1
|
Muto S, Homma MK, Kiko Y, Ozaki Y, Watanabe M, Okabe N, Hamada K, Hashimoto Y, Suzuki H. Nucleolar casein kinase 2 alpha as a prognostic factor in patients with surgically resected early‑stage lung adenocarcinoma. Oncol Rep 2025; 53:4. [PMID: 39513582 DOI: 10.3892/or.2024.8837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Accepted: 10/17/2024] [Indexed: 11/15/2024] Open
Abstract
Lung cancer remains a leading cause of global cancer‑related deaths, therefore the identification of prognostic factors for lung cancer is critical. Casein kinase 2 alpha (CK2α) is one of the driver kinases in various cancers, and it was previously demonstrated that CK2α localization was associated with a poor prognosis in invasive breast cancer. In the present study, the importance of CK2α in the nucleolus was explored as a potential prognostic marker for surgically resected early‑stage lung adenocarcinoma. The present study included 118 patients who underwent pulmonary lobectomy between 2014 and 2018 in Fukushima Medical University Hospital (Fukushima, Japan), and in whom CK2α localization in tumor samples was assessed by immunohistochemistry. Patient and tumor characteristics, including pathological stage, histological type and histological grade, were analyzed. Recurrence‑free survival (RFS) and overall survival were evaluated in relation to nucleolar CK2α staining. CK2α staining in the nucleoli was observed in 50.8% of lung adenocarcinoma tumors. Positive nucleolar CK2α staining was independent of pathological stage, histological type and histological grade. Patients with positive nucleolar CK2α staining exhibited significantly worse RFS compared with patients with negative staining. Multivariate analysis identified nucleolar CK2α staining and lymph node metastasis as independent poor prognostic factors. The results of the present study suggested that nucleolar CK2α staining is a novel and independent prognostic factor in surgically resected early‑stage lung adenocarcinoma. These findings indicated the potential of nucleolar CK2α as a predictive biomarker for future recurrence, and a guide to treatment decisions. Further research is required, particularly in understanding the molecular mechanisms linking nucleolar CK2α to recurrence.
Collapse
Affiliation(s)
- Satoshi Muto
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Miwako Kato Homma
- Department of Biomolecular Sciences, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Yuichiro Kiko
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Yuki Ozaki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Masayuki Watanabe
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Naoyuki Okabe
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Kazuyuki Hamada
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Yuko Hashimoto
- Department of Diagnostic Pathology, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| | - Hiroyuki Suzuki
- Department of Chest Surgery, Fukushima Medical University School of Medicine, Fukushima 960‑1295, Japan
| |
Collapse
|
2
|
George IA, Sambath J, Dhawale RE, Singh M, Trivedi V, Venkataramanan R, Chauhan R, Kumar P. Phosphoproteomics guides low dose drug combination of cisplatin and silmitasertib against concurrent chemoradiation resistant cervical cancer. Mol Omics 2024. [PMID: 39665434 DOI: 10.1039/d4mo00147h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2024]
Abstract
Cisplatin-based concurrent chemoradiotherapy (CCRT) is the standard treatment for cervical patients with locally advanced disease. Despite the improved survival rates and prognosis observed in patients undergoing CCRT, over 30-40% do not achieve complete response and are at risk of locoregional recurrence. Targeting crucial molecules that confer resistance may improve the clinical outcomes of the treatment resistant patient cohort. Herein, we employed a liquid chromatography-tandem mass spectrometry (LC-MS/MS)-based phosphoproteomic approach to identify the altered phosphophorylation events, activated kinases and dysregulated pathways involved in treatment resistance. We quantified 2531 unique phosphopeptides mapping to 1099 proteins of which 74 proteins were differentially phosphorylated between the cohorts. Pathway analysis revealed dysregulation of the DNA repair pathway and the proteins involved in DNA repair in the non-responder cohort. Additionally, we identified kinase signature associated with CCRT resistance. Kinases such as CSNK2A1, PRKDC, PLK-1, NEK2, ATM and CDK1 are predicted to be activated in non-responders. In particular, we showed that CSNK2A1 is involved in oncogenesis of cervical cancer and pharmacological inhibition led to reduced cell proliferation, migration and colony formation. Moreover, the combination of the CSNK2A1 inhibitor, silmitasertib with cisplatin demonstrated synergism (combination index < 1) and yielded a beneficial reduction in dosage. The dose reduced combination potentially reduced the proliferative, migratory and colony formation ability in vitro. Our findings highlight the potential of phosphoproteomics to identify clinically significant targets and pathways implicated in CCRT resistance. Our study also indicates that combination therapy could serve as an effective treatment strategy to improve the efficacy of patients undergoing CCRT.
Collapse
Affiliation(s)
- Irene A George
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, Bangalore, 560066, Karnataka, India.
| | - Janani Sambath
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, Bangalore, 560066, Karnataka, India.
| | - R E Dhawale
- Vedantaa Hospital & Research Centre, Palghar, 401606, Maharashtra, India
| | - Manisha Singh
- Mahavir Cancer Sansthan and Research Centre (MCSRC), Patna, 801505, Bihar, India.
| | - Vinita Trivedi
- Mahavir Cancer Sansthan and Research Centre (MCSRC), Patna, 801505, Bihar, India.
| | - R Venkataramanan
- Karkinos Foundation, Mumbai, 400086, Maharashtra, India
- Karkinos Healthcare Pvt Ltd, Navi Mumbai, 400705, Maharashtra, India
| | - Richa Chauhan
- Mahavir Cancer Sansthan and Research Centre (MCSRC), Patna, 801505, Bihar, India.
| | - Prashant Kumar
- Manipal Academy of Higher Education (MAHE), Manipal, 576104, Karnataka, India
- Institute of Bioinformatics, Bangalore, 560066, Karnataka, India.
- Karkinos Foundation, Mumbai, 400086, Maharashtra, India
- Karkinos Healthcare Pvt Ltd, Navi Mumbai, 400705, Maharashtra, India
- Datar Cancer Genetics, Nashik, 422010, Maharashtra, India
- Centre of Excellence for Cancer - Gangwal School of Medical Sciences and Technology, Indian Institute of Technology Kanpur, Kanpur, 208016, Uttar Pradesh, India
| |
Collapse
|
3
|
Łukowska-Chojnacka E, Fedorov E, Kowalkowska A, Wielechowska M, Sobiepanek A, Koronkiewicz M, Wińska P. Synthesis and evaluation of anticancer activity of new 4,5,6,7-tetrabromo-1H-benzimidazole derivatives. Bioorg Chem 2024; 153:107880. [PMID: 39476601 DOI: 10.1016/j.bioorg.2024.107880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/16/2024] [Accepted: 10/05/2024] [Indexed: 12/10/2024]
Abstract
An efficient method for the synthesis of new 4,5,6,7-tetrabromo-1H-benzimidazole derivatives has been developed. New ketones were obtained by N-alkylation of TBBi or 2-Me-TBBi with various phenacyl halides and then reduced to the corresponding alcohols. All compounds were obtained with satisfactory yields in the range of 40-91 %. The synthesized compounds appeared a weak CK2 and PIM-1 inhibitors but exhibit an interesting cytotoxic activity against cancer cell lines, i.e. MCF-7, PC-3, CCRF-CEM, K-562. 1-Phenyl-2-(4,5,6,7-tetrabromo-1H-benzimidazol-1-yl)ethanone 3aA exhibits the highest cytotoxic activity with IC50 value of 5.30 µM for MCF-7 and 6.80 µM for CCRF-CEM. Moreover, this compound shows the highest selectivity against both MCF-7 and CCRF-CEM with SI selectivity coefficients (against MRC-5 and Vero cells) equal 5.45 and 4.30 for MCF-7 and 4.25 and 3.35 for CCRF-CEM, respectively. Furthermore, it was shown that compound 3aA exhibits very good pro-apoptotic properties, through induction of the mitochondrial apoptotic pathway in CCRF-CEM cells. These results correlate with data showing the effect of 3aA on intracellular level of CK2α protein and CK2-mediated phosphorylation of Ser529 in NF-κBp65. Study of the effect of compound 3aA on mRNA levels of CK2α and CK2α' showed no significant differences in gene expression levels in control CCRF-CEM and cells treated with 3aA, indicating 3aA action at the protein level.
Collapse
Affiliation(s)
- Edyta Łukowska-Chojnacka
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland.
| | - Egor Fedorov
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Anna Kowalkowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Monika Wielechowska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Anna Sobiepanek
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| | - Mirosława Koronkiewicz
- Department of Biomedical Research, National Medicines Institute, Chełmska St. 30/34, 00-725 Warsaw, Poland
| | - Patrycja Wińska
- Faculty of Chemistry, Warsaw University of Technology, Noakowskiego St. 3, 00-664 Warsaw, Poland
| |
Collapse
|
4
|
Su RY, Xu CH, Guo HJ, Meng LJ, Zhuo JY, Xu N, Li HG, He CY, Zhang XY, Lian ZX, Wang S, Cao C, Zhou R, Lu D, Zheng SS, Wei XY, Xu X. Oncogenic cholesterol rewires lipid metabolism in hepatocellular carcinoma via the CSNK2A1-IGF2R Ser2484 axis. J Adv Res 2024:S2090-1232(24)00540-X. [PMID: 39547439 DOI: 10.1016/j.jare.2024.11.021] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/02/2024] [Accepted: 11/12/2024] [Indexed: 11/17/2024] Open
Abstract
INTRODUCTION Alcohol consumption and hepatitis B virus (HBV) infection are common risk factors for hepatocellular carcinoma (HCC). However, few studies have focused on elucidating the mechanisms of HCC with combined alcohol and HBV etiology. OBJECTIVES We aimed to investigate the molecular features of alcohol and HBV on HCC and to seek out potential therapeutic strategies. METHODS Two independent cohorts of HCC patients (n = 539 and n = 140) were included to investigate HCC with synergetic alcohol and HBV (AB-HCC) background. Patient-derived cell lines, organoids, and xenografts were used to validate the metabolic fragile. High-throughput drug screening (1181 FDA-approved anticancer drugs) was leveraged to explore the potential therapeutic agents. RESULTS Here, we delineated AB-HCC as a distinctive metabolic subtype, hallmarked by oncogenic cholesterol, through the integration of clinical cohorts, proteomics, phosphoproteomics, and spatial transcriptome. Mechanistically, our findings revealed that cholesterol directly binds to CSNK2A1 (Casein Kinase 2 Alpha 1), augmenting its kinase activity and leading to phosphorylation of IGF2R (Insulin-Like Growth Factor 2 Receptor) at Ser2484. This cascade rewires lipid-driven mitochondrial oxidative phosphorylation, spawns reactive oxygen species measured by malondialdehyde assay, and perpetuates a positive feedback loop for cholesterol biosynthesis, ultimately culminating in tumorigenesis. Initial transcriptional activation of CSNK2A1 is driven by upregulation of RAD21 in AB-HCC. Our cholesterol profiling exposes AB-HCC's compensatory mechanism of AB-HCC, which capitalizes on both uptake and biosynthesis of cholesterol to confer survival edge. Moreover, high-throughput drug screening coupled with in vivo validation has uncovered the susceptibilities of AB-HCC, which can be effectively addressed by a combination of dietary cholesterol restriction and oral administration of Fostamatinib. The CSNK2A1-mediated cholesterol biosynthesis pathway has been implicated in various cancers characterized by cholesterol metabolism. CONCLUSION These findings not only pinpoint the oncogenic metabolite cholesterol as a hidden culprit in AB-HCC subtype, but also enlighten a novel combination strategy to rejuvenate tumor metabolism.
Collapse
Affiliation(s)
- Ren-Yi Su
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chen-Hao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hai-Jun Guo
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China
| | - Li-Jun Meng
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Jian-Yong Zhuo
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Nan Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Hui-Gang Li
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Chi-Yu He
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Xuan-Yu Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China
| | - Zheng-Xin Lian
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Shuai Wang
- Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China
| | - Chenhao Cao
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, and College of Life Sciences, Zhejiang University, Hangzhou 310027, China
| | - Di Lu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China.
| | - Shu-Sen Zheng
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, 79 Qingchun Road, Hangzhou 310003, China; Department of Hepatobiliary and Pancreatic Surgery, Key Laboratory of Artificial Organs and Computational Medicine in Zhejiang Province, Shulan (Hangzhou) Hospital, Shulan International Medical College, Zhejiang Shuren University, Hangzhou, 310022, China.
| | - Xu-Yong Wei
- Department of Hepatobiliary and Pancreatic Surgery, Hangzhou First People's Hospital, Hangzhou 310006, China; Key Laboratory of Integrated Oncology and Intelligent Medicine of Zhejiang Province, Hangzhou 310006, China.
| | - Xiao Xu
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310000, China; NHC Key Laboratory of Combined Multi-organ Transplantation, Hangzhou 310003, China.
| |
Collapse
|
5
|
Xie Y, Wu F, Chen Z, Hou Y. Epithelial membrane protein 1 in human cancer: a potential diagnostic biomarker and therapeutic target. Biomark Med 2024; 18:995-1005. [PMID: 39469853 PMCID: PMC11633390 DOI: 10.1080/17520363.2024.2416887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2024] [Accepted: 10/11/2024] [Indexed: 10/30/2024] Open
Abstract
Epithelial membrane protein 1 (EMP1) is a member of the small hydrophobic membrane protein subfamily. EMP1 is aberrantly expressed in various tumor tissues and governs multiple cellular behaviors (e.g., proliferation, differentiation, and migration). The resultant regulation of the cancer pathway is responsible for the metastasis of cancer cells and determines the risk of malignant tumor progression. This review provides an updated overview of EMP1 as either an oncogene or a tumor suppressor contingent on the cancer type and summarizes its upstream regulators and downstream target genes. This systematic review summarizes our current understanding of the role of EMP1 in malignant tumor development, including critical functional mechanisms and implications for its potential use as the biomarker and therapeutic target.
Collapse
Affiliation(s)
- Yuxin Xie
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Feng Wu
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Zhe Chen
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| | - Yu Hou
- Department of Radiological Medicine, School of Basic Medical Sciences, Chongqing Medical University, Chongqing, 400016, China
| |
Collapse
|
6
|
Bortel P, Hagn G, Skos L, Bileck A, Paulitschke V, Paulitschke P, Gleiter L, Mohr T, Gerner C, Meier-Menches SM. Memory effects of prior subculture may impact the quality of multiomic perturbation profiles. Proc Natl Acad Sci U S A 2024; 121:e2313851121. [PMID: 38976734 PMCID: PMC11260104 DOI: 10.1073/pnas.2313851121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Accepted: 06/03/2024] [Indexed: 07/10/2024] Open
Abstract
Mass spectrometry-based omics technologies are increasingly used in perturbation studies to map drug effects to biological pathways by identifying significant molecular events. Significance is influenced by fold change and variation of each molecular parameter, but also by multiple testing corrections. While the fold change is largely determined by the biological system, the variation is determined by experimental workflows. Here, it is shown that memory effects of prior subculture can influence the variation of perturbation profiles using the two colon carcinoma cell lines SW480 and HCT116. These memory effects are largely driven by differences in growth states that persist into the perturbation experiment. In SW480 cells, memory effects combined with moderate treatment effects amplify the variation in multiple omics levels, including eicosadomics, proteomics, and phosphoproteomics. With stronger treatment effects, the memory effect was less pronounced, as demonstrated in HCT116 cells. Subculture homogeneity was controlled by real-time monitoring of cell growth. Controlled homogeneous subculture resulted in a perturbation network of 321 causal conjectures based on combined proteomic and phosphoproteomic data, compared to only 58 causal conjectures without controlling subculture homogeneity in SW480 cells. Some cellular responses and regulatory events were identified that extend the mode of action of arsenic trioxide (ATO) only when accounting for these memory effects. Controlled prior subculture led to the finding of a synergistic combination treatment of ATO with the thioredoxin reductase 1 inhibitor auranofin, which may prove useful in the management of NRF2-mediated resistance mechanisms.
Collapse
Affiliation(s)
- Patricia Bortel
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Gerhard Hagn
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Lukas Skos
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Vienna Doctoral School in Chemistry, University of Vienna, Vienna1090, Austria
| | - Andrea Bileck
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
| | - Verena Paulitschke
- Department of Dermatology, Medical University of Vienna, Vienna1090, Austria
| | - Philipp Paulitschke
- PHIO scientific GmbH, Munich81371, Germany
- Faculty of Physics, Ludwig-Maximilians University of Munich, Munich80539, Germany
| | | | - Thomas Mohr
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Center of Cancer Research, Department of Medicine I, Medical University of Vienna and Comprehensive Cancer Center, Vienna1090, Austria
| | - Christopher Gerner
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
| | - Samuel M. Meier-Menches
- Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
- Joint Metabolome Facility, University of Vienna and Medical University of Vienna, Vienna1090, Austria
- Institute of Inorganic Chemistry, Faculty of Chemistry, University of Vienna, Vienna1090, Austria
| |
Collapse
|
7
|
Ruggeri E, Frezzato F, Mouawad N, Pizzi M, Scarmozzino F, Capasso G, Trimarco V, Quotti Tubi L, Cellini A, Cavarretta CA, Ruocco V, Serafin A, Angotzi F, Danesin N, Manni S, Facco M, Piazza F, Trentin L, Visentin A. Protein kinase CK2α is overexpressed in classical hodgkin lymphoma, regulates key signaling pathways, PD-L1 and may represent a new target for therapy. Front Immunol 2024; 15:1393485. [PMID: 38807597 PMCID: PMC11130512 DOI: 10.3389/fimmu.2024.1393485] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2024] [Accepted: 04/25/2024] [Indexed: 05/30/2024] Open
Abstract
Introduction In classical Hodgkin lymphoma (cHL), the survival of neoplastic cells is mediated by the activation of NF-κB, JAK/STAT and PI3K/Akt signaling pathways. CK2 is a highly conserved serine/threonine kinase, consisting of two catalytic (α) and two regulatory (β) subunits, which is involved in several cellular processes and both subunits were found overexpressed in solid tumors and hematologic malignancies. Methods and results Biochemical analyses and in vitro assays showed an impaired expression of CK2 subunits in cHL, with CK2α being overexpressed and a decreased expression of CK2β compared to normal B lymphocytes. Mechanistically, CK2β was found to be ubiquitinated in all HL cell lines and consequently degraded by the proteasome pathway. Furthermore, at basal condition STAT3, NF-kB and AKT are phosphorylated in CK2-related targets, resulting in constitutive pathways activation. The inhibition of CK2 with CX-4945/silmitasertib triggered the de-phosphorylation of NF-κB-S529, STAT3-S727, AKT-S129 and -S473, leading to cHL cell lines apoptosis. Moreover, CX-4945/silmitasertib was able to decrease the expression of the immuno-checkpoint CD274/PD-L1 but not of CD30, and to synergize with monomethyl auristatin E (MMAE), the microtubule inhibitor of brentuximab vedotin. Conclusions Our data point out a pivotal role of CK2 in the survival and the activation of key signaling pathways in cHL. The skewed expression between CK2α and CK2β has never been reported in other lymphomas and might be specific for cHL. The effects of CK2 inhibition on PD-L1 expression and the synergistic combination of CX-4945/silmitasertib with MMAE pinpoints CK2 as a high-impact target for the development of new therapies for cHL.
Collapse
Affiliation(s)
- Edoardo Ruggeri
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Federica Frezzato
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Nayla Mouawad
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Marco Pizzi
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Federico Scarmozzino
- Surgical Pathology and Cytopathology Unit, Department of Medicine, University of Padova, Padova, Italy
| | - Guido Capasso
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Valentina Trimarco
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Laura Quotti Tubi
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Alessandro Cellini
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | | | - Valeria Ruocco
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Andrea Serafin
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Francesco Angotzi
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Nicolò Danesin
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Sabrina Manni
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Monica Facco
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Francesco Piazza
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Livio Trentin
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| | - Andrea Visentin
- Hematology Unit, Department of Medicine (DIMED), University of Padova, Padova, Italy
| |
Collapse
|
8
|
Liu ZD, Shi YH, Xu QC, Zhao GY, Zhu YQ, Li FX, Ma MJ, Ye JY, Huang XT, Wang XY, Xu X, Wang JQ, Zhao W, Yin XY. CSNK2A1 confers gemcitabine resistance to pancreatic ductal adenocarcinoma via inducing autophagy. Cancer Lett 2024; 585:216640. [PMID: 38290659 DOI: 10.1016/j.canlet.2024.216640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 12/07/2023] [Accepted: 01/11/2024] [Indexed: 02/01/2024]
Abstract
Gemcitabine, a pivotal chemotherapeutic agent for pancreatic ductal adenocarcinoma (PDAC), frequently encounters drug resistance, posing a significant clinical challenge with implications for PDAC patient prognosis. In this study, employing an integrated approach involving bioinformatic analyses from multiple databases, we unveil CSNK2A1 as a key regulatory factor. The patient-derived xenograft (PDX) model further substantiates the critical role of CSNK2A1 in gemcitabine resistance within the context of PDAC. Additionally, targeted silencing of CSNK2A1 expression significantly enhances sensitivity of PDAC cells to gemcitabine treatment. Mechanistically, CSNK2A1's transcriptional regulation is mediated by H3K27 acetylation in PDAC. Moreover, we identify CSNK2A1 as a pivotal activator of autophagy, and enhanced autophagy drives gemcitabine resistance. Silmitasertib, an established CSNK2A1 inhibitor, can effectively inhibit autophagy. Notably, the combinatorial treatment of Silmitasertib with gemcitabine demonstrates remarkable efficacy in treating PDAC. In summary, our study reveals CSNK2A1 as a potent predictive factor for gemcitabine resistance in PDAC. Moreover, targeted CSNK2A1 inhibition by Silmitasertib represents a promising therapeutic strategy to restore gemcitabine sensitivity in PDAC, offering hope for improved clinical outcomes.
Collapse
Affiliation(s)
- Zhi-De Liu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Yin-Hao Shi
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Qiong-Cong Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Guang-Yin Zhao
- Department of Animal Experiment Center, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Ying-Qin Zhu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Fu-Xi Li
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China
| | - Ming-Jian Ma
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jing-Yuan Ye
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Tai Huang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xi-Yu Wang
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Xiang Xu
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China
| | - Jie-Qin Wang
- Department of Pediatric Surgery, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510623, China
| | - Wei Zhao
- Key Laboratory of Stem Cells and Tissue Engineering (Sun Yat-Sen University), Ministry of Education, Guangzhou, 510080, China.
| | - Xiao-Yu Yin
- Department of Pancreato-Biliary Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou 510080, China.
| |
Collapse
|
9
|
Galal KA, Krämer A, Strickland BG, Smith JL, Dickmander RJ, Moorman NJ, Willson TM. Identification of 4-(6-((2-methoxyphenyl)amino)pyrazin-2-yl)benzoic acids as CSNK2A inhibitors with antiviral activity and improved selectivity over PIM3. Bioorg Med Chem Lett 2024; 99:129617. [PMID: 38199328 DOI: 10.1016/j.bmcl.2024.129617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 01/03/2024] [Accepted: 01/06/2024] [Indexed: 01/12/2024]
Abstract
We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4'-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7c, generated analogues with selectivity for CSNK2A over PIM3 and improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.
Collapse
Affiliation(s)
- Kareem A Galal
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA
| | - Andreas Krämer
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, Frankfurt 60438, Germany; Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strabe 9, Frankfurt 60438, Germany; Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, Frankfurt 60596, Germany
| | - Benjamin G Strickland
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebekah J Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel J Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA; Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy M Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA; Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA.
| |
Collapse
|
10
|
Dai H, Liu M, Pan Y, Li T, Pan Y, Chen ZS, Li J, Liu Y, Fang S. CK2B is a Prognostic Biomarker and a Potential Drug Target for Hepatocellular Carcinoma. Recent Pat Anticancer Drug Discov 2024; 19:622-634. [PMID: 37779404 DOI: 10.2174/0115748928262221230925090120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/19/2023] [Accepted: 08/21/2023] [Indexed: 10/03/2023]
Abstract
BACKGROUND Although casein kinase II subunit beta (CK2B) was previously reported to be involved in human cancers, such as hepatocellular carcinoma (HCC), there has been no systematic assessment of CK2B in HCC. OBJECTIVE To assess the potential function of CK2B as a prognostic biomarker and possible druggable target in HCC. METHODS The Cancer Genome Atlas database was accessed to investigate the potential oncogenic and prognostic roles of CK2B in HCC. Diverse analytical methods were used to obtain a fuller understanding of CK2B, including CIBERSORT, The Tumor Immune Estimation Resource (TIMER), gene set enrichment analyses (GSEA), Kyoto Encyclopedia of Genes and Genomes (KEGG), and gene ontology (GO). Furthermore, the Comparative Toxicogenomic Database (CTD) was used to identify potential drugs to treat CK2B-overexpressing HCC. Patents for these drugs were reviewed using Patentscope® and Worldwide Espacenet®. RESULTS Upregulated CK2B expression was markedly associated with more aggressive pathological features, including G3, G4 (vs. G1, G2), and T2, T3 (vs. T1). Kaplan-Meier survival curves indicated that patients with HCC with higher expression of CK2B had worse overall survival (P = 0.005), progression-free interval (P = 0.001), and disease-specific survival (P = 0.011). GO and KEGG analysis revealed that CK2B dysregulation affects mitotic chromosome condensation, protein stabilization and binding, regulation of signal transduction of p53 class mediator, and cancer-related pathways. GSEA identified six well-known pathways, including MAPK, WNT, Hedgehog, and TGFβ signaling pathways. Finally, CTD identified six compounds that might represent targeted drugs to treat HCC with CK2B overexpression. A review of patents indicated these compounds showed promising anticancer results; however, whether CK2B interacts with these drugs and improves drug outcomes for patients with HCC was not confirmed. CONCLUSION CK2B is a biomarker for HCC prognosis and could be a potential new drug target. Moreover, the association between infiltrating immune cells and CK2B in the HCC tumor microenvironment might provide a solid basis for further investigation and a potent strategy for immunotherapy of HCC.
Collapse
Affiliation(s)
- Huiru Dai
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Minling Liu
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yuxi Pan
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Tingwei Li
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yihang Pan
- Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Jing Li
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
| | - Yuchen Liu
- Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
| | - Shuo Fang
- Department of Oncology, The Seventh Affiliated Hospital Sun Yat-sen University, Shenzhen, Guangdong, 518107, PR China
- Big Data Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, China
- Department of Clinical Oncology, The University of Hong Kong, Hong Kong, 999077, PR China
| |
Collapse
|
11
|
Montenarh M, Götz C. Protein Kinase CK2α', More than a Backup of CK2α. Cells 2023; 12:2834. [PMID: 38132153 PMCID: PMC10741536 DOI: 10.3390/cells12242834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/08/2023] [Accepted: 12/12/2023] [Indexed: 12/23/2023] Open
Abstract
The serine/threonine protein kinase CK2 is implicated in the regulation of fundamental processes in eukaryotic cells. CK2 consists of two catalytic α or α' isoforms and two regulatory CK2β subunits. These three proteins exist in a free form, bound to other cellular proteins, as tetrameric holoenzymes composed of CK2α2/β2, CK2αα'/β2, or CK2α'2/β2 as well as in higher molecular forms of the tetramers. The catalytic domains of CK2α and CK2α' share a 90% identity. As CK2α contains a unique C-terminal sequence. Both proteins function as protein kinases. These properties raised the question of whether both isoforms are just backups of each other or whether they are regulated differently and may then function in an isoform-specific manner. The present review provides observations that the regulation of both CK2α isoforms is partly different concerning the subcellular localization, post-translational modifications, and aggregation. Up to now, there are only a few isoform-specific cellular binding partners. The expression of both CK2α isoforms seems to vary in different cell lines, in tissues, in the cell cycle, and with differentiation. There are different reports about the expression and the functions of the CK2α isoforms in tumor cells and tissues. In many cases, a cell-type-specific expression and function is known, which raises the question about cell-specific regulators of both isoforms. Another future challenge is the identification or design of CK2α'-specific inhibitors.
Collapse
Affiliation(s)
- Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, Building 44, 66421 Homburg, Germany;
| | | |
Collapse
|
12
|
Galal KA, Krämer A, Strickland BG, Smith JL, Dickmander RJ, Moorman NJ, Willson TM. Identification of 4-(6-((2-methoxyphenyl)amino)pyrazin-2-yl)benzoic acids as CSNK2A inhibitors with antiviral activity and improved selectivity over PIM3. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.04.569845. [PMID: 38106118 PMCID: PMC10723276 DOI: 10.1101/2023.12.04.569845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
We report the synthesis of 2,6-disubstituted pyrazines as potent cell active CSNK2A inhibitors. 4'-Carboxyphenyl was found to be the optimal 2-pyrazine substituent for CSNK2A activity, with little tolerance for additional modification. At the 6-position, modifications of the 6-isopropylaminoindazole substituent were explored to improve selectivity over PIM3 while maintaining potent CSNK2A inhibition. The 6-isopropoxyindole analogue 6c was identified as a nanomolar CSNK2A inhibitor with 30-fold selectivity over PIM3 in cells. Replacement of the 6-isopropoxyindole by isosteric ortho-methoxy anilines, such as 7c, generated analogues with selectivity for CSNK2A over PIM3 and improved the kinome-wide selectivity. The optimized 2,6-disubstituted pyrazines showed inhibition of viral replication consistent with their CSNK2A activity.
Collapse
Affiliation(s)
- Kareem A. Galal
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA
| | - Andreas Krämer
- Structural Genomics Consortium, Buchmann Institute for Life Sciences, Goethe University Frankfurt, Max-von-Laue-Strabe 15, Frankfurt 60438, Germany
- Institute of Pharmaceutical Chemistry, Goethe University Frankfurt, Max-von-Laue-Strabe 9, Frankfurt 60438, Germany
- Frankfurt Cancer Institute, Paul-Ehrlich-Straße 42-44, Frankfurt 60596, Germany
| | - Benjamin G. Strickland
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Jeffery L. Smith
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Rebekah J. Dickmander
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Department of Chemistry, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Nathaniel J. Moorman
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA
- Department of Microbiology & Immunology, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | - Timothy M. Willson
- Structural Genomics Consortium, UNC Eshelman School of Pharmacy, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
- Rapidly Emerging Antiviral Drug Development Initiative (READDI), Chapel Hill, NC 27599, USA
| |
Collapse
|
13
|
Gou Q, Chen H, Chen M, Shi J, Jin J, Liu Q, Hou Y. Inhibition of CK2/ING4 Pathway Facilitates Non-Small Cell Lung Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2304068. [PMID: 37870169 PMCID: PMC10700192 DOI: 10.1002/advs.202304068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2023] [Revised: 09/21/2023] [Indexed: 10/24/2023]
Abstract
Immune cells can protect against tumor progression by killing cancer cells, while aberrant expression of the immune checkpoint protein PD-L1 (programmed death ligand 1) in cancer cells facilitates tumor immune escape and inhibits anti-tumor immunotherapy. As a serine/threonine kinase, CK2 (casein kinase 2) regulates tumor progression by multiple pathways, while it is still unclear the effect of CK2 on tumor immune escape. Here it is found that ING4 induced PD-L1 autophagic degradation and inhibites non-small cell lung cancer (NSCLC) immune escape by increasing T cell activity. However, clinical analysis suggests that high expression of CK2 correlates with low ING4 protein level in NSCLC. Further analysis shows that CK2 induce ING4-S150 phosphorylation leading to ING4 ubiquitination and degradation by JFK ubiquitin ligase. In contrast, CK2 gene knockout increases ING4 protein stability and T cell activity, subsequently, inhibites NSCLC immune escape. Furthermore, the combined CK2 inhibitor with PD-1 antibody effectively enhances antitumor immunotherapy. These findings provide a novel strategy for cancer immunotherapy.
Collapse
Affiliation(s)
- Qian Gou
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
- School of medicineJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Huiqing Chen
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Mingjun Chen
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Juanjuan Shi
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| | - Jianhua Jin
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
| | - Qian Liu
- Department of Oncology, the Affiliated Wujin Hospital of Jiangsu UniversityChangzhouJiangsu213017P. R. China
- Changzhou Key Laboratory of Molecular Diagnostics and Precision Cancer Medicine of Wujin People's Hospital (the Wujin Clinical College of Xuzhou Medical University)changzhouJiangsu213017P. R. China
| | - Yongzhong Hou
- School of Life ScienceJiangsu UniversityZhenjiangJiangsu212013P. R. China
| |
Collapse
|
14
|
Joisa CU, Chen KA, Berginski ME, Golitz BT, Jenner MR, Herrera Loeza G, Yeh JJ, Gomez SM. Integrated single-dose kinome profiling data is predictive of cancer cell line sensitivity to kinase inhibitors. PeerJ 2023; 11:e16342. [PMID: 38025707 PMCID: PMC10657565 DOI: 10.7717/peerj.16342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 10/03/2023] [Indexed: 12/01/2023] Open
Abstract
Protein kinase activity forms the backbone of cellular information transfer, acting both individually and as part of a broader network, the kinome. Their central role in signaling leads to kinome dysfunction being a common driver of disease, and in particular cancer, where numerous kinases have been identified as having a causal or modulating role in tumor development and progression. As a result, the development of therapies targeting kinases has rapidly grown, with over 70 kinase inhibitors approved for use in the clinic and over double this number currently in clinical trials. Understanding the relationship between kinase inhibitor treatment and their effects on downstream cellular phenotype is thus of clear importance for understanding treatment mechanisms and streamlining compound screening in therapy development. In this work, we combine two large-scale kinome profiling data sets and use them to link inhibitor-kinome interactions with cell line treatment responses (AUC/IC50). We then built computational models on this data set that achieve a high degree of prediction accuracy (R2 of 0.7 and RMSE of 0.9) and were able to identify a set of well-characterized and understudied kinases that significantly affect cell responses. We further validated these models experimentally by testing predicted effects in breast cancer cell lines and extended the model scope by performing additional validation in patient-derived pancreatic cancer cell lines. Overall, these results demonstrate that broad quantification of kinome inhibition state is highly predictive of downstream cellular phenotypes.
Collapse
Affiliation(s)
- Chinmaya U. Joisa
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
| | - Kevin A. Chen
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Matthew E. Berginski
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Brian T. Golitz
- Eshelman Institute for Innovation, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Madison R. Jenner
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Gabriela Herrera Loeza
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Jen Jen Yeh
- Department of Surgery, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
- Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| | - Shawn M. Gomez
- Joint Department of Biomedical Engineering, University of North Carolina at Chapel Hill and North Carolina State University, Chapel Hill, NC, United States of America
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States of America
| |
Collapse
|
15
|
Litchfield DW, Gyenis L, Menyhart D, Roffey SE. Towards the CSNK2 phosphoproteome - With lessons from the COVID-19 pandemic to revealing the secrets of CSNK2 and its promise as a therapeutic target. Biochim Biophys Acta Gen Subj 2023; 1867:130441. [PMID: 37543358 DOI: 10.1016/j.bbagen.2023.130441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 07/19/2023] [Accepted: 08/02/2023] [Indexed: 08/07/2023]
Abstract
Dramatic advances in phosphoproteomics and the development of a selective chemical probe have presented new opportunities for revealing the cellular landscape of substrates for CSNK2 (formerly known as CK2 or casein kinase II). In addition to deciphering the role(s) of CSNK2 in physiology and pathophysiology, the CSNK2 phosphoproteome offers the promise of instructing the development of CSNK2-targeted therapy.
Collapse
Affiliation(s)
- David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada; Department of Oncology, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada.
| | - Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, University of Western Ontario, London, Ontario N6A 5C1, Canada
| |
Collapse
|
16
|
Chen L, Zhang S, Li Q, Li J, Deng H, Zhang S, Meng R. Emerging role of Protein Kinase CK2 in Tumor immunity. Front Oncol 2022; 12:1065027. [DOI: 10.3389/fonc.2022.1065027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 11/11/2022] [Indexed: 12/03/2022] Open
Abstract
Protein kinase CK2, a conserved serine/threonine-protein kinase, is ubiquitous in cells and regulates various intracellular processes, especially in tumor cells. As one of the earliest discovered protein kinases in humans, CK2 plays a crucial role in phosphorylating or associating with hundreds of substrates to modulate several signaling pathways. Excellent reviews have reported that the overexpression of CK2 could be observed in many cancers and was closely associated with tumor occurrence and development. The elevation of CK2 is also an indicator of a poor prognosis. Recently, increasing attention has been paid to the relationship between CK2 and tumor immunity. However, there is no comprehensive description of how CK2 regulates the immune cells in the tumor microenvironment (TME). Also, the underlying mechanisms are still not very clear. In this review, we systematically summarized the correlation between CK2 and tumor immunity, primarily the effects on various immune cells, both in innate and adaptive immunity in the TME. With the comprehensive development of immunotherapy and the mounting transformation research of CK2 inhibitors from the bench to the clinic, this review will provide vital information to find new treatment options for enhancing the efficacy of immunotherapy.
Collapse
|
17
|
Griesler B, Schuelke C, Uhlig C, Gadasheva Y, Grossmann C. Importance of Micromilieu for Pathophysiologic Mineralocorticoid Receptor Activity-When the Mineralocorticoid Receptor Resides in the Wrong Neighborhood. Int J Mol Sci 2022; 23:12592. [PMID: 36293446 PMCID: PMC9603863 DOI: 10.3390/ijms232012592] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022] Open
Abstract
The mineralocorticoid receptor (MR) is a member of the steroid receptor family and acts as a ligand-dependent transcription factor. In addition to its classical effects on water and electrolyte balance, its involvement in the pathogenesis of cardiovascular and renal diseases has been the subject of research for several years. The molecular basis of the latter has not been fully elucidated, but an isolated increase in the concentration of the MR ligand aldosterone or MR expression does not suffice to explain long-term pathologic actions of the receptor. Several studies suggest that MR activity and signal transduction are modulated by the surrounding microenvironment, which therefore plays an important role in MR pathophysiological effects. Local changes in micromilieu, including hypoxia, ischemia/reperfusion, inflammation, radical stress, and aberrant salt or glucose concentrations affect MR activation and therefore may influence the probability of unphysiological MR actions. The surrounding micromilieu may modulate genomic MR activity either by causing changes in MR expression or MR activity; for example, by inducing posttranslational modifications of the MR or novel interaction with coregulators, DNA-binding sites, or non-classical pathways. This should be considered when developing treatment options and strategies for prevention of MR-associated diseases.
Collapse
Affiliation(s)
| | | | | | | | - Claudia Grossmann
- Julius-Bernstein-Institute of Physiology, Martin Luther University Halle-Wittenberg, 06112 Halle (Saale), Germany
| |
Collapse
|
18
|
Trembley JH, Kren BT, Afzal M, Scaria GA, Klein MA, Ahmed K. Protein kinase CK2 – diverse roles in cancer cell biology and therapeutic promise. Mol Cell Biochem 2022; 478:899-926. [PMID: 36114992 PMCID: PMC9483426 DOI: 10.1007/s11010-022-04558-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 09/01/2022] [Indexed: 11/29/2022]
Abstract
The association of protein kinase CK2 (formerly casein kinase II or 2) with cell growth and proliferation in cells was apparent at early stages of its investigation. A cancer-specific role for CK2 remained unclear until it was determined that CK2 was also a potent suppressor of cell death (apoptosis); the latter characteristic differentiated its function in normal versus malignant cells because dysregulation of both cell growth and cell death is a universal feature of cancer cells. Over time, it became evident that CK2 exerts its influence on a diverse range of cell functions in normal as well as in transformed cells. As such, CK2 and its substrates are localized in various compartments of the cell. The dysregulation of CK2 is documented in a wide range of malignancies; notably, by increased CK2 protein and activity levels with relatively moderate change in its RNA abundance. High levels of CK2 are associated with poor prognosis in multiple cancer types, and CK2 is a target for active research and testing for cancer therapy. Aspects of CK2 cellular roles and targeting in cancer are discussed in the present review, with focus on nuclear and mitochondrial functions and prostate, breast and head and neck malignancies.
Collapse
Affiliation(s)
- Janeen H Trembley
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
| | - Betsy T Kren
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Muhammad Afzal
- Department of Biochemistry, Riphah International University, Islamabad, Pakistan
| | - George A Scaria
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
| | - Mark A Klein
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA
- Hematology/Oncology Section, Primary Care Service Line, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA
- Department of Medicine, Division of Hematology, Oncology and Transplantation, University of Minnesota, Minneapolis, MN, 55455, USA
| | - Khalil Ahmed
- Research Service, Minneapolis VA Health Care System, Minneapolis, MN, 55417, USA.
- Department of Laboratory Medicine and Pathology, University of Minnesota, Minneapolis, MN, 55455, USA.
- Masonic Cancer Center, University of Minnesota, Minneapolis, MN, 55455, USA.
- Department of Urology, University of Minnesota, Minneapolis, MN, 55455, USA.
| |
Collapse
|
19
|
Manni S, Pesavento M, Spinello Z, Saggin L, Arjomand A, Fregnani A, Quotti Tubi L, Scapinello G, Gurrieri C, Semenzato G, Trentin L, Piazza F. Protein Kinase CK2 represents a new target to boost Ibrutinib and Venetoclax induced cytotoxicity in mantle cell lymphoma. Front Cell Dev Biol 2022; 10:935023. [PMID: 36035991 PMCID: PMC9403710 DOI: 10.3389/fcell.2022.935023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Mantle cell lymphoma (MCL) is an incurable B cell non-Hodgkin lymphoma, characterized by frequent relapses. In the last decade, the pro-survival pathways related to BCR signaling and Bcl-2 have been considered rational therapeutic targets in B cell derived lymphomas. The BTK inhibitor Ibrutinib and the Bcl-2 inhibitor Venetoclax are emerging as effective drugs for MCL. However, primary and acquired resistance also to these agents may occur. Protein Kinase CK2 is a S/T kinase overexpressed in many solid and blood-derived tumours. CK2 promotes cancer cell growth and clonal expansion, sustaining pivotal survival signaling cascades, such as the ones dependent on AKT, NF-κB, STAT3 and others, counteracting apoptosis through a “non-oncogene” addiction mechanism. We previously showed that CK2 is overexpressed in MCL and regulates the levels of activating phosphorylation on S529 of the NF-κB family member p65/RelA. In the present study, we investigated the effects of CK2 inactivation on MCL cell proliferation, survival and apoptosis and this kinase’s involvement in the BCR and Bcl-2 related signaling. By employing CK2 loss of function MCL cell models, we demonstrated that CK2 sustains BCR signaling (such as BTK, NF-κB and AKT) and the Bcl-2-related Mcl-1 expression. CK2 inactivation enhanced Ibrutinib and Venetoclax-induced cytotoxicity. The demonstration of a CK2-dependent upregulation of pathways that may antagonize the effect of these drugs may offer a novel strategy to overcome primary and secondary resistance.
Collapse
Affiliation(s)
- Sabrina Manni
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Sabrina Manni, ; Francesco Piazza,
| | - Maria Pesavento
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Zaira Spinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Lara Saggin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Arash Arjomand
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Anna Fregnani
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Laura Quotti Tubi
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Greta Scapinello
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Carmela Gurrieri
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Gianpietro Semenzato
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Livio Trentin
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
| | - Francesco Piazza
- Department of Medicine-DIMED, Hematology and Clinical Immunology Section, University of Padova, Padova, Italy
- Myeloma and Lymphoma Pathobiology Lab, Veneto Institute of Molecular Medicine, Padova, Italy
- *Correspondence: Sabrina Manni, ; Francesco Piazza,
| |
Collapse
|
20
|
Filhol O, Hesse AM, Bouin AP, Albigès-Rizo C, Jeanneret F, Battail C, Pflieger D, Cochet C. CK2β Is a Gatekeeper of Focal Adhesions Regulating Cell Spreading. Front Mol Biosci 2022; 9:900947. [PMID: 35847979 PMCID: PMC9280835 DOI: 10.3389/fmolb.2022.900947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
CK2 is a hetero-tetrameric serine/threonine protein kinase made up of two CK2α/αʹ catalytic subunits and two CK2β regulatory subunits. The free CK2α subunit and the tetrameric holoenzyme have distinct substrate specificity profiles, suggesting that the spatiotemporal organization of the individual CK2 subunits observed in living cells is crucial in the control of the many cellular processes that are governed by this pleiotropic kinase. Indeed, previous studies reported that the unbalanced expression of CK2 subunits is sufficient to drive epithelial to mesenchymal transition (EMT), a process involved in cancer invasion and metastasis. Moreover, sub-stoichiometric expression of CK2β compared to CK2α in a subset of breast cancer tumors was correlated with the induction of EMT markers and increased epithelial cell plasticity in breast carcinoma progression. Phenotypic changes of epithelial cells are often associated with the activation of phosphotyrosine signaling. Herein, using phosphotyrosine enrichment coupled with affinity capture and proteomic analysis, we show that decreased expression of CK2β in MCF10A mammary epithelial cells triggers the phosphorylation of a number of proteins on tyrosine residues and promotes the striking activation of the FAK1-Src-PAX1 signaling pathway. Moreover, morphometric analyses also reveal that CK2β loss increases the number and the spatial distribution of focal adhesion signaling complexes that coordinate the adhesive and migratory processes. Together, our findings allow positioning CK2β as a gatekeeper for cell spreading by restraining focal adhesion formation and invasion of mammary epithelial cells.
Collapse
Affiliation(s)
- Odile Filhol
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Anne-Marie Hesse
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
| | - Anne-Pascale Bouin
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Corinne Albigès-Rizo
- Univ. Grenoble Alpes, INSERM U1209, CNRS 5309, Institute for Advanced Biosciences (IAB), Grenoble, France
| | - Florian Jeanneret
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Christophe Battail
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
| | - Delphine Pflieger
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté U1292, CNRS FR 2048, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| | - Claude Cochet
- Univ. Grenoble Alpes, INSERM, CEA, UMR Biosanté, U1292, Grenoble, France
- *Correspondence: Claude Cochet, ; Delphine Pflieger,
| |
Collapse
|
21
|
Gyenis L, Menyhart D, Cruise ES, Jurcic K, Roffey SE, Chai DB, Trifoi F, Fess SR, Desormeaux PJ, Núñez de Villavicencio Díaz T, Rabalski AJ, Zukowski SA, Turowec JP, Pittock P, Lajoie G, Litchfield DW. Chemical Genetic Validation of CSNK2 Substrates Using an Inhibitor-Resistant Mutant in Combination with Triple SILAC Quantitative Phosphoproteomics. Front Mol Biosci 2022; 9:909711. [PMID: 35755813 PMCID: PMC9225150 DOI: 10.3389/fmolb.2022.909711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Accepted: 05/02/2022] [Indexed: 11/16/2022] Open
Abstract
Casein Kinase 2 (CSNK2) is an extremely pleiotropic, ubiquitously expressed protein kinase involved in the regulation of numerous key biological processes. Mapping the CSNK2-dependent phosphoproteome is necessary for better characterization of its fundamental role in cellular signalling. While ATP-competitive inhibitors have enabled the identification of many putative kinase substrates, compounds targeting the highly conserved ATP-binding pocket often exhibit off-target effects limiting their utility for definitive kinase-substrate assignment. To overcome this limitation, we devised a strategy combining chemical genetics and quantitative phosphoproteomics to identify and validate CSNK2 substrates. We engineered U2OS cells expressing exogenous wild type CSNK2A1 (WT) or a triple mutant (TM, V66A/H160D/I174A) with substitutions at residues important for inhibitor binding. These cells were treated with CX-4945, a clinical-stage inhibitor of CSNK2, and analyzed using large-scale triple SILAC (Stable Isotope Labelling of Amino Acids in Cell Culture) quantitative phosphoproteomics. In contrast to wild-type CSNK2A1, CSNK2A1-TM retained activity in the presence of CX-4945 enabling identification and validation of several CSNK2 substrates on the basis of their increased phosphorylation in cells expressing CSNK2A1-TM. Based on high conservation within the kinase family, we expect that this strategy can be broadly adapted for identification of other kinase-substrate relationships.
Collapse
Affiliation(s)
- Laszlo Gyenis
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Daniel Menyhart
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Edward S Cruise
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Kristina Jurcic
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Scott E Roffey
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Darren B Chai
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Flaviu Trifoi
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Sam R Fess
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paul J Desormeaux
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | | | - Adam J Rabalski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Stephanie A Zukowski
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Jacob P Turowec
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Paula Pittock
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - Gilles Lajoie
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| | - David W Litchfield
- Department of Biochemistry, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada.,Department of Oncology, Schulich School of Medicine & Dentistry, Western University, London, ON, Canada
| |
Collapse
|
22
|
Chojnowski JE, Li R, Tsang T, Alfaran FH, Dick A, Cocklin S, Brady DC, Strochlic TI. Copper Modulates the Catalytic Activity of Protein Kinase CK2. Front Mol Biosci 2022; 9:878652. [PMID: 35755824 PMCID: PMC9224766 DOI: 10.3389/fmolb.2022.878652] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 05/12/2022] [Indexed: 12/25/2022] Open
Abstract
Casein kinase 2 (CK2) is an evolutionarily conserved serine/threonine kinase implicated in a wide range of cellular functions and known to be dysregulated in various diseases such as cancer. Compared to most other kinases, CK2 exhibits several unusual properties, including dual co-substrate specificity and a high degree of promiscuity with hundreds of substrates described to date. Most paradoxical, however, is its apparent constitutive activity: no definitive mode of catalytic regulation has thus far been identified. Here we demonstrate that copper enhances the enzymatic activity of CK2 both in vitro and in vivo. We show that copper binds directly to CK2, and we identify specific residues in the catalytic subunit of the enzyme that are critical for copper-binding. We further demonstrate that increased levels of intracellular copper result in enhanced CK2 kinase activity, while decreased copper import results in reduced CK2 activity. Taken together, these findings establish CK2 as a copper-regulated kinase and indicate that copper is a key modulator of CK2-dependent signaling pathways.
Collapse
Affiliation(s)
- John E. Chojnowski
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Rongrong Li
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Tiffany Tsang
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Fatimah H. Alfaran
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Alexej Dick
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Simon Cocklin
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States
| | - Donita C. Brady
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, United States
| | - Todd I. Strochlic
- Department of Biochemistry and Molecular Biology, Drexel University College of Medicine, Philadelphia, PA, United States,*Correspondence: Todd I. Strochlic,
| |
Collapse
|
23
|
Boewe AS, Wemmert S, Kulas P, Schick B, Götz C, Wrublewsky S, Montenarh M, Menger MD, Laschke MW, Ampofo E. Inhibition of CK2 Reduces NG2 Expression in Juvenile Angiofibroma. Biomedicines 2022; 10:biomedicines10050966. [PMID: 35625703 PMCID: PMC9138789 DOI: 10.3390/biomedicines10050966] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 04/19/2022] [Accepted: 04/20/2022] [Indexed: 12/04/2022] Open
Abstract
Juvenile angiofibroma (JA) is a rare fibrovascular neoplasm predominately found within the posterior nasal cavity of adolescent males. JA expresses the proteoglycan nerve–glial antigen (NG)2, which crucially determines the migratory capacity of distinct cancer cells. Moreover, it is known that the protein kinase CK2 regulates NG2 gene expression. Therefore, in the present study, we analyzed whether the inhibition of CK2 suppresses NG2-dependent JA cell proliferation and migration. For this purpose, we assessed the expression of NG2 and CK2 in patient-derived JA tissue samples, as well as in patient-derived JA cell cultures by Western blot, immunohistochemistry, flow cytometry and quantitative real-time PCR. The mitochondrial activity, proliferation and migratory capacity of the JA cells were determined by water-soluble tetrazolium (WST)-1, 5-bromo-2′-deoxyuridine (BrdU) and collagen sprouting assays. We found that NG2 and CK2 were expressed in both the JA tissue samples and cell cultures. The treatment of the JA cells with the two CK2 inhibitors, CX-4945 and SGC-CK2-1, significantly reduced NG2 gene and protein expression when compared to the vehicle-treated cells. In addition, the loss of CK2 activity suppressed the JA cell proliferation and migration. These findings indicate that the inhibition of CK2 may represent a promising therapeutic approach for the treatment of NG2-expressing JA.
Collapse
Affiliation(s)
- Anne S. Boewe
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Silke Wemmert
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Philipp Kulas
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Bernhard Schick
- Department of Otolaryngology, Saarland University Medical Center, 66421 Homburg, Germany; (S.W.); (P.K.); (B.S.)
| | - Claudia Götz
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (C.G.); (M.M.)
| | - Selina Wrublewsky
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Mathias Montenarh
- Medical Biochemistry and Molecular Biology, Saarland University, 66421 Homburg, Germany; (C.G.); (M.M.)
| | - Michael D. Menger
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Matthias W. Laschke
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
| | - Emmanuel Ampofo
- Institute for Clinical & Experimental Surgery, Saarland University, 66421 Homburg, Germany; (A.S.B.); (S.W.); (M.D.M.); (M.W.L.)
- Correspondence: ; Tel.: +49-6841-16-26561; Fax: +49-6841-16-26553
| |
Collapse
|