1
|
Li LR, Chen L, Sun ZJ. Igniting hope: Harnessing NLRP3 inflammasome-GSDMD-mediated pyroptosis for cancer immunotherapy. Life Sci 2024; 354:122951. [PMID: 39127315 DOI: 10.1016/j.lfs.2024.122951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/19/2024] [Accepted: 08/05/2024] [Indexed: 08/12/2024]
Abstract
In the contemporary landscape of oncology, immunotherapy, represented by immune checkpoint blockade (ICB) therapy, stands out as a beacon of innovation in cancer treatment. Despite its promise, the therapy's progression is hindered by suboptimal clinical response rates. Addressing this challenge, the modulation of the NLRP3 inflammasome-GSDMD-mediated pyroptosis pathway holds promise as a means to augment the efficacy of immunotherapy. In the pathway, the NLRP3 inflammasome serves as a pivotal molecular sensor that responds to inflammatory stimuli within the organism. Its activation leads to the release of cytokines interleukin 1β and interleukin 18 through the cleavage of GSDMD, thereby forming membrane pores and potentially resulting in pyroptosis. This cascade of processes exerts a profound impact on tumor development and progression, with its function and expression exhibiting variability across different tumor types and developmental stages. Consequently, understanding the specific roles of the NLRP3 inflammasome and GSDMD-mediated pyroptosis in diverse tumors is imperative for comprehending tumorigenesis and crafting precise therapeutic strategies. This review aims to elucidate the structure and activation mechanisms of the NLRP3 inflammasome, as well as the induction mechanisms of GSDMD-mediated pyroptosis. Additionally, we provide a comprehensive overview of the involvement of this pathway in various cancer types and its applications in tumor immunotherapy, nanotherapy, and other fields. Emphasis is placed on the feasibility of leveraging this approach to enhance ICB therapy within the field of immunotherapy. Furthermore, we discuss the potential applications of this pathway in other immunotherapy methods, such as chimeric antigen receptor T-cell (CAR-T) therapy and tumor vaccines.
Collapse
Affiliation(s)
- Ling-Rui Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China
| | - Lei Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| | - Zhi-Jun Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Frontier Science Center for Immunology and Metabolism, Taikang Center for Life and Medical Sciences, Wuhan University, Wuhan, China.
| |
Collapse
|
2
|
Ullah A, Jiao W, Shen B. The role of proinflammatory cytokines and CXC chemokines (CXCL1-CXCL16) in the progression of prostate cancer: insights on their therapeutic management. Cell Mol Biol Lett 2024; 29:73. [PMID: 38745115 PMCID: PMC11094955 DOI: 10.1186/s11658-024-00591-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 05/06/2024] [Indexed: 05/16/2024] Open
Abstract
Reproductive cancers are malignancies that develop in the reproductive organs. One of the leading cancers affecting the male reproductive system on a global scale is prostate cancer (PCa). The negative consequences of PCa metastases endure and are severe, significantly affecting mortality and life quality for those who are affected. The association between inflammation and PCa has captured interest for a while. Inflammatory cells, cytokines, CXC chemokines, signaling pathways, and other elements make up the tumor microenvironment (TME), which is characterized by inflammation. Inflammatory cytokines and CXC chemokines are especially crucial for PCa development and prognosis. Cytokines (interleukins) and CXC chemokines such as IL-1, IL-6, IL-7, IL-17, TGF-β, TNF-α, CXCL1-CXCL6, and CXCL8-CXCL16 are thought to be responsible for the pleiotropic effects of PCa, which include inflammation, progression, angiogenesis, leukocyte infiltration in advanced PCa, and therapeutic resistance. The inflammatory cytokine and CXC chemokines systems are also promising candidates for PCa suppression and immunotherapy. Therefore, the purpose of this work is to provide insight on how the spectra of inflammatory cytokines and CXC chemokines evolve as PCa develops and spreads. We also discussed recent developments in our awareness of the diverse molecular signaling pathways of these circulating cytokines and CXC chemokines, as well as their associated receptors, which may one day serve as PCa-targeted therapies. Moreover, the current status and potential of theranostic PCa therapies based on cytokines, CXC chemokines, and CXC receptors (CXCRs) are examined.
Collapse
Affiliation(s)
- Amin Ullah
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Wang Jiao
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu, China.
| |
Collapse
|
3
|
Zhang J, Gao Q, Hou S, Chi X, Zheng M, Zhang Q, Shan H, Zhang X, Kang C. Role of PAX6, TRPA1, BCL11B, MCOLN2, CUX1, EMX1 in colorectal cancer and osteosarcoma. Medicine (Baltimore) 2024; 103:e37056. [PMID: 38306561 PMCID: PMC10843516 DOI: 10.1097/md.0000000000037056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Accepted: 01/03/2024] [Indexed: 02/04/2024] Open
Abstract
Colorectal cancer is a cancer that arises from the abnormal growth of cells in the colon or rectum. Osteosarcoma (OS) is a common primary bone tumor with high degree of malignancy. The configuration files for colorectal cancer dataset GSE142279 and OS datasets GSE197158 and GSE206448 were downloaded from Gene Expression Omnibus database using the platforms GPL20795, GPL20301, and GPL24676. Differentially expressed genes (DEGs) were screened and weighted gene co-expression network analysis (WGCNA) was performed. Construction and analysis of protein-protein interactions (PPI) network. Functional enrichment analysis, gene set enrichment analysis (GSEA) were performed. A heat map of gene expression was drawn. The Comparative Toxicogenomics Database (CTD) was used to find the diseases most associated with the core genes. TargetScan was used to screen miRNAs regulating DEGs. According to the Gene Ontology (GO) analysis, DEGs are mainly enriched in acetylcholine binding receptor activity involved in Wnt signaling pathway, cell polarity pathway, PI3K-Akt signaling pathway, receptor regulator activity, cytokine-cytokine receptor interaction, transcriptional misregulation in cancer, and inflammation-mediated regulation of tryptophan transport. In the Metascape enrichment analysis, GO enrichment items related to the regulation of Wnt signaling pathway, regulation of muscle system process, and regulation of actin filament-based movement. Eight core genes (CUX1, NES, BCL11B, PAX6, EMX1, MCOLN2, TRPA1, TRPC4) were identified. CTD showed that 4 genes (CUX1, EMX1, TRPA1, BCL11B) were associated with colorectal neoplasms, colorectal tumors, colonic diseases, multiple myeloma, OS, and inflammation. PAX6, TRPA1, BCL11B, MCOLN2, CUX1, and EMX1 are highly expressed in colorectal cancer and OS, and the higher the expression level, the worse the prognosis.
Collapse
Affiliation(s)
- Jie Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Qiang Gao
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Shiyang Hou
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoqian Chi
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Meiliang Zheng
- Department of Orthopedics, The Second Central Hospital of Baoding, Zhuozhou City, Hebei Province, P.R. China
| | - Qijun Zhang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Haifeng Shan
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| | - Xiaoyu Zhang
- Department of Orthopedics, The Fourth Hospital of Hebei Medical University, Chang’an District, Shijiazhuang City, Hebei Province, P.R. China
| | - Chunbo Kang
- Gastrointestinal Rehabilitation Center, Beijing Rehabilitation Hospital Affiliated to Capital Medical University, Xixiazhuang, Badachu, Shijingshan District, Beijing, P.R. China
| |
Collapse
|
4
|
Zhao N, Ni C, Fan S, Che N, Li Y, Wang S, Li Y, Dong X, Guo Y, Zhao X, Liu T. RSRC2 Expression Inhibits Malignant Progression of Triple-Negative Breast Cancer by Transcriptionally Regulating SCIN Expression. Cancers (Basel) 2023; 16:15. [PMID: 38201443 PMCID: PMC10778392 DOI: 10.3390/cancers16010015] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2023] [Revised: 12/02/2023] [Accepted: 12/05/2023] [Indexed: 01/12/2024] Open
Abstract
Triple-negative breast cancer (TNBC) has a shorter survival time and higher mortality rate than other molecular subtypes. RSRC2 is a newly discovered tumor suppressor gene. However, the potential functional mechanism of RSRC2 in TNBC remains unknown so far. Multiple bioinformatics databases were used. A Human Transcriptome Array 2.0 analysis, ChIP-seq analysis, ChIP-qPCR, RT-qPCR, Western blot, cell function assays in vitro and a metastatic mouse model in vivo were performed to demonstrate the role of RSRC2 in TNBC. Through the analysis of various databases, RSRC2 expression was the lowest in TNBC tissues compared to other molecular subtypes. The low expression of RSRC2 was associated with a worse prognosis for patients with breast cancer. The transcriptome array, ChIP-seq and bioinformatics analysis identified that GRHL2 and SCIN might have a close relationship with RSRC2. The functional bioinformatics enrichment analysis and functional cell experiments showed that RSRC2 was involved in cell adhesion, cell proliferation, cell migration and invasion. Furthermore, RSRC2 expression suppressed SCIN expression but not GRHL2 expression. SCIN re-expression in the RSRC2 overexpression cells or SCIN knockdown in the RSRC2 knockdown cells reversed the cellular function caused by RSRC2. Mechanistically, RSRC2 transcriptionally inhibited SCIN expression. In summary, our study reveals that RSRC2 acts as a tumor suppressor in TNBC development and progression through negatively regulating SCIN-mediated cell function, thus providing a potential target for TNBC treatment.
Collapse
Affiliation(s)
- Nan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Chunsheng Ni
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Shuai Fan
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Na Che
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yanlei Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Song Wang
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Yongli Li
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
| | - Xueyi Dong
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Yuhong Guo
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, Tianjin Cancer Hospital, Tianjin Medical University, Tianjin 300060, China
| | - Xiulan Zhao
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| | - Tieju Liu
- Department of Pathology, Tianjin Medical University, Tianjin 300070, China
- Department of Pathology, General Hospital, Tianjin Medical University, Tianjin 300052, China
| |
Collapse
|
5
|
Marini M, Titiz M, Souza Monteiro de Araújo D, Geppetti P, Nassini R, De Logu F. TRP Channels in Cancer: Signaling Mechanisms and Translational Approaches. Biomolecules 2023; 13:1557. [PMID: 37892239 PMCID: PMC10605459 DOI: 10.3390/biom13101557] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 10/29/2023] Open
Abstract
Ion channels play a crucial role in a wide range of biological processes, including cell cycle regulation and cancer progression. In particular, the transient receptor potential (TRP) family of channels has emerged as a promising therapeutic target due to its involvement in several stages of cancer development and dissemination. TRP channels are expressed in a large variety of cells and tissues, and by increasing cation intracellular concentration, they monitor mechanical, thermal, and chemical stimuli under physiological and pathological conditions. Some members of the TRP superfamily, namely vanilloid (TRPV), canonical (TRPC), melastatin (TRPM), and ankyrin (TRPA), have been investigated in different types of cancer, including breast, prostate, lung, and colorectal cancer. TRP channels are involved in processes such as cell proliferation, migration, invasion, angiogenesis, and drug resistance, all related to cancer progression. Some TRP channels have been mechanistically associated with the signaling of cancer pain. Understanding the cellular and molecular mechanisms by which TRP channels influence cancer provides new opportunities for the development of targeted therapeutic strategies. Selective inhibitors of TRP channels are under initial scrutiny in experimental animals as potential anti-cancer agents. In-depth knowledge of these channels and their regulatory mechanisms may lead to new therapeutic strategies for cancer treatment, providing new perspectives for the development of effective targeted therapies.
Collapse
Affiliation(s)
| | | | | | | | - Romina Nassini
- Department of Health Sciences, Clinical Pharmacology and Oncology Section, University of Florence, 50139 Florence, Italy; (M.M.); (M.T.); (D.S.M.d.A.); (P.G.); (F.D.L.)
| | | |
Collapse
|
6
|
Al-Rashidi RR, Noraldeen SAM, Kareem AK, Mahmoud AK, Kadhum WR, Ramírez-Coronel AA, Iswanto AH, Obaid RF, Jalil AT, Mustafa YF, Nabavi N, Wang Y, Wang L. Malignant function of nuclear factor-kappaB axis in prostate cancer: Molecular interactions and regulation by non-coding RNAs. Pharmacol Res 2023; 194:106775. [PMID: 37075872 DOI: 10.1016/j.phrs.2023.106775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 04/21/2023]
Abstract
Prostate carcinoma is a malignant situation that arises from genomic alterations in the prostate, leading to changes in tumorigenesis. The NF-κB pathway modulates various biological mechanisms, including inflammation and immune responses. Dysregulation of NF-κB promotes carcinogenesis, including increased proliferation, invasion, and therapy resistance. As an incurable disease globally, prostate cancer is a significant health concern, and research into genetic mutations and NF-κB function has the efficacy to facilitate the introduction of novel therapies. NF-κB upregulation is observed during prostate cancer progression, resulting in increased cell cycle progression and proliferation rates. Additionally, NF-κB endorses resistance to cell death and enhances the capacity for metastasis, particularly bone metastasis. Overexpression of NF-κB triggers chemoresistance and radio-resistance, and inhibition of NF-κB by anti-tumor compounds can reduce cancer progression. Interestingly, non-coding RNA transcripts can regulate NF-κB level and its nuclear transfer, offering a potential avenue for modulating prostate cancer progression.
Collapse
Affiliation(s)
| | | | - Ali Kamil Kareem
- Biomedical Engineering Department, Al-Mustaqbal University College, 51001, Hillah, Iraq
| | | | - Wesam R Kadhum
- Department of Pharmacy, Kut University College, Kut 52001, Wasit, Iraq
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; University of Palermo, Buenos Aires, Argentina; Epidemiology and Biostatistics Research Group, CES University, Colombia
| | - Acim Heri Iswanto
- Department of Public Health, Faculty of Health Science, University of Pembangunan Nasional Veteran Jakarta, Jakarta, Indonesia
| | - Rasha Fadhel Obaid
- Department of Biomedical Engineering, Al-Mustaqbal University College, Babylon, Iraq
| | - Abduladheem Turki Jalil
- Medical Laboratory Technology Department, College of Medical Technology, The Islamic University, Najaf, Iraq
| | - Yasser Fakri Mustafa
- Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, Mosul 41001, Iraq
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada.
| | - Yuzhuo Wang
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, V6H3Z6 Vancouver, BC, Canada; Department of Experimental Therapeutics, BC Cancer Research Institute, V5Z1L3 Vancouver, BC, Canada.
| | - Lin Wang
- Department of Geriatrics, Xijing Hospital, The Air Force Military Medical University, Xi'an 710032, China.
| |
Collapse
|
7
|
Morelli MB, Nabissi M, Amantini C, Maggi F, Ricci-Vitiani L, Pallini R, Santoni G. TRPML2 Mucolipin Channels Drive the Response of Glioma Stem Cells to Temozolomide and Affect the Overall Survival in Glioblastoma Patients. Int J Mol Sci 2022; 23:ijms232315356. [PMID: 36499683 PMCID: PMC9738251 DOI: 10.3390/ijms232315356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2022] [Revised: 11/18/2022] [Accepted: 12/02/2022] [Indexed: 12/12/2022] Open
Abstract
The survival of patients with glioblastoma (GBM) is poor. The main cause is the presence of glioma stem cells (GSCs), exceptionally resistant to temozolomide (TMZ) treatment. This last may be related to the heterogeneous expression of ion channels, among them TRPML2. Its mRNA expression was evaluated in two different neural stem cell (NS/PC) lines and sixteen GBM stem-like cells by qRT-PCR. The response to TMZ was evaluated in undifferentiated or differentiated GSCs, and in TRPML2-induced or silenced GSCs. The relationship between TRPML2 expression and responsiveness to TMZ treatment was evaluated by MTT assay showing that increased TRPML2 mRNA levels are associated with resistance to TMZ. This research was deepened by qRT-PCR and western blot analysis. PI3K/AKT and JAK/STAT pathways as well as ABC and SLC drug transporters were involved. Finally, the relationship between TRPML2 expression and overall survival (OS) and progression-free survival (PFS) in patient-derived GSCs was evaluated by Kaplan-Meier analysis. The expression of TRPML2 mRNA correlates with worse OS and PFS in GBM patients. Thus, the expression of TRPML2 in GSCs influences the responsiveness to TMZ in vitro and affects OS and PFS in GBM patients.
Collapse
Affiliation(s)
- Maria Beatrice Morelli
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| | - Massimo Nabissi
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy
| | - Lucia Ricci-Vitiani
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, 00161 Rome, Italy
| | - Roberto Pallini
- Institute of Neurosurgery, Gemelli University Polyclinic Foundation, Scientific Hospitalization and Care Institute (IRCCS), 00168 Rome, Italy
- Institute of Neurosurgery, School of Medicine, Catholic University, 00168 Rome, Italy
| | - Giorgio Santoni
- School of Pharmacy, University of Camerino, 62032 Camerino, Italy
- Correspondence: (M.B.M.); (G.S.); Tel.: +39-0737403312 (M.B.M.); +39-0737403319 (G.S.)
| |
Collapse
|
8
|
Coexpression of TRPML1 and TRPML2 Mucolipin Channels Affects the Survival of Glioblastoma Patients. Int J Mol Sci 2022; 23:ijms23147741. [PMID: 35887088 PMCID: PMC9321332 DOI: 10.3390/ijms23147741] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 07/05/2022] [Accepted: 07/11/2022] [Indexed: 02/01/2023] Open
Abstract
Among brain cancers, glioblastoma (GBM) is the most malignant glioma with an extremely poor prognosis. It is characterized by high cell heterogeneity, which can be linked to its high malignancy. We have previously demonstrated that TRPML1 channels affect the OS of GBM patients. Herein, by RT-PCR, FACS and Western blot, we demonstrated that TRPML1 and TRPML2 channels are differently expressed in GBM patients and cell lines. Moreover, these channels partially colocalized in ER and lysosomal compartments in GBM cell lines, as evaluated by confocal analysis. Interestingly, the silencing of TRPML1 or TRPML2 by RNA interference results in the decrease in the other receptor at protein level. Moreover, the double knockdown of TRPML1 and TRPML2 leads to increased GBM cell survival with respect to single-channel-silenced cells, and improves migration and invasion ability of U251 cells. Finally, the Kaplan–Meier survival analysis demonstrated that patients with high TRPML2 expression in absence of TRPML1 expression strongly correlates with short OS, whereas high TRPML1 associated with low TRPML2 mRNA expression correlates with longer OS in GBM patients. The worst OS in GBM patients is associated with the loss of both TRPML1 and TRPML2 channels.
Collapse
|
9
|
Regulation of Aging and Longevity by Ion Channels and Transporters. Cells 2022; 11:cells11071180. [PMID: 35406743 PMCID: PMC8997527 DOI: 10.3390/cells11071180] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 03/22/2022] [Accepted: 03/29/2022] [Indexed: 12/10/2022] Open
Abstract
Despite significant advances in our understanding of the mechanisms that underlie age-related physiological decline, our ability to translate these insights into actionable strategies to extend human healthspan has been limited. One of the major reasons for the existence of this barrier is that with a few important exceptions, many of the proteins that mediate aging have proven to be undruggable. The argument put forth here is that the amenability of ion channels and transporters to pharmacological manipulation could be leveraged to develop novel therapeutic strategies to combat aging. This review delves into the established roles for ion channels and transporters in the regulation of aging and longevity via their influence on membrane excitability, Ca2+ homeostasis, mitochondrial and endolysosomal function, and the transduction of sensory stimuli. The goal is to provide the reader with an understanding of emergent themes, and prompt further investigation into how the activities of ion channels and transporters sculpt the trajectories of cellular and organismal aging.
Collapse
|
10
|
Wang Y, Çil Ç, Harnett MM, Pineda MA. Cytohesin-2/ARNO: A Novel Bridge Between Cell Migration and Immunoregulation in Synovial Fibroblasts. Front Immunol 2022; 12:809896. [PMID: 35095899 PMCID: PMC8790574 DOI: 10.3389/fimmu.2021.809896] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 12/17/2021] [Indexed: 11/26/2022] Open
Abstract
The guanine nucleotide exchange factor cytohesin-2 (ARNO) is a major activator of the small GTPase ARF6 that has been shown to play an important role(s) in cell adhesion, migration and cytoskeleton reorganization in various cell types and models of disease. Interestingly, dysregulated cell migration, in tandem with hyper-inflammatory responses, is one of the hallmarks associated with activated synovial fibroblasts (SFs) during chronic inflammatory joint diseases, like rheumatoid arthritis. The role of ARNO in this process has previously been unexplored but we hypothesized that the pro-inflammatory milieu of inflamed joints locally induces activation of ARNO-mediated pathways in SFs, promoting an invasive cell phenotype that ultimately leads to bone and cartilage damage. Thus, we used small interference RNA to investigate the impact of ARNO on the pathological migration and inflammatory responses of murine SFs, revealing a fully functional ARNO-ARF6 pathway which can be rapidly activated by IL-1β. Such signalling promotes cell migration and formation of focal adhesions. Unexpectedly, ARNO was also shown to modulate SF-inflammatory responses, dictating their precise cytokine and chemokine expression profile. Our results uncover a novel role for ARNO in SF-dependent inflammation, that potentially links pathogenic migration with initiation of local joint inflammation, offering new approaches for targeting the fibroblast compartment in chronic arthritis and joint disease.
Collapse
Affiliation(s)
- Yilin Wang
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Çağlar Çil
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Margaret M Harnett
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom
| | - Miguel A Pineda
- Institute of Infection, Immunity and Inflammation, University of Glasgow, Glasgow, United Kingdom.,Research Into Inflammatory Arthritis Centre Versus Arthritis (RACE), Glasgow, United Kingdom
| |
Collapse
|
11
|
Santoni G, Amantini C, Nabissi M, Arcella A, Maggi F, Santoni M, Morelli MB. Functional In Vitro Assessment of VEGFA/NOTCH2 Signaling Pathway and pRB Proteasomal Degradation and the Clinical Relevance of Mucolipin TRPML2 Overexpression in Glioblastoma Patients. Int J Mol Sci 2022; 23:ijms23020688. [PMID: 35054871 PMCID: PMC8775570 DOI: 10.3390/ijms23020688] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Revised: 12/30/2021] [Accepted: 01/06/2022] [Indexed: 12/28/2022] Open
Abstract
Glioblastoma (GBM) is the most malignant glioma with an extremely poor prognosis. It is characterized by high vascularization and its growth depends on the formation of new blood vessels. We have previously demonstrated that TRPML2 mucolipin channel expression increases with the glioma pathological grade. Herein by ddPCR and Western blot we found that the silencing of TRPML2 inhibits expression of the VEGFA/Notch2 angiogenic pathway. Moreover, the VEGFA/Notch2 expression increased in T98 and U251 cells stimulated with the TRPML2 agonist, ML2-SA1, or by enforced-TRPML2 levels. In addition, changes in TRPML2 expression or ML2-SA1-induced stimulation, affected Notch2 activation and VEGFA release. An increased invasion capability, associated with a reduced VEGF/VEGFR2 expression and increased vimentin and CD44 epithelial-mesenchymal transition markers in siTRPML2, but not in enforced-TRPML2 or ML2-SA1-stimulated glioma cells, was demonstrated. Furthermore, an increased sensitivity to Doxorubicin cytotoxicity was demonstrated in siTRPML2, whereas ML2-SA1-treated GBM cells were more resistant. The role of proteasome in Cathepsin B-dependent and -independent pRB degradation in siTRPML2 compared with siGLO cells was studied. Finally, through Kaplan-Meier analysis, we found that high TRPML2 mRNA expression strongly correlates with short survival in GBM patients, supporting TRPML2 as a negative prognostic factor in GBM patients.
Collapse
Affiliation(s)
- Giorgio Santoni
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (G.S.); (M.B.M.); Tel.: +39-0737403319 (G.S.); +39-0737403312 (M.B.M.)
| | - Consuelo Amantini
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (C.A.); (F.M.)
| | - Massimo Nabissi
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy;
| | - Antonietta Arcella
- Neuropathology Laboratory, Istituto di Ricovero e Cura a Carattere Scientifico Neuromed, 86077 Pozzilli, Italy;
| | - Federica Maggi
- School of Biosciences and Veterinary Medicine, University of Camerino, 62032 Camerino, Italy; (C.A.); (F.M.)
- Department of Molecular Medicine, Sapienza University, 00185 Rome, Italy
| | - Matteo Santoni
- Oncology Unit, Macerata Hospital, 62100 Macerata, Italy;
| | - Maria Beatrice Morelli
- School of Pharmacy, Section of Experimental Medicine, University of Camerino, 62032 Camerino, Italy;
- Correspondence: (G.S.); (M.B.M.); Tel.: +39-0737403319 (G.S.); +39-0737403312 (M.B.M.)
| |
Collapse
|