1
|
Giri RK. Molecular signatures in prion disease: altered death receptor pathways in a mouse model. J Transl Med 2024; 22:503. [PMID: 38802941 PMCID: PMC11129387 DOI: 10.1186/s12967-024-05121-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2023] [Accepted: 03/20/2024] [Indexed: 05/29/2024] Open
Abstract
BACKGROUND Prion diseases are transmissible and fatal neurodegenerative diseases characterized by accumulation of misfolded prion protein isoform (PrPSc), astrocytosis, microgliosis, spongiosis, and neurodegeneration. Elevated levels of cell membrane associated PrPSc protein and inflammatory cytokines hint towards the activation of death receptor (DR) pathway/s in prion diseases. Activation of DRs regulate, either cell survival or apoptosis, autophagy and necroptosis based on the adaptors they interact. Very little is known about the DR pathways activation in prion disease. DR3 and DR5 that are expressed in normal mouse brain were never studied in prion disease, so also their ligands and any DR adaptors. This research gap is notable and investigated in the present study. METHODS C57BL/6J mice were infected with Rocky Mountain Laboratory scrapie mouse prion strain. The progression of prion disease was examined by observing morphological and behavioural abnormalities. The levels of PrP isoforms and GFAP were measured as the marker of PrPSc accumulation and astrocytosis respectively using antibody-based techniques that detect proteins on blot and brain section. The levels of DRs, their glycosylation and ectodomain shedding, and associated factors warrant their examination at protein level, hence western blot analysis was employed in this study. RESULTS Prion-infected mice developed motor deficits and neuropathology like PrPSc accumulation and astrocytosis similar to other prion diseases. Results from this research show higher expression of all DR ligands, TNFR1, Fas and p75NTR but decreased levels DR3 and DR5. The levels of DR adaptor proteins like TRADD and TRAF2 (primarily regulate pro-survival pathways) are reduced. FADD, which primarily regulate cell death, its level remains unchanged. RIPK1, which regulate pro-survival, apoptosis and necroptosis, its expression and proteolysis (inhibits necroptosis but activates apoptosis) are increased. CONCLUSIONS The findings from the present study provide evidence towards the involvement of DR3, DR5, DR6, TL1A, TRAIL, TRADD, TRAF2, FADD and RIPK1 for the first time in prion diseases. The knowledge obtained from this research discuss the possible impacts of these 16 differentially expressed DR factors on our understanding towards the multifaceted neuropathology of prion diseases and towards future explorations into potential targeted therapeutic interventions for prion disease specific neuropathology.
Collapse
Affiliation(s)
- Ranjit Kumar Giri
- Molecular and Cellular Neuroscience Division, National Brain Research Centre, Manesar, Gurgaon, Haryana, 122052, India.
| |
Collapse
|
2
|
Yao Y, Yang R, Zhu J, Schlessinger D, Sima J. EDA ligand triggers plasma membrane trafficking of its receptor EDAR via PKA activation and SNAP23-containing complexes. Cell Biosci 2023; 13:128. [PMID: 37430358 DOI: 10.1186/s13578-023-01082-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 07/05/2023] [Indexed: 07/12/2023] Open
Abstract
BACKGROUND Ectodysplasin-A (EDA), a skin-specific TNF ligand, interacts with its membrane receptor EDAR to trigger EDA signaling in skin appendage formation. Gene mutations in EDA signaling cause Anhidrotic/Hypohidrotic Ectodermal Dysplasia (A/HED), which affects the formation of skin appendages including hair, teeth, and several exocrine glands. RESULTS We report that EDA triggers the translocation of its receptor EDAR from a cytosolic compartment into the plasma membrane. We use protein affinity purification to show that upon EDA stimulation EDAR associates with SNAP23-STX6-VAMP1/2/3 vesicle trafficking complexes. We find that EDA-dependent PKA activation is critical for the association. Notably, either of two HED-linked EDAR mutations, T346M and R420W, prevents EDA-induced EDAR translocation; and both EDA-induced PKA activation and SNAP23 are required for Meibomian gland (MG) growth in a skin appendage model. CONCLUSIONS Overall, in a novel regulatory mechanism, EDA increases plasma membrane translocation of its own receptor EDAR, augmenting EDA-EDAR signaling in skin appendage formation. Our findings also provide PKA and SNAP23 as potential targets for the intervention of HED.
Collapse
Affiliation(s)
- Yuyuan Yao
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Ruihan Yang
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Jian Zhu
- Department of Psychology, Eastern Illinois University, Charleston, IL, 61920, USA
| | - David Schlessinger
- Laboratory of Genetics and Genomics, NIA/NIH-IRP, 251 Bayview Blvd, Room 10B014, Baltimore, MD, 21224, USA
| | - Jian Sima
- School of Basic Medicine and Clinical Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
3
|
Hermann N, Maul LV, Ameri M, Traidl S, Ziadlou R, Papageorgiou K, Kolm I, Levesque M, Maul JT, Brüggen MC. Clinical Presentation and Prognostic Features in Patients with Immunotherapy-Induced Vitiligo-like Depigmentation: A Monocentric Prospective Observational Study. Cancers (Basel) 2022; 14:4576. [PMID: 36230498 PMCID: PMC9558529 DOI: 10.3390/cancers14194576] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 09/08/2022] [Accepted: 09/15/2022] [Indexed: 11/16/2022] Open
Abstract
Vitiligo-like depigmentation (VLD) is an immune-related adverse event (irAE) of checkpoint-inhibitor (CPI) treatment, which has previously been associated with a favourable outcome. The aim of this study was to explore clinical, biological and prognostic features of melanoma patients with VLD under CPI-treatment and to explore whether they exhibit a characteristic immune response profile in peripheral blood. Melanoma patients developing VLD under CPI were included in a prospective observational single-center cohort study. We collected and analysed clinical parameters, photographs and serum from 28 VLD patients. They received pembrolizumab (36%), nivolumab (11%), ipilimumab/nivolumab (32%) or clinical trial medications (21%). We performed a high-throughput proteomics assay (Olink), in which we identified a distinct proteomic signature in VLD patients in comparison to non-VLD CPI patients. Our clinical assessments revealed that VLD lesions had a predominantly symmetrical distribution pattern, with mostly smaller "freckle-like" macules and a preferential distribution in UV-exposed areas. Patients with previous targeted therapy showed a significantly longer time lapse between CPI initiation and VLD onset compared to non-pre-treated patients (12.5 vs. 6.25 months). Therapy responders exhibited a distinct proteomic profile when compared with non-responders in VLD such as upregulation of EDAR and downregulation of LAG3. ITGA11 was elevated in the VLD-group when compared to non-VLD-CPI-treated melanoma patients. Our findings demonstrate that on a proteomic level, VLD is characterized by a distinct immune signature when compared to CPI-treated patients without VLD and that therapy responsiveness is reflected by a characteristic immune profile. The pathomechanisms underlying these findings and how they could relate to the antitumoral response in melanoma remain to be elucidated.
Collapse
Affiliation(s)
- Nicola Hermann
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Lara Valeska Maul
- Department of Dermatology, University Hospital of Basel, 4031 Basel, Switzerland
| | - Milad Ameri
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Medical Campus Davos, 7265 Davos, Switzerland
| | - Stephan Traidl
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Medical Campus Davos, 7265 Davos, Switzerland
- Department of Dermatology and Allergy, Hannover Medical School, 30625 Hannover, Germany
| | - Reihane Ziadlou
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Medical Campus Davos, 7265 Davos, Switzerland
| | | | - Isabel Kolm
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Mitchell Levesque
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
| | - Marie-Charlotte Brüggen
- Department of Dermatology, University Hospital of Zurich, 8091 Zurich, Switzerland
- Faculty of Medicine, University of Zurich, 8006 Zurich, Switzerland
- Medical Campus Davos, 7265 Davos, Switzerland
| |
Collapse
|
4
|
Ectodysplasin A (EDA) Signaling: From Skin Appendage to Multiple Diseases. Int J Mol Sci 2022; 23:ijms23168911. [PMID: 36012178 PMCID: PMC9408960 DOI: 10.3390/ijms23168911] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
Ectodysplasin A (EDA) signaling is initially identified as morphogenic signaling regulating the formation of skin appendages including teeth, hair follicles, exocrine glands in mammals, feathers in birds and scales in fish. Gene mutation in EDA signaling causes hypohidrotic ectodermal dysplasia (HED), a congenital hereditary disease with malformation of skin appendages. Interestingly, emerging evidence suggests that EDA and its receptors can modulate the proliferation, apoptosis, differentiation and migration of cancer cells, and thus may regulate tumorigenesis and cancer progression. More recently, as a newly discovered hepatocyte factor, EDA pathway has been demonstrated to be involved in the pathogenesis of nonalcoholic fatty liver disease (NAFLD) and type II diabetes by regulating glucose and lipid metabolism. In this review, we summarize the function of EDA signaling from skin appendage development to multiple other diseases, and discuss the clinical application of recombinant EDA protein as well as other potential targets for disease intervention.
Collapse
|
5
|
Fang Z, Yang X, Wei X, Yang Y, Yi C, Song D. EDARADD silencing suppresses the proliferation and migration of bladder cancer cells. Urol Oncol 2022; 40:382.e15-382.e24. [DOI: 10.1016/j.urolonc.2022.04.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 12/09/2022]
|
6
|
Lee MY. Embryonic Programs in Cancer and Metastasis—Insights From the Mammary Gland. Front Cell Dev Biol 2022; 10:938625. [PMID: 35846378 PMCID: PMC9277484 DOI: 10.3389/fcell.2022.938625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 06/07/2022] [Indexed: 11/24/2022] Open
Abstract
Cancer is characterized as a reversion of a differentiated cell to a primitive cell state that recapitulates, in many aspects, features of embryonic cells. This review explores the current knowledge of developmental mechanisms that are essential for embryonic mouse mammary gland development, with a particular focus on genes and signaling pathway components that are essential for the induction, morphogenesis, and lineage specification of the mammary gland. The roles of these same genes and signaling pathways in mammary gland or breast tumorigenesis and metastasis are then summarized. Strikingly, key embryonic developmental pathways are often reactivated or dysregulated during tumorigenesis and metastasis in processes such as aberrant proliferation, epithelial-to-mesenchymal transition (EMT), and stem cell potency which affects cellular lineage hierarchy. These observations are in line with findings from recent studies using lineage tracing as well as bulk- and single-cell transcriptomics that have uncovered features of embryonic cells in cancer and metastasis through the identification of cell types, cell states and characterisation of their dynamic changes. Given the many overlapping features and similarities of the molecular signatures of normal development and cancer, embryonic molecular signatures could be useful prognostic markers for cancer. In this way, the study of embryonic development will continue to complement the understanding of the mechanisms of cancer and aid in the discovery of novel therapeutic targets and strategies.
Collapse
|
7
|
Ma Y, Zhang X, Yang J, Jin Y, Xu Y, Qiu J. Comprehensive Molecular Analyses of a TNF Family-Based Gene Signature as a Potentially Novel Prognostic Biomarker for Cervical Cancer. Front Oncol 2022; 12:854615. [PMID: 35392242 PMCID: PMC8980547 DOI: 10.3389/fonc.2022.854615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Accepted: 02/28/2022] [Indexed: 12/14/2022] Open
Abstract
Background Increasing evidence suggests that tumour necrosis factor (TNF) family genes play important roles in cervical cancer (CC). However, whether TNF family genes can be used as prognostic biomarkers of CC and the molecular mechanisms of TNF family genes remain unclear. Methods A total of 306 CC and 13 normal samples were obtained from The Cancer Genome Atlas (TCGA) and Genotype-Tissue Expression (GTEx) databases. We identified differentially expressed TNF family genes between CC and normal samples and subjected them to univariate Cox regression analysis for selecting prognostic TNF family genes. Least absolute shrinkage and selection operator (LASSO) regression and multivariate Cox regression analyses were performed to screen genes to establish a TNF family gene signature. Gene set enrichment analysis (GSEA) was performed to investigate the biological functions of the TNF family gene signature. Finally, methylation and copy number variation data of CC were used to analyse the potential molecular mechanisms of TNF family genes. Results A total of 26 differentially expressed TNF family genes were identified between the CC and normal samples. Next, a TNF family gene signature, including CD27, EDA, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 was constructed based on univariate Cox, LASSO, and multivariate Cox regression analyses. The TNF family gene signature was related to age, pathological stages M and N, and could predict patient survival independently of clinical factors. Moreover, KEGG enrichment analysis suggested that the TNF family gene signature was mainly involved in the TGF-β signaling pathway, and the TNF family gene signature could affect the immunotherapy response. Finally, we confirmed that the mRNA expressions of CD27, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 were upregulated in CC, while that of EDA was downregulated. The mRNA expressions of CD27, EDA, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 might be influenced by gene methylation and copy number variation. Conclusion Our study is the first to demonstrate that CD27, EDA, TNF, TNFRSF12A, TNFRSF13C, and TNFRSF9 might be used as prognostic biomarkers of CC and are associated with the immunotherapy response of CC.
Collapse
Affiliation(s)
- Yan Ma
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Xiaoyan Zhang
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jiancheng Yang
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Yanping Jin
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Ying Xu
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| | - Jianping Qiu
- Department of Gynecology and Obstetrics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, China
| |
Collapse
|
8
|
Cai Z, Deng X, Jia J, Wang D, Yuan G. Ectodysplasin A/Ectodysplasin A Receptor System and Their Roles in Multiple Diseases. Front Physiol 2021; 12:788411. [PMID: 34938205 PMCID: PMC8685516 DOI: 10.3389/fphys.2021.788411] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022] Open
Abstract
Ectodysplasin A (EDA) is a member of the tumor necrosis factor (TNF) family of ligands that was initially reported to induce the formation of various ectodermal derivatives during normal prenatal development. EDA exerts its biological activity as two splice variants, namely, EDA-A1 and EDA-A2. The former binds to the EDA receptor (EDAR), resulting in the recruitment of the intracellular EDAR-associated death domain (EDARADD) adapter protein and the activation of the NF-κB signaling pathway, while the latter binds to a different receptor, EDA2R, also known as X-linked ectodermal dysplasia receptor (XEDAR). Inactivation mutation of the EDA gene or the genes coding for its receptors can result in hypohidrosis ectodermal dysplasia (HED), a condition that is characterized by oligotrichosis, edentulosis or oligodontia, and oligohidrosis or anhidrosis. Recently, as a new liver factor, EDA is gradually known and endowed with some new functions. EDA levels were observed to be upregulated in several metabolic diseases, such as non-alcoholic fatty liver disease (NAFLD), obesity, and insulin resistance. In addition, EDA and its receptors have been implicated in tumor pathogenesis through the regulation of tumor cell proliferation, apoptosis, differentiation, and migration. Here, we first review the role of EDA and its two-receptor system in various signaling pathways and then discuss the physiological and pathological roles of EDA and its receptors.
Collapse
Affiliation(s)
- Zhensheng Cai
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xia Deng
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jue Jia
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Dong Wang
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Guoyue Yuan
- Department of Endocrinology, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| |
Collapse
|
9
|
Kossel CS, Wahlbuhl M, Schuepbach-Mallepell S, Park J, Kowalczyk-Quintas C, Seeling M, von der Mark K, Schneider P, Schneider H. Correction of Vertebral Bone Development in Ectodysplasin A1-Deficient Mice by Prenatal Treatment With a Replacement Protein. Front Genet 2021; 12:709736. [PMID: 34456978 PMCID: PMC8385758 DOI: 10.3389/fgene.2021.709736] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 07/19/2021] [Indexed: 11/28/2022] Open
Abstract
X-linked hypohidrotic ectodermal dysplasia with the cardinal symptoms hypodontia, hypotrichosis and hypohidrosis is caused by a genetic deficiency of ectodysplasin A1 (EDA1). Prenatal EDA1 replacement can rescue the development of skin appendages and teeth. Tabby mice, a natural animal model of EDA1 deficiency, additionally feature a striking kink of the tail, the cause of which has remained unclear. We studied the origin of this phenomenon and its response to prenatal therapy. Alterations in the distal spine could be noticed soon after birth, and kinks were present in all Tabby mice by the age of 4 months. Although their vertebral bones frequently had a disorganized epiphyseal zone possibly predisposing to fractures, cortical bone density was only reduced in vertebrae of older Tabby mice and even increased in their tibiae. Different availability of osteoclasts in the spine, which may affect bone density, was ruled out by osteoclast staining. The absence of hair follicles, a well-known niche of epidermal stem cells, and much lower bromodeoxyuridine uptake in the tail skin of 9-day-old Tabby mice rather suggest the kink being due to a skin proliferation defect that prevents the skin from growing as fast as the skeleton, so that caudal vertebrae may be squeezed and bent by a lack of skin. Early postnatal treatment with EDA1 leading to delayed hair follicle formation attenuated the kink, but did not prevent it. Tabby mice born after prenatal administration of EDA1, however, showed normal tail skin proliferation, no signs of kinking and, interestingly, a normalized vertebral bone density. Thus, our data prove the causal relationship between EDA1 deficiency and kinky tails and indicate that hair follicles are required for murine tail skin to grow fast enough. Disturbed bone development appears to be partially pre-determined in utero and can be counteracted by timely EDA1 replacement, pointing to a role of EDA1 also in osteogenesis.
Collapse
Affiliation(s)
- Clara-Sophie Kossel
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | - Mandy Wahlbuhl
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | | - Jung Park
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| | | | - Michaela Seeling
- Department of Biology, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Klaus von der Mark
- Department of Experimental Medicine I, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany
| | - Pascal Schneider
- Department of Biochemistry, University of Lausanne, Epalinges, Switzerland
| | - Holm Schneider
- Department of Pediatrics, Friedrich-Alexander University Erlangen-Nürnberg, Erlangen, Germany.,Center for Ectodermal Dysplasias, University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
10
|
Zhang X, Zhang D, Sun X, Li S, Sun Y, Zhai H. Tumor Suppressor Gene XEDAR Promotes Differentiation and Suppresses Proliferation and Migration of Gastric Cancer Cells Through Upregulating the RELA/LXRα Axis and Deactivating the Wnt/β-Catenin Pathway. Cell Transplant 2021; 30:963689721996346. [PMID: 33637015 PMCID: PMC7923976 DOI: 10.1177/0963689721996346] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 01/19/2021] [Accepted: 02/01/2021] [Indexed: 01/06/2023] Open
Abstract
X-linked ectodermal dysplasia receptor (XEDAR) is a new member of the tumor necrosis factor receptor (TNFR) family that induces cell death. The purpose of this study is to determine the tumor-suppressive potential of XEDAR in the development and differentiation of gastric cancer (GC). XEDAR levels were analyzed in human GC tissues and adjacent normal tissues by immunohistochemistry (IHC), quantitative real-time reverse transcription PCR (RT-qPCR), and Western blot analysis. We found that XEDAR expression was significantly downregulated in GC tissues and further decreased in low differentiated GC tissues. Overexpression of XEDAR in MKN45 and MGC803 cells suppressed the ability of cell proliferation and migration, whereas silencing XEDAR showed the opposite effect. Additionally, XEDAR silencing resulted in the upregulation of the differentiation molecular markers β-catenin, CD44 and Cyclin D1 at the protein levels, whereas XEDAR overexpression showed the opposite effect. Notably, XEDAR positively regulated the expression of liver X receptor alpha (LXRα) through upregulating the RELA gene that was characterized as a transcription factor of LXRα in this study. Inhibition of LXRα by GSK2033 or activation of the Wnt/β-catenin pathway by Wnt agonist 1 impaired the effect of XEDAR overexpression on differentiation of MKN45 cells. Moreover, inhibition of RELA mediated by siRNA could promote cell proliferation/migration and rescue the effect of XEDAR overexpression on cell behaviors and expression of genes. Subsequently, overexpression of XEDAR suppressed the growth of GC cells in vivo. Taken together, our findings showed that XEDAR could promote differentiation and suppress proliferation and invasion of GC cells.
Collapse
Affiliation(s)
- Xinwu Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Di Zhang
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Xiaoli Sun
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Shunle Li
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Yun Sun
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| | - Hongjun Zhai
- Department of General Surgery, the Second Affiliated Hospital of Xi’an Jiaotong University, Xi’an, China
| |
Collapse
|
11
|
Wang J, Zhu P, Toan S, Li R, Ren J, Zhou H. Pum2-Mff axis fine-tunes mitochondrial quality control in acute ischemic kidney injury. Cell Biol Toxicol 2020; 36:365-378. [PMID: 31993882 DOI: 10.1007/s10565-020-09513-9] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2019] [Accepted: 01/24/2020] [Indexed: 12/31/2022]
Abstract
Mitochondrial fission factor (Mff) has been demonstrated to play a role in the activation of mitochondrial cleavage and mitochondrial death, denoting its role in the regulation of mitochondrial quality control. Recent evidence suggested that the mRNA translation of Mff is under the negative regulation by the RNA-binding protein Pumilio2 (Pum2). This study was designed to examine the role of Pum2 and Mff in the governance of mitochondrial quality control in a murine model of acute ischemic kidney injury. Our results indicated that genetic deletion of Mff overtly attenuated ischemic acute kidney injury (AKI)-induced renal failure through inhibition of pro-inflammatory response, tubular oxidative stress, and ultimately cell death in the kidney. Furthermore, Mff inhibition effectively preserved mitochondrial homeostasis through amelioration of mitochondrial mitosis, restoration of Sirt1/3 expression, and boost of mitochondrial respiration. Western blot analysis revealed that levels of Pum2 were significantly downregulated by ischemic AKI, inversely coinciding with levels of Mff. Overexpression of Pum2 reduced ischemic AKI-mediated Mff upregulation and offered protection on renal tubules through modulation of mitochondrial quality control. Taken together, our data have unveiled the molecular mechanism of the Pum2-Mff axis in mitochondrial quality control in a mouse model of ischemic AKI. These data indicated the therapeutic potential of Pum2 activation and Mff inhibition in the management of ischemic AKI.
Collapse
Affiliation(s)
- Jin Wang
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Pingjun Zhu
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Sam Toan
- Department of Chemical Engineering, University of Minnesota-Duluth, Duluth, MN, 55812, USA
| | - Ruibing Li
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China
| | - Jun Ren
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| | - Hao Zhou
- Medical School of Chinese PLA, Chinese PLA General Hospital, Beijing, China.
- Center for Cardiovascular Research and Alternative Medicine, University of Wyoming, Laramie, WY, 82071, USA.
| |
Collapse
|
12
|
Mui D, Zhang Y. Mitochondrial scenario: roles of mitochondrial dynamics in acute myocardial ischemia/reperfusion injury. J Recept Signal Transduct Res 2020; 41:1-5. [PMID: 32583708 DOI: 10.1080/10799893.2020.1784938] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The main therapeutic strategy currently used for acute myocardial infarction (AMI) is to open occluded coronary arteries, a process defined as blood reperfusion. However, blood reperfusion will increase cardiac mortality, tissue damage and cardiac dysfunction in patients with AMI, which is mechanically defined as "ischemia/reperfusion (I/R) injury". It is currently believed that mitochondrial dynamics plays a key role in myocardial I/R, especially excessive mitochondrial fission, which is the main cause of cardiac dysfunction. Therefore, in the process of I/R injury, effective drug intervention and correct treatment strategies can be used to regulate mitochondrial dynamic balance to combat ischemia-reperfusion injury, which can play a huge role in improving the prognosis of patients. This review summarized the effects of mitochondrial fission and mitochondrial fusion balance on myocardial and mitochondrial functional changes during myocardial I/R injury. Finally, combined with the previous injury mechanisms, this review also briefly described some drug intervention that may be beneficial to clinical practice to improve the postoperative quality of life of patients with AMI.
Collapse
Affiliation(s)
- David Mui
- Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ying Zhang
- Department of Cardiology, Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
13
|
Dong Q, Jie Y, Ma J, Li C, Xin T, Yang D. Wnt/β-catenin signaling pathway promotes renal ischemia-reperfusion injury through inducing oxidative stress and inflammation response. J Recept Signal Transduct Res 2020; 41:15-18. [PMID: 32580617 DOI: 10.1080/10799893.2020.1783555] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Oxidative stress and inflammation response have been found to be associated with renal ischemia reperfusion (I/R) injury through an undefined mechanism. The aim of our study is to explore the influence of Wnt/β-catenin signaling pathway on oxidative stress and inflammation response during renal I/R injury. The results of our study demonstrated that oxidative stress was induced whereas antioxidative factors were suppressed by renal I/R injury. Besides, the transcriptions and activities of pro-inflammation factors were also upregulated by renal I/R injury. Interestingly, inhibition of Wnt/β-catenin signaling pathway significantly attenuated I/R-mediated oxidative stress and inflammation response. Therefore, our results report a novel pathway responsible for renal I/R injury. Inhibition of Wnt/β-catenin signaling pathway would be considered as an effective approach to regulate oxidative stress and inflammation response in reperfused kidney.
Collapse
Affiliation(s)
- Qi Dong
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| | - Yingxin Jie
- Department of Emergency, Tianjin Hospital, Tianjin, P.R. China
| | - Jian Ma
- Tianjin Women's and Children's Health Center, Tianjin Hospital, Tianjin, P.R. China
| | - Chen Li
- Department of Orthopaedics, Tianjin Hospital, Tianjin, P.R. China
| | - Ting Xin
- Department of Cardiology, Tianjin First Central Hospital, Tianjin, P.R. China
| | - Dingwei Yang
- Department of Nephrology, Tianjin Hospital, Tianjin, P.R. China
| |
Collapse
|
14
|
Li M, Bai YT, Han K, Li XD, Meng J. Knockdown of ectodysplasin-A receptor-associated adaptor protein exerts a tumor-suppressive effect in tongue squamous cell carcinoma cells. Exp Ther Med 2020; 19:3337-3347. [PMID: 32266031 PMCID: PMC7132229 DOI: 10.3892/etm.2020.8578] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 02/10/2020] [Indexed: 02/06/2023] Open
Abstract
Tongue squamous cell carcinoma (TSCC) is a common malignancy in oral cancer with a high mortality and morbidity. The ectodysplasin-A receptor-associated adaptor protein (EDARADD) is a death domain-containing adaptor protein that interacts with the TNF family ligand ectodysplasin A receptor. It is known that EDARADD has an effect on the development of ectodermal derivative tissues, such as hair and teeth. EDARADD expression is also associated with the development of melanoma. However, the role of EDARADD in TSCC remains unknown. The aim of the present investigation was to explore whether EDARADD plays a role in the biological function of TSCC. Immunohistochemistry was used to measure the expression of EDARADD in TSCC tissues and adjacent normal tissue. EDARADD was knocked down in a TSCC cell line in vitro using a specific lentivirus. The expression level of the EDARADD gene and the efficacy of gene knockdown were evaluated by reverse transcription-quantitative PCR, while EDARADD protein expression and the expression levels of Bcl-2, MYC and NF-κBp65 were determined by western blotting. Additionally, MTT assays, colony formation assays and apoptosis assays were carried out to examine the effect of EDARADD knockdown on the TSCC cells. A previous study showed that the majority of the TSCC tissues that were tested had high EDARADD expression. The expression of EDARADD both at mRNA and protein levels was significantly lower (P<0.01) after the gene was knocked down in the CAL27 cells compared with the level in control cells. Downregulation of EDARADD expression inhibited colony formation and proliferation and induced apoptosis of CAL27 cells when compared to control cells (P<0.01). Taken together, these results suggested that EDARADD may be actively involved in the progression of TSCC and that EDARADD may be a novel therapeutic target for the treatment of TSCC.
Collapse
Affiliation(s)
- Meng Li
- Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Yu-Ting Bai
- Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Kun Han
- Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Xiao-Dong Li
- Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| | - Jian Meng
- Department of Stomatology, Central Hospital of Xuzhou, The Xuzhou Clinical College of Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China.,Department of Oral Medicine, School of Stomatology, Xuzhou Medical University, Xuzhou, Jiangsu 221000, P.R. China
| |
Collapse
|
15
|
A Targeted Quantitative Proteomic Method Revealed a Substantial Reprogramming of Kinome during Melanoma Metastasis. Sci Rep 2020; 10:2485. [PMID: 32051510 PMCID: PMC7015909 DOI: 10.1038/s41598-020-59572-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Accepted: 01/31/2020] [Indexed: 12/15/2022] Open
Abstract
Kinases are involved in numerous critical cell signaling processes, and dysregulation in kinase signaling is implicated in many types of human cancers. In this study, we applied a parallel-reaction monitoring (PRM)-based targeted proteomic method to assess kinome reprogramming during melanoma metastasis in three pairs of matched primary/metastatic human melanoma cell lines. Around 300 kinases were detected in each pair of cell lines, and the results showed that Janus kinase 3 (JAK3) was with reduced expression in the metastatic lines of all three pairs of melanoma cells. Interrogation of The Cancer Genome Atlas (TCGA) data showed that reduced expression of JAK3 is correlated with poorer prognosis in melanoma patients. Additionally, metastatic human melanoma cells/tissues exhibited diminished levels of JAK3 mRNA relative to primary melanoma cells/tissues. Moreover, JAK3 suppresses the migration and invasion of cultured melanoma cells by modulating the activities of matrix metalloproteinases 2 and 9 (MMP-2 and MMP-9). In summary, our targeted kinome profiling method provided by far the most comprehensive dataset for kinome reprogramming associated with melanoma progression, which builds a solid foundation for examining the functions of other kinases in melanoma metastasis. Moreover, our results reveal a role of JAK3 as a potential suppressor for melanoma metastasis.
Collapse
|
16
|
Zhou D, Zhang M, Min L, Jiang K, Jiang Y. Cerebral ischemia-reperfusion is modulated by macrophage-stimulating 1 through the MAPK-ERK signaling pathway. J Cell Physiol 2020; 235:7067-7080. [PMID: 32017081 DOI: 10.1002/jcp.29603] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 01/22/2020] [Indexed: 01/04/2023]
Abstract
Cerebral ischemia-reperfusion (IR) injury is associated with mitochondrial damage. Macrophage-stimulating 1 (MST1) reportedly stimulates mitochondrial apoptosis by suppressing BCL-2. We investigated whether MST1 promotes the progression of cerebral IR injury by inducing mitochondrial dysfunction in vivo and in vitro. Western blot analysis, quantitative polymerase chain reaction, immunofluorescence, and mitochondrial function assays were conducted in cells from wild-type and Mst1-knockout mice subjected to cerebral IR injury. MST1 expression in wild-type glial cells increased following cerebral IR injury. Cerebral IR injury reduced the mitochondrial membrane potential and mitochondrial metabolism in glial cells, while it enhanced mitochondrial reactive oxygen species generation and mitochondrial calcium levels in these cells. The deletion of Mst1 attenuated cerebral IR injury by improving mitochondrial function and reducing mitochondrial damage. The mitogen-activated protein kinase/extracellular signal-regulated kinase (MAPK/ERK) pathway was suppressed in wild-type glial cell upon cerebral IR injury but was reactivated in Mst1-knockout glial cell. Accordingly, blocking the MAPK/ERK pathway abolished the beneficial effects of Mst1 deletion during cerebral IR injury by inducing mitochondrial damage in glial cells. Our results suggest that cerebral IR injury is associated with MST1 upregulation in the brain, while the genetic ablation of Mst1 can attenuate mitochondrial damage and sustain brain function following cerebral IR injury.
Collapse
Affiliation(s)
- Dingzhou Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Liu Min
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Kaiyuan Jiang
- Department of Neurosurgery, The Central Hospital of Shaoyang, Shaoyang, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
17
|
Zhang M, Zhou D, Ouyang Z, Yu M, Jiang Y. Sphingosine kinase 1 promotes cerebral ischemia-reperfusion injury through inducing ER stress and activating the NF-κB signaling pathway. J Cell Physiol 2020; 235:6605-6614. [PMID: 31985036 DOI: 10.1002/jcp.29546] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Accepted: 01/15/2020] [Indexed: 01/02/2023]
Abstract
Endoplasm reticulum stress and inflammation response have been found to be linked to cerebral ischemia-reperfusion (IR) injury. Sphingosine kinase 1 (SPHK1) has been reported to be a novel endoplasm reticulum regulator. The aim of our study is to figure out the role of SPHK1 in cerebral IR injury and verify whether it has an ability to regulate inflammation and endoplasm reticulum stress. Hydrogen peroxide was used to induce cerebral IR injury. Enzyme-linked immunosorbent assay, quantitative polymerase chain reaction, western blots, and immunofluorescence were used to measure the alterations of cell viability, inflammation response, and endoplasm reticulum stress. The results demonstrated that after exposure to hydrogen peroxide, cell viability was reduced whereas SPHK1 expression was significantly elevated. Knockdown of SPHK1 attenuated hydrogen peroxide-mediated cell death and reversed cell viability. Our data also demonstrated that SPHK1 deletion reduced endoplasm reticulum stress and alleviated inflammation response in hydrogen peroxide-treated cells. In addition, we also found that SHPK1 modulated endoplasm reticulum stress and inflammation response to through the NF-κB signaling pathway. Inhibition of NF-κB signaling pathway has similar results when compared with the cells with SPHK1 deletion. Altogether, our results demonstrated that SPHK1 upregulation, induced by hydrogen peroxide, is responsible for cerebral IR injury through inducing endoplasm reticulum stress and inflammation response in a manner working through the NF-κB signaling pathway. This finding provides new insight into the molecular mechanism to explain the neuron death induced by cerebral IR injury.
Collapse
Affiliation(s)
- Mingming Zhang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Dingzhou Zhou
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Zhu Ouyang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Mengqiang Yu
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| | - Yugang Jiang
- Department of Neurosurgery, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China
| |
Collapse
|
18
|
Ouyang H, Li Q, Zhong J, Xia F, Zheng S, Lu J, Deng Y, Hu Y. Combination of melatonin and irisin ameliorates lipopolysaccharide-induced cardiac dysfunction through suppressing the Mst1-JNK pathways. J Cell Physiol 2020; 235:6647-6659. [PMID: 31976559 DOI: 10.1002/jcp.29561] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2019] [Accepted: 01/13/2020] [Indexed: 12/15/2022]
Abstract
Despite significant advances in therapies in past decades, the mortality rate of septic cardiomyopathy remains high. The aim of this study is to explore the therapeutic effects of combined treatment using melatonin and irisin in a mouse model of lipopolysaccharide (LPS)-mediated septic cardiomyopathy. Our data found that melatonin and irisin could further attenuate LPS-induced myocardial depression. Molecular investigation illustrated that melatonin and irisin cotreatment sustained cardiomyocyte viability and improved mitochondrial function under LPS stress. Pathway analysis demonstrated that macrophage-stimulating 1 (Mst1), which was significantly activated by LPS, was drastically inhibited by melatonin/irisin cotreatment. Mechanically, Mst1 activated c-Jun N-terminal kinase (JNK) pathway and the latter induced oxidative stress, adenosine triphosphate metabolism disorder, mitochondrial membrane potential reduction, and cardiomyocyte death activation. Melatonin and irisin cotreatment effectively inhibited the Mst1-JNK pathway and, thus, promoted cardiomyocyte survival and mitochondrial homeostasis. Interestingly, Mst1 overexpression abolished the beneficial effects of melatonin and irisin in vivo and in vitro. Altogether, our results confirmed that melatonin and irisin combination treatment could protect heart against sepsis-induced myocardial depression via modulating the Mst1-JNK pathways.
Collapse
Affiliation(s)
- Haichun Ouyang
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Qian Li
- Department of Emergency Medicine, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Jiankai Zhong
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Fengfan Xia
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Sulin Zheng
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Jianhua Lu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| | - Yuanyan Deng
- Department of Cardiology, Integrated Hospital of Traditional Chinese Medicine, Southern Medical University, Guangzhou, China
| | - Yunzhao Hu
- Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong, China
| |
Collapse
|
19
|
Chen N, Shan Q, Qi Y, Liu W, Tan X, Gu J. Transcriptome analysis in normal human liver cells exposed to 2, 3, 3', 4, 4', 5 - Hexachlorobiphenyl (PCB 156). CHEMOSPHERE 2020; 239:124747. [PMID: 31514003 DOI: 10.1016/j.chemosphere.2019.124747] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 07/31/2019] [Accepted: 09/03/2019] [Indexed: 05/20/2023]
Abstract
BACKGROUNDS Polychlorinated biphenyls are persistent environmental pollutants associated with the onset of non-alcoholic fatty liver disease in humans, but there is limited information on the underlying mechanism. In the present study, we investigated the alterations in gene expression profiles in normal human liver cells L-02 following exposure to 2, 3, 3', 4, 4', 5 - hexachlorobiphenyl (PCB 156), a potent compound that may induce non-alcoholic fatty liver disease. METHODS The L-02 cells were exposed to PCB 156 for 72 h and the contents of intracellular triacylglyceride and total cholesterol were subsequently measured. Microarray analysis of mRNAs and long non-coding RNAs (lncRNAs) in the cells was also performed after 3.4 μM PCB 156 treatment. RESULTS Exposure to PCB 156 (3.4 μM, 72 h) resulted in significant increases of triacylglyceride and total cholesterol concentrations in L-02 cells. Microarray analysis identified 222 differentially expressed mRNAs and 628 differentially expressed lncRNAs. Gene Ontology and pathway analyses associated the differentially expressed mRNAs with metabolic and inflammatory processes. Moreover, lncRNA-mRNA co-expression network revealed 36 network pairs comprising 10 differentially expressed mRNAs and 34 dysregulated lncRNAs. The results of bioinformatics analysis further indicated that dysregulated lncRNA NONHSAT174696, lncRNA NONHSAT179219, and lncRNA NONHSAT161887, as the regulators of EDAR, CYP1B1, and ALDH3A1 respectively, played an important role in the PCB 156-induced lipid metabolism disorder. CONCLUSION Our findings provide an overview of differentially expressed mRNAs and lncRNAs in L-02 cells exposed to PCB 156, and contribute to the field of polychlorinated biphenyl-induced non-alcoholic fatty liver disease.
Collapse
Affiliation(s)
- Ningning Chen
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Qiuli Shan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China; State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China.
| | - Yu Qi
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Wei Liu
- State Key Laboratory of Environmental Chemistry and Eco-Toxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Xiaojun Tan
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| | - Jinsong Gu
- College of Biological Science and Technology, University of Jinan, Jinan, 250022, China
| |
Collapse
|
20
|
Song X, Li T. Ripk3 mediates cardiomyocyte necrosis through targeting mitochondria and the JNK-Bnip3 pathway under hypoxia-reoxygenation injury. J Recept Signal Transduct Res 2019; 39:331-340. [PMID: 31658855 DOI: 10.1080/10799893.2019.1676259] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2019] [Revised: 09/29/2019] [Accepted: 10/01/2019] [Indexed: 12/13/2022]
Abstract
Context: Cardiomyocyte necrosis following myocardial infarction drastically the progression of heart failure.Objective: In the current study, we explored the upstream mediator for cardiomyocytes necrosis induced by hypoxia-reoxygenation (HR) injury with a focus on mitochondrial function and JNK-Bnip3 pathway.Materials and methods: Cell necrosis was determined via MTT assay, TUNEL staining and PI staining. siRNA transfection was performed to inhibit Ripk3 activation in response to HR injury. Pathway blocker was applied to prevent JNK activation.Results: Ripk3 was rapidly increased in HR-treated cardiomyocytes and correlated with the necrosis of cardiomyocytes. Interestingly, silencing of Ripk3 attenuated HR-mediated cardiomyocytes necrosis. At the molecular levels, Ripk3 deletion sustained mitochondrial bioenergetics and stabilized mitochondrial glucose metabolism. Besides, Ripk3 deletion also reduced mitochondrial oxidative stress and inhibited mPTP opening. To the end, we found Ripk3 activation was along with JNK pathway activation and Bnip3 upregulation. Interestingly, blockade of JNK pathway abolished the harmful effects of HR injury on mitochondrial function, energy metabolism and redox balance. Moreover, overexpression of Bnip3 abrogated the protection action played by Ripk3 deletion on cardiomyocytes survival.Conclusions: Taken together, these data may identify Ripk3 upregulation, mitochondrial dysfunction and JNK-Bnip3 axis activation as the novel mechanisms underlying cardiomyocytes necrosis achieved by HR injury. Thereby, approaches targeted to the Ripk3-JNK-Bnip3-mitochondria cascade have the potential to ameliorate the progression of HR-related cardiomyocytes necrosis in the clinical practice.
Collapse
Affiliation(s)
- Xinyu Song
- Department of Cardiology, Sixth Medical Center of PLA General Hospital, Beijing, China
| | - Tianchang Li
- Department of Cardiology, Sixth Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
21
|
Yu W, Mei X, Zhang Q, Zhang H, Zhang T, Zou C. Yap overexpression attenuates septic cardiomyopathy by inhibiting DRP1-related mitochondrial fission and activating the ERK signaling pathway. J Recept Signal Transduct Res 2019; 39:175-186. [PMID: 31354091 DOI: 10.1080/10799893.2019.1641822] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
Context: Yes-associated protein (Yap) has been linked to several cardiovascular disorders, but the role of this protein in septic cardiomyocytes is not fully understood. Objective: The aim of our study was to explore the influence of Yap in septic cardiomyopathy in vivo and in vitro. Materials and methods: In the current study, Yap transgenic mice and Yap adenovirus-mediated gain-of-function assays were used in an LPS-established septic cardiomyopathy model. Mitochondrial function and mitochondrial fission were determined through western blotting, immunofluorescence analysis and ELISA. Results: Our results demonstrated that Yap expression was downregulated by LPS, whereas Yap overexpression sustained cardiac function and attenuated cardiomyocyte death. The functional exploration revealed that LPS treatment induced cardiomyocyte mitochondrial stress, as manifested by mitochondrial superoxide overproduction, cardiomyocyte ATP deprivation, and caspase-9 apoptosis activation. Furthermore, we demonstrated that LPS-mediated mitochondrial damage was controlled by mitochondrial fission. However, Yap overexpression reduced mitochondrial fission and therefore improved mitochondrial function. A molecular investigation revealed that Yap overexpression inhibited mitochondrial fission by reversing ERK activity, and the inhibition of the ERK pathway promoted DRP1 upregulation and thereby mediated mitochondrial fission activation in the presence of Yap overexpression. Conclusions: Overall, our results suggest that the cause of septic cardiomyopathy appears to be connected with Yap downregulation. The overexpression of Yap can attenuate myocardial inflammation injury through the reduction of DRP1-related mitochondrial fission in an ERK pathway activation-dependent manner.
Collapse
Affiliation(s)
- Wancheng Yu
- a Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Xu Mei
- b Department of Geriatrics, Shandong University Qilu Hospital , Jinan , China
| | - Qian Zhang
- a Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Haizhou Zhang
- a Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Tao Zhang
- a Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| | - Chengwei Zou
- a Department of Cardiovascular Surgery, Shandong Provincial Hospital Affiliated to Shandong University , Jinan , China
| |
Collapse
|
22
|
Liu Y, Fu Y, Hu X, Chen S, Miao J, Wang Y, Zhou Y, Zhang Y. Caveolin-1 knockdown increases the therapeutic sensitivity of lung cancer to cisplatin-induced apoptosis by repressing Parkin-related mitophagy and activating the ROCK1 pathway. J Cell Physiol 2019; 235:1197-1208. [PMID: 31270811 DOI: 10.1002/jcp.29033] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/12/2022]
Abstract
Chemotherapy is the first-line treatment option for patients with lung cancer. However, therapeutic resistance occurs through an incompletely understood mechanism. Our research wants to investigate the influence of Caveolin-1 (Cav-1) on the therapeutic sensitivity of lung cancer in vitro. Results in this study demonstrated that Cav-1 levels were markedly inhibited in A549 lung cancer cells after exposure to cisplatin. Knockdown of caveolin further enhanced cisplatin-triggered cancer death in A549 cells. The functional investigation demonstrated that Cav-1 inhibition amplified the mitochondrial stress signaling induced by cisplatin, as evidenced by the mitochondrial reactive oxygen species burst, cellular metabolic disruption, mitochondrial membrane potential reduction, and mitochondrial caspase-9-related apoptosis activation. At the molecular level, cav-1 augmented cisplatin-mediated mitochondrial damage by inhibiting Parkin-related mitochondrial autophagy. Mitophagy activation effectively attenuated the promotive impact of Cav-1 knockdown on mitochondrial damage and cell death. Furthermore, our data indicated that Cav-1 affected Parkin-related mitophagy by activating the Rho-associated coiled-coil kinase 1 (ROCK1) pathway; inhibition of the ROCK1 axis prevented cav-1 knockdown-mediated cell death and mitochondrial damage. Taken together, our results provide ample data illuminate the necessary action exerted by Cav-1 on affecting cisplatin-related therapeutic resistance. Silencing of Cav-1 inhibited Parkin-related mitophagy, thus amplifying cisplatin-mediated mitochondrial apoptotic signaling. This finding identifies the Cav-1/ROCK1/Parkin/mitophagy axis as a potential target to overcome cisplatin-related resistance in lung cancer cells.
Collapse
Affiliation(s)
- Yi Liu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Yili Fu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Xianoxing Hu
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Shuo Chen
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Jinbai Miao
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Yang Wang
- Department of Thoracic Surgery, Beijing Chaoyang Hospital, Beijing, Chaoyang, China
| | - Ying Zhou
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, Yangpu, China
| | - Yuan Zhang
- Department of Pulmonary and Critical Care Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, Yangpu, China
| |
Collapse
|
23
|
Fan J, Zhu Q, Wu Z, Ding J, Qin S, Liu H, Miao P. Protective effects of irisin on hypoxia-reoxygenation injury in hyperglycemia-treated cardiomyocytes: Role of AMPK pathway and mitochondrial protection. J Cell Physiol 2019; 235:1165-1174. [PMID: 31268170 DOI: 10.1002/jcp.29030] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2019] [Accepted: 06/12/2019] [Indexed: 12/22/2022]
Abstract
Recent evidence has verified the cardioprotective actions of irisin in different diseases models. However, the beneficial action of irisin on hypoxia-reoxygenation (HR) injury under high glucose stress has not been described. Herein our research investigated the influence of irisin on HR-triggered cardiomyocyte death under high glucose stress. HR model was established in vitro under high glucose treatment. The results illuminated that HR injury augmented apoptotic ratio of cardiomyocyte under high glucose stress; this effect could be abolished by irisin via modulating mitochondrial function. Irisin treatment attenuated cellular redox stress, improved cellular ATP biogenetics, sustained mitochondria potential, and impaired mitochondrion-related cell death. At the molecular levels, irisin treatment activated the 5'-adenosine monophosphate-activated protein kinase (AMPK) pathway and the latter protected cardiomyocyte and mitochondria against HR injury under high glucose stress. Altogether, our results indicated a novel role of irisin in HR-treated cardiomyocyte under high glucose stress. Irisin-activated AMPK pathway and the latter sustained cardiomyocyte viability and mitochondrial function.
Collapse
Affiliation(s)
- Jiamao Fan
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Qing Zhu
- Department of Cardiology, Linfen Central Hospital, Linfen, China.,Institutes of Biomedical Sciences, Shanghai Medical School, Fudan University, Shanghai, China
| | - Zhenhua Wu
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Jiao Ding
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| | - Shuai Qin
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Hui Liu
- Department of Cardiovascular Surgery, Linfen Central Hospital, Linfen, China
| | - Pengfei Miao
- Department of Cardiology, Linfen Central Hospital, Linfen, China
| |
Collapse
|
24
|
Lu K, Liu X, Guo W. Melatonin attenuates inflammation‐related venous endothelial cells apoptosis through modulating the MST1–MIEF1 pathway. J Cell Physiol 2019; 234:23675-23684. [PMID: 31169304 DOI: 10.1002/jcp.28935] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2019] [Revised: 05/23/2019] [Accepted: 05/24/2019] [Indexed: 12/11/2022]
Affiliation(s)
- Kai Lu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular Surgery Da Qing Oil General Hospital Daquing Hei Longjiang China
| | - Xiaoping Liu
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| | - Wei Guo
- Department of Vascular and Endovascular Surgery Medical School of Chinese PLA Beijing China
- Department of Vascular and Endovascular Surgery 301 General Hospital of PLA Beijing China
| |
Collapse
|