1
|
Bathe OF. Tumor metabolism as a factor affecting diversity in cancer cachexia. Am J Physiol Cell Physiol 2025; 328:C908-C920. [PMID: 39870605 DOI: 10.1152/ajpcell.00677.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Revised: 09/21/2024] [Accepted: 01/20/2025] [Indexed: 01/29/2025]
Abstract
Cancer cachexia is a multifaceted metabolic syndrome characterized by muscle wasting, fat redistribution, and metabolic dysregulation, commonly associated with advanced cancer but sometimes also evident in early-stage disease. More subtle body composition changes have also been reported in association with cancer, including sarcopenia, myosteatosis, and increased fat radiodensity. Emerging evidence reveals that body composition changes including sarcopenia, myosteatosis, and increased fat radiodensity, arise from distinct biological mechanisms and significantly impact survival outcomes. Importantly, these features often occur independently, with their combined presence exacerbating poor prognoses. Tumor plays a pivotal role in driving these host changes, either by acting as a metabolic parasite or by releasing mediators that disrupt normal tissue function. This review explores the diversity of tumor metabolism. It highlights the potential for tumor-specific metabolic phenotypes to influence systemic effects, including fat redistribution and sarcopenia. Addressing this tumor-host metabolic interplay requires personalized approaches that disrupt tumor metabolism while preserving host health. Promising strategies include targeted pharmacological interventions and anticachexia agents like growth differentiation factor 15 (GDF-15) inhibitors. Nutritional modifications such as ketogenic diets and omega-3 fatty acid supplementation also merit further investigation. In addition to preserving muscle, these therapies will need to be evaluated for their capability to improve survival and quality of life. This review underscores the need for further research into tumor-driven metabolic effects on the host and the development of integrative treatment strategies to address the interconnected challenges of cancer progression and cachexia.
Collapse
Affiliation(s)
- Oliver F Bathe
- Department of Surgery and Oncology, University of Calgary, Calgary, Alberta, Canada
- Arnie Charbonneau Cancer Institute, University of Calgary, Calgary, Alberta, Canada
| |
Collapse
|
2
|
Xie Y, Zhao C, Zhang X, Shen C, Qi Z, Tang Q, Guo W, Shi Z, Ding H, Yang B, Yu J. Intraoperative Real-Time IDH Diagnosis for Glioma Based on Automatic Analysis of Contrast-Enhanced Ultrasound Video. ULTRASOUND IN MEDICINE & BIOLOGY 2025; 51:484-493. [PMID: 39674714 DOI: 10.1016/j.ultrasmedbio.2024.11.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 02/15/2024] [Accepted: 11/04/2024] [Indexed: 12/16/2024]
Abstract
OBJECTIVE Isocitrate dehydrogenase (IDH) is the most important molecular marker of glioma and is highly correlated to the diagnosis, treatment, and prognosis of patients. We proposed a real-time diagnosis method for IDH status differentiation based on automatic analysis of intraoperative contrast-enhanced ultrasound (CEUS) video. METHODS Inspired by the Time Intensity Curve (TIC) analysis of CEUS utilized in clinical practice, this paper proposed an automatic CEUS video analysis method called ATAN (Automatic TIC Analysis Network). Based on tumor identification, ATAN automatically selected ROIs (region of interest) inside and outside glioma. ATAN ensures the integrity of dynamic features of perfusion changes at critical locations, resulting in optimal diagnostic performance. The transfer learning mechanism was also introduced by using two auxiliary CEUS datasets to solve the small sample problem of intraoperative glioma data. RESULTS Through pretraining on 258 patients on two auxiliary cohorts, ATAN produced the IDH diagnosis with accuracy and AUC of 0.9 and 0.91 respectively on the main cohort of 60 glioma patients (mean age, 50 years ± 14, 28 men) Compared with other existing IDH status differentiation methods, ATAN is a real-time IDH diagnosis method without the need of tumor samples. CONCLUSION ATAN is an effective automatic analysis model of CEUS, with the help of this model, real-time intraoperative diagnosis of IDH with high accuracy can be achieved. Compared with other state-of-the-art deep learning methods, the accuracy of the ATAN model is 15% higher on average.
Collapse
Affiliation(s)
- Yuanxin Xie
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Chengqian Zhao
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Xiandi Zhang
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Chao Shen
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Zengxin Qi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Qisheng Tang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Wei Guo
- Research Institute, VINNO Technology (Suzhou)Co., Ltd., Suzhou, Jiangsu, China
| | - Zhifeng Shi
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| | - Hong Ding
- Department of Ultrasound, Huashan Hospital, Fudan University, Shanghai, China
| | - Bojie Yang
- Department of Neurosurgery, Huashan Hospital, Fudan University, Shanghai, China; National Center for Neurological Disorders, Shanghai, China; Shanghai Key Laboratory of Brain Function Restoration and Neural Regeneration, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China.
| | - Jinhua Yu
- School of Information Science and Technology, Fudan University, Shanghai, China; Neurosurgical Institute of Fudan University, Shanghai, China
| |
Collapse
|
3
|
Basheer HA, Salman NM, Abdullah RM, Elsalem L, Afarinkia K. Metformin and glioma: Targeting metabolic dysregulation for enhanced therapeutic outcomes. Transl Oncol 2025; 53:102323. [PMID: 39970627 DOI: 10.1016/j.tranon.2025.102323] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Revised: 12/09/2024] [Accepted: 02/13/2025] [Indexed: 02/21/2025] Open
Abstract
Glioma, a highly aggressive form of brain cancer, continues to pose significant therapeutic challenges in the field of medicine. Its invasive nature and resistance to traditional treatments make it particularly difficult to combat. This review examines the potential of metformin, a commonly prescribed antidiabetic medication, as a promising new treatment option for glioma. The potential of metformin to target crucial metabolic pathways in cancer cells presents an encouraging approach to improve therapeutic outcomes. The review explores the complexities of metabolic reprogramming in glioma and metformin's role in inhibiting these metabolic pathways. Preclinical studies demonstrate metformin's efficacy in reducing tumor growth and enhancing the sensitivity of glioma cells to chemotherapy and radiotherapy. Furthermore, clinical studies highlight metformin's potential in improving progression-free survival and overall survival rates in glioma patients. The review also addresses the synergistic effects of combining metformin with other therapeutic agents, such as temozolomide and radiotherapy, to overcome drug resistance and improve treatment efficacy. Despite the promising findings, the review acknowledges the need for further clinical trials to establish optimal dosing regimens, understand the molecular mechanisms underlying metformin's antitumor effects, and identify patient populations that would benefit the most from metformin-based therapies. Additionally, the potential side effects and the long-term impact of metformin on Glioma patients require careful evaluation. In conclusion, this review underscores the potential of metformin as a repurposed drug in glioma treatment, emphasizing its multifaceted role in targeting metabolic dysregulation. Metformin holds promise as part of a combination therapy approach to improve the therapeutic landscape of glioma and offers hope for better patient outcomes.
Collapse
Affiliation(s)
- Haneen A Basheer
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan.
| | - Nadeem M Salman
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Rami M Abdullah
- Department of Pharmacy, Faculty of Pharmacy, Zarqa University, Zarqa 13110, Jordan
| | - Lina Elsalem
- Jordan University of Science and Technology, Faculty of Medicine, Department of Pharmacology, Irbid, Jordan
| | - Kamyar Afarinkia
- School of Medicine and Biosciences, University of West London, London W5 5RF, UK
| |
Collapse
|
4
|
Huang Y, Shan Y, Zhang W, Printzis C, Pesce L, Stover D, Stanhope C, Stranger BE, Huang RS. Sex differences in the molecular profile of adult diffuse glioma are shaped by IDH status and tumor microenvironment. Neuro Oncol 2025; 27:430-444. [PMID: 39367624 PMCID: PMC11812052 DOI: 10.1093/neuonc/noae207] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Indexed: 10/06/2024] Open
Abstract
BACKGROUND Sex differences in adult diffuse glioma (ADG) are well established clinically, yet the underlying molecular mechanisms remain inadequately understood. Here, we aim to reveal molecular features and cellular compositions unique to each sex in ADG to comprehend the role of sex in disease etiology. METHODS We quantified sex differences in the transcriptome of ADG using multiple independent glioma patient datasets. Next, we delved into the single-cell landscape to examine sex differences in gene expression and cellular composition. To explore how sex influences disease progression, we analyzed paired samples from primary and recurrent ADG cases, aiming to identify sex-specific differences in molecular and cellular features. RESULTS Our analysis revealed that mutations in isocitrate dehydrogenase (IDH) genes and the tumor microenvironment emerged as primary influencers of sex-differential molecular enrichments. In IDHwt tumors, genes in the neuronal signaling pathway are found to be enriched in male tumors, while genes in hypoxia and inflammatory response pathways are enriched in female tumors. This pattern was reversed in IDHmut gliomas. We hypothesized that these distinctions could be attributed to heterogeneous cellular composition between sexes. Using single-cell data, we observed distinctive patterns of sex differences in cell states, cell composition, and cell-cell interaction in IDHwt and IDHmut tumors separately. Further, by comparing molecular changes in paired primary and recurrent ADG samples, we identified sex-specific differences in molecular characteristics and cellular compositions of recurrent tumors. CONCLUSIONS Our results provide a comprehensive multilevel characterization of sex differences in ADG; such findings provide novel insights into glioma disease progression in each sex.
Collapse
Affiliation(s)
- Yingbo Huang
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Yuting Shan
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Weijie Zhang
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Christina Printzis
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Lorenzo Pesce
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Danielle Stover
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| | - Catherine Stanhope
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Barbara E Stranger
- Department of Pharmacology, Center for Genetic Medicine, Northwestern University Feinberg School of Medicine, Chicago, Illinois, USA
| | - Rong Stephanie Huang
- Experimental and Clinical Pharmacology, University of Minnesota, Minneapolis, Minnesota, USA
- Bioinformatics and Computational Biology, University of Minnesota, Minneapolis, Minnesota, USA
| |
Collapse
|
5
|
Zhao Z, Liu H, Liu Y, Wen J, Yuan J. LAMB1 downregulation suppresses glioma progression by inhibiting aerobic glycolysis through regulation of the NF-κB/HK2 axis. Discov Oncol 2025; 16:131. [PMID: 39920513 PMCID: PMC11806178 DOI: 10.1007/s12672-025-01818-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 01/15/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Laminin subunit beta 1 (LAMB1) has regulatory functions on the proliferation, attachment, and migration of tumor cells, with increased levels linked to different cancers. OBJECTIVE This study aims at investigating the effects and mechanisms of LAMB1 in glioma. METHODS AND MATERIAL Glioma cell models with LAMB1 overexpression or downregulation were constructed. Cell viability, proliferation, and invasion were evaluated. Glucose uptake and lactate production were examined, and Seahorse was used to assess the extracellular acidification rate (ECAR). The EC50 of temozolomide (TMZ) in glioma cells was tested. Western blotting was conducted to monitor the expression of HK1, HK2, PDHA, and PKM. Bioinformatic analysis was employed to investigate the downstream mechanism of LAMB1. In addition, a subcutaneous tumor model was constructed to determine the influence of LAMB1 on GBM cell growth in vivo. RESULTS LAMB1 overexpression enhanced cell viability, proliferation, and invasion and promoted glioma cell growth. LAMB1 upregulation enhanced cellular glycolysis and repressed the sensitivity of cells to TMZ. LAMB1 activated the NF-κB pathway. Downregulation of LAMB1 or mitigating of the NF-κB pathway by Bay 11-7082 inhibited glioma cell proliferation, growth, and glycolysis and enhanced TMZ sensitivity. CONCLUSIONS LAMB1 downregulation exerted antitumor effects on glioma cells by regulating the NF-κB/HK2 axis.
Collapse
Affiliation(s)
- Zhenxiang Zhao
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Haiying Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Yingzi Liu
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Junpeng Wen
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China
| | - Jiangwei Yuan
- Department of Neurosurgery, The Fourth Hospital of Hebei Medical University, 12 Jiankang Road, Shijiazhuang, 050011, Hebei, China.
| |
Collapse
|
6
|
Lang F, Kaur K, Fu H, Zaheer J, Ribeiro DL, Aladjem MI, Yang C. D-2-hydroxyglutarate impairs DNA repair through epigenetic reprogramming. Nat Commun 2025; 16:1431. [PMID: 39920158 PMCID: PMC11806014 DOI: 10.1038/s41467-025-56781-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 01/30/2025] [Indexed: 02/09/2025] Open
Abstract
Cancer-associated mutations in IDH are associated with multiple types of human malignancies, which exhibit distinctive metabolic reprogramming, production of oncometabolite D-2-HG, and shifted epigenetic landscape. IDH mutated malignancies are signatured with "BRCAness", highlighted with the sensitivity to DNA repair inhibitors and genotoxic agents, although the underlying molecular mechanism remains elusive. In the present study, we demonstrate that D-2-HG impacts the chromatin conformation adjustments, which are associated with DNA repair process. Mechanistically, D-2-HG diminishes the chromatin interactions in the DNA damage regions via revoking CTCF binding. The hypermethylation of cytosine, resulting from the suppression of TET1 and TET2 activities by D-2-HG, contributes to the dissociation of CTCF from DNA damage regions. CTCF depletion leads to the disruption of chromatin organization around the DNA damage sites, which abolishes the recruitment of essential DNA damage repair proteins BRCA2 and RAD51, as well as impairs homologous repair in the IDH mutant cancer cells. These findings provide evidence that CTCF-mediated chromatin interactions play a key role in DNA damage repair proceedings. Oncometabolites jeopardize genome stability and DNA repair by affecting high-order chromatin structure.
Collapse
Affiliation(s)
- Fengchao Lang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Karambir Kaur
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiqing Fu
- Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Javeria Zaheer
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Diego Luis Ribeiro
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Mirit I Aladjem
- Developmental Therapeutic Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Chunzhang Yang
- Neuro-Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
7
|
Mi Y, Jiang P, Luan J, Feng L, Zhang D, Gao X. Peptide‑based therapeutic strategies for glioma: Current state and prospects. Peptides 2025; 185:171354. [PMID: 39922284 DOI: 10.1016/j.peptides.2025.171354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/23/2024] [Revised: 01/21/2025] [Accepted: 02/03/2025] [Indexed: 02/10/2025]
Abstract
Glioma is a prevalent form of primary malignant central nervous system tumor, characterized by its cellular invasiveness, rapid growth, and the presence of the blood-brain barrier (BBB)/blood-brain tumor barrier (BBTB). Current therapeutic approaches, such as chemotherapy and radiotherapy, have shown limited efficacy in achieving significant antitumor effects. Therefore, there is an urgent demand for new treatments. Therapeutic peptides represent an innovative class of pharmaceutical agents with lower immunogenicity and toxicity. They are easily modifiable via chemical means and possess deep tissue penetration capabilities which reduce side effects and drug resistance. These unique pharmacokinetic characteristics make peptides a rapidly growing class of new therapeutics that have demonstrated significant progress in glioma treatment. This review outlines the efforts and accomplishments in peptide-based therapeutic strategies for glioma. These therapeutic peptides can be classified into four types based on their anti-tumor function: tumor-homing peptides, inhibitor/antagonist peptides targeting cell surface receptors, interference peptides, and peptide vaccines. Furthermore, we briefly summarize the results from clinical trials of therapeutic peptides in glioma, which shows that peptide-based therapeutic strategies exhibit great potential as multifunctional players in glioma therapy.
Collapse
Affiliation(s)
- Yajing Mi
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Pengtao Jiang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Jing Luan
- Institute of Basic and Translational Medicine, Xi'an Medical University, Xi'an, Shaanxi, China
| | - Lin Feng
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Dian Zhang
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China
| | - Xingchun Gao
- Institute of Basic Medical Sciences, School of Basic Medical Science, Xi'an Medical University, Xi'an, China; Shaanxi Key Laboratory of Brain Disorders, School of Basic Medical Science, Xi'an Medical University, Xi'an, China.
| |
Collapse
|
8
|
Gromiha MM, Pandey M, Kulandaisamy A, Sharma D, Ridha F. Progress on the development of prediction tools for detecting disease causing mutations in proteins. Comput Biol Med 2025; 185:109510. [PMID: 39637461 DOI: 10.1016/j.compbiomed.2024.109510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2024] [Revised: 11/27/2024] [Accepted: 11/29/2024] [Indexed: 12/07/2024]
Abstract
Proteins are involved in a variety of functions in living organisms. The mutation of amino acid residues in a protein alters its structure, stability, binding, and function, with some mutations leading to diseases. Understanding the influence of mutations on protein structure and function help to gain deep insights on the molecular mechanism of diseases and devising therapeutic strategies. Hence, several generic and disease-specific methods have been proposed to reveal pathogenic effects on mutations. In this review, we focus on the development of prediction methods for identifying disease causing mutations in proteins. We briefly outline the existing databases for disease-causing mutations, followed by a discussion on sequence- and structure-based features used for prediction. Further, we discuss computational tools based on machine learning, deep learning and large language models for detecting disease-causing mutations. Specifically, we emphasize the advances in predicting hotspots and mutations for targets involved in cancer, neurodegenerative and infectious diseases as well as in membrane proteins. The computational resources including databases and algorithms understanding/predicting the effect of mutations will be listed. Moreover, limitations of existing methods and possible improvements will be discussed.
Collapse
Affiliation(s)
- M Michael Gromiha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India.
| | - Medha Pandey
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - A Kulandaisamy
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Divya Sharma
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| | - Fathima Ridha
- Department of Biotechnology, Bhupat and Jyoti Mehta School of Biosciences, Indian Institute of Technology Madras, Chennai 600036, India
| |
Collapse
|
9
|
Zhang Z, Liu YK, Luo Z, Wu MJ, Evans CN, Qu Z, Xue F, Zhang ZY, Parkinson EI, Bardeesy N, Tao WA. Discovery of Chirally-dependent Protein O-2-Hydroxyglutarylation by D2HG and L2HG. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.24.634716. [PMID: 39975355 PMCID: PMC11838245 DOI: 10.1101/2025.01.24.634716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Mutations in isocitrate dehydrogenase 1 (IDH1) and IDH2 are common in multiple types of human cancer, leading to the accumulation of D-2-hydroxyglutarate (D2HG) and the promotion of tumorigenesis 1 . Here we discovered a novel O -2- hydroxyglutarylation by D2HG using chemical proteomics and further revealed distinct chiral preferences for D/L2HG modifications. Notably, we identified two kinases, MRCKA and SLK, modified by D2HG and L2HG respectively, and detected reduced phosphorylation of their substrates, suggesting an inhibitory effect of D/L 2HG modifications on the kinases' activity.
Collapse
|
10
|
Horta M, Soares P, Leite Pereira C, Lima RT. Emerging Approaches in Glioblastoma Treatment: Modulating the Extracellular Matrix Through Nanotechnology. Pharmaceutics 2025; 17:142. [PMID: 40006509 DOI: 10.3390/pharmaceutics17020142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2024] [Revised: 01/10/2025] [Accepted: 01/16/2025] [Indexed: 02/27/2025] Open
Abstract
Glioblastoma's (GB) complex tumor microenvironment (TME) promotes its progression and resistance to therapy. A critical component of TME is the extracellular matrix (ECM), which plays a pivotal role in promoting the tumor's invasive behavior and aggressiveness. Nanotechnology holds significant promise for GB treatment, with the potential to address challenges posed by both the blood-brain barrier and the GB ECM. By enabling targeted delivery of therapeutic and diagnostic agents, nanotechnology offers the prospect of improving treatment efficacy and diagnostic accuracy at the tumor site. This review provides a comprehensive exploration of GB, including its epidemiology, classification, and current treatment strategies, alongside the intricacies of its TME. It highlights nanotechnology-based strategies, focusing on nanoparticle formulations such as liposomes, polymeric nanoparticles, and gold nanoparticles, which have shown promise in GB therapy. Furthermore, it explores how different emerging nanotechnology strategies modulate the ECM to overcome the challenges posed by its high density, which restricts drug distribution within GB tumors. By emphasizing the intersection of nanotechnology and GB ECM, this review underscores an innovative approach to advancing GB treatment. It addresses the limitations of current therapies, identifies new research avenues, and emphasizes the potential of nanotechnology to improve patient outcomes.
Collapse
Affiliation(s)
- Miguel Horta
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Paula Soares
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| | - Catarina Leite Pereira
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- INEB-Instituto Nacional de Engenharia Biomédica, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
| | - Raquel T Lima
- i3S-Instituto de Investigação e Inovação em Saúde, University of Porto, Rua Alfredo Allen 208, 4200-135 Porto, Portugal
- IPATIMUP-Instituto de Patologia e Imunologia Molecular, University of Porto, Rua Júlio Amaral de Carvalho 45, 4200-135 Porto, Portugal
- FMUP-Faculty of Medicine, University of Porto, Alameda Prof. Hernâni Monteiro, 4200-319 Porto, Portugal
| |
Collapse
|
11
|
Zhang J, Li L, Tang A, Wang C, Wang Y, Hu Y, He G, Liao W, Zhou R. Pan-cancer analysis of the transcriptional expression of histone acetylation enzymes in solid tumors defines a new classification scheme for gliomas. Front Immunol 2025; 15:1523034. [PMID: 39906742 PMCID: PMC11790639 DOI: 10.3389/fimmu.2024.1523034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Accepted: 12/30/2024] [Indexed: 02/06/2025] Open
Abstract
Introduction The altered expression of genes encoding histone acetyltransferases (HATs) and histone deacetylases (HDACs) has been implicated in the tumorigenesis and progression of various solid tumors. However, systematic characterization of the transcriptomic landscape and clinical relevance of HATs and HDACs in pan-cancer contexts remains lacking. Methods Transcriptome and clinical data of 9,483 patients across 31 tumor types from The Cancer Genome Atlas were collected for systematic pan-cancer analysis. Additional glioma-specific datasets (Chinese Glioma Genome Atlas, GlioVis, GSE43378, and GSE182109) were also collected to validate the transcriptional characteristics of HATs and HDACs in gliomas. Consensus clustering analysis was applied to identify distinct expression patterns of HATs and HDACs. Results Based on the transcriptomic data of 25 genes encoding 9 HATs and 16 HDACs, we identified five major subtypes across 31 cancer types (AC-I to AC-V). Notably, the AC-V subtype comprised over 95% of glioma patients, suggesting glioma patients exhibited distinct expression patterns of histone acetylation-modifying enzymes compared to patients with other solid tumors. Therefore, we re-conducted the consensus clustering analysis specifically within the context of gliomas and identified five subtypes, denoted "AC-GI" to "AC-GV", which were characterized by differences in HATs/HDACs expression patterns, biological and immune status, genetic alterations, and clinical outcomes. The AC-GII patients exhibited the best prognosis and were sensitive to temozolomide, while AC-GV patients had the poorest prognosis and the lowest sensitivity to temozolomide among all subtypes. Moreover, based on the Connectivity Map database analysis and experimental verification, we identified several pan-HDAC inhibitors that could serve as sensitizers for temozolomide therapy in AC-GV patients, such as panobinostat and scriptaid. Considering the distinctive clinical characteristics of patients with AC-GII and AC-GV, we constructed the "ACG score" model capable of effectively recognizing patients with these subtypes and predicting patient prognosis. Conclusion Herein, we established novel biologically and clinically relevant molecular classifications for pan-solid tumors and gliomas based on transcriptional expression profiles of HATs and HDACs. Moreover, the ACG score model, calculated by the transcriptional expression of 29 genes, was not only an independent prognostic factor for glioma patients, but can also provide valuable references for promoting more effective therapeutic strategies.
Collapse
Affiliation(s)
- Junhao Zhang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Lingbo Li
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Aiwei Tang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Chucheng Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yupeng Wang
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Yongqi Hu
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| | - Guangting He
- Department of Anesthesiology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Guangdong Provincial Key Laboratory of Precision Anesthesia and Perioperative Organ Protection, Guangzhou, Guangdong, China
| | - Wangjun Liao
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
- Cancer Center, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
- Foshan Key Laboratory of Translational Medicine in Cancer, The Sixth Affiliated Hospital, School of Medicine, South China University of Technology, Foshan, China
| | - Rui Zhou
- Department of Oncology, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
12
|
Yadav VK, Sharma S, Maurya S, Singh RK, Saini J, Jain P, Patir R, Ahlawat S, Das S, Vaishya S, Agarwal S, Singh A, Gupta RK. Presence of Fragmented Intratumoral Thrombosed Microvasculature in the Necrotic and Peri-Necrotic Regions on SWI Differentiates IDH Wild-Type Glioblastoma From IDH Mutant Grade 4 Astrocytoma. J Magn Reson Imaging 2025. [PMID: 39781627 DOI: 10.1002/jmri.29695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2024] [Revised: 12/13/2024] [Accepted: 12/14/2024] [Indexed: 01/12/2025] Open
Abstract
BACKGROUND Isocitrate dehydrogenase (IDH) wild-type (IDHwt) glioblastomas (GB) are more aggressive and have a poorer prognosis than IDH mutant (IDHmt) tumors, emphasizing the need for accurate preoperative differentiation. However, a distinct imaging biomarker for differentiation mostly lacking. Intratumoral thrombosis has been reported as a histopathological biomarker for GB. PURPOSE To evaluate the fragmented intratumoral thrombosed microvasculature (FTV) signs on susceptibility-weighted imaging (SWI) for distinguishing IDHwt and IDHmt tumors. STUDY TYPE Retrospective. SUBJECTS Ninety-seven treatment-naïve patients with histopathologically confirmed IDHwt GB (54 males, 26 females) and IDHmt grade 4 astrocytoma (13 males, 4 females). FIELD STRENGTH/SEQUENCE 3-T, SWI, fluid-attenuated-inversion-recovery (FLAIR), T1-weighted, T2-weighted, PD-weighted, post-contrast T1-weighted and dynamic-contrast-enhanced (DCE)-MRI. ASSESSMENT SWI data were evaluated by three experienced neuroradiologists (S.S., 11 years; J.S., 15 years; R.K.G., 40 years of experience), who assessed FTV presence in necrotic and peri-necrotic regions. FTV was identified as intratumoral susceptibility signal having minimal or no interslice connections. Quantitative DCE-MRI parameters were derived using first-pass-analysis and extended Tofts model. FLAIR abnormal, contrast-enhancing, and necrotic regions were segmented using in-house developed U-Net architecture. STATISTICAL TESTS Fleiss' Kappa, Cohen's Kappa, Shapiro-Wilk test, t tests or Mann-Whitney U test, receiver-operating characteristic (ROC) analysis, confusion matrix. A P-value <0.05 was considered statistically significant. RESULTS Fleiss' kappa test provided 91% inter-rater agreement, and Cohen's kappa provided intrarater agreement ranged from 81% to 97%. The raters' accuracy in distinguishing IDHwt from IDHmt ranged from 92% to 94%. Some of the quantitative DCE-MRI parameters (CBV, Ve, and Ktrans) provided statistically significant differences in differentiating IDHwt and IDHmt. Ktrans demonstrated 80.3% sensitivity and 81.2% specificity, with ROC analysis showing an AUC of 0.77. DATA CONCLUSION FTV signs in necrotic and peri-necrotic regions on SWI demonstrated a high accuracy in distinguishing IDHwt from IDHmt. Qualitative assessment of FTV signs showed almost perfect inter-rater and intrarater agreement. Quantitative DCE-MRI metrics also showed statistically significant differentiation of IDHwt and IDHmt. PLAIN LANGUAGE SUMMARY This study demonstrates that preoperative imaging, particularly the visualization of the fragmented thrombosed vasculature (FTV) sign on susceptibility-weighted imaging (SWI), effectively differentiates isocitrate dehydrogenase (IDH) wild-type (IDHwt) glioblastoma (GB) from IDH mutant (IDHmt) grade 4 astrocytomas. Over 90% of IDHwt GB patients displayed the FTV sign, a specific imaging biomarker absent in IDHmt cases. Perfusion parameters such as cerebral blood volume, Ve, and Ktrans were elevated in IDHwt gliomas, reflecting distinct vascular profiles. SWI offers a noninvasive and accurate diagnostic method, overcoming limitations of histopathology. Despite limitations like unequal sample sizes and retrospective analysis, this study underscores the clinical potential of SWI in improving glioma characterization and aiding treatment planning. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Virendra Kumar Yadav
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Shalini Sharma
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| | - Satyajit Maurya
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
| | - Rakesh K Singh
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| | - Jitendra Saini
- Department of the Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, India
| | - Preeti Jain
- Department of Pathology, Agilus-Fortis Memorial Research Institute, Gurugram, India
| | - Rana Patir
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | - Sunita Ahlawat
- Department of Pathology, Agilus-Fortis Memorial Research Institute, Gurugram, India
| | - Sumanta Das
- Department of the Neuroimaging and Interventional Radiology, NIMHANS, Bengaluru, India
| | - Sandeep Vaishya
- Department of Neurosurgery, Fortis Memorial Research Institute, Gurugram, India
| | - Sumeet Agarwal
- Department of Electrical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Anup Singh
- Centre for Biomedical Engineering, Indian Institute of Technology Delhi, New Delhi, India
- Yardi School of Artificial Intelligence, Indian Institute of Technology Delhi, New Delhi, India
| | - Rakesh K Gupta
- Department of Radiology, Fortis Memorial Research Institute, Gurugram, India
| |
Collapse
|
13
|
Furth N, Cohen N, Spitzer A, Salame TM, Dassa B, Mehlman T, Brandis A, Moussaieff A, Friedmann-Morvinski D, Castro MG, Fortin J, Suvà ML, Tirosh I, Erez A, Ron G, Shema E. Oncogenic IDH1 mut drives robust loss of histone acetylation and increases chromatin heterogeneity. Proc Natl Acad Sci U S A 2025; 122:e2403862122. [PMID: 39793065 PMCID: PMC11725805 DOI: 10.1073/pnas.2403862122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Accepted: 11/15/2024] [Indexed: 01/12/2025] Open
Abstract
Malignant gliomas are heterogeneous tumors, mostly incurable, arising in the central nervous system (CNS) driven by genetic, epigenetic, and metabolic aberrations. Mutations in isocitrate dehydrogenase (IDH1/2mut) enzymes are predominantly found in low-grade gliomas and secondary high-grade gliomas, with IDH1 mutations being more prevalent. Mutant-IDH1/2 confers a gain-of-function activity that favors the conversion of a-ketoglutarate (α-KG) to the oncometabolite 2-hydroxyglutarate (2-HG), resulting in an aberrant hypermethylation phenotype. Yet, the complete depiction of the epigenetic alterations in IDHmut cells has not been thoroughly explored. Here, we applied an unbiased approach, leveraging epigenetic-focused cytometry by time-of-flight (CyTOF) analysis, to systematically profile the effect of mutant-IDH1 expression on a broad panel of histone modifications at single-cell resolution. This analysis revealed extensive remodeling of chromatin patterns by mutant-IDH1, with the most prominent being deregulation of histone acetylation marks. The loss of histone acetylation occurs rapidly following mutant-IDH1 induction and affects acetylation patterns over enhancers and intergenic regions. Notably, the changes in acetylation are not predominantly driven by 2-HG, can be rescued by pharmacological inhibition of mutant-IDH1, and reversed by acetate supplementations. Furthermore, cells expressing mutant-IDH1 show higher epigenetic and transcriptional heterogeneity and upregulation of oncogenes such as KRAS and MYC, highlighting its tumorigenic potential. Our study underscores the tight interaction between chromatin and metabolism dysregulation in glioma and highlights epigenetic and oncogenic pathways affected by mutant-IDH1-driven metabolic rewiring.
Collapse
Affiliation(s)
- Noa Furth
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Niv Cohen
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Avishay Spitzer
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
- Oncology Institute, Tel Aviv Sourasky Medical Center, Tel Aviv6423906, Israel
- Faculty of Medicine, Tel Aviv University, Tel Aviv6997801, Israel
| | - Tomer-Meir Salame
- Mass Cytometry Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Bareket Dassa
- Bioinformatics Unit, Department of Life Sciences Core Facilities, Faculty of Biochemistry, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Tevie Mehlman
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Alexander Brandis
- Targeted Metabolomics Unit, Life Sciences Core Facilities, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Arieh Moussaieff
- The Institute for Drug Research, Faculty of Medicine, Hebrew University, Jerusalem9112102, Israel
| | - Dinorah Friedmann-Morvinski
- Sagol School of Neurobiology, Department of Biochemistry and Molecular Biology, The George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv6997801, Israel
| | - Maria G. Castro
- Department of Neurosurgery, University of Michigan Medical School, Ann Arbor, MI48109
| | - Jerome Fortin
- Department of Neurology and Neurosurgery, Montreal Neurological Institute-Hospital, McGill University, Montreal, QCH3A 2B4, Canada
| | - Mario L. Suvà
- Department of Pathology and Center for Cancer Research, Massachusetts General Hospital and Harvard Medical School, Boston, MA02114
- Broad Institute of Harvard and MIT, Cambridge, MA02142
| | - Itay Tirosh
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Ayelet Erez
- Department of Molecular Cell Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| | - Guy Ron
- Racah Institute of Physics, Hebrew University, Jerusalem9190401, Israel
| | - Efrat Shema
- Department of Immunology and Regenerative Biology, Weizmann Institute of Science, Rehovot7610001, Israel
| |
Collapse
|
14
|
Evans L, Trinder S, Dodgshun A, Eisenstat DD, Whittle JR, Hansford JR, Valvi S. IDH-mutant gliomas in children and adolescents - from biology to clinical trials. Front Oncol 2025; 14:1515538. [PMID: 39876890 PMCID: PMC11773619 DOI: 10.3389/fonc.2024.1515538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2024] [Accepted: 12/10/2024] [Indexed: 01/31/2025] Open
Abstract
Gliomas account for nearly 30% of all primary central nervous system (CNS) tumors in children and adolescents and young adults (AYA), contributing to significant morbidity and mortality. The updated molecular classification of gliomas defines molecularly diverse subtypes with a spectrum of tumors associated with age-distinct incidence. In adults, gliomas are characterized by the presence or absence of mutations in isocitrate dehydrogenase (IDH), with mutated IDH (mIDH) gliomas providing favorable outcomes and avenues for targeted therapy with the emergence of mIDH inhibitors. Despite their rarity, IDH mutations have been reported in 5-15% of pediatric glioma cases. Those with primary mismatch-repair deficient mIDH astrocytomas (PMMRDIA) have a particularly poor prognosis. Here, we describe the biology of mIDH gliomas and review the literature regarding the emergence of mIDH inhibitors, including clinical trials in adults. Given the paucity of clinical trial data from pediatric patients with mIDH glioma, we propose guidelines for the inclusion of pediatric and AYA patients with gliomas onto prospective trials and expanded access programs as well as the potential of combined mIDH inhibition and immunotherapy in the treatment of patients with PMMRDIA at high risk of progression.
Collapse
Affiliation(s)
- Louise Evans
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
| | - Sarah Trinder
- Kids Cancer Centre, Sydney Children’s Hospital, Sydney, NSW, Australia
- Children’s Cancer Institute, Lowy Cancer Research Centre, University of New South Wales Sydney, Sydney, NSW, Australia
| | - Andrew Dodgshun
- Department of Pediatrics, University of Otago, Christchurch, New Zealand
- Children’s Hematology/Oncology Centre, Christchurch Hospital, Christchurch, New Zealand
| | - David D. Eisenstat
- Children’s Cancer Centre, Royal Children’s Hospital, Melbourne, VIC, Australia
- Department of Stem Cell Medicine, Murdoch Children’s Research Institute, Melbourne, VIC, Australia
- Department of Pediatrics, University of Melbourne, Melbourne, VIC, Australia
| | - James R. Whittle
- Department of Medical Oncology, Peter MacCallum Cancer Centre, Melbourne, VIC, Australia
- Personalized Oncology Division, Walter and Eliza Hall Institute (WEHI), Parkville, VIC, Australia
- Department of Medical Biology, University of Melbourne, Parkville, VIC, Australia
| | - Jordan R. Hansford
- Michael Rice Centre for Hematology and Oncology, Women’s and Children’s Hospital, North Adelaide, SA, Australia
- Pediatric Neuro-Oncology, Precision Cancer Medicine, South Australia Health and Medical Reseach Institute, Adelaide, SA, Australia
- South Australia ImmunoGENomics Cancer Institute, University of Adelaide, Adelaide, SA, Australia
| | - Santosh Valvi
- Department of Pediatric and Adolescent Oncology/Hematology, Perth Children’s Hospital, Nedlands, WA, Australia
- Brain Tumor Research Program, Telethon Kids Institute, Nedlands, WA, Australia
- School of Medicine, Division of Pediatrics, The University of Western Australia, Perth, WA, Australia
| |
Collapse
|
15
|
Rusak A, Wiatrak B, Krawczyńska K, Górnicki T, Zagórski K, Zadka Ł, Fortuna W. Starting points for the development of new targeted therapies for glioblastoma multiforme. Transl Oncol 2025; 51:102187. [PMID: 39531784 PMCID: PMC11585793 DOI: 10.1016/j.tranon.2024.102187] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 09/30/2024] [Accepted: 11/05/2024] [Indexed: 11/16/2024] Open
Abstract
Glioblastoma multiforme (GBM) is one of the most aggressive and lethal brain tumors, characterized by rapid growth, invasiveness, and resistance to standard therapies, including surgery, chemotherapy, and radiotherapy. Despite advances in treatment, GBM remains highly resistant due to its complex molecular mechanisms, including angiogenesis, invasion, immune modulation, and lipid metabolism dysregulation. This review explores recent breakthroughs in targeted therapies, focusing on innovative drug carriers such as nanoparticles and liposomes, and their potential to overcome GBM's chemo- and radioresistant phenotypes. We also discuss the molecular pathways involved in GBM progression and the latest therapeutic strategies, including immunotherapy and precision medicine approaches, which hold promise for improving clinical outcomes. The review highlights the importance of understanding GBM's genetic and molecular heterogeneity to develop more effective, personalized treatment protocols aimed at increasing survival rates and enhancing the quality of life for GBM patients.
Collapse
Affiliation(s)
- Agnieszka Rusak
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Benita Wiatrak
- Department of Pharmacology, Faculty of Medicine, J. Mikulicza-Radeckiego 2 Street, Wroclaw 50-345, Poland.
| | - Klaudia Krawczyńska
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland.
| | - Tomasz Górnicki
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Karol Zagórski
- Division of Histology and Embryology, Department of Human Morphology and Embryology, Faculty of Medicine, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland
| | - Łukasz Zadka
- Division of Ultrastructural Research, Wroclaw Medical University, T. Chalubinskiego 6a St., Wroclaw 50-368, Poland; Department of Clinical Pharmacology, Wroclaw Medical University, Borowska 211a, Wroclaw 50-556, Poland.
| | - Wojciech Fortuna
- Department of Neurosurgery, Wroclaw Medical University, Borowska 213St, Wroclaw 50-556, Poland.
| |
Collapse
|
16
|
Bandaru M, Sultana OF, Islam MA, Rainier A, Reddy PH. Rlip76 in ageing and Alzheimer's disease: Focus on oxidative stress and mitochondrial mechanisms. Ageing Res Rev 2025; 103:102600. [PMID: 39617058 DOI: 10.1016/j.arr.2024.102600] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 11/12/2024] [Accepted: 11/25/2024] [Indexed: 12/13/2024]
Abstract
RLIP76 (Rlip), a stress-responsive protein, plays a multifaceted role in cellular function. This protein acts primarily as a glutathione-electrophile conjugate (GS-E) transporter, crucial for detoxifying hazardous compounds and converting them into mercapturic acids. RLIP76 also modulates cytoskeletal motility and membrane plasticity through its role in the Ral-signaling pathway, interacting with RalA and RalB, key small GTPases involved in growth and metastasis. Beyond its ATP-dependent transport functions in various tissues, RLIP76 also demonstrates GTPase Activating Protein (GAP) activity towards Rac1 and Cdc42, with a preference for Ral-GTP over Ral-GDP. Its functions span critical physiological processes including membrane dynamics, oxidative stress response, and mitochondrial dynamics. The protein's widespread expression and evolutionary conservation underscore its significance. Our lab discovered that Rlip interacts with Alzheimer's disease (AD) proteins, amyloid beta and phosphorylated and induce oxidative stress, mitochondrial dysfnction and synaptic damage in AD. Our in vitro studies revealed that overexpression of Rlip reduces mitochondrial abnormalities. Further, our in vivo studies (Rlip+/- mice) revealed that a partial reduction of Rlip in mice (Rlip+/-), leads to mitochondrial abnormalities, elevated oxidative stress, and cognitive deficits resembling late-onset AD, emphasizing the protein's crucial role in neuronal health and disease. Finally, we discuss the experimental cross-breedings of overexpression of mice Rlip TG/TG or Rlip + /- mice with Alzheimer's disease models - earlyonset 5XFAD, late-onset APPKI and Tau transgenic mice, providing new insights into RLIP76's role in AD progression and development. This review summarizes RLIP76's structure, function, and cellular pathways, highlighting its implications in AD and its potential as a therapeutic target.
Collapse
Affiliation(s)
- Madhuri Bandaru
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Omme Fatema Sultana
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Md Ariful Islam
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Alvir Rainier
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - P Hemachandra Reddy
- Department of Internal Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Nutritional Sciences Department, College of Human Sciences, Texas Tech University, Lubbock, TX 79409, United States; Department of Pharmacology and Neuroscience, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Neurology, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA 5. Department of Public Health, Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA; Department of Speech, Language, and Hearing Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA.
| |
Collapse
|
17
|
Jiang M, Fang H, Tian H. Metabolism of cancer cells and immune cells in the initiation, progression, and metastasis of cancer. Theranostics 2025; 15:155-188. [PMID: 39744225 PMCID: PMC11667227 DOI: 10.7150/thno.103376] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
The metabolism of cancer and immune cells plays a crucial role in the initiation, progression, and metastasis of cancer. Cancer cells often undergo metabolic reprogramming to sustain their rapid growth and proliferation, along with meeting their energy demands and biosynthetic needs. Nevertheless, immune cells execute their immune response functions through the specific metabolic pathways, either to recognize, attack, and eliminate cancer cells or to promote the growth or metastasis of cancer cells. The alteration of cancer niches will impact the metabolism of both cancer and immune cells, modulating the survival and proliferation of cancer cells, and the activation and efficacy of immune cells. This review systematically describes the key characteristics of cancer cell metabolism and elucidates how such metabolic traits influence the metabolic behavior of immune cells. Moreover, this article also highlights the crucial role of immune cell metabolism in anti-tumor immune responses, particularly in priming T cell activation and function. By comprehensively exploring the metabolic crosstalk between cancer and immune cells in cancer niche, the aim is to discover novel strategies of cancer immunotherapy and provide effective guidance for clinical research in cancer treatment. In addition, the review also discusses current challenges such as the inadequacy of relevant diagnostic technologies and the issue of multidrug resistance, and proposes potential solutions including bolstering foundational cancer research, fostering technological innovation, and implementing precision medicine approaches. In-depth research into the metabolic effects of cancer niches can improve cancer treatment outcomes, prolong patients' survival period and enhance their quality of life.
Collapse
Affiliation(s)
- Mingxia Jiang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| | - Huapan Fang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
- Shenzhen Research Institute of Xiamen University, Shenzhen 518000, China
| | - Huayu Tian
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Chemistry and Chemical Engineering, Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), Xiamen University, Xiamen 361005, China
| |
Collapse
|
18
|
Xu Y, Xue G, Zhou L, Wu G, Hu L, Ma S, Zhang J, Li X. KIF4A promotes epithelial-mesenchymal transition by activating the TGF-β/SMAD signaling pathway in glioma cells. Mol Cell Biochem 2025; 480:217-230. [PMID: 38411896 DOI: 10.1007/s11010-024-04943-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/14/2024] [Indexed: 02/28/2024]
Abstract
Gliomas are the most prevalent type of primary brain tumor, with poor prognosis reported in patients with high-grade glioma. Kinesin family member 4 A (KIF4A) stimulates the proliferation, migration, and invasion of tumor cells. However, its function in gliomas has not been clearly established. Therefore, this study aimed to investigate the effects of KIF4A on the epithelial-mesenchymal transition and invasion of glioma cells. We searched The Cancer Genome Atlas and Chinese Glioma Genome Atlas databases to identify KIF4A-related signaling pathways and downstream genes. We further validated them using western blotting, transwell migration and invasion, wound-healing scratch, and dual-luciferase reporter assays in U251 and U87 human glioblastoma cells. Our analysis of the Cancer Genome Atlas and Chinese Glioma Genome Atlas data showed elevated KIF4A expression in patients with gliomas and was associated with clinical grade. Here, KIF4A overexpression promoted the migration, invasion, and proliferation of glioma cells, whereas KIF4A knockdown showed contrasting results. Gene Ontology (GO) and Gene Set Enrichment Analysis (GSEA) analyses demonstrated that KIF4A positively controls TGF-β/SMAD signaling in glioma cells. Additionally, genetic correlation analysis revealed that KIF4A transcriptionally controls benzimidazoles-1 expression in glioma cells. KIF4A promotes the epithelial-mesenchymal transition by regulating the TGF-β/SMAD signaling pathway via benzimidazoles-1 in glioma cells.
Collapse
Affiliation(s)
- Yao Xu
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Guangren Xue
- Department of Neurosurgery, Dushu Lake Hospital Affiliated to Soochow University, Suzhou, China
| | - Lei Zhou
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Gaotian Wu
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Lingji Hu
- Laboratory of Cancer Molecular Genetics, Soochow University, Medical College of Soochow University, Suzhou, China
| | - Shuchen Ma
- Department of Rehabilitation Medicine, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jian Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| | - Xiangdong Li
- Department of Neurosurgery, The First Affiliated Hospital of Soochow University, Suzhou, China.
| |
Collapse
|
19
|
Chen Q, Wang L, Deng Z, Wang R, Wang L, Jian C, Zhu YM. Cooperative multi-task learning and interpretable image biomarkers for glioma grading and molecular subtyping. Med Image Anal 2024; 101:103435. [PMID: 39778265 DOI: 10.1016/j.media.2024.103435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 11/12/2024] [Accepted: 12/09/2024] [Indexed: 01/11/2025]
Abstract
Deep learning methods have been widely used for various glioma predictions. However, they are usually task-specific, segmentation-dependent and lack of interpretable biomarkers. How to accurately predict the glioma histological grade and molecular subtypes at the same time and provide reliable imaging biomarkers is still challenging. To achieve this, we propose a novel cooperative multi-task learning network (CMTLNet) which consists of a task-common feature extraction (CFE) module, a task-specific unique feature extraction (UFE) module and a unique-common feature collaborative classification (UCFC) module. In CFE, a segmentation-free tumor feature perception (SFTFP) module is first designed to extract the tumor-aware features in a classification manner rather than a segmentation manner. Following that, based on the multi-scale tumor-aware features extracted by SFTFP module, CFE uses convolutional layers to further refine these features, from which the task-common features are learned. In UFE, based on orthogonal projection and conditional classification strategies, the task-specific unique features are extracted. In UCFC, the unique and common features are fused with an attention mechanism to make them adaptive to different glioma prediction tasks. Finally, deep features-guided interpretable radiomic biomarkers for each glioma prediction task are explored by combining SHAP values and correlation analysis. Through the comparisons with recent reported methods on a large multi-center dataset comprising over 1800 cases, we demonstrated the superiority of the proposed CMTLNet, with the mean Matthews correlation coefficient in validation and test sets improved by (4.1%, 10.7%), (3.6%, 23.4%), and (2.7%, 22.7%) respectively for glioma grading, 1p/19q and IDH status prediction tasks. In addition, we found that some radiomic features are highly related to uninterpretable deep features and that their variation trends are consistent in multi-center datasets, which can be taken as reliable imaging biomarkers for glioma diagnosis. The proposed CMTLNet provides an interpretable tool for glioma multi-task prediction, which is beneficial for glioma precise diagnosis and personalized treatment.
Collapse
Affiliation(s)
- Qijian Chen
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Lihui Wang
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China.
| | - Zeyu Deng
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Rongpin Wang
- Radiology department, Guizhou Provincial People's Hospital, Guiyang, 550002, China
| | - Li Wang
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Caiqing Jian
- Key Laboratory of Advanced Medical Imaging and Intelligent Computing of Guizhou Province, Engineering Research Center of Text Computing, Ministry of Education, State Key Laboratory of Public Big Data, College of Computer Science and Technology, Guizhou University, Guiyang 550025, China
| | - Yue-Min Zhu
- University Lyon, INSA Lyon, CNRS, Inserm, CREATIS UMR5220, U1206, Lyon 69621, France
| |
Collapse
|
20
|
Blagg BS, Catalfano KC. The role of Aha1 in cancer and neurodegeneration. Front Mol Neurosci 2024; 17:1509280. [PMID: 39776493 PMCID: PMC11703849 DOI: 10.3389/fnmol.2024.1509280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2024] [Accepted: 12/06/2024] [Indexed: 01/11/2025] Open
Abstract
The 90 kDa Heat shock protein (Hsp90) is a family of ubiquitously expressed molecular chaperones responsible for the stabilization and maturation of >400 client proteins. Hsp90 exhibits dramatic conformational changes to accomplish this, which are regulated by partner proteins termed co-chaperones. One of these co-chaperones is called the activator or Hsp90 ATPase activity homolog 1 (Aha1) and is the most potent accelerator of Hsp90 ATPase activity. In conditions where Aha1 levels are dysregulated including cystic fibrosis, cancer and neurodegeneration, Hsp90 mediated client maturation is disrupted. Accumulating evidence has demonstrated that many disease states exhibit large hetero-protein complexes with Hsp90 as the center. Many of these include Aha1, where increased Aha1 levels drive disease states forward. One strategy to block these effects is to design small molecule disruptors of the Hsp90/Aha1 complex. Studies have demonstrated that current Hsp90/Aha1 small molecule disruptors are effective in both models for cancer and neurodegeration.
Collapse
Affiliation(s)
- Brian S.J. Blagg
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States
| | | |
Collapse
|
21
|
Fatima I, Rehman A, Ding Y, Wang P, Meng Y, Rehman HU, Warraich DA, Wang Z, Feng L, Liao M. Breakthroughs in AI and multi-omics for cancer drug discovery: A review. Eur J Med Chem 2024; 280:116925. [PMID: 39378826 DOI: 10.1016/j.ejmech.2024.116925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 09/19/2024] [Accepted: 09/27/2024] [Indexed: 10/10/2024]
Abstract
Cancer is one of the biggest medical challenges we face today. It is characterized by abnormal, uncontrolled growth of cells that can spread to different parts of the body. Cancer is extremely complex, with genetic variations and the ability to adapt and evolve. This means we must continuously pursue innovative approaches to developing new cancer drugs. While traditional drug discovery methods have led to important breakthroughs, they also have significant limitations that make it difficult to efficiently create new, cost-effective cancer therapies. Integrating computational tools into the cancer drug discovery process is a major step forward. By harnessing computing power, we can overcome some of the inherent barriers of traditional methods. This review examines the range of computational techniques now being used, such as molecular docking, QSAR models, virtual screening, and pharmacophore modeling. It looks at recent advances in areas like machine learning and molecular simulations. The review also discusses the current challenges with these technologies and envisions future directions, underscoring how transformative these computational tools can be for creating targeted, new cancer treatments.
Collapse
Affiliation(s)
- Israr Fatima
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Abdur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| | - Yanheng Ding
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Peng Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Yuxuan Meng
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Hafeez Ur Rehman
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Dawood Ahmad Warraich
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Zhibo Wang
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Lijun Feng
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China
| | - Mingzhi Liao
- Center of Bioinformatics, College of Life Sciences, Northwest A&F University, Yangling, Shaanxi, China.
| |
Collapse
|
22
|
Liapodimitri A, Tetens AR, Craig-Schwartz J, Lunsford K, Skalitzky KO, Koldobskiy MA. Progress Toward Epigenetic Targeted Therapies for Childhood Cancer. Cancers (Basel) 2024; 16:4149. [PMID: 39766049 PMCID: PMC11674401 DOI: 10.3390/cancers16244149] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2024] [Revised: 12/09/2024] [Accepted: 12/10/2024] [Indexed: 01/11/2025] Open
Abstract
Among the most significant discoveries from cancer genomics efforts has been the critical role of epigenetic dysregulation in cancer development and progression. Studies across diverse cancer types have revealed frequent mutations in genes encoding epigenetic regulators, alterations in DNA methylation and histone modifications, and a dramatic reorganization of chromatin structure. Epigenetic changes are especially relevant to pediatric cancers, which are often characterized by a low rate of genetic mutations. The inherent reversibility of epigenetic lesions has led to an intense interest in the development of epigenetic targeted therapies. Additionally, the recent appreciation of the interplay between the epigenome and immune regulation has sparked interest in combination therapies and synergistic immunotherapy approaches. Further, the recent appreciation of epigenetic variability as a driving force in cancer evolution has suggested new roles for epigenetic therapies in limiting plasticity and resistance. Here, we review recent progress and emerging directions in the development of epigenetic targeted therapeutics and their promise across the landscape of childhood cancers.
Collapse
Affiliation(s)
- Athanasia Liapodimitri
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Ashley R. Tetens
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Jordyn Craig-Schwartz
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kayleigh Lunsford
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Kegan O. Skalitzky
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
| | - Michael A. Koldobskiy
- Division of Pediatric Oncology, Department of Oncology, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA; (A.L.); (A.R.T.); (J.C.-S.); (K.L.); (K.O.S.)
- Sidney Kimmel Comprehensive Cancer Center, School of Medicine, Johns Hopkins University, Baltimore, MD 21287, USA
| |
Collapse
|
23
|
Fazal Ul Haq M, Hussain MZ, Haris MS, Kayani MA, Mahjabeen I. Genetic variants in mitochondrial sirtuins associated with brain tumor risk: a case-control study. Future Oncol 2024; 20:3421-3432. [PMID: 39560005 PMCID: PMC11776854 DOI: 10.1080/14796694.2024.2429948] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Accepted: 11/12/2024] [Indexed: 11/20/2024] Open
Abstract
BACKGROUND Previous studies on brain tumors have been performed on the nuclear genome, but limited studies have been reported on the mitochondrial genome. The mitochondrial sirtuin (SIRT3/SIRT4/SIRT5) has been mutated in different cancers. Limited studies have been performed on brain tumors. Isocitrate dehydrogenase (IDH) is an important marker, and polymorphism in the IDH gene has been reported to differentiate the brain tumor subtypes. AIM The present study was designed to screen mitochondrial sirtuins and IDH polymorphisms in brain tumor patients. METHODOLOGY One thousand blood samples were collected (500 brain tumor patients and 500 controls). Two SNPs for each gene SIRT3 (rs12226697, rs570591), SIRT4 (rs184496260, 1925909), SIRT5 (rs2841522, rs2841523), and one SNP for IDH (rs11554137) was screened using Tetra-ARMS PCR. RESULTS Logistic regression showed that the mutant genotype of selected SNPs was associated with increased disease incidence compared to wild type. Haplotype analysis and linkage disequilibrium (LD) showed a strong LD in brain tumor patients. Kaplan-Meier analysis showed that mutant allele frequency was found to be associated with a significant decrease in the survival of brain tumor patients. CONCLUSION The present study showed that the mutant allele of selected mitochondrial sirtuins' SNP was associated with increased brain tumor risk.
Collapse
Affiliation(s)
- Maria Fazal Ul Haq
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | | | - Muhammad Shahbaz Haris
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Mahmood Akhtar Kayani
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| | - Ishrat Mahjabeen
- Cancer Genetics and Epigenetics Research Group, Department of Biosciences, COMSATS University Islamabad, Islamabad, Pakistan
| |
Collapse
|
24
|
Suh HN, Choi GE. Wnt signaling in the tumor microenvironment: A driver of brain tumor dynamics. Life Sci 2024; 358:123174. [PMID: 39471897 DOI: 10.1016/j.lfs.2024.123174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/20/2024] [Accepted: 10/22/2024] [Indexed: 11/01/2024]
Abstract
The Wnt signaling pathway is important for cell growth and development in the central nervous system and its associated vasculature. Thus, it is an interesting factor for establishing anti-brain cancer therapy. However, simply inhibiting the Wnt signaling pathway in patients with brain tumors is not an effective anti-cancer therapy. Due to their complex microenvironment, which comprises various cell types and signaling molecules, brain tumors pose significant challenges. It is important to understand the interplay between tumor cells and the microenvironment for developing effective therapeutic strategies for both benign and malignant brain tumors. Thus, this research focused on the role of the tumor microenvironment (TME) in brain tumor progression, particularly the involvement of Wnt-dependent signaling pathways. The brain parenchyma comprises neurons, glia, endothelial cells, and other extracellular matrix elements that can contribute to the TME. The TME components can secrete Wnt ligands or associated molecules, resulting in the aberrant activation of the Wnt signaling pathway, followed by tumor progression and therapeutic resistance. Therefore, it is essential to understand the intricate crosstalk between the Wnt signaling pathway and the TME in developing targeted therapies. This review aimed to elucidate the complexities of the brain TME and its interactions with the Wnt signaling pathways to improve treatment outcomes and our understanding of brain tumor biology.
Collapse
Affiliation(s)
- Han Na Suh
- Center for Translational Toxicologic Research, Korea Institute of Toxicology, 30 Baekhak1-gil, Jeongeup, Jeonbukdo 56212, Republic of Korea.
| | - Gee Euhn Choi
- Laboratory of Veterinary Biochemistry, College of Veterinary Medicine and Veterinary Medical Research Institute, Jeju National University, Jeju 63243, South Korea; Interdisciplinary Graduate Program in Advanced Convergence Technology & Science, Jeju National University, Jeju 63243, South Korea.
| |
Collapse
|
25
|
Ahmad O, Ahmad T, Pfister SM. IDH mutation, glioma immunogenicity, and therapeutic challenge of primary mismatch repair deficient IDH-mutant astrocytoma PMMRDIA: a systematic review. Mol Oncol 2024; 18:2822-2841. [PMID: 38339779 PMCID: PMC11619801 DOI: 10.1002/1878-0261.13598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 12/28/2023] [Accepted: 01/22/2024] [Indexed: 02/12/2024] Open
Abstract
In 2021, Suwala et al. described Primary Mismatch Repair Deficient IDH-mutant Astrocytoma (PMMRDIA) as a distinct group of gliomas. In unsupervised clustering, PMMRDIA forms distinct cluster, separate from other IDH-mutant gliomas, including IDH-mutant gliomas with secondary mismatch repair (MMR) deficiency. In the published cohort, three patients received treatment with an immune checkpoint blocker (ICB), yet none exhibited a response, which aligns with existing knowledge about the decreased immunogenicity of IDH-mutant gliomas in comparison to IDH-wildtype. In the case of PMMRDIA, the inherent resistance to the standard-of-care temozolomide caused by MMR deficiency is an additional challenge. It is known that a gain-of-function mutation of IDH1/2 genes produces the oncometabolite R-2-hydroxyglutarate (R-2-HG), which increases DNA and histone methylation contributing to the characteristic glioma-associated CpG island methylator phenotype (G-CIMP). While other factors could be involved in remodeling the tumor microenvironment (TME) of IDH-mutant gliomas, this systematic review emphasizes the role of R-2-HG and the subsequent G-CIMP in immune suppression. This highlights a potential actionable pathway to enhance the response of ICB, which might be relevant for addressing the unmet therapeutic challenge of PMMRDIA.
Collapse
Affiliation(s)
- Olfat Ahmad
- Division of Pediatric NeurooncologyHopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
- Institute of Human GeneticsUniversity Hospital HeidelbergHeidelbergGermany
- University of OxfordOxfordUK
- King Hussein Cancer Center (KHCC)AmmanJordan
| | - Tahani Ahmad
- Department of Pediatric NeuroradiologyIWK Health CenterHalifaxCanada
- Dalhousie UniversityHalifaxCanada
| | - Stefan M. Pfister
- Division of Pediatric NeurooncologyHopp Children's Cancer Center (KiTZ)HeidelbergGermany
- Division of Pediatric Neurooncology, German Cancer Research Center (DKFZ)German Cancer Consortium (DKTK)HeidelbergGermany
- Department of Pediatric Hematology and OncologyHeidelberg University HospitalHeidelbergGermany
| |
Collapse
|
26
|
Wanis HA, Møller H, Ashkan K, Davies EA. Association of IDH1 Mutation and MGMT Promoter Methylation with Clinicopathological Parameters in an Ethnically Diverse Population of Adults with Gliomas in England. Biomedicines 2024; 12:2732. [PMID: 39767640 PMCID: PMC11726743 DOI: 10.3390/biomedicines12122732] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 11/14/2024] [Accepted: 11/15/2024] [Indexed: 01/16/2025] Open
Abstract
Background: Molecular profiles can predict which patients will respond to current standard treatment and new targeted therapy regimens. Using data from a highly diverse population of approximately three million in Southeast London and Kent, this study aims to evaluate the prevalence of IDH1 mutation and MGMT promoter methylation in the gliomas diagnosed in adult patients and to explore correlations with patients' demographic and clinicopathological characteristics. Methods: Anonymised data on 749 adult patients diagnosed with a glioma in 2015-2019 at King's College Hospital were extracted. Univariable and multivariable logistic regressions were used to estimate odds ratios (ORs) for expressing IDH1 mutation and MGMT promoter methylation, based on each patient's age, sex, ethnicity, histology, tumour location and extent of resection. The Kaplan-Meier method was used to estimate the overall survival functions. Results: A total of 19.5% of cases were IDH1-mutated. Being 39 years and younger (OR 5.48, 95% CI 3.17-9.47), from Asian/Asian British background (OR 3.68, 95% CI 1.05-12.97), having MGMT methylation (OR 15.92, 95% CI 7.30-34.75), an oligodendroglioma diagnosis (OR 7.45, 95% CI 2.90-19.13) and receiving a gross total/total microscopic resection (OR 1.95, 95% CI 1.24-3.08) were each univariately correlated with IDH1 mutation. MGMT methylation association persisted on adjustment (OR 14.13, 95% CI 3.88-51.43). MGMT promoter methylation was seen in 54.3% of gliomas. In the univariate adjusted ORs, being younger than 39 years (OR 2.56, 95% CI 1.48-4.43), female (OR 1.52, 95% CI 1.11-2.08), having IDH1 mutation (OR 15.92, 95% CI 7.30-34.75) and an oligodendroglioma diagnosis (OR 6.20, 95% CI 1.33-28.88) were associated with MGMT methylation. Being female (OR 1.75, 95% CI 1.22-2.51) and having an IDH1 mutation (OR 15.54, 95% CI 4.73-51.05) persisted after adjustment for age, sex, ethnicity, histology, tumour location and extent of resection. IDH1 mutant and MGMT methylated gliomas were associated with frontal lobe location. Survival analysis showed that patients with both IDH1 mutation and MGMT methylation had significantly better survival than those with either molecular marker alone. Over a 3-year period, women with unmethylated MGMT promoters generally had better survival than men with unmethylated MGMT. Conclusion: This study showed that the molecular markers of IDH1 mutation and MGMT promoter methylation were associated with age, sex, Asian/Asian British ethnic group, tumour histology, anatomical location and extent of resection. This study has demonstrated the importance of assessing glioma molecular markers in the clinical setting and the need to stratify patients according to their clinicopathological characteristics.
Collapse
Affiliation(s)
- Hiba A. Wanis
- Cancer Epidemiology and Cancer Services Research, Centre for Cancer, Society & Public Health, Bermondsey Wing, King’s College London, 3rd Floor, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| | - Henrik Møller
- Cancer Epidemiology and Cancer Services Research, Centre for Cancer, Society & Public Health, Bermondsey Wing, King’s College London, 3rd Floor, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
- Danish Centre for Health Services Research, Aalborg University, 9220 Aalborg, Denmark
| | - Keyoumars Ashkan
- Department of Neurosurgery, King’s College Hospital NHS Trust, Denmark Hill, London SE5 9RS, UK
| | - Elizabeth A. Davies
- Cancer Epidemiology and Cancer Services Research, Centre for Cancer, Society & Public Health, Bermondsey Wing, King’s College London, 3rd Floor, Guy’s Hospital, Great Maze Pond, London SE1 9RT, UK
| |
Collapse
|
27
|
Bou-Gharios J, Noël G, Burckel H. The neglected burden of chronic hypoxia on the resistance of glioblastoma multiforme to first-line therapies. BMC Biol 2024; 22:278. [PMID: 39609830 PMCID: PMC11603919 DOI: 10.1186/s12915-024-02075-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024] Open
Abstract
Glioblastoma multiforme (GBM) is the most common adult primary brain tumor. The standard of care involves maximal surgery followed by radiotherapy and concomitant chemotherapy with temozolomide (TMZ), in addition to adjuvant TMZ. However, the recurrence rate of GBM within 1-2 years post-diagnosis is still elevated and has been attributed to the accumulation of multiple factors including the heterogeneity of GBM, genomic instability, angiogenesis, and chronic tumor hypoxia. Tumor hypoxia activates downstream signaling pathways involved in the adaptation of GBM to the newly oxygen-deprived environment, thereby contributing to the resistance and recurrence phenomena, despite the multimodal therapeutic approach used to eradicate the tumor. Therefore, in this review, we will focus on the development and implication of chronic or limited-diffusion hypoxia in tumor persistence through genetic and epigenetic modifications. Then, we will detail the hypoxia-induced activation of vital biological pathways and mechanisms that contribute to GBM resistance. Finally, we will discuss a proteomics-based approach to encourage the implication of personalized GBM treatments based on a hypoxia signature.
Collapse
Affiliation(s)
- Jolie Bou-Gharios
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
| | - Georges Noël
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France
- Institut de Cancérologie Strasbourg Europe (ICANS), Department of Radiation Oncology, UNICANCER, 17 Rue Albert Calmette, Strasbourg, 67200, France
| | - Hélène Burckel
- Institut de Cancérologie Strasbourg Europe (ICANS), Radiobiology Laboratory, 3 Rue de La Porte de L'Hôpital, Strasbourg, 67000, France.
- Laboratory of Engineering, Informatics and Imaging (ICube), UMR 7357, Integrative Multimodal Imaging in Healthcare (IMIS), University of Strasbourg, 4 Rue Kirschleger, Strasbourg, 67000, France.
| |
Collapse
|
28
|
Qian J, Xing H, Wang Y, Li C, Chen H, Rong J, Qian C. COL8A1 overexpression promotes glioma cell growth by activating focal adhesion kinase signaling cascade. NPJ Precis Oncol 2024; 8:273. [PMID: 39578589 PMCID: PMC11584746 DOI: 10.1038/s41698-024-00762-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/11/2024] [Indexed: 11/24/2024] Open
Abstract
We explored expression and biological roles of collagen type VIII alpha-1 chain (COL8A1) in glioma. Bioinformatics analyses unveiled COL8A1 overexpression within glioma tissues correlates with adverse clinical outcomes of patients. COL8A1 overexpression was also detected in local glioma tissues and various glioma cells. In primary and immortalized glioma cells, COL8A1 shRNA or knockout (KO) reduced cell viability, proliferation and mobility, disrupted cell cycle, and prompted apoptosis. While COL8A1 overexpression augmented the malignant behaviors in glioma cells. COL8A1 shRNA or KO in primary glioma cells decreased phosphorylation of FAK and downstream targets Akt and Erk1/2. Conversely, elevating COL8A1 expression increased their phosphorylations. In vivo experiments confirmed growth inhibition of patient-derived glioma xenografts within the mouse brain following COL8A1 KO. Hindered proliferation, lowered phosphorylation levels of FAK, Akt, and Erk1/2, as well as increased apoptosis were observed within the COL8A1 KO intracranial glioma xenografts. Thus, COL8A1 overexpression promotes glioma cell growth.
Collapse
Affiliation(s)
- Jin Qian
- Department of Neurosurgery, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng People's Hospital, Xuancheng, China
| | - Haihui Xing
- Department of Neurology, Nanjing Gaochun Hospital of Traditional Chinese Medicine, Nanjing, China
| | - Yin Wang
- Department of Radiotherapy and Oncology, Affiliated Kunshan Hospital of Jiangsu University, Kunshan, China
| | - Chen Li
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Hairong Chen
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China
| | - Jun Rong
- Department of Neurosurgery, The Affiliated Xuancheng Hospital of Wannan Medical College, Xuancheng People's Hospital, Xuancheng, China
| | - Chunfa Qian
- Department of Neurosurgery, Affiliated Nanjing Brain Hospital, Nanjing Medical University, Nanjing, China.
| |
Collapse
|
29
|
Guo W, Li X, Wang D, Yan N, Hu Q, Yang F, Zhang X, Yao J, Gu J. scStateDynamics: deciphering the drug-responsive tumor cell state dynamics by modeling single-cell level expression changes. Genome Biol 2024; 25:297. [PMID: 39574111 PMCID: PMC11583649 DOI: 10.1186/s13059-024-03436-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024] Open
Abstract
Understanding tumor cell heterogeneity and plasticity is crucial for overcoming drug resistance. Single-cell technologies enable analyzing cell states at a given condition, but catenating static cell snapshots to characterize dynamic drug responses remains challenging. Here, we propose scStateDynamics, an algorithm to infer tumor cell state dynamics and identify common drug effects by modeling single-cell level gene expression changes. Its reliability is validated on both simulated and lineage tracing data. Application to real tumor drug treatment datasets identifies more subtle cell subclusters with different drug responses beyond static transcriptome similarity and disentangles drug action mechanisms from the cell-level expression changes.
Collapse
Affiliation(s)
- Wenbo Guo
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Xinqi Li
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Dongfang Wang
- Biomedical Pioneering Innovation Center (BIOPIC), Peking University, Beijing, China
| | - Nan Yan
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Qifan Hu
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
| | - Fan Yang
- AI Lab, Shenzhen, Tencent, China
| | - Xuegong Zhang
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China
- Center for Synthetic and Systems Biology, School of Life Sciences and School of Medicine, Tsinghua University, Beijing, China
| | | | - Jin Gu
- MOE Key Lab of Bioinformatics, Department of Automation, BNRIST Bioinformatics Division, Tsinghua University, Beijing, China.
| |
Collapse
|
30
|
Yin B, Cai Y, Chen L, Li Z, Li X. Immunosuppressive MDSC and Treg signatures predict prognosis and therapeutic response in glioma. Int Immunopharmacol 2024; 141:112922. [PMID: 39137632 DOI: 10.1016/j.intimp.2024.112922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 08/06/2024] [Accepted: 08/07/2024] [Indexed: 08/15/2024]
Abstract
Glioma, a complex and aggressive brain tumor, is characterized by dysregulated immune responses within the tumor microenvironment (TME). We conducted a comprehensive analysis to elucidate the roles of myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs) in glioma progression and their impact on the immune landscape. Using transcriptome data, we stratified glioma samples based on MDSC and Treg levels, revealing significant differences in patient survival probabilities. LASSO regression identified a gene panel associated with glioma prognosis, yielding a patient-specific risk score. Multivariate Cox regression confirmed the risk score's correlation with overall survival. An ISS (immune suppressive score) system assessed the immune landscape's impact on glioma progression and therapeutic response. Functional validation showed MDSC and Treg infiltration's relevance in glioma progression and immune modulation. Hub genes in the black module, including CCL2, LINC01503, CXCL8, CLEC2B, TIMP1, and RGS2, were identified through MCODE analysis. RGS2 expression correlated with immune cell populations and varied in glioma cells. This study sheds light on MDSCs' and Tregs' roles in glioma pathogenesis, suggesting their potential as prognostic biomarkers and therapeutic targets for personalized immunotherapeutic strategies in glioma treatment.
Collapse
Affiliation(s)
- Bowen Yin
- Department of Pharmacology, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China; Key Laboratory of Medical Molecular Virology (MOE/NHC/CAMS), Shanghai Frontiers Science Center of Pathogenic Microorganisms and Infection, School of Basic Medical Sciences, Shanghai Medical College, Fudan University, Shanghai, China
| | - Yiheng Cai
- Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China; Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Lingxia Chen
- Department of Pathogenic Biology, School of Basic Medical Sciences, Gannan Medical University, Ganzhou, China
| | | | - Xiaofei Li
- Department of Science and Technology, Yunnan University of Chinese Medicine, Kunming, China.
| |
Collapse
|
31
|
Shahi M, Pringle S, Morris M, Garcia DM, Quiñones-Hinojosa A, Cooks RG. Detection of IDH mutation in glioma by desorption electrospray ionization (DESI) tandem mass spectrometry. Sci Rep 2024; 14:26865. [PMID: 39500924 PMCID: PMC11538546 DOI: 10.1038/s41598-024-77044-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 10/18/2024] [Indexed: 11/08/2024] Open
Abstract
Desorption electrospray ionization (DESI) tandem mass spectrometry (MS) is used to assess mutation status of isocitrate dehydrogenase (IDH) in human gliomas. Due to the diffuse nature of gliomas, total gross resection is not normally achieved during surgery, leading to tumor recurrence. The mutation status of IDH has clinical significance due to better prognosis in IDH-mutant patients. The mutant IDH converts alpha-ketoglutaric acid (α-KG) into 2-hydroxyglutarate (2HG), which accumulates abnormally in cells. Immunohistochemical staining (IHC) and genetic testing, the gold standards, are incompatible with intraoperative applications but DESI tandem mass spectrometry (MS/MS) can be used to assess the mutation status of IDH enzyme from tissue intraoperatively. Here, on off-line evaluation is made of the performance of two different types of mass spectrometers in characterization of IDH mutation status. The intensity of 2HG is measured against glutamate (Glu), an intrinsic reference molecule, in both tandem MS measurements. In both cases using DESI clear separation between IDH-mutant (mut) and IDH-wildtype (wt) samples (p < 0.0001) is observed, despite the short analysis time. Due to the higher detection sensitivity, multiple reaction monitoring experiments using a triple quadrupole show slightly better performance compared to product ion MS/MS performed on a simple linear ion trap. Both DESI-MS platforms are capable of providing information on IDH mutation status, which might in future be used at the time of surgery to support decision-making on resection regions, especially at tumor margins.
Collapse
Affiliation(s)
- Mahdiyeh Shahi
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA
| | | | | | | | | | - R Graham Cooks
- Department of Chemistry, Purdue University, West Lafayette, IN, 47907, USA.
| |
Collapse
|
32
|
Alnahhas I. Molecular Testing in Gliomas: What is Necessary in Routine Clinical Practice? Curr Oncol Rep 2024; 26:1277-1282. [PMID: 39361075 PMCID: PMC11579106 DOI: 10.1007/s11912-024-01602-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/02/2024] [Indexed: 11/21/2024]
Abstract
PURPOSE OF REVIEW A number of molecular characteristics are essential for accurate diagnosis and prognostication in glioma. RECENT FINDINGS The 2021 WHO classification of brain tumors and recent Food and Drug Administration (FDA) pathology agnostic drug approvals highlight the importance of molecular testing in the management of glioma. For diffuse gliomas, it is important to identify IDH mutations, given the favorable clinical behavior and potential for using FDA approved IDH inhibitors in the near future. MGMT promoter methylation testing is the most established molecular marker for response to temozolomide in IDH wild-type glioblastoma and in turn impacts overall survival. Moreover, identification of certain mutations and molecular markers, such as BRAF V600E, hypermutation or elevated tumor-mutational burden and NTRK fusions allow for the use of FDA approved agents that are tumor-agnostic. Finally, molecular testing opens options for clinical trials that are essential for diseases with limited treatment options like gliomas.
Collapse
Affiliation(s)
- Iyad Alnahhas
- Department of Neurology and Neurosurgery, Thomas Jefferson University, 901 Walnut St, Room 310G, Philadelphia, PA, 19107, USA.
| |
Collapse
|
33
|
Ghosh MK, Kumar S, Begam S, Ghosh S, Basu M. GBM immunotherapy: Exploring molecular and clinical frontiers. Life Sci 2024; 356:123018. [PMID: 39214286 DOI: 10.1016/j.lfs.2024.123018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Revised: 08/21/2024] [Accepted: 08/25/2024] [Indexed: 09/04/2024]
Abstract
GBM is the most common, aggressive, and intracranial primary brain tumor; it originates from the glial progenitor cells, has poor overall survival (OS), and has limited treatment options. In this decade, GBM immunotherapy is in trend and preferred over several conventional therapies, due to their better patient survival outcome. This review explores the clinical trials of several immunotherapeutic approaches (immune checkpoint blockers (ICBs), CAR T-cell therapy, cancer vaccines, and adoptive cell therapy) with their efficacy and safety. Despite significant progress, several challenges (viz., immunosuppressive microenvironment, heterogeneity, and blood-brain barrier (BBB)) were experienced that hamper their immunotherapeutic potential. Furthermore, these challenges were clinically studied to be resolved by multiple combinatorial approaches, discussed in the later part of the review. Thus, this review suggests the clinical use and potential of immunotherapy in GBM and provides the holistic recent knowledge and future perspectives.
Collapse
Affiliation(s)
- Mrinal K Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India.
| | - Sunny Kumar
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sabana Begam
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Sayani Ghosh
- Cancer Biology and Inflammatory Disorder Division, Council of Scientific and Industrial Research-Indian Institute of Chemical Biology (CSIR-IICB), TRUE Campus, CN-6, Sector-V, Salt Lake, Kolkata 700091, India; Academy of Scientific and Innovative Research, Ghaziabad, Uttar Pradesh 201002, India
| | - Malini Basu
- Department of Microbiology, Dhruba Chand Halder College, Dakshin Barasat, South 24 Parganas, PIN-743372, India
| |
Collapse
|
34
|
Choate KA, Pratt EPS, Jennings MJ, Winn RJ, Mann PB. IDH Mutations in Glioma: Molecular, Cellular, Diagnostic, and Clinical Implications. BIOLOGY 2024; 13:885. [PMID: 39596840 PMCID: PMC11592129 DOI: 10.3390/biology13110885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/21/2024] [Accepted: 10/28/2024] [Indexed: 11/29/2024]
Abstract
In 2021, the World Health Organization classified isocitrate dehydrogenase (IDH) mutant gliomas as a distinct subgroup of tumors with genetic changes sufficient to enable a complete diagnosis. Patients with an IDH mutant glioma have improved survival which has been further enhanced by the advent of targeted therapies. IDH enzymes contribute to cellular metabolism, and mutations to specific catalytic residues result in the neomorphic production of D-2-hydroxyglutarate (D-2-HG). The accumulation of D-2-HG results in epigenetic alterations, oncogenesis and impacts the tumor microenvironment via immunological modulations. Here, we summarize the molecular, cellular, and clinical implications of IDH mutations in gliomas as well as current diagnostic techniques.
Collapse
Affiliation(s)
- Kristian A. Choate
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
| | - Evan P. S. Pratt
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Chemistry, Northern Michigan University, Marquette, MI 49855, USA
| | - Matthew J. Jennings
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| | - Robert J. Winn
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- Department of Biology, Northern Michigan University, Marquette, MI 49855, USA
| | - Paul B. Mann
- Upper Michigan Brain Tumor Center, Northern Michigan University, Marquette, MI 49855, USA; (K.A.C.); (E.P.S.P.); (M.J.J.); (R.J.W.)
- School of Clinical Sciences, Northern Michigan University, Marquette, MI 49855, USA
| |
Collapse
|
35
|
Pike SC, Wiencke JK, Zhang Z, Molinaro AM, Hansen HM, Koestler DC, Christensen BC, Kelsey KT, Salas LA. Glioma immune microenvironment composition calculator (GIMiCC): a method of estimating the proportions of eighteen cell types from DNA methylation microarray data. Acta Neuropathol Commun 2024; 12:170. [PMID: 39468647 PMCID: PMC11514818 DOI: 10.1186/s40478-024-01874-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Accepted: 10/12/2024] [Indexed: 10/30/2024] Open
Abstract
A scalable platform for cell typing in the glioma microenvironment can improve tumor subtyping and immune landscape detection as successful immunotherapy strategies continue to be sought and evaluated. DNA methylation (DNAm) biomarkers for molecular classification of tumor subtypes have been developed for clinical use. However, tools that predict the cellular landscape of the tumor are not well-defined or readily available. We developed the Glioma Immune Microenvironment Composition Calculator (GIMiCC), an approach for deconvolution of cell types in gliomas using DNAm data. Using data from 17 isolated cell types, we describe the derivation of the deconvolution libraries in the biological context of selected genomic regions and validate deconvolution results using independent datasets. We utilize GIMiCC to illustrate that DNAm-based estimates of immune composition are clinically relevant and scalable for potential clinical implementation. In addition, we utilize GIMiCC to identify composition-independent DNAm alterations that are associated with high immune infiltration. Our future work aims to optimize GIMiCC and advance the clinical evaluation of glioma.
Collapse
Affiliation(s)
- Steven C Pike
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
- Department of Neurology, Dartmouth Hitchcock Medical Center, Lebanon, NH, USA
| | - John K Wiencke
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
- Institute for Human Genetics, University of California San Francisco, San Francisco, CA, USA
| | - Ze Zhang
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
| | - Annette M Molinaro
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
- Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, CA, USA
| | - Helen M Hansen
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA, USA
| | - Devin C Koestler
- Department of Biostatistics & Data Science, Medical Center, University of Kansas, Kansas City, KS, USA
| | - Brock C Christensen
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA
- Department of Molecular and Systems Biology, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
- Department of Community and Family Medicine, Geisel School of Medicine, Dartmouth College, Lebanon, NH, USA
| | - Karl T Kelsey
- Departments of Epidemiology and Pathology and Laboratory Medicine, Brown University, Providence, RI, USA
| | - Lucas A Salas
- Integrative Neuroscience at Dartmouth, Guarini School of Graduate and Advanced Studies at Dartmouth College, Hanover, NH, USA.
- Department of Epidemiology, Geisel School of Medicine at Dartmouth College, Lebanon, NH, USA.
| |
Collapse
|
36
|
Trejo-Solís C, Serrano-García N, Castillo-Rodríguez RA, Robledo-Cadena DX, Jimenez-Farfan D, Marín-Hernández Á, Silva-Adaya D, Rodríguez-Pérez CE, Gallardo-Pérez JC. Metabolic dysregulation of tricarboxylic acid cycle and oxidative phosphorylation in glioblastoma. Rev Neurosci 2024; 35:813-838. [PMID: 38841811 DOI: 10.1515/revneuro-2024-0054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Accepted: 05/21/2024] [Indexed: 06/07/2024]
Abstract
Glioblastoma multiforme (GBM) exhibits genetic alterations that induce the deregulation of oncogenic pathways, thus promoting metabolic adaptation. The modulation of metabolic enzyme activities is necessary to generate nucleotides, amino acids, and fatty acids, which provide energy and metabolic intermediates essential for fulfilling the biosynthetic needs of glioma cells. Moreover, the TCA cycle produces intermediates that play important roles in the metabolism of glucose, fatty acids, or non-essential amino acids, and act as signaling molecules associated with the activation of oncogenic pathways, transcriptional changes, and epigenetic modifications. In this review, we aim to explore how dysregulated metabolic enzymes from the TCA cycle and oxidative phosphorylation, along with their metabolites, modulate both catabolic and anabolic metabolic pathways, as well as pro-oncogenic signaling pathways, transcriptional changes, and epigenetic modifications in GBM cells, contributing to the formation, survival, growth, and invasion of glioma cells. Additionally, we discuss promising therapeutic strategies targeting key players in metabolic regulation. Therefore, understanding metabolic reprogramming is necessary to fully comprehend the biology of malignant gliomas and significantly improve patient survival.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Rosa Angelica Castillo-Rodríguez
- CICATA Unidad Morelos, Instituto Politécnico Nacional, Boulevard de la Tecnología, 1036 Z-1, P 2/2, Atlacholoaya, Xochitepec 62790, Mexico
| | - Diana Xochiquetzal Robledo-Cadena
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Dolores Jimenez-Farfan
- Laboratorio de Inmunología, División de Estudios de Posgrado e Investigación, Facultad de Odontología, Universidad Nacional Autónoma de México, Ciudad de Mexico 04510, Mexico
| | - Álvaro Marín-Hernández
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Citlali Ekaterina Rodríguez-Pérez
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Laboratorio de Neurobiología Molecular y Celular, Laboratorio de Neurofarmacología Molecular y Nanotecnología, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico
| | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de México 14080, Mexico
- Facultad de Ciencias, Universidad Nacional Autónoma de México, Coyoacán, 04510, Ciudad de México, Mexico
| |
Collapse
|
37
|
Wang N, Yuan Y, Hu T, Xu H, Piao H. Metabolism: an important player in glioma survival and development. Discov Oncol 2024; 15:577. [PMID: 39436434 PMCID: PMC11496451 DOI: 10.1007/s12672-024-01402-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 09/26/2024] [Indexed: 10/23/2024] Open
Abstract
Gliomas are malignant tumors originating from both neuroglial cells and neural stem cells. The involvement of neural stem cells contributes to the tumor's heterogeneity, affecting its metabolic features, development, and response to therapy. This review provides a brief introduction to the importance of metabolism in gliomas before systematically categorizing them into specific groups based on their histological and molecular genetic markers. Metabolism plays a critical role in glioma biology, as tumor cells rely heavily on altered metabolic pathways to support their rapid growth, survival, and progression. Dysregulated metabolic processes, involving carbohydrates, lipids, and amino acids not only fuel tumor development but also contribute to therapy resistance and metastatic potential. By understanding these metabolic changes, key intervention points, such as mutations in genes like RTK, EGFR, RAS, and IDH can be identified, paving the way for novel therapeutic strategies. This review emphasizes the connection between metabolic pathways and clinical challenges, offering actionable insights for future research and therapeutic development in gliomas.
Collapse
Affiliation(s)
- Ning Wang
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Yiru Yuan
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Tianhao Hu
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China
| | - Huizhe Xu
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
- Central Laboratory, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Liaoning Province, 110042, P R China.
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of Dalian University of Technology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, No.44 Xiaoheyan Road, Shenyang, Dadong, 110042, P R China.
- Institute of Cancer Medicine, Dalian University of Technology, No.2 Linggong Road, Dalian, Ganjingzi, 116024, P R China.
| |
Collapse
|
38
|
Tumova A, Auslands K, Millers A, Priede Z, Buks M, Ozola A, Ozoliņa E, Bicāns K, Ulmanis R. Association of Schimmelpenning Syndrome with Astrocytoma (WHO Grade 3): Case Report. MEDICINA (KAUNAS, LITHUANIA) 2024; 60:1688. [PMID: 39459475 PMCID: PMC11509802 DOI: 10.3390/medicina60101688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024]
Abstract
Schimmelpenning syndrome, or epidermal nevus syndrome, is a rare, neurocutaneous disorder characterized by skin abnormalities, such as epidermal nevi, and involvement of the central nervous system, including intracranial tumors. There are only a few reported cases of intracranial tumors associated with Schimmelpenning syndrome. In most cases, a single nucleotide mutation in the RAS family proto-oncogenes, like HRAS or KRAS genes, can result in the genetic mosaicism that is responsible for the clinical manifestations of this syndrome. The authors present a case report of a woman with Schimmelpenning syndrome who sought medical help with complaints of progressive headache and dizziness. The radiological and histopathological findings indicated an astrocytoma, IDH-mutant (WHO grade 3). The molecular analysis revealed pathogenic changes in the oncogenic HRAS gene with a prevalence of 31%. The patient underwent surgical treatment and had no neurological sequelae. By presenting such a clinical case, attention is paid to the interrelationship between genetic syndromes and intracranial tumors.
Collapse
Affiliation(s)
- Aija Tumova
- Department of Neurology and Neurosurgery, Riga Stradins University, 1007 Riga, Latvia; (K.A.); (R.U.)
- Department of Neurosurgery, Riga East Clinical University Hospital, 1038 Riga, Latvia
| | - Kaspars Auslands
- Department of Neurology and Neurosurgery, Riga Stradins University, 1007 Riga, Latvia; (K.A.); (R.U.)
- Department of Neurosurgery, Riga East Clinical University Hospital, 1038 Riga, Latvia
| | - Andrejs Millers
- Department of Neurology and Neurosurgery, Riga Stradins University, 1007 Riga, Latvia; (K.A.); (R.U.)
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 1002 Riga, Latvia
| | - Zanda Priede
- Department of Neurology and Neurosurgery, Riga Stradins University, 1007 Riga, Latvia; (K.A.); (R.U.)
- Department of Neurosurgery, Pauls Stradins Clinical University Hospital, 1002 Riga, Latvia
| | - Māris Buks
- Department of Neurosurgery, Riga East Clinical University Hospital, 1038 Riga, Latvia
| | - Agnese Ozola
- Department of Neurosurgery, Riga East Clinical University Hospital, 1038 Riga, Latvia
| | - Elīna Ozoliņa
- Department of Neurology and Neurosurgery, Riga Stradins University, 1007 Riga, Latvia; (K.A.); (R.U.)
- Department of Neurosurgery, Riga East Clinical University Hospital, 1038 Riga, Latvia
| | - Kārlis Bicāns
- Department of Neurosurgery, Riga East Clinical University Hospital, 1038 Riga, Latvia
| | - Rūdolfs Ulmanis
- Department of Neurology and Neurosurgery, Riga Stradins University, 1007 Riga, Latvia; (K.A.); (R.U.)
| |
Collapse
|
39
|
Vélez Gómez S, Martínez Garro JM, Ortiz Gómez LD, Salazar Flórez JE, Monroy FP, Peláez Sánchez RG. Bioinformatic Characterization of the Functional and Structural Effect of Single Nucleotide Mutations in Patients with High-Grade Glioma. Biomedicines 2024; 12:2287. [PMID: 39457600 PMCID: PMC11505048 DOI: 10.3390/biomedicines12102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Revised: 09/20/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Background: Gliomas are neoplasms of the central nervous system that originate in glial cells. The genetic characteristics of this type of neoplasm are the loss of function of tumor suppressor genes such as TP53 and somatic mutations in genes such as IDH1/2. Additionally, in clinical cases, de novo single nucleotide polymorphisms (SNP) are reported, of which their pathogenicity and their effects on the function and stability of the protein are known. Methodology: Non-synonymous SNPs were analyzed for their structural and functional effect on proteins using a set of bioinformatics tools such as SIFT, PolyPhen-2, PhD-SNP, I-Mutant 3.0, MUpro, and mutation3D. A structural comparison between normal and mutated residues for disease-associated coding SNPs was performed using TM-aling and the SWISS MODEL. Results: A total of 13 SNPs were obtained for the TP53 gene, 1 SNP for IDH1, and 1 for IDH2, which would be functionally detrimental and associated with disease. Additionally, these changes compromise the structure and function of the protein; the A161S SNP for TP53 that has not been reported in any databases was classified as detrimental. Conclusions: All non-synonymous SNPs reported for TP53 were in the region of the deoxyribonucleic acid (DNA) binding domain and had a great impact on the function and stability of the protein. In addition, the two polymorphisms detected in IDH1 and IDH2 genes compromise the structure and activity of the protein. Both genes are related to the development of high-grade gliomas. All the data obtained in this study must be validated through experimental approaches.
Collapse
Affiliation(s)
- Sara Vélez Gómez
- Faculty of Sciences and Biotechnology, CES University, Medellín 050021, Colombia;
| | | | | | - Jorge Emilio Salazar Flórez
- GEINCRO Research Group, Medicine Program, School of Health Sciences, San Martín University Foundation, Sabaneta 055457, Colombia;
| | - Fernando P. Monroy
- Department of Biological Sciences, Northerm Arizona University, Flagstaff, AZ 85721, USA;
| | | |
Collapse
|
40
|
Li W, Shi H, He J. Elevated SH3 and Multiple Ankyrin Repeat Domains 2 Expression Correlates With Improved Glioma Prognosis. Int J Genomics 2024; 2024:6565925. [PMID: 39397895 PMCID: PMC11469935 DOI: 10.1155/2024/6565925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/11/2024] [Accepted: 08/29/2024] [Indexed: 10/15/2024] Open
Abstract
This study investigates the prognostic significance of SH3 and multiple ankyrin repeat domains 2 (SHANK2) gene expression in glioma patients, using data from The Cancer Genome Atlas (TCGA), the Genotype-Tissue Expression (GTEx) project, and the Gene Expression Omnibus (GEO). Through comprehensive analysis, we found a significant association between higher SHANK2 expression and improved survival outcomes across various glioma subtypes. To further validate the clinical relevance of SHANK2, we conducted cellular experiments involving siRNA-mediated knockdown of SHANK2 in U87 and A172 glioma cell lines. Quantitative real-time PCR (qPCR) and Western blot analyses confirmed the successful knockdown of SHANK2, and subsequent MTT assays revealed that silencing SHANK2 significantly promoted glioma cell proliferation. These findings underscore the potential role of SHANK2 as a tumor suppressor in glioma. The study also introduces a multivariate prognostic model incorporating SHANK2, providing a novel perspective on glioma prognosis. While the retrospective nature of the study presents limitations, our results suggest that SHANK2 expression could serve as a valuable biomarker for glioma prognosis and inform future therapeutic strategies.
Collapse
Affiliation(s)
- Wenlin Li
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, China
| | - Haiping Shi
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, China
| | - Jimin He
- Department of Neurosurgery, Suining Central Hospital, Suining, Sichuan, China
| |
Collapse
|
41
|
Zeng S, Ma H, Xie D, Huang Y, Yang J, Lin F, Ma Z, Wang M, Yang Z, Zhao J, Chu J. Tumor Multiregional Mean Apparent Propagator (MAP) Features in Evaluating Gliomas-A Comparative Study With Diffusion Kurtosis Imaging (DKI). J Magn Reson Imaging 2024; 60:1532-1546. [PMID: 38131220 DOI: 10.1002/jmri.29202] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/08/2023] [Accepted: 12/09/2023] [Indexed: 12/23/2023] Open
Abstract
BACKGROUND Glioma classification affects treatment and prognosis. Reliable imaging methods for preoperatively evaluating gliomas are essential. PURPOSE To evaluate tumor multiregional mean apparent propagator (MAP) features in glioma diagnosis and to compare those with diffusion-kurtosis imaging (DKI). STUDY TYPE Retrospective study. SUBJECTS 70 untreated glioma patients (31 LGGs (low-grade gliomas), 34 women; mean age, 47 ± 12 years, training (60%, n = 42) and testing cohorts (40%, n = 28)). FIELD STRENGTH/SEQUENCE 3-T, diffusion-MRI using q-space Cartesian grid sampling with 11 different b-values. ASSESSMENT Tumor multiregional MAP (mean squared displacement (MSD); q-space inverse variance (QIV); non-Gaussianity (NG); axial/radial non-Gaussianity (NGAx, NGRad); return-to-origin/axis/plane probability (RTOP, RTAP, and RTPP)); and DKI metrics (axial/mean/radial kurtosis (AK, MK, and RK)) on tumor parenchyma (TP) and peritumoral areas (PT) in histopathologically gliomas grading and genotyping were assessed. STATISTICAL TESTS Mann-Whitney U; Kruskal-Wallis; Benjamini-Hochberg; Bonferroni-correction; receiver operating curve (ROC) and area under curve (AUC); DeLong's test; Random Forest (RF). P value<0.05 was considered statistically significant after multiple comparisons correction. RESULTS Compared with LGGs, MSD, and QIV were significantly lower in TP, whereas NG, NGAx, NGRad, RTOP, RTAP, RTPP, and DKI metrics were significantly higher in HGGs (high-grade gliomas) (P ≤ 0.007), as well as in isocitrate-dehydrogenase (IDH)-mutated than IDH-wildtype gliomas (P ≤ 0.039). These trends were reversed for PT (tumor grades, P ≤ 0.011; IDH-mutation status, P ≤ 0.012). ROC analysis showed that, in TP, DKI metrics performed best in TP (AUC 0.83), whereas in PT, RTPP performed best (AUC 0.77) in glioma grading. AK performed best in TP (AUC 0.77), whereas MSD and RTPP performed best in PT (AUC 0.73) in IDH genotyping. Further RF analysis with DKI and MAP demonstrated good performance in grading (AUC 0.91, Accuracy 82%) and IDH genotyping (AUC 0.87, Accuracy 79%). DATA CONCLUSION Tumor multiregional MAP features could effectively evaluate gliomas. The performance of MAP may be similar to DKI in TP, while in PT, MAP may outperform DKI. LEVEL OF EVIDENCE 4 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Shanmei Zeng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Hui Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dingxiang Xie
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yingqian Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia Yang
- Department of Neurosurgery, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Fangzeng Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zuliwei Ma
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Mengzhu Wang
- Department of MR Scientific Marketing, Siemens Healthineers, Guangzhou, Guangdong, China
| | - Zhiyun Yang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jing Zhao
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jianping Chu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
42
|
Ashraf M, Abdelsadg M, Grivas A. Relationship between molecular characteristics of glioblastoma multiforme and the subventricular zone. Br J Neurosurg 2024; 38:1100-1107. [PMID: 35038937 DOI: 10.1080/02688697.2021.2024144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 11/13/2021] [Accepted: 12/24/2021] [Indexed: 11/02/2022]
Abstract
OBJECTIVE This study aims to assess the relationship between the molecular characteristics of glioblastoma multiforme (GBM) and the subventricular zone (SVZ). MATERIAL AND METHODS Eligible patients had their data anonymously collected from an institutional database, including age, sex, preoperative performance status, the extent of tumour resection, anatomical location, IDH mutation and MGMT methylation status. An Institutional picture archiving and communications system was used for volumetric and morphometric analysis. All measurements were made on T1-weighted magnetic resonance images with gadolinium contrast enhancement. IDH wild-type and mutant GBMs were stratified by MGMT methylation status. The relationship between tumour volume, distance from the tumour's enhancing edge and the tumour's geometric centre to the SVZ and their molecular characteristics were assessed. RESULTS Fifty IDH wild-type GBMs were studied. Twenty-three were MGMT methylated, Twenty-seven were unmethylated. IDH wild-type MGMT methylated GBMs were significantly associated with a tumour's enhancing boundary being contiguous to the SVZ (P < 0.001). Ninety percent of tumours contiguous to the SVZ were wild-type methylated (n = 18) and 10% were unmethylated (n = 2). Mean GBM geometric centre distance to SVZ was significantly less for methylated wild-type GBMs compared to unmethylated (P = 0.025) and median GBM distance from the tumour's edge of enhancement to the SVZ was significantly shorter in methylated tumours compared to unmethylated (P < 0.001). Mean and median distances to SVZ from the edge of enhancement was 3.8 millimetres (mm) and 0 mm, respectively, for wild-type methylated GBMs, while for unmethylated wild-types, 14.6 mm, and 12.5 mm. There was no anatomical localisation of IDH wild-type GBMs by MGMT methylation status to a cerebral hemisphere or lobe. CONCLUSION IDH wild-type GBMs contiguous to the SVZ are highly likely to be MGMT methylated. Replication by further studies is required to affirm our results and conclusion.
Collapse
Affiliation(s)
- Mohammad Ashraf
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
- Medical Student, Wolfson School of Medicine, University of Glasgow, Scotland, UK
| | - Mohamed Abdelsadg
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| | - Athanasios Grivas
- Department of Neurosurgery, Institute of Neurological Sciences, Queen Elizabeth University Hospital, Glasgow, UK
| |
Collapse
|
43
|
Ponomarova O, Starbard AN, Belfi A, Anderson AV, Sundaram MV, Walhout AJ. idh-1 neomorphic mutation confers sensitivity to vitamin B12 in Caenorhabditis elegans. Life Sci Alliance 2024; 7:e202402924. [PMID: 39009411 PMCID: PMC11249921 DOI: 10.26508/lsa.202402924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 07/04/2024] [Accepted: 07/04/2024] [Indexed: 07/17/2024] Open
Abstract
In humans, a neomorphic isocitrate dehydrogenase mutation (idh-1neo) causes increased levels of cellular D-2-hydroxyglutarate (D-2HG), a proposed oncometabolite. However, the physiological effects of increased D-2HG and whether additional metabolic changes occur in the presence of an idh-1neo mutation are not well understood. We created a Caenorhabditis elegans model to study the effects of the idh-1neo mutation in a whole animal. Comparing the phenotypes exhibited by the idh-1neo to ∆dhgd-1 (D-2HG dehydrogenase) mutant animals, which also accumulate D-2HG, we identified a specific vitamin B12 diet-dependent vulnerability in idh-1neo mutant animals that leads to increased embryonic lethality. Through a genetic screen, we found that impairment of the glycine cleavage system, which generates one-carbon donor units, exacerbates this phenotype. In addition, supplementation with alternate sources of one-carbon donors suppresses the lethal phenotype. Our results indicate that the idh-1neo mutation imposes a heightened dependency on the one-carbon pool and provides a further understanding of how this oncogenic mutation rewires cellular metabolism.
Collapse
Affiliation(s)
- Olga Ponomarova
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Alyxandra N Starbard
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Alexandra Belfi
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Amanda V Anderson
- Department of Biochemistry and Molecular Biology, University of New Mexico School of Medicine, Albuquerque, NM, USA
| | - Meera V Sundaram
- Department of Genetics, University of Pennsylvania Perelman School of Medicine, Philadelphia, PA, USA
| | - Albertha Jm Walhout
- Department of Systems Biology, University of Massachusetts Chan Medical School, Worcester, MA, USA
| |
Collapse
|
44
|
Chen Y, Shan L, Zheng W, Chen J, Deng L, Tian X, Xie R, Yang Y, Zhang L, Yang B. Global lysine succinylation analysis unveils post-translational regulation effect on phenylpropanoid metabolism remodeling during Lonicera japonica flower development. PLANT PHYSIOLOGY AND BIOCHEMISTRY : PPB 2024; 215:108978. [PMID: 39084169 DOI: 10.1016/j.plaphy.2024.108978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 07/23/2024] [Accepted: 07/25/2024] [Indexed: 08/02/2024]
Abstract
Lonicera japonica plays a significant role in traditional Chinese medicine and as a food source, making it a focus of studies on protein succinylation and its potential role in regulating secondary metabolism during flower development. This study aimed to clarify the regulatory mechanism of protein succinylation on phenylpropanoid-related phenotypic changes by conducting a global lysine succinylation proteomic analysis across different flowering stages. A total of 586 lysine succinylated peptides in 303 proteins were identified during early and late floral stages. Functional enrichment analysis revealed that succinylated proteins primarily participated in the tricarboxylic acid (TCA) cycle, amino acid metabolism, and secondary metabolism. The abundance of succinylated aspartate transaminase (AT), 4-coumarate-CoA ligase (4CL), and phenylalanine N-hydroxylase (CYP79A2) in phenylpropanoid metabolism varied during flower development. In vitro experiments demonstrated that succinylation increased AT activity while inhibited 4CL activity. Decreased levels of total flavonoids and phenolic acids indicated significant alterations in phenylpropanoid metabolism during later floral stages. These results suggest that succinylation of TCA cycle proteins not only influences flower development but also, together with AT-4CL-CYP79A2 co-succinylation, redirects phenylpropanoid metabolism during flower development in L. japonica.
Collapse
Affiliation(s)
- Yao Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Luhuizi Shan
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Wenxi Zheng
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Jie Chen
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Linfang Deng
- The Third Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, 310005, China
| | - Xu Tian
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ruili Xie
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Yunhong Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Lin Zhang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| | - Bingxian Yang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China.
| |
Collapse
|
45
|
Moosa NY, Azeem SA, Lodge JK, Cheung W, Ahmed SU. Vitamin B6 Pathway Maintains Glioblastoma Cell Survival in 3D Spheroid Cultures. Int J Mol Sci 2024; 25:10428. [PMID: 39408757 PMCID: PMC11476381 DOI: 10.3390/ijms251910428] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 09/17/2024] [Accepted: 09/24/2024] [Indexed: 10/20/2024] Open
Abstract
Glioblastoma (GBM) is a deadly brain cancer. The prognosis of GBM patients has marginally improved over the last three decades. The response of GBMs to initial treatment is inevitably followed by relapse. Thus, there is an urgent need to identify and develop new therapeutics to target this cancer and improve both patient outcomes and long-term survival. Metabolic reprogramming is considered one of the hallmarks of cancers. However, cell-based studies fail to accurately recapitulate the in vivo tumour microenvironment that influences metabolic signalling and rewiring. Against this backdrop, we conducted global, untargeted metabolomics analysis of the G7 and R24 GBM 2D monolayers and 3D spheroid cultures under identical cell culture conditions. Our studies revealed that the levels of multiple metabolites associated with the vitamin B6 pathway were significantly altered in 3D spheroids compared to the 2D monolayer cultures. Importantly, we show that pharmacological intervention with hydralazine, a small molecule that reduces vitamin B6 levels, resulted in the cell death of 3D GBM spheroid cultures. Thus, our study shows that inhibition of the vitamin B6 pathway is a novel therapeutic strategy for the development of targeted therapies in GBMs.
Collapse
Affiliation(s)
- Najla Yussuf Moosa
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| | - Sara Abdullah Azeem
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| | - John K. Lodge
- School of Human Sciences, London Metropolitan University, Tower Building, Holloway Road, London N7 8DB, UK;
| | - William Cheung
- Department of Applied Sciences, Northumbria University, Ellison Building, Northumberland Road, Newcastle Upon Tyne NE1 8ST, UK;
| | - Shafiq Uddin Ahmed
- School of Medicine, Murray Health, Faculty of Health Sciences and Wellbeing, University of Sunderland, Sunderland SR1 3SD, UK; (N.Y.M.); (S.A.A.)
| |
Collapse
|
46
|
Orozco-Mera J, Montoya-Gómez A, Lopes DS, Jiménez-Charris E. Snake venom bioprospecting as an approach to finding potential anti-glioblastoma molecules. J Venom Anim Toxins Incl Trop Dis 2024; 30:e20240015. [PMID: 39285908 PMCID: PMC11404105 DOI: 10.1590/1678-9199-jvatitd-2024-0015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2024] [Accepted: 07/30/2024] [Indexed: 09/19/2024] Open
Abstract
Glioblastoma (GB) is the most common type of malignant tumor of the central nervous system, responsible for significant morbidity and with a 5-year overall relative survival of only 6.8%. Without advances in treatment in the last twenty years, the standard of care continues to be maximum safe resection, Temozolomide (TMZ), and radiotherapy. Many new trials are ongoing, and despite showing increased progression-free survival, these trials did not improve overall survival. They did not consider the adverse effects of these therapies. Therefore, an increasing number of bioprospecting studies have used snake venom molecules to search for new strategies to attack GB selectively without producing side effects. The present review aims to describe GB characteristics and current and new approaches for treatment considering their side effects. Besides, we focused on the antitumoral activity of snake venom proteins from the Viperidae family against GB, exploring the potential for drug design based on in vitro and in vivo studies. This review followed the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. In January 2024, a systematic search was performed in the PubMed, EMBASE, and Web of Science databases from January 2000 to December 2023. Search terms were selected based on the population/exposure/outcome (PEO) framework and combined using Boolean operators ("AND", "OR"). The search strategy used these terms: glioblastoma, glioma, high-grade glioma, WHO IV glioma, brain cancer, snake venom, Viperidae, and bioprospection. We identified 10 in vivo and in vitro studies with whole and isolated proteins from Viperidae venom that could have antitumor activity against glioblastoma. Studies in bioprospecting exploring the advantage of snake venom proteins against GB deserve to be investigated due to their high specificity, small size, inherent bioactivity, and few side effects to cross the blood-brain barrier (BBB) to reach the tumor microenvironment.
Collapse
Affiliation(s)
- Javier Orozco-Mera
- Grupo de Nutrición, Facultad de Salud, Universidad del Valle, Cali, Colombia
- Department of Neurosurgery, Clínica Imbanaco, Cali, Colombia
| | | | - Daiana Silva Lopes
- Multidisciplinary Institute in Health, Federal University of Bahia (UFBA), Vitória da Conquista, BA, Brazil
| | | |
Collapse
|
47
|
Wen J, Liu D, Zhu H, Shu K. Microenvironmental regulation of tumor-associated neutrophils in malignant glioma: from mechanism to therapy. J Neuroinflammation 2024; 21:226. [PMID: 39285276 PMCID: PMC11406851 DOI: 10.1186/s12974-024-03222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Accepted: 09/03/2024] [Indexed: 09/19/2024] Open
Abstract
Glioma is the most common primary intracranial tumor in adults, with high incidence, recurrence, and mortality rates. Tumor-associated neutrophils (TANs) are essential components of the tumor microenvironment (TME) in glioma and play a crucial role in glioma cell proliferation, invasion and proneural-mesenchymal transition. Besides the interactions between TANs and tumor cells, the multi-dimensional crosstalk between TANs and other components within TME have been reported to participate in glioma progression. More importantly, several therapies targeting TANs have been developed and relevant preclinical and clinical studies have been conducted in cancer therapy. In this review, we introduce the origin of TANs and the functions of TANs in malignant behaviors of glioma, highlighting the microenvironmental regulation of TANs. Moreover, we focus on summarizing the TANs-targeted methods in cancer therapy, aiming to provide insights into the mechanisms and therapeutic opportunities of TANs in the malignant glioma microenvironment.
Collapse
Affiliation(s)
- Jiayi Wen
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China
| | - Dan Liu
- Department of Oncology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hongtao Zhu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| | - Kai Shu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, No. 1095 Jiefang Avenue, Wuhan, 430030, China.
| |
Collapse
|
48
|
Grewal EP, Richardson LG, Sun J, Ramapriyan R, Martinez-Lage M, Miller JJ, Carter BS, Cahill DP, Curry WT, Choi BD. Mutant IDH Modulates Suppressive Myeloid Populations in Malignant Glioma. Clin Cancer Res 2024; 30:4068-4076. [PMID: 39042445 PMCID: PMC11426330 DOI: 10.1158/1078-0432.ccr-24-1056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2024] [Revised: 05/29/2024] [Accepted: 07/18/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Mutations in the isocitrate dehydrogenase (IDH) genes IDH1 and IDH2 have critical diagnostic and prognostic significance in diffuse gliomas. Neomorphic mutant IDH activity has been previously implicated in T-cell suppression; however, the effects of IDH mutations on intratumoral myeloid populations remain underexplored. In this study, we investigate the influence of IDH status on the myeloid compartment using human glioma specimens and preclinical models. EXPERIMENTAL DESIGN We performed RNA sequencing and quantitative immunofluorescence on newly diagnosed, treatment-naive IDH-mutant grade 4 astrocytoma and IDH-wild-type (IDH-WT) glioblastoma (GBM) specimens. We also generated a syngeneic murine model, comparing transcriptomic and cell-level changes in paired isogenic glioma lines that differ only in IDH mutational status. RESULTS Among patient samples, IDH-mutant tumors displayed an underrepresentation of suppressive myeloid transcriptional signatures, which was confirmed at the cellular level with decreased numbers of intratumoral M2-like macrophages and myeloid-derived suppressor cells. Introduction of the mutant IDH enzyme into murine glioma was sufficient to recapitulate the transcriptomic and cellular shifts observed in patient samples. CONCLUSIONS We provide transcriptomic and cellular evidence that mutant IDH is associated with a quantitative reduction of suppressive myeloid cells in gliomas and that introduction of the mutant enzyme is sufficient to result in corresponding cellular changes using an in vivo preclinical model. These data advance our understanding of high-grade gliomas by identifying key myeloid cell populations that are reprogrammed by mutant IDH and may be targetable through therapeutic approaches.
Collapse
Affiliation(s)
- Eric P. Grewal
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Pathology, Massachusetts General Hospital, Boston, MA, USA
| | - Leland G.K. Richardson
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Jing Sun
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Rishab Ramapriyan
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | | | - Julie J. Miller
- Department of Neurology, Massachusetts General Hospital, Boston, MA, USA
| | - Bob S. Carter
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Daniel P. Cahill
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - William T. Curry
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| | - Bryan D. Choi
- Brain Tumor Immunotherapy Laboratory, Massachusetts General Hospital, Boston, MA, USA
- Department of Neurosurgery, Massachusetts General Hospital, Boston, MA, USA
| |
Collapse
|
49
|
Ebrahimi B. Radiomics analysis of cerebral blood flow suggests a possible link between perfusion homogeneity and poor glioblastoma multiforme prognosis. Biomed Phys Eng Express 2024; 10:065006. [PMID: 39214103 DOI: 10.1088/2057-1976/ad7593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2024] [Accepted: 08/30/2024] [Indexed: 09/04/2024]
Abstract
Objectives. This study investigates the association between cerebral blood flow (CBF) and overall survival (OS) in glioblastoma multiforme (GBM) patients receiving chemoradiation. Identifying CBF biomarkers could help predict patient response to this treatment, facilitating the development of personalized therapeutic strategies.Materials and Methods. This retrospective study analyzed CBF data from dynamic susceptibility contrast (DSC) MRI in 30 newly diagnosed GBM patients (WHO grade IV). Radiomics features were extracted from CBF maps, tested for robustness, and correlated with OS. Kaplan-Meier analysis was used to assess the predictive value of radiomic features significantly associated with OS, aiming to stratify patients into groups with distinct post-treatment survival outcomes.Results. While mean relative CBF and CBV failed to serve as independent prognostic markers for OS, the prognostic potential of radiomic features extracted from CBF maps was explored. Ten out of forty-three radiomic features with highest intraclass correlation coefficients (ICC > 0.9), were selected for characterization. While Correlation and Zone Size Variance (ZSV) features showed significant OS correlations, indicating prognostic potential, Kaplan-Meier analysis did not significantly stratify patients based on these features. Visual analysis of the graphs revealed a predominant association between the identified radiomic features and OS under two years. Focusing on this subgroup, Correlation, ZSV, and Gray-Level Nonuniformity (GLN) emerged as significant, suggesting that a lack of heterogeneity in perfusion patterns may be indicative of a poorer outcome. Kaplan-Meier analysis effectively stratified this cohort based on the features mentioned above. Receiver operating characteristic (ROC) analysis further validated their prognostic value, with ZSV demonstrating the highest sensitivity and specificity (0.75 and 0.85, respectively).Conclusion. Our findings underscored radiomics features sensitive to CBF heterogeneity as pivotal predictors for patient stratification. Our results suggest that these markers may have the potential to identify patients who are unlikely to benefit from standard chemoradiation therapy.
Collapse
Affiliation(s)
- Behzad Ebrahimi
- Department of Radiation and Cellular Oncology, University of Chicago, Chicago, IL, United States of America
| |
Collapse
|
50
|
Li JJN, Liu G, Lok BH. Cell-Free DNA Hydroxymethylation in Cancer: Current and Emerging Detection Methods and Clinical Applications. Genes (Basel) 2024; 15:1160. [PMID: 39336751 PMCID: PMC11430939 DOI: 10.3390/genes15091160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Revised: 08/29/2024] [Accepted: 08/31/2024] [Indexed: 09/30/2024] Open
Abstract
In the era of precision oncology, identifying abnormal genetic and epigenetic alterations has transformed the way cancer is diagnosed, managed, and treated. 5-hydroxymethylcytosine (5hmC) is an emerging epigenetic modification formed through the oxidation of 5-methylcytosine (5mC) by ten-eleven translocase (TET) enzymes. DNA hydroxymethylation exhibits tissue- and cancer-specific patterns and is essential in DNA demethylation and gene regulation. Recent advancements in 5hmC detection methods and the discovery of 5hmC in cell-free DNA (cfDNA) have highlighted the potential for cell-free 5hmC as a cancer biomarker. This review explores the current and emerging techniques and applications of DNA hydroxymethylation in cancer, particularly in the context of cfDNA.
Collapse
Affiliation(s)
- Janice J N Li
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
| | - Geoffrey Liu
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| | - Benjamin H Lok
- Department of Medical Biophysics, Temerty Faculty of Medicine, University of Toronto, Princess Margaret Cancer Research Tower, 101 College Street, Room 9-309, Toronto, ON M5G 1L7, Canada
- Institute of Medical Science, Temerty Faculty of Medicine, University of Toronto, 1 King's College Circle, Medical Sciences Building, Room 2374, Toronto, ON M5S 1A8, Canada
- Radiation Medicine Program, Princess Margaret Cancer Centre, 610 University Ave, Toronto, ON M5G 2C4, Canada
| |
Collapse
|