenchymal transition (vimentin) and bone mineralization (bone morphogenetics protein (BMP)-2, runt-related transcription factor 2 (RUNX2), receptor activator of nuclear factor-κB ligand (RANKL), vitamin D receptor (VDR), and pentraxin 3 (PTX3) in situ biomarkers. To this end, we enrolled 79 consecutive prostate cancer patients that underwent both the 18F–choline PET/CT analysis and the prostate bioptic procedure. The standardized uptake value (SUV) average values were collected from 18F–choline PET/CT analysis whereas Gleason Group and immunostaining data were collected from paraffin-embedded sections. Histological classification showed a heterogenous population including both low/intermediate and high-grade prostate cancers. A significant increase of 18F–choline uptake in high-grade prostate lesions (Gleason Score ≥8) was found. Also, linear regression analysis showed a significant correlation between 18F–choline uptake and the number of vimentin, RANKL, VDR, or PTX3 positive prostate cancer cells. Conversely, we observed no significant association between 18F–choline uptake and the expression of bone biomarkers involved in the early phases of osteoblast differentiation (BMP-2, RUNX2). In conclusion, results here reported can lay the foundation for the use of 18F–choline positron emission tomography (PET)/computed tomography (CT) as a diagnostic tool capable of identifying high-grade prostate cancer lesions expressing bone biomarkers.
Collapse
Affiliation(s)
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
- Fondazione Umberto Veronesi (FUV), 20122 Milano, Italy.
| | - Antonio Crocco
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
| | - Alessandro Mauriello
- Department of Experimental Medicine, University "Tor Vergata", 00133 Rome, Italy.
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", 00133 Rome, Italy.
- Neuromed Group, 'Diagnostica Medica' & 'Villa dei Platani', 83100 Avellino, Italy.
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", 00133 Rome, Italy.
- IRCCS Neuromed, 86077 Pozzilli, Italy.
| |
Collapse
|
23
|
Bonfiglio R, Milano F, Cranga A, De Caro MT, Kaur Lamsira H, Trivigno D, Urso S, Scimeca M, Bonanno E. Negative prognostic value of intra-ductal fat infiltrate in breast cancer. Pathol Res Pract 2019; 215:152634. [PMID: 31585815 DOI: 10.1016/j.prp.2019.152634] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Revised: 09/12/2019] [Accepted: 09/12/2019] [Indexed: 12/27/2022]
Abstract
BACKGROUND Recent studies showed a correlation between Body Mass Index and both breast cancer occurrence and progression. Nevertheless, no study reported an accurate evaluation of intra-ductal fat infiltrate. Therefore, the main aim of this study was to evaluate the putative association between intra-ductal fat infiltrate (IDFi) and breast cancer subtypes by using digital pathology. METHODS We retrospectively collected 220 breast biopsies. Paraffin serial sections were used for haematoxylin and eosin staining and immunohistochemical evaluation of the following markers: estrogen receptor (ER), progesterone receptor (PR), Ki67 and c-erb2. Three haematoxylin and eosin sections for each paraffin block were digitalized. Digital slides were used to evaluate the areas of IDFi. Five randomized areas were evaluated for each slide. By using GraphPad software IDFi areas was correlated with a) breast cancer histotype, b) presence of microcalcifications and c) biomarkers expression. RESULTS Breast biopsies were classified as follow: 20 normal breast, 50 benign lesions, and 150 malignant lesions (85 ductal in situ carcinomas; 65 ductal infiltrating carcinomas). Statistical analysis showed a significant increase of IDFi in malignant lesions as compared to both normal breast and benign lesions. We noted higher IDFi in breast ductal carcinomas as compared to lobular lesions. Significant differences were observed between breast lesions with microcalcifications respect to lesions without calcifications. Noteworthy, we also found a positive association between IDFi and the expression of both ER and Ki67. CONCLUSION Results of our study highlighted the possible role of fat in breast cancer progression suggesting a negative prognostic value of IDFi.
Collapse
Affiliation(s)
- Rita Bonfiglio
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Filippo Milano
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | - Ana Cranga
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Maria Teresa De Caro
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | | | - Donata Trivigno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy
| | - Stefania Urso
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122, Milano, Mi, Italy; San Raffaele University, Via di Val Cannuta 247, 00166, Rome, Italy; UniCamillus, Saint Camillus International University of Health Sciences, Rome, Italy.
| | - Elena Bonanno
- Department of Experimental Medicine, University of Rome "Tor Vergata", Rome, Italy; "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy (Neuromed group), Italy
| |
Collapse
|
24
|
Urbano N, Scimeca M, Bonfiglio R, Bonanno E, Schillaci O. New advance in breast cancer pathology and imaging. Future Oncol 2019; 15:2707-2722. [DOI: 10.2217/fon-2019-0017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
The improvement of knowledge concerning the pathology of breast cancer could provide the rationale for the development of new imaging diagnostic protocols. Indeed, as for the microcalcifications, new histopathological markers can be used as target for in vivo early detection of breast cancer lesions by using molecular imaging techniques such as positron emission tomography. Specifically, the mutual contribution of these medical specialties can ‘nourish’ the dream of a personalized medicine that takes into account the intrinsic variability of breast cancer. In this review, we report the main discoveries concerning breast cancer pathology highlighting the possible cooperation between the departments of anatomic pathology and imaging diagnostics.
Collapse
Affiliation(s)
- Nicoletta Urbano
- Nuclear Medicine, Policlinico ‘Tor Vergata,’ viale Oxford, 81, Rome, 00133, Italy
| | - Manuel Scimeca
- Department of Biomedicine & Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
- IRCCS San Raffaele, Via di Val Cannuta 247, 00166, Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano (Mi), Italy
| | - Rita Bonfiglio
- Department of Experimental Medicine, University ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
- Neuromed Group, ‘Diagnostica Medica’ & ‘Villa dei Platani', Via Errico Carmelo, 2, 83100 Avellino AV, Italy
| | - Orazio Schillaci
- Department of Biomedicine & Prevention, University of Rome ‘Tor Vergata’, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed, Pozzilli, Italy
| |
Collapse
|
25
|
Scimeca M, Urbano N, Bonfiglio R, Duggento A, Toschi N, Schillaci O, Bonanno E. Novel insights into breast cancer progression and metastasis: A multidisciplinary opportunity to transition from biology to clinical oncology. Biochim Biophys Acta Rev Cancer 2019; 1872:138-148. [PMID: 31348975 DOI: 10.1016/j.bbcan.2019.07.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/25/2019] [Accepted: 07/15/2019] [Indexed: 12/11/2022]
Abstract
According to the most recent epidemiological studies, breast cancer shows the highest incidence and the second leading cause of death in women. Cancer progression and metastasis are the main events related to poor survival of breast cancer patients. This can be explained by the presence of highly resistant to chemo- and radiotherapy stem cells in many breast tumor tissues. In this context, numerous studies highlighted the possible involvement of epithelial to mesenchymal transition phenomenon as biological program to generate cancer stem cells, and thus participate to both metastatic and drug resistance process. Therefore, the comprehension of mechanisms (both cellular and molecular) involved in breast cancer occurrence and progression can lay the foundation for the development of new diagnostic and therapeutical protocols. In this review, we reported the most important findings in the field of breast cancer highlighting the most recent data concerning breast tumor biology, diagnosis and therapy.
Collapse
Affiliation(s)
- Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; San Raffaele University, Via di Val Cannuta 247, 00166 Rome, Italy; Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano (Mi), Italy.
| | | | - Rita Bonfiglio
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Andrea Duggento
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Department of Radiology, Athinoula A. Martinos Center for Biomedical Imaging and Harvard Medical School, Massachusetts General Hospital, Boston, MA, United States
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; IRCCS Neuromed, Pozzilli, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University "Tor Vergata", Via Montpellier 1, Rome 00133, Italy; Neuromed Group, "Diagnostica Medica" and "Villa dei Platani", Avellino, Italy
| |
Collapse
|
26
|
Mammographic casting-type calcification is an independent prognostic factor in invasive breast cancer. Sci Rep 2019; 9:10544. [PMID: 31332233 PMCID: PMC6646401 DOI: 10.1038/s41598-019-47118-3] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Accepted: 07/11/2019] [Indexed: 02/07/2023] Open
Abstract
This study aimed to determine whether there is an association between mammographic casting-type calcification and other prognostic factors for invasive breast cancer. We also assessed whether casting-type calcification could be an independent prognostic factor. Invasive breast cancer patient information from January 2010 and January 2013 was retrospectively reviewed. The associations between mammographic casting-type calcification and other clinicopathological factors, including tumor size, node status, grade, progesterone receptor (PR) status, estrogen receptor (ER) status, and human epidermal growth factor receptor 2 (HER2) status, were analyzed. The Kaplan–Meier method and a Cox proportional hazards model were used for survival analyses of disease-free survival (DFS) and overall survival (OS). A total of 1155 invasive breast cancer patients who underwent definitive surgery were included, and 136 cases (11.8%) had casting-type calcification on mammography. In multivariate logistic regression, casting-type calcification was significantly associated with axillary node metastasis, ER-negativity, and HER2 overexpression. Casting-type calcification significantly decreased OS and DFS after a median follow-up of 60 months. This result remained after adjusting other prognostic factors in the multivariate analysis. Casting-type calcification is significantly linked to axillary node metastasis, ER-negativity and HER2 overexpression. Casting-type calcification is therefore an independent prognostic factor for breast cancer patients.
Collapse
|
27
|
Schillaci O, Scimeca M, Toschi N, Bonfiglio R, Urbano N, Bonanno E. Combining Diagnostic Imaging and Pathology for Improving Diagnosis and Prognosis of Cancer. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:9429761. [PMID: 31354394 PMCID: PMC6636452 DOI: 10.1155/2019/9429761] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Accepted: 06/12/2019] [Indexed: 02/08/2023]
Abstract
In the era of personalized medicine, the management of oncological patients requires a translational and multidisciplinary approach. During early phases of cancer development, biochemical alterations of cell metabolism occur much before the formation of detectable tumour masses. Current molecular imaging techniques, targeted to the study of molecular kinetics, employ molecular tracers capable of detecting cancer lesions with both high sensitivity and specificity while also providing essential information for both prognosis and therapy. On the contrary, complementary and crucial information is provided by histopathological examination and ancillary techniques such as immunohistochemistry. Thus, the successful collaboration between diagnostic imaging and anatomic pathology can represent a fundamental step in the "tortuous" but decisive path towards personalized medicine.
Collapse
Affiliation(s)
- Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed, Pozzilli, Italy
| | - Manuel Scimeca
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- University of San Raffaele, Via di Val Cannuta 247, 00166 Rome, Italy
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Nicola Toschi
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- Martinos Center for Biomedical Imaging, Boston, MA, USA
- Harvard Medical School, Boston, MA, USA
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
| | | | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, Rome 00133, Italy
- IRCCS Neuromed Lab, “Diagnostica Medica”, “Villa dei Platani”, Avellino, Italy
| |
Collapse
|
28
|
Feng G, Guo K, Yan Q, Ye Y, Shen M, Ruan S, Qiu S. Expression of Protein 4.1 Family in Breast Cancer: Database Mining for 4.1 Family Members in Malignancies. Med Sci Monit 2019; 25:3374-3389. [PMID: 31063460 PMCID: PMC6524556 DOI: 10.12659/msm.914085] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2018] [Accepted: 01/25/2019] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND The protein 4.1 family is a family of cytoskeletal proteins that play an important role in maintaining normal cell morphology and cell adhesion, migration, division, and intercellular signaling. The main aim of this study was to explore the prognostic significance of the protein 4.1 family in breast cancer (BC) patients and to provide new biomarkers and therapeutic targets for the diagnosis and treatment of BC. MATERIAL AND METHODS The expression of 4.1 family members in various tumor types was compared to normal controls using the ONCOMINE and GOBO databases. The prognostic significance of the 4.1 family in BC patients was determined by Kaplan-Meier Plotter. RESULTS EPB41L2 (4.1G) was expressed at higher levels in normal tissues compared with BC patients for all 4.1 family members. In survival analysis, 4.1G and EPB41 (4.1R) mRNA high expressions were associated with better survival in BC patients. Moreover, 4.1G high expression was significantly associated with longer overall survival (OS) in luminal A and protracted relapse-free survival (RFS) in luminal B subtype BC patients who received Tamoxifen treatment. In addition, high expression of each 4.1 family member also showed better prognostic value in different molecular subtypes of BC. CONCLUSIONS These results indicate that the protein 4.1 family can be regarded as novel biomarkers and potential therapeutic targets for BC. Further research is needed to explore the detailed biological functions.
Collapse
Affiliation(s)
- Guan Feng
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Kaibo Guo
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Qingying Yan
- The First Clinical College of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Ye Ye
- Hangzhou Vocational and Technical College, Hangzhou, Zhejiang, P.R. China
| | - Minhe Shen
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Shanming Ruan
- Department of Medical Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| | - Shengliang Qiu
- The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, Zhejiang, P.R. China
| |
Collapse
|
29
|
Scimeca M, Pietrolungo F, Bonfiglio R, Bonanno E, Tancredi V. Role of physical activity in onset, prevention and treatment of human neoplasms. Future Oncol 2019; 15:1181-1183. [PMID: 30880458 DOI: 10.2217/fon-2018-0963] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Manuel Scimeca
- San Raffaele University, Via di Val Cannuta 247, Rome, 00166 Italy.,Department of Biomedicine & Prevention, University of Rome 'Tor Vergata', Via Montpellier 1, Rome, 00133, Italy
| | | | - Rita Bonfiglio
- Department of Experimental Medicine, University 'Tor Vergata', Via Montpellier 1, Rome, 00133, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University 'Tor Vergata', Via Montpellier 1, Rome, 00133, Italy.,'Diagnostica Medica' & 'Villa dei Platani', Avellino, Italy
| | - Virginia Tancredi
- San Raffaele University, Via di Val Cannuta 247, Rome, 00166 Italy.,Department of Systems Medicine, School of Sport & Exercise Sciences, University of Rome Tor Vergata, Rome, Italy
| |
Collapse
|