1
|
Lin J, Oludare A, Jung H. Connecting dots between nucleotide biosynthesis and DNA lesion repair/bypass in cancer. Biosci Rep 2024; 44:BSR20231382. [PMID: 39189649 PMCID: PMC11427732 DOI: 10.1042/bsr20231382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Revised: 08/01/2024] [Accepted: 08/15/2024] [Indexed: 08/28/2024] Open
Abstract
Purine and pyrimidine nucleotides are crucial building blocks for the survival of cells, and there are layers of pathways to make sure a stable supply of them including de novo nucleotide biosynthesis. Fast-growing cells including cancer cells have high demand for nucleotide, and they highly utilize the nucleotide biosynthesis pathways. Due to the nature of the fast-growing cells, they tend to make more errors in replication compared with the normal cells. Naturally, DNA repair and DNA lesion bypass are heavily employed in cancer cells to ensure fidelity and completion of the replication without stalling. There have been a lot of drugs targeting cancer that mimic the chemical structures of the nucleobase, nucleoside, and nucleotides, and the resistance toward those drugs is a serious problem. Herein, we have reviewed some of the representative nucleotide analog anticancer agents such as 5-fluorouracil, specifically their mechanism of action and resistance is discussed. Also, we have chosen several enzymes in nucleotide biosynthesis, DNA repair, and DNA lesion bypass, and we have discussed the known and potential roles of these enzymes in maintaining genomic fidelity and cancer chemotherapy.
Collapse
Affiliation(s)
- Jackson C. Lin
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| | - Ayobami Oludare
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| | - Hunmin Jung
- The Division of Medicinal Chemistry, School of Pharmacy, The University of Connecticut, Storrs, Connecticut 06269, U.S.A
| |
Collapse
|
2
|
Munderere R, Gulfam M, Ali I, Kim SH, Vu TT, Park SH, Lim KT. Redox-Responsive Gold Nanoparticles Coated with Hyaluronic Acid and Folic Acid for Application in Targeting Anticancer Therapy. Molecules 2024; 29:1564. [PMID: 38611843 PMCID: PMC11013442 DOI: 10.3390/molecules29071564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Revised: 03/25/2024] [Accepted: 03/29/2024] [Indexed: 04/14/2024] Open
Abstract
Methotrexate (MTX) has poor water solubility and low bioavailability, and cancer cells can become resistant to it, which limits its safe delivery to tumor sites and reduces its clinical efficacy. Herein, we developed novel redox-responsive hybrid nanoparticles (NPs) from hyaluronic acid (HA) and 3-mercaptopropionic acid (MPA)-coated gold NPs (gold@MPA NPs), which were further conjugated with folic acid (FA). The design of FA-HA-ss-gold NPs aimed at enhancing cellular uptake specifically in cancer cells using an active FA/HA dual targeting strategy for enhanced tumor eradication. MTX was successfully encapsulated into FA-HA-ss-gold NPs, with drug encapsulation efficiency (EE) as high as >98.7%. The physicochemical properties of the NPs were investigated in terms of size, surface charges, wavelength reflectance, and chemical bonds. MTX was released in a sustained manner in glutathione (GSH). The cellular uptake experiments showed effective uptake of FA-HA-ss-gold over HA-ss-gold NPs in the deep tumor. Moreover, the release studies provided strong evidence that FA-HA-ss-gold NPs serve as GSH-responsive carriers. In vitro, anti-tumor activity tests showed that FA-HA-ss-gold/MTX NPs exhibited significantly higher cytotoxic activity against both human cervical cancer (HeLa) cells and breast cancer (BT-20) cells compared to gold only and HA-ss-gold/MTX NPs while being safe for human embryonic kidney (HEK-293) cells. Therefore, this present study suggests that FA-HA-ss-gold NPs are promising active targeting hybrid nanocarriers that are stable, controllable, biocompatible, biodegradable, and with enhanced cancer cell targetability for the safe delivery of hydrophobic anticancer drugs.
Collapse
Affiliation(s)
- Raissa Munderere
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (R.M.); (S.-H.K.)
- New-Senior Oriented Smart Health Care Education Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Muhammad Gulfam
- Ashland Specialties Ireland Ltd., N91 F6PD Mullingar, Ireland;
| | - Israr Ali
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.A.); (T.T.V.)
| | - Seon-Hwa Kim
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (R.M.); (S.-H.K.)
- New-Senior Oriented Smart Health Care Education Center (BK21 Plus), Pukyong National University, Busan 48513, Republic of Korea
| | - Trung Thang Vu
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.A.); (T.T.V.)
| | - Sang-Hyug Park
- Industry 4.0 Convergence Bionics Engineering, Pukyong National University, Busan 48513, Republic of Korea; (R.M.); (S.-H.K.)
- Major of Biomedical Engineering, Division of Smart Healthcare, College of Information Technology and Convergence, Pukyong National University, Busan 48513, Republic of Korea
| | - Kwon Taek Lim
- Department of Smart Green Technology Engineering, Pukyong National University, Busan 48513, Republic of Korea; (I.A.); (T.T.V.)
- Institute of Display Semiconductor Technology, Pukyong National University, Busan 48513, Republic of Korea
| |
Collapse
|
3
|
De Castro F, Stefàno E, De Luca E, Benedetti M, Fanizzi FP. Platinum-Nucleos(t)ide Compounds as Possible Antimetabolites for Antitumor/Antiviral Therapy: Properties and Perspectives. Pharmaceutics 2023; 15:941. [PMID: 36986802 PMCID: PMC10058173 DOI: 10.3390/pharmaceutics15030941] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 03/06/2023] [Accepted: 03/12/2023] [Indexed: 03/16/2023] Open
Abstract
Nucleoside analogues (NAs) are a family of compounds which include a variety of purine and pyrimidine derivatives, widely used as anticancer and antiviral agents. For their ability to compete with physiological nucleosides, NAs act as antimetabolites exerting their activity by interfering with the synthesis of nucleic acids. Much progress in the comprehension of their molecular mechanisms has been made, including providing new strategies for potentiating anticancer/antiviral activity. Among these strategies, new platinum-NAs showing a good potential to improve the therapeutic indices of NAs have been synthesized and studied. This short review aims to describe the properties and future perspectives of platinum-NAs, proposing these complexes as a new class of antimetabolites.
Collapse
Affiliation(s)
| | | | | | - Michele Benedetti
- Dipartimento di Scienze e Tecnologie Biologiche ed Ambientali, Università del Salento, Prov.le Lecce-Monteroni, Centro Ecotekne, 73100 Lecce, Italy
| | | |
Collapse
|
4
|
Liu J, Hong S, Yang J, Zhang X, Wang Y, Wang H, Peng J, Hong L. Targeting purine metabolism in ovarian cancer. J Ovarian Res 2022; 15:93. [PMID: 35964092 PMCID: PMC9375293 DOI: 10.1186/s13048-022-01022-z] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 07/17/2022] [Indexed: 11/10/2022] Open
Abstract
Purine, an abundant substrate in organisms, is a critical raw material for cell proliferation and an important factor for immune regulation. The purine de novo pathway and salvage pathway are tightly regulated by multiple enzymes, and dysfunction in these enzymes leads to excessive cell proliferation and immune imbalance that result in tumor progression. Maintaining the homeostasis of purine pools is an effective way to control cell growth and tumor evolution, and exploiting purine metabolism to suppress tumors suggests interesting directions for future research. In this review, we describe the process of purine metabolism and summarize the role and potential therapeutic effects of the major purine-metabolizing enzymes in ovarian cancer, including CD39, CD73, adenosine deaminase, adenylate kinase, hypoxanthine guanine phosphoribosyltransferase, inosine monophosphate dehydrogenase, purine nucleoside phosphorylase, dihydrofolate reductase and 5,10-methylenetetrahydrofolate reductase. Purinergic signaling is also described. We then provide an overview of the application of purine antimetabolites, comprising 6-thioguanine, 6-mercaptopurine, methotrexate, fludarabine and clopidogrel. Finally, we discuss the current challenges and future opportunities for targeting purine metabolism in the treatment-relevant cellular mechanisms of ovarian cancer.
Collapse
Affiliation(s)
- Jingchun Liu
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shasha Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiang Yang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xiaoyi Zhang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Ying Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Haoyu Wang
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Jiaxin Peng
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Li Hong
- Department of Obstetrics and Gynecology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
5
|
Fu X, Tan W, Song Q, Pei H, Li J. BRCA1 and Breast Cancer: Molecular Mechanisms and Therapeutic Strategies. Front Cell Dev Biol 2022; 10:813457. [PMID: 35300412 PMCID: PMC8921524 DOI: 10.3389/fcell.2022.813457] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Accepted: 01/18/2022] [Indexed: 11/13/2022] Open
Abstract
Breast cancer susceptibility gene 1 (BRCA1) is a tumor suppressor gene, which is mainly involved in the repair of DNA damage, cell cycle regulation, maintenance of genome stability, and other important physiological processes. Mutations or defects in the BRCA1 gene significantly increase the risk of breast, ovarian, prostate, and other cancers in carriers. In this review, we summarized the molecular functions and regulation of BRCA1 and discussed recent insights into the detection and treatment of BRCA1 mutated breast cancer.
Collapse
Affiliation(s)
- Xiaoyu Fu
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Wei Tan
- Department of Biochemistry and Molecular Medicine, The George Washington University School of Medicine and Health Sciences, Washington, DC, United States
| | - Qibin Song
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| | - Huadong Pei
- Department of Oncology, Georgetown Lombardi Comprehensive Cancer Center, Georgetown University Medical Center, Washington, DC, United States
| | - Juanjuan Li
- Department of Breast and Thyroid Surgery, Renmin Hospital of Wuhan University, Wuhan, China
- Cancer Center, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
6
|
Salim SA, Kamoun EA, Evans S, EL-Moslamy SH, El-Fakharany EM, Elmazar MM, Abdel-Aziz AF, Abou-Saleh RH, Salaheldin TA. Mercaptopurine-Loaded Sandwiched Tri-Layered Composed of Electrospun Polycaprolactone/Poly(Methyl Methacrylate) Nanofibrous Scaffolds as Anticancer Carrier with Antimicrobial and Antibiotic Features: Sandwich Configuration Nanofibers, Release Study and in vitro Bioevaluation Tests. Int J Nanomedicine 2021; 16:6937-6955. [PMID: 34703223 PMCID: PMC8525416 DOI: 10.2147/ijn.s332920] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 09/22/2021] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND 6-Mercaptopurine (6-MP) is a potential anti-cancer agent which its therapeutic and limitation applicability due to its high toxicity. OBJECTIVE Herein, 6-MP was loaded into tri-layered sandwich nanofibrous scaffold (the top layer composed of poly methyl methacrylate/polycaprolactone (PMMA/PCL), the middle layer was PCL/PMMA/6-MP, and the bottom layer was PCL/PMMA to improve its bioactivity, adjusting the release-sustainability and reduce its toxicity. METHODS Electrospun tri-layered nanofibers composed of PCL/PMMA were utilized as nano-mats for controlling sustained drug release. Four groups of sandwich scaffold configurations were investigated with alteration of (PMMA: PCL) composition. RESULTS The sandwich scaffold composed of 2%PCL/4%PMMA/1%6-MP showed the best miscibility, good homogeneity and produced the smoothest nanofibers and low crystallinity. All fabricated 6-MP-loaded-PCL/PMMA scaffolds exhibited antimicrobial properties on the bacterial and fungal organisms, where the cytotoxicity evaluation proved the safety of scaffolds on normal cells, even at high concentration. Scaffolds provided a sustained-drug release profile that was strongly dependent on (PCL: PMMA). As (PCL: PMMA) decreased, the sustained 6-MP release from PCL/PMMA scaffolds increased. Results established that ~18% and 20% of 6-MP were released after 23h from (4%PCL/4%PMMA/1%6-MP) and (2%PCL/4%PMMA/1%6-MP), respectively, where this release was maintained for more than 20 days. The anti-cancer activity of all fabricated scaffolds was also investigated using different cancerous cell lines (e.g., Caco-2, MDA, and HepG-2) results showed that 6-MP-loaded-nanofibrous mats have an anti-cancer effect, with a high selective index for breast cancer. We observed that viability of a cancer cell was dropped to about 10%, using nanofibers containing 2%PCL/4%PMMA/1%6-MP. CONCLUSION Overall, the PCL: PMMA ratio and sandwich configuration imparts a tight control on long-term release profile and initial burst of 6-MP for anticancer treatment purposes.
Collapse
Affiliation(s)
- Samar A Salim
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo, 11837, Egypt
- Biochemistry Group, Chemistry Dep., Faculty of Science, Mansoura University, Mansoura, Egypt
| | - Elbadawy A Kamoun
- Nanotechnology Research Center (NTRC), The British University in Egypt (BUE), Cairo, 11837, Egypt
- Polymeric Materials Research Dep., Advanced Technology and New Materials Research Institute (ATNMRI), City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Stephen Evans
- Molecular and Nanoscale Physics Group, School of Physics and Astronomy, University of Leeds, Leeds, LS2 9JT, UK
| | - Shahira H EL-Moslamy
- Bioprocess Development Dep., GEBRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Esmail M El-Fakharany
- Protein Research Dep. GEBRI, City of Scientific Research and Technological Applications (SRTA-City), Alexandria, 21934, Egypt
| | - Mohamed M Elmazar
- Faculty of Pharmacy, The British University in Egypt (BUE), Cairo, 11837, Egypt
| | - A F Abdel-Aziz
- Biochemistry Group, Chemistry Dep., Faculty of Science, Mansoura University, Mansoura, Egypt
| | - R H Abou-Saleh
- Biophysics Group, Dep. of Physics, Faculty of Science, Mansoura University, Mansoura, Egypt
- Nanoscience and Technology Program, Faculty of Advanced Basic Science, Galala University, Suez, Egypt
| | - Taher A Salaheldin
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY, 12144, USA
| |
Collapse
|
7
|
Imyanitov EN. Cytotoxic and targeted therapy for BRCA1/2-driven cancers. Hered Cancer Clin Pract 2021; 19:36. [PMID: 34454564 PMCID: PMC8399736 DOI: 10.1186/s13053-021-00193-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022] Open
Abstract
Tumors arising in BRCA1/2 germline mutation carriers usually demonstrate somatic loss of the remaining BRCA1/2 allele and increased sensitivity to platinum compounds, anthracyclines, mitomycin C and poly (ADP-ribose) polymerase inhibitors (PARPi). Exposure to conventional platinum-based therapy or PARPi results in the restoration of BRCA1/2 function and development of resistance to systemic therapy, therefore, there is a need for other treatment options. Some studies suggested that the use of specific drug combinations or administration of high-dose chemotherapy may result in pronounced tumor responses. BRCA1/2-driven tumors are characterized by increased immunogenicity; promising efficacy of immune therapy has been demonstrated in a number of preclinical and clinical investigations. There are outstanding issues, which require further consideration. Platinum compounds and PARPi have very similar mode of antitumor action and are likely to render cross-resistance to each other, so their optimal position in cancer treatment schemes may be a subject of additional studies. Sporadic tumors with somatically acquired inactivation of BRCA1/2 or related genes resemble hereditary neoplasms with regard to the spectrum of drug sensitivity; the development of user-friendly BRCAness tests presents a challenge. Many therapeutic decisions are now based on the BRCA1/2 status, so the significant reduction of the turn-around time for predictive laboratory assays is of particular importance.
Collapse
Affiliation(s)
- Evgeny N Imyanitov
- N.N. Petrov Institute of Oncology, Pesochny, Saint-Petersburg, 197758, Russia. .,St.-Petersburg Pediatric Medical University, Saint Petersburg, 194100, Russia. .,I.I. Mechnikov North-Western Medical University, St.-Petersburg, 191015, Russia.
| |
Collapse
|
8
|
Singh B, Sarli VN, Lucci A. Inhibition of resistant triple-negative breast cancer cells with low-dose 6-mercaptopurine and 5-azacitidine. Oncotarget 2021; 12:626-637. [PMID: 33868584 PMCID: PMC8021029 DOI: 10.18632/oncotarget.27922] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Accepted: 03/08/2021] [Indexed: 11/25/2022] Open
Abstract
Highly adaptable breast cancer cells that can opportunistically switch between proliferation and quiescence are often responsible for disease relapse. We have developed a function-based selection strategy for such resistant cells, exemplified by SUM149-MA and FC-IBC02-MA triple-negative breast cancer cells. We have also reported that a lengthy treatment with low-dose 6-mercaptopurine, a clinically useful anti-inflammatory drug, inhibits such resistant cells. To more rigorously test the clinical suitability of 6-mercaptopurine, here we investigated effects of further lowering its dose and the possibility of overcoming resistance to single-drug treatment by combining the drug with another ribonucleoside analog 5-azacitidine. We found that that a lengthy treatment with 1 μM 5-azacitidine, without a significant effect on cell proliferation, sensitized cancer cells to the inhibitory effects of low-dose 6-mercaptopurine. Importantly, treatment for several weeks with low doses of 6-mercaptopurine and/or 5-azacitidine did not render cancer cells resistant to chemotherapeutic drugs doxorubicin or paclitaxel. In fact, the cells became more sensitive to chemotherapeutic drugs upon treatment with 6-mercaptopurine and/or 5-azacitidine. Our analyses of protein markers of epithelial-to-mesenchymal transition indicated that treatments with 6-mercaptopurine and/or 5-azacitidine do not significantly reverse this process in our model. Our results showed that safe drugs such as low-dose 6-mercaptopurine singly or combined with 5-azacitidine, which are suitable for use prior to disease relapse, have a potential of inhibiting highly resistant triple-negative breast cancer cells.
Collapse
Affiliation(s)
- Balraj Singh
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Vanessa N Sarli
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Anthony Lucci
- Department of Breast Surgical Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA.,Morgan Welch Inflammatory Breast Cancer Research Program and Clinic, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| |
Collapse
|
9
|
Miteva-Marcheva NN, Ivanov HY, Dimitrov DK, Stoyanova VK. Application of pharmacogenetics in oncology. Biomark Res 2020; 8:32. [PMID: 32821392 PMCID: PMC7429778 DOI: 10.1186/s40364-020-00213-4] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 08/07/2020] [Indexed: 02/07/2023] Open
Abstract
The term "pharmacogenetics" is used to describe the study of variability in drug response due to heredity. It is associated with "gene - drug interactions". Later on, the term "pharmacogenomics" has been introduced and it comprises all genes in the genome that can define drug response. The application of pharmacogenetics in oncology is of a great significance because of the narrow therapeutic index of chemotherapeutic drugs and the risk for life-threatening adverse effects. Many cancer genomics studies have been focused on the acquired, somatic mutations; however, increasing evidence shows that inherited germline genetic variations play a key role in cancer risk and treatment outcome. The aim of this review is to summarize the state of pharmacogenomics in oncology, focusing only on germline mutations. Genetic polymorphisms can be found in the genes that code for the metabolic enzymes and cellular targets for most of the chemotherapy drugs. Nevertheless, predicting treatment outcome is still not possible for the majority of regimens. In this review, we discuss the most comprehensively studied drug-gene pairs - present knowledge and current limitations. However, further studies in larger groups of cancer patients are necessary to be conducted with precise validation of pharmacogenetic biomarkers before these markers could be routinely applied in clinical diagnosis and treatment.
Collapse
Affiliation(s)
- Nelly N. Miteva-Marcheva
- Department of Pediatrics and Medical Genetics, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Medical Genetics, University Hospital “St. George” Plovdiv, Plovdiv, Bulgaria
| | - Hristo Y. Ivanov
- Department of Pediatrics and Medical Genetics, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Medical Genetics, University Hospital “St. George” Plovdiv, Plovdiv, Bulgaria
| | - Dimitar K. Dimitrov
- Department of Pediatrics and Medical Genetics, Medical University Plovdiv, Plovdiv, Bulgaria
| | - Vili K. Stoyanova
- Department of Pediatrics and Medical Genetics, Medical University Plovdiv, Plovdiv, Bulgaria
- Department of Medical Genetics, University Hospital “St. George” Plovdiv, Plovdiv, Bulgaria
| |
Collapse
|