1
|
Maffuid K, Cao Y. Utilizing a Proximity Dependent Labeling Strategy to Study Cancer-Immune Intercellular Interactions In Vitro and In Vivo. J Pharmacol Exp Ther 2024; 389:246-253. [PMID: 37770200 PMCID: PMC11125784 DOI: 10.1124/jpet.123.001761] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 10/03/2023] Open
Abstract
Immune cells play a critical role in surveilling and defending against cancer, emphasizing the importance of understanding how they interact and communicate with cancer cells to determine cancer status, treatment response, and the formation of the tumor microenvironment (TME). To this end, we conducted a study demonstrating the effectiveness of an enzyme-mediated intercellular proximity labeling (EXCELL) method, which utilizes a modified version of the sortase A enzyme known as mgSrtA, in detecting and characterizing immune-tumor cell interactions. The mgSrtA enzyme is expressed on the membrane of tumor cells, which is able to label immune cells that interact with tumor cells in a proximity-dependent manner. Our research indicates that the EXCELL technique can detect and characterize immune-tumor cell interactions in a time- and concentration-dependent manner, both in vitro and in vivo, without requiring pre-engineering of the immune cells. We also highlight its ability to detect various types of immune cell subpopulations in vivo that have migrated out of the tumor into the spleen, providing insights into the role of peripheral T-cell recruitment in tumor progression. Overall, our findings suggest that the EXCELL method has great potential for improving our understanding of immune cell dynamics within the TME, ultimately leading to more potent pharmacological effects and cancer immunotherapy strategies. SIGNIFICANCE STATEMENT: The enzyme-mediated intercellular proximity labeling method holds promise for detecting immune cell interactions with cancer cells, both in vitro and in vivo. It has important implications for studying immune tumor cell dynamics and potentially uncovering novel subtypes of immune cells within the tumor microenvironment, both prior to and during immunotherapeutic interventions.
Collapse
Affiliation(s)
- Kaitlyn Maffuid
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.M., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (Y.C.)
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (K.M., Y.C.) and Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, North Carolina (Y.C.)
| |
Collapse
|
2
|
Liu Z, Duan X, Yun Y, Li S, Feng Z, Zhan J, Liu R, Li Y, Zhang J. Photoactivatable Aptamer-CRISPR Nanodevice Enables Precise Profiling of Interferon-Gamma Release in Humanized Mice. ACS NANO 2024; 18:3826-3838. [PMID: 38241471 DOI: 10.1021/acsnano.3c12499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/21/2024]
Abstract
Real-time dynamic imaging of immunoactivation-related cytokines is crucial for evaluating the efficacy of immune checkpoint blockade therapy and optimizing the treatment regimen. We introduce herein a spatiotemporally controlled nanodevice that allows in situ photoactivated imaging of interferon-gamma (IFN-γ) secretion from T cells in vitro and in vivo. The nanodevice is constructed by rational engineering of an aptamer-embedded, UV-cleavable PC-DNA probe and further integration with upconversion nanoparticles- and CRISPR-Cas12a-enhanced fluorescence systems. Using human peripheral blood mononuclear cells (PBMC)-engrafted mouse models, this nanodevice allows for the quantitative imaging of endogenous IFN-γ and its intratumoral dynamics responding to antiprogrammed cell death receptor 1 (anti-PD-1) therapy. This study thus provides a toolbox for boosting the sensitivity and precision of cytokine imaging during immune checkpoint blockade therapy, enlightening research toward imaging-guided tumor therapy.
Collapse
Affiliation(s)
- Zheng Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Xiang Duan
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Yangfang Yun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Siqi Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Zhiyuan Feng
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Jiayin Zhan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Ran Liu
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Yan Li
- State Key Laboratory of Pharmaceutical Biotechnology, National Resource Center for Mutant Mice, MOE Key Laboratory of Model Animals for Disease Study, MOE Engineering Research Center of Protein and Peptide Medicine, Chemistry and Biomedicine Innovation Center, Jiangsu Key Laboratory of Molecular Medicine, Model Animal Research Center, Medical School of Nanjing University, Nanjing 210061, China
| | - Jingjing Zhang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| |
Collapse
|
3
|
Liu C, Zhou J, Kudlacek S, Qi T, Dunlap T, Cao Y. Population dynamics of immunological synapse formation induced by bispecific T cell engagers predict clinical pharmacodynamics and treatment resistance. eLife 2023; 12:e83659. [PMID: 37490053 PMCID: PMC10368424 DOI: 10.7554/elife.83659] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 06/01/2023] [Indexed: 07/26/2023] Open
Abstract
Effector T cells need to form immunological synapses (IS) with recognized target cells to elicit cytolytic effects. Facilitating IS formation is the principal pharmacological action of most T cell-based cancer immunotherapies. However, the dynamics of IS formation at the cell population level, the primary driver of the pharmacodynamics of many cancer immunotherapies, remains poorly defined. Using classic immunotherapy CD3/CD19 bispecific T cell engager (BiTE) as our model system, we integrate experimental and theoretical approaches to investigate the population dynamics of IS formation and their relevance to clinical pharmacodynamics and treatment resistance. Our models produce experimentally consistent predictions when defining IS formation as a series of spatiotemporally coordinated events driven by molecular and cellular interactions. The models predict tumor-killing pharmacodynamics in patients and reveal trajectories of tumor evolution across anatomical sites under BiTE immunotherapy. Our models highlight the bone marrow as a potential sanctuary site permitting tumor evolution and antigen escape. The models also suggest that optimal dosing regimens are a function of tumor growth, CD19 expression, and patient T cell abundance, which confer adequate tumor control with reduced disease evolution. This work has implications for developing more effective T cell-based cancer immunotherapies.
Collapse
Affiliation(s)
- Can Liu
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Jiawei Zhou
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Stephan Kudlacek
- Department of Biochemistry and Biophysics, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Timothy Qi
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Tyler Dunlap
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, United States
- Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, United States
| |
Collapse
|
4
|
Liu T, Li Y, Wang X, Yang X, Fu Y, Zheng Y, Gong H, He Z. The role of interferons in ovarian cancer progression: Hinderer or promoter? Front Immunol 2022; 13:1087620. [PMID: 36618371 PMCID: PMC9810991 DOI: 10.3389/fimmu.2022.1087620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/08/2022] [Indexed: 12/24/2022] Open
Abstract
Ovarian cancer (OC) is a common gynecologic malignancy with poor prognosis and high mortality. Changes in the OC microenvironment are closely related to the genesis, invasion, metastasis, recurrence, and drug-resistance. The OC microenvironment is regulated by Interferons (IFNs) known as a type of important cytokines. IFNs have a bidirectional regulation for OC cells growth and survival. Meanwhile, IFNs positively regulate the recruitment, differentiation and activation of immune cells. This review summarizes the secretion and the role of IFNs. In particular, we mainly elucidate the actions played by IFNs in various types of therapy. IFNs assist radiotherapy, targeted therapy, immunotherapy and biotherapy for OC, except for some IFN pathways that may cause chemo-resistance. In addition, we present some advances in OC treatment with the help of IFN pathways. IFNs have the ability to powerfully modulate the tumor microenvironment and can potentially provide new combination strategies for OC treatment.
Collapse
Affiliation(s)
- Taiqing Liu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yinqi Li
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaoyu Wang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaodong Yang
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yunhai Fu
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Yeteng Zheng
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China
| | - Hanlin Gong
- Department of Integrated Traditional Chinese and Western Medicine, West China Hospital, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| | - Zhiyao He
- Department of Pharmacy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu, China,Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, China,*Correspondence: Hanlin Gong, ; Zhiyao He,
| |
Collapse
|
5
|
Punekar SR, Shum E, Grello CM, Lau SC, Velcheti V. Immunotherapy in non-small cell lung cancer: Past, present, and future directions. Front Oncol 2022; 12:877594. [PMID: 35992832 PMCID: PMC9382405 DOI: 10.3389/fonc.2022.877594] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Many decades in the making, immunotherapy has demonstrated its ability to produce durable responses in several cancer types. In the last decade, immunotherapy has shown itself to be a viable therapeutic approach for non-small cell lung cancer (NSCLC). Several clinical trials have established the efficacy of immune checkpoint blockade (ICB), particularly in the form of anti-programmed death 1 (PD-1) antibodies, anti-cytotoxic T-lymphocyte-associated protein 4 (CTLA-4) antibodies and anti-programmed death 1 ligand (PD-L1) antibodies. Many trials have shown progression free survival (PFS) and overall survival (OS) benefit with either ICB alone or in combination with chemotherapy when compared to chemotherapy alone. The identification of biomarkers to predict response to immunotherapy continues to be evaluated. The future of immunotherapy in lung cancer continues to hold promise with the development of combination therapies, cytokine modulating therapies and cellular therapies. Lastly, we expect that innovative advances in technology, such as artificial intelligence (AI) and machine learning, will begin to play a role in the future care of patients with lung cancer.
Collapse
|
6
|
Immunotherapeutic Approaches for Glioblastoma Treatment. Biomedicines 2022; 10:biomedicines10020427. [PMID: 35203636 PMCID: PMC8962267 DOI: 10.3390/biomedicines10020427] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2022] [Revised: 02/05/2022] [Accepted: 02/08/2022] [Indexed: 11/17/2022] Open
Abstract
Glioblastoma remains a challenging disease to treat, despite well-established standard-of-care treatments, with a median survival consistently of less than 2 years. In this review, we delineate the unique disease-specific challenges for immunotherapies, both brain-related and non-brain-related, which will need to be adequately overcome for the development of effective treatments. We also review current immunotherapy treatments, with a focus on clinical applications, and propose future directions for the field of GBM immunotherapy.
Collapse
|
7
|
Yang J, Zhao S, Wang J, Sheng Q, Liu Q, Shyr Y. A pan-cancer immunogenomic atlas for immune checkpoint blockade immunotherapy. Cancer Res 2021; 82:canres.2335.2021. [PMID: 34903605 PMCID: PMC9189237 DOI: 10.1158/0008-5472.can-21-2335] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/19/2021] [Accepted: 12/02/2021] [Indexed: 01/07/2023]
Abstract
The ability to identify robust genomic signatures that predict response to immune checkpoint blockade is restricted by limited sample sizes and ungeneralizable performance across cohorts. To address these challenges, we established Cancer-Immu (http://bioinfo.vanderbilt.edu/database/Cancer-Immu/) a comprehensive platform that integrates large-scale multidimensional omics data, including genetic, bulk, and single-cell transcriptomic, proteomic, and dynamic genomic profiles, with clinical phenotypes to explore consistent and rare immunogenomic connections. Currently Cancer-Immu has incorporated data for 3,652 samples for 16 cancer types. It provides easy access to immunogenomic data and empowers researchers to translate omics datasets into biological insights and clinical applications.
Collapse
Affiliation(s)
- Jing Yang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Shilin Zhao
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Quanhu Sheng
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville, Tennessee
- Department of Biostatistics, Vanderbilt University Medical Center, Nashville, Tennessee
| |
Collapse
|
8
|
Yang J, Zhao S, Wang J, Sheng Q, Liu Q, Shyr Y. Immu-Mela: An open resource for exploring immunotherapy-related multidimensional genomic profiles in melanoma. J Genet Genomics 2021; 48:361-368. [PMID: 34127402 PMCID: PMC8349898 DOI: 10.1016/j.jgg.2021.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 03/15/2021] [Accepted: 03/17/2021] [Indexed: 11/22/2022]
Abstract
There are increasing studies aimed to reveal genomic hallmarks predictive of immune checkpoint blockade (ICB) treatment response, which generated a large number of data and provided an unprecedented opportunity to identify response-related features and evaluate their robustness across cohorts. However, those valuable data sets are not easily accessible to the research community. To take full advantage of existing large-scale immuno-genomic profiles, we developed Immu-Mela (http://bioinfo.vanderbilt.edu/database/Immu-Mela/), a multidimensional immuno-genomic portal that provides interactive exploration of associations between ICB responsiveness and multi-omics features in melanoma, including genetic, transcriptomics, immune cells, and single-cell populations. Immu-Mela also enables integrative analysis of any two genomic features. We demonstrated the value of Immu-Mela by identifying known and novel genomic features associated with ICB response. In addition, Immu-Mela allows users to upload their data sets (unrestricted to any cancer types) and co-analyze with existing data to identify and validate signatures of interest. Immu-Mela reduces barriers between researchers and complex genomic data, facilitating discoveries in cancer immunotherapy.
Collapse
Affiliation(s)
- Jing Yang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville TN 37203, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN 37203, USA
| | - Shilin Zhao
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville TN 37203, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN 37203, USA
| | - Jing Wang
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville TN 37203, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN 37203, USA
| | - Quanhu Sheng
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville TN 37203, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN 37203, USA
| | - Qi Liu
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville TN 37203, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN 37203, USA.
| | - Yu Shyr
- Center for Quantitative Sciences, Vanderbilt University Medical Center, Nashville TN 37203, USA; Department of Biostatistics, Vanderbilt University Medical Center, Nashville TN 37203, USA.
| |
Collapse
|
9
|
Tang Y, Li X, Cao Y. Which factors matter the most? Revisiting and dissecting antibody therapeutic doses. Drug Discov Today 2021; 26:1980-1990. [PMID: 33895315 DOI: 10.1016/j.drudis.2021.04.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 02/28/2021] [Accepted: 04/16/2021] [Indexed: 01/22/2023]
Abstract
Factors such as antibody clearance and target affinity can influence antibodies' effective doses for specific indications. However, these factors vary considerably across antibody classes, precluding direct and quantitative comparisons. Here, we apply a dimensionless metric, the therapeutic exposure affinity ratio (TEAR), which normalizes the therapeutic doses by antibody bioavailability, systemic clearance and target-binding property to enable direct and quantitative comparisons of therapeutic doses. Using TEAR, we revisited and dissected the doses of up to 60 approved antibodies. We failed to detect a significant influence of target baselines, turnovers or anatomical locations on antibody therapeutic doses, challenging the traditional perceptions. We highlight the importance of antibodies' modes of action for therapeutic doses and dose selections; antibodies that work through neutralizing soluble targets show higher TEARs than those working through other mechanisms. Overall, our analysis provides insights into the factors that influence antibody doses, and the factors that are crucial for antibodies' pharmacological effects.
Collapse
Affiliation(s)
- Yu Tang
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Xiaobing Li
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Pharmacy, Shengjing Hospital of China Medical University, Shenyang, China
| | - Yanguang Cao
- Division of Pharmacotherapy and Experimental Therapeutics, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Modeling Pharmacokinetics and Pharmacodynamics of Therapeutic Antibodies: Progress, Challenges, and Future Directions. Pharmaceutics 2021; 13:pharmaceutics13030422. [PMID: 33800976 PMCID: PMC8003994 DOI: 10.3390/pharmaceutics13030422] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/18/2021] [Accepted: 03/18/2021] [Indexed: 12/29/2022] Open
Abstract
With more than 90 approved drugs by 2020, therapeutic antibodies have played a central role in shifting the treatment landscape of many diseases, including autoimmune disorders and cancers. While showing many therapeutic advantages such as long half-life and highly selective actions, therapeutic antibodies still face many outstanding issues associated with their pharmacokinetics (PK) and pharmacodynamics (PD), including high variabilities, low tissue distributions, poorly-defined PK/PD characteristics for novel antibody formats, and high rates of treatment resistance. We have witnessed many successful cases applying PK/PD modeling to answer critical questions in therapeutic antibodies’ development and regulations. These models have yielded substantial insights into antibody PK/PD properties. This review summarized the progress, challenges, and future directions in modeling antibody PK/PD and highlighted the potential of applying mechanistic models addressing the development questions.
Collapse
|
11
|
Saito R, Sawada Y, Nakamura M. Immune Profile Analysis in Peripheral Blood and Tumor in Patients with Malignant Melanoma. Int J Mol Sci 2021; 22:ijms22041957. [PMID: 33669410 PMCID: PMC7920420 DOI: 10.3390/ijms22041957] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 02/08/2021] [Accepted: 02/09/2021] [Indexed: 12/11/2022] Open
Abstract
Melanoma is a severe and life-threatening malignancy derived from melanocytes. The traditional treatment for melanoma could not sustain satisfactory outcomes long term; however, the recent immune checkpoint treatment has made a breakthrough in these problems. Nivolumab is a representative immune checkpoint treatment, and this PD-1-targeted therapy has evolutionally developed and improved the clinical outcome in a recent decade. On the other hand, the clinical application of immune checkpoint treatment presents clinicians with novel questions, especially how to obtain additional efficacy and overcome the disadvantage by using this treatment. To answer these problems, we first investigated the distribution of PD-L1 in various organs to clarify the organs most affected by anti-PD-1 antibody treatment. Among various organs, lung, placenta, spleen, heart, and thyroid highly expressed PD-L1, while skin, thalamus, hippocampus, ovary, stomach, testis, and prostate showed lower expressions of PD-L1. Furthermore, the immune profiles were also examined in tumors and peripheral blood in patients with melanoma. PD-1 was highly expressed in CD8 and CD4 cells, and B cells also highly expressed PD-1 compared with NK cells. However, there was no significant difference in Th1/Th2/Th17 cytokines and inhibitory cytokine IL-10. Although nevus showed a low expression of PD-L1 compared with healthy skin, PD-L1 expression was increased in growth-phase melanoma. Finally, we analyzed the peripheral blood profiles in patients treated with nivolumab. PD-1-bearing dendritic cells (DCs) were increased during nivolumab treatment and Lin-CD11c+HLA-DR+ cells were highly increased during nivolumab treatment. These findings indicate a clue to answering the problems during nivolumab treatment and suggest to us the importance of multiple aspect observation during immune checkpoint treatment.
Collapse
Affiliation(s)
| | - Yu Sawada
- Correspondence: ; Tel.: +81-093-691-7445
| | | |
Collapse
|
12
|
Grenda A, Krawczyk P, Błach J, Chmielewska I, Kubiatowski T, Kieszko S, Wojas-Krawczyk K, Kucharczyk T, Jarosz B, Paśnik I, Borowiec-Bar M, Frąk M, Kieszko R, Szczyrek M, Reszka K, Krukowska K, Kolak A, Mańdziuk S, Kowalski D, Sawicki M, Świniuch D, Starosławska E, Ramlau R, Szumiło J, Krzakowski M, Milanowski J. Tissue MicroRNA Expression as a Predictor of Response to Immunotherapy in NSCLC Patients. Front Oncol 2021; 10:563613. [PMID: 33628725 PMCID: PMC7897665 DOI: 10.3389/fonc.2020.563613] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2020] [Accepted: 12/14/2020] [Indexed: 11/13/2022] Open
Abstract
Introduction Expression of PD-L1 protein on tumor cells, which is so far the only validated predictive factor for immunotherapy, is regulated by epigenetic and genetic factors. Among the most important ones that regulate gene expression are microRNAs. Materials and Methods The study included 60 patients with NSCLC who underwent first or second line immunotherapy with pembrolizumab or nivolumab. FFPE materials were collected before the start of immunotherapy. We examined relative expression of microRNAs (miR-141, miR-200a, miR-200b, miR-200c, miR-429, miR-508-3p, miR-1184, miR-1255a) and PD-L1 mRNA expression. Copy number variation (CNV) of PD-L1 gene by qPCR and FISH methods were assessed. Two single nucleotide polymorphisms (SNPs) in promoter region of PD-L1 gene (rs822335 and rs822336) were examined. Expression of PD-L1 protein on tumor cells was assessed by immunohistochemistry (IHC). The response rate to immunotherapy and progression free survival (PFS) measured in weeks and overall survival (OS) measured in months from the start of immunotherapy were evaluated. Results Response to immunotherapy was observed in nine patients (15%, including one complete response), disease stabilization in 22 patients (36.7%), and progression in 29 patients (48.3%). Significantly higher (p=0.015) expression of miR-200b and significantly lower (p=0.043) expression of miR-429 were observed in responders compared to patients who did not respond to immunotherapy. The median PFS in the whole group of patients was 16 weeks, and the median OS was 10.5 month. In univariate analysis, the median PFS was significantly higher in patients with high miR-200b expression (HR=0.4253, 95%CI: 0.1737–1.0417, p=0.05) and high miR-508 expression (HR=0.4401, 95%CI: 0.1903–1.0178, p=0.05) and with low expression of miR-429 (HR=0.1288, 95%CI: 0.01727–0.9606, p=0.0456) compared to patients with low and high expression of these molecules, respectively. The median OS was higher in patients with low expression of miR-429 (HR=0,6288, 95%CI: 0,3053–1,2949, p=0.06) compared with patients with high expression of this microRNA. In multivariate analysis, we found that patients with PD-L1 expression on ≥1% of tumor cells compared to patients without PD-L1 expression on cancer cells had a significantly lower risk of progression (HR=0.3857, 95%CI: 0.1612–0.9226, p=0.0323) and death (HR=0.377, 95%CI: 0.1636–0.8688, p=0.022). Conclusion The miR-200b and miR-429 molecules in tumor cells seem to have greatest impact on the effectiveness of immunotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Anna Grenda
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Paweł Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Justyna Błach
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Izabela Chmielewska
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Kubiatowski
- Department of Clinical Oncology, Saint John of Dukla Oncology Centre of the Lublin Region, Lublin, Poland
| | - Stanisław Kieszko
- Department of Clinical Oncology, Saint John of Dukla Oncology Centre of the Lublin Region, Lublin, Poland
| | - Kamila Wojas-Krawczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Tomasz Kucharczyk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Bożena Jarosz
- Department of Neurosurgery and Paediatric Neurosurgery, Medical University of Lublin, Lublin, Poland
| | - Iwona Paśnik
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Borowiec-Bar
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Małgorzata Frąk
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Robert Kieszko
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Michał Szczyrek
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| | - Katarzyna Reszka
- Genetics and Immunology Institute of Lublin, Genim LLC, Lublin, Poland
| | - Kinga Krukowska
- Genetics and Immunology Institute of Lublin, Genim LLC, Lublin, Poland
| | - Agnieszka Kolak
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Sławomir Mańdziuk
- Department of Clinical Oncology and Chemotherapy, Medical University of Lublin, Lublin, Poland
| | - Dariusz Kowalski
- Department of Lung and Chest Cancer, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Marek Sawicki
- Department of Thoracic Surgery, Medical University of Lublin, Lublin, Poland
| | - Daria Świniuch
- Department of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Elżbieta Starosławska
- Department of Clinical Oncology, Saint John of Dukla Oncology Centre of the Lublin Region, Lublin, Poland
| | - Rodryg Ramlau
- Department of Oncology, Poznan University of Medical Sciences, Poznań, Poland
| | - Justyna Szumiło
- Department of Clinical Pathomorphology, Medical University of Lublin, Lublin, Poland
| | - Maciej Krzakowski
- Department of Lung and Chest Cancer, The Maria Sklodowska-Curie National Research Institute of Oncology in Warsaw, Warsaw, Poland
| | - Janusz Milanowski
- Department of Pneumonology, Oncology and Allergology, Medical University of Lublin, Lublin, Poland
| |
Collapse
|
13
|
Meyer M, Paquet A, Arguel MJ, Peyre L, Gomes-Pereira LC, Lebrigand K, Mograbi B, Brest P, Waldmann R, Barbry P, Hofman P, Roux J. Profiling the Non-genetic Origins of Cancer Drug Resistance with a Single-Cell Functional Genomics Approach Using Predictive Cell Dynamics. Cell Syst 2020; 11:367-374.e5. [PMID: 33099406 DOI: 10.1016/j.cels.2020.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 06/12/2020] [Accepted: 08/28/2020] [Indexed: 12/14/2022]
Abstract
Non-genetic heterogeneity observed in clonal cell populations is an immediate cause of drug resistance that remains challenging to profile because of its transient nature. Here, we coupled three single-cell technologies to link the predicted drug response of a cell to its own genome-wide transcriptomic profile. As a proof of principle, we analyzed the response to tumor-necrosis-factor-related apoptosis-inducing ligand (TRAIL) in HeLa cells to demonstrate that cell dynamics can discriminate the transient transcriptional states at the origin of cell decisions such as sensitivity and resistance. Our same-cell approach, named fate-seq, can reveal the molecular factors regulating the efficacy of a drug in clonal cells, providing therapeutic targets of non-genetic drug resistance otherwise confounded in gene expression noise. A record of this paper's transparent peer review process is included in the Supplemental Information.
Collapse
Affiliation(s)
- Mickael Meyer
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Agnès Paquet
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Marie-Jeanne Arguel
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Ludovic Peyre
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Luis C Gomes-Pereira
- Université Côte d'Azur, Inria, INRAE, CNRS, Sorbonne Université, Biocore team, Sophia Antipolis, 06560 Nice, France
| | - Kevin Lebrigand
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Baharia Mograbi
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Patrick Brest
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Rainer Waldmann
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Pascal Barbry
- Université Côte d'Azur, CNRS UMR 7275, Institut de Pharmacologie Moléculaire et Cellulaire, Sophia Antipolis, 06560 Nice, France
| | - Paul Hofman
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France
| | - Jérémie Roux
- Université Côte d'Azur, CNRS UMR 7284, Inserm U 1081, Institut de Recherche sur le Cancer et le Vieillissement de Nice, Centre Antoine Lacassagne, 06107 Nice, France.
| |
Collapse
|
14
|
Lynes JP, Nwankwo AK, Sur HP, Sanchez VE, Sarpong KA, Ariyo OI, Dominah GA, Nduom EK. Biomarkers for immunotherapy for treatment of glioblastoma. J Immunother Cancer 2020; 8:e000348. [PMID: 32474411 PMCID: PMC7264836 DOI: 10.1136/jitc-2019-000348] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/09/2020] [Indexed: 12/25/2022] Open
Abstract
Immunotherapy is a promising new therapeutic field that has demonstrated significant benefits in many solid-tumor malignancies, such as metastatic melanoma and non-small cell lung cancer. However, only a subset of these patients responds to treatment. Glioblastoma (GBM) is the most common malignant primary brain tumor with a poor prognosis of 14.6 months and few treatment advancements over the last 10 years. There are many clinical trials testing immune therapies in GBM, but patient responses in these studies have been highly variable and a definitive benefit has yet to be identified. Biomarkers are used to quantify normal physiology and physiological response to therapies. When extensively characterized and vigorously validated, they have the potential to delineate responders from non-responders for patients treated with immunotherapy in malignancies outside of the central nervous system (CNS) as well as GBM. Due to the challenges of current modalities of radiographic diagnosis and disease monitoring, identification of new predictive and prognostic biomarkers to gauge response to immune therapy for patients with GBM will be critical in the precise treatment of this highly heterogenous disease. This review will explore the current and future strategies for the identification of potential biomarkers in the field of immunotherapy for GBM, as well as highlight major challenges of adapting immune therapy for CNS malignancies.
Collapse
Affiliation(s)
- John P Lynes
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Anthony K Nwankwo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Hannah P Sur
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Victoria E Sanchez
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Kwadwo A Sarpong
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Oluwatobi I Ariyo
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Gifty A Dominah
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| | - Edjah K Nduom
- National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, Maryland, USA
| |
Collapse
|
15
|
Wang X, Chai Z, Li Y, Long F, Hao Y, Pan G, Liu M, Li B. Identification of Potential Biomarkers for Anti-PD-1 Therapy in Melanoma by Weighted Correlation Network Analysis. Genes (Basel) 2020; 11:genes11040435. [PMID: 32316408 PMCID: PMC7230292 DOI: 10.3390/genes11040435] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/14/2020] [Accepted: 04/14/2020] [Indexed: 12/11/2022] Open
Abstract
Melanoma is the most malignant form of skin cancer, which seriously threatens human life and health. Anti-PD-1 immunotherapy has shown clinical benefits in improving patients' overall survival, but some melanoma patients failed to respond. Effective therapeutic biomarkers are vital to evaluate and optimize benefits from anti-PD-1 treatment. Although the establishment of immunotherapy biomarkers is well underway, studies that identify predictors by gene network-based approaches are lacking. Here, we retrieved the existing datasets (GSE91061, GSE78220 and GSE93157, 79 samples in total) on anti-PD-1 therapy to explore potential therapeutic biomarkers in melanoma using weighted correlation network analysis (WGCNA), function validation and clinical corroboration. As a result, 13 hub genes as critical nodes were traced from the key module associated with clinical features. After receiver operating characteristic (ROC) curve validation by an independent dataset (GSE78220), six hub genes with diagnostic significance were further recovered. Moreover, these six genes were revealed to be closely associated not only with the immune system regulation, immune infiltration, and validated immunotherapy biomarkers, but also with excellent prognostic value and significant expression level in melanoma. The random forest prediction model constructed using these six genes presented a great diagnostic ability for anti-PD-1 immunotherapy response. Taken together, IRF1, JAK2, CD8A, IRF8, STAT5B, and SELL may serve as predictive therapeutic biomarkers for melanoma and could facilitate future anti-PD-1 therapy.
Collapse
Affiliation(s)
- Xuanyi Wang
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Zixuan Chai
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Yinghong Li
- School of Biological Information, Chongqing University of Posts and Telecommunications, Chongqing 400065, China;
| | - Fei Long
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Youjin Hao
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
| | - Guizhi Pan
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
| | - Mingwei Liu
- Key Laboratory of Clinical Laboratory Diagnostics, College of Laboratory Medicine, Chongqing Medical University, Chongqing 400046, China; (X.W.); (Z.C.); (F.L.); (G.P.)
- Correspondence: (M.L.); (B.L.)
| | - Bo Li
- College of Life Sciences, Chongqing Normal University, Chongqing 401331, China;
- Correspondence: (M.L.); (B.L.)
| |
Collapse
|