1
|
Zhang J, Wu T, Wang Z, Xu S, Jing X, Zhang Z, Lin J, Zhang H, Liu D, Zhou R, Guo L, Wang X, Rong M, Shao Y, Ostrikov KK. Plasma-generated RONS in liquid transferred into cryo-microneedles patch for skin treatment of melanoma. Redox Biol 2024; 75:103284. [PMID: 39059203 PMCID: PMC11332077 DOI: 10.1016/j.redox.2024.103284] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 06/27/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024] Open
Abstract
Malignant melanoma is the most lethal form of skin cancer. As a promising anti-cancer agent, plasma-activated water (PAW) rich in reactive oxygen and nitrogen species (RONS) has shown significant potential for melanoma treatment. However, rapid decay of RONS and inefficient delivery of PAW in conventional injection methods limit its practical applications. To address this issue, here we report a new approach for the production of plasma-activated cryo-microneedles (PA-CMNs) patches using custom-designed plasma devices and processes. Our innovation is to incorporate PAW into the PA-CMNs that are fabricated using a fast cryogenic micro-molding method. It is demonstrated that PA-CMNs can be easily inserted into skin to release RONS and slow the decay of RONS thereby prolonging their bioactivity and effectiveness. The new insights into the effective melanoma treatment suggest that the rich mixture of RONS within PA-CMNs prepared by custom-developed hybrid plasma-assisted configuration induces both ferroptosis and apoptosis to selectively kill tumor cells. A significant inhibition of subcutaneous A375 melanoma growth was observed in PA-CMNs-treated tumor-bearing nude mice without any signs of systemic toxicity. The new approach based on PA-CMNs may potentially open new avenues for a broader range of disease treatments.
Collapse
Affiliation(s)
- Jishen Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Tong Wu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zifeng Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Shengduo Xu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xixi Jing
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Zizhu Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Jiao Lin
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China.
| | - Dingxin Liu
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Renwu Zhou
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Li Guo
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China; Interdisciplinary Research Center of Frontier Science and Technology, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Xiaohua Wang
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Mingzhe Rong
- State Key Laboratory of Electrical Insulation and Power Equipment, Centre for Plasma Biomedicine, Xi'an Jiaotong University, Xi'an City, 710049, People's Republic of China
| | - Yongping Shao
- Frontier Institute of Science and Technology, Xi'an Jiaotong University, Xi'an, 710049, People's Republic of China
| | - Kostya Ken Ostrikov
- School of Chemistry and Physics and Centre for Biomedical Technologies, Queensland University of Technology (QUT), Brisbane, QLD, 4000, Australia
| |
Collapse
|
2
|
Zhang C, Chan KYY, Ng WH, Cheung JTK, Sun Q, Wang H, Chung PY, Cheng FWT, Leung AWK, Zhang XB, Lee PY, Fok SP, Lin G, Poon ENY, Feng JH, Tang YL, Luo XQ, Huang LB, Kang W, Tang PMK, Huang J, Chen C, Dong J, Mejstrikova E, Cai J, Liu Y, Shen S, Yang JJ, Yuen PMP, Li CK, Leung KT. CD9 shapes glucocorticoid sensitivity in pediatric B-cell precursor acute lymphoblastic leukemia. Haematologica 2024; 109:2833-2845. [PMID: 38572553 PMCID: PMC11367191 DOI: 10.3324/haematol.2023.282952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/22/2024] [Indexed: 04/05/2024] Open
Abstract
Resistance to glucocorticoids (GC), the common agents for remission induction in pediatric B-cell precursor acute lymphoblastic leukemia (BCP-ALL), poses a significant therapeutic hurdle. Therefore, dissecting the mechanisms shaping GC resistance could lead to new treatment modalities. Here, we showed that CD9- BCP-ALL cells were preferentially resistant to prednisone and dexamethasone over other standard cytotoxic agents. Concordantly, we identified significantly more poor responders to the prednisone prephase among BCP-ALL patients with a CD9- phenotype, especially for those with adverse presenting features including older age, higher white cell count and BCR-ABL1. Furthermore, gain- and loss-offunction experiments dictated a definitive functional linkage between CD9 expression and GC susceptibility, as demonstrated by the reversal and acquisition of relative GC resistance in CD9low and CD9high BCP-ALL cells, respectively. Despite physical binding to the GC receptor NR3C1, CD9 did not alter its expression, phosphorylation or nuclear translocation but potentiated the induction of GC-responsive genes in GC-resistant cells. Importantly, the MEK inhibitor trametinib exhibited higher synergy with GC against CD9- than CD9+ lymphoblasts to reverse drug resistance in vitro and in vivo. Collectively, our results elucidate a previously unrecognized regulatory function of CD9 in GC sensitivity, and inform new strategies for management of children with resistant BCP-ALL.
Collapse
Affiliation(s)
- Chi Zhang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | | | - Wing Hei Ng
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | | | - Qiwei Sun
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | - Han Wang
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | - Po Yee Chung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | - Frankie Wai Tsoi Cheng
- Department of Paediatrics and Adolescent Medicine, Hong Kong Children's Hospital, Kowloon Bay
| | | | - Xiao-Bing Zhang
- Haihe Laboratory of Cell Ecosystem, Institute of Hematology and Blood Diseases Hospital, Tianjin
| | - Po Yi Lee
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | - Siu Ping Fok
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | - Guanglan Lin
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin
| | | | - Jian-Hua Feng
- Department of Hematology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou
| | - Yan-Lai Tang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Xue-Qun Luo
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Li-Bin Huang
- Department of Pediatrics, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin
| | - Patrick Ming Kuen Tang
- Department of Anatomical and Cellular Pathology, The Chinese University of Hong Kong, Shatin
| | - Junbin Huang
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Chun Chen
- Division of Hematology/Oncology, Department of Pediatrics, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen
| | - Junchao Dong
- Department of Immunology, Zhongshan School of Medicine, Sun Yat-sen University, Guangzhou
| | - Ester Mejstrikova
- CLIP-Department of Pediatric Hematology and Oncology, Second Faculty of Medicine, Charles University and University Hospital Motol, Prague, Czech Republic
| | - Jiaoyang Cai
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Yu Liu
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Shuhong Shen
- Department of Hematology/Oncology, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiao Tong University, Shanghai
| | - Jun J Yang
- Department of Pharmaceutical Sciences, St. Jude Children's Research Hospital, Memphis, TN
| | | | - Chi Kong Li
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin
| | - Kam Tong Leung
- Department of Paediatrics, The Chinese University of Hong Kong, Shatin, Hong Kong; Hong Kong Hub of Paediatric Excellence, The Chinese University of Hong Kong, Shatin.
| |
Collapse
|
3
|
Chen J, Yu N, Ou S, Wang X, Li H, Zhu H. Integrated analysis reveals SMARCD1 is a potential biomarker and therapeutic target in skin cutaneous melanoma. J Cancer Res Clin Oncol 2023; 149:11619-11634. [PMID: 37401939 DOI: 10.1007/s00432-023-05064-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Accepted: 06/29/2023] [Indexed: 07/05/2023]
Abstract
OBJECTIVE SMARCD1 is a part of the SWI/SNF chromatin remodeling complex family, which consists of transcription factors that are implicated in various types of cancer. Examining SMARCD1 expression in human cancers can provide valuable insights into the development and progression of skin cutaneous melanoma (SKCM). METHODS Our study comprehensively examined the association between SMARCD1 expression and numerous factors, including prognosis, tumor microenvironment (TME), immune infiltration, tumor mutational burden (TMB), and microsatellite instability (MSI) in SKCM. Then we utilized immunohistochemical staining to measure the SMARCD1 expression in both SKCM tissues and normal skin tissues. Furthermore, we conducted in vitro experimentation to evaluate the effects of SMARCD1 knockdown on SKCM cells. RESULTS We found that aberrant expression of SMARCD1 across 16 cancers was strongly correlated with overall survival (OS) and progression-free survival (PFS). In addition, our research revealed that SMARCD1 expression is associated with multiple factors in different types of cancer, including immune infiltration, TME, immune-related genes, MSI, TMB, and sensitivity to anti-cancer drugs. SMARCD1 is likely involved in various SKCM signaling pathways and biological processes. Additionally, our research revealed that an SMARCD1-based risk factor model accurately predicted OS in SKCM patients. Furthermore, the downregulation of SMARCD1 expression demonstrated a significant inhibition of SKCM cell proliferation and migration, as well as an increase in apoptosis and cell cycle arrest. CONCLUSION We conclude that SMARCD1 is a promising diagnostic, prognostic, and therapeutic biomarker for SKCM, and its expression has significant clinical implications for the development of novel treatment strategies.
Collapse
Affiliation(s)
- Jiaoquan Chen
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, 510095, Guangdong, China
| | - Nanji Yu
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, 510095, Guangdong, China
| | - Shanshan Ou
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, 510095, Guangdong, China
| | - Xue Wang
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, 510095, Guangdong, China
| | - Huaping Li
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, 510095, Guangdong, China
| | - Huilan Zhu
- Department of Dermatology, Guangzhou Institute of Dermatology, Guangzhou, 510095, Guangdong, China.
| |
Collapse
|
4
|
Sun X, Zhang J, Hu J, Han Q, Ge Z. LSM2 is associated with a poor prognosis and promotes cell proliferation, migration, and invasion in skin cutaneous melanoma. BMC Med Genomics 2023; 16:129. [PMID: 37312186 DOI: 10.1186/s12920-023-01564-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 05/31/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Skin cutaneous melanoma (SKCM) is an extremely malignant tumor that is associated with a poor prognosis. LSM2 has been found to be related to different types of tumors; however, its role in SKCM is poorly defined. We aimed to determine the value of LSM2 as a prognostic biomarker for SKCM. METHODS The expression profile of LSM2 mRNA was compared between tumor and normal tissues in public databases, such as TCGA, GEO, and BioGPS. LSM2 protein expression was explored using immunohistochemistry (IHC) on a tissue microarray containing 44 SKCM tissues and 8 normal samples collected at our center. Kaplan-Meier analysis was performed to assess the prognostic value of LSM2 expression in patients with SKCM. SKCM cell lines with LSM2 knockdown were used to determine the effects of LSM2. Cell counting kit-8 (CCK8) and colony formation assays were conducted to assess cell proliferation, whereas wound healing and transwell assays were carried out to assess the migration and invasion abilities of SKCM cells. RESULTS LSM2 was more highly expressed at the mRNA and protein levels in SKCM than that in normal skin. Moreover, elevated expression of LSM2 was associated with shorter survival time and early recurrence in patients with SKCM. The in vitro results revealed that the silencing of LSM2 in SKCM cells significantly inhibited cell proliferation, migration, and invasion. CONCLUSION Overall, LSM2 contributes to malignant status and poor prognosis in patients with SKCM and may be identified as a novel prognostic biomarker and therapeutic target.
Collapse
Affiliation(s)
- Xiaofang Sun
- Department of Dermatology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China
| | - Jianping Zhang
- Department of Dermatology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Jiayuan Hu
- Department of Dermatology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Qingdong Han
- Department of Dermatology, the Second Affiliated Hospital of Jiaxing University, Jiaxing, Zhejiang, China
| | - Zili Ge
- Department of Oral and Maxillofacial Surgery, the First Affiliated Hospital of Soochow University, Soochow University, Jiangsu, China.
| |
Collapse
|
5
|
Zhang X, Deng Y, Liang X, Rao Y, Zheng H, Liu F, Luo X, Yang J, Chen J, Sun D. miR-100-5p Is a Novel Biomarker That Suppresses the Proliferation, Migration, and Invasion in Skin Cutaneous Melanoma. Stem Cells Int 2022; 2022:3585540. [PMID: 36193251 PMCID: PMC9526548 DOI: 10.1155/2022/3585540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 08/09/2022] [Accepted: 08/13/2022] [Indexed: 11/17/2022] Open
Abstract
Objective To better understand the role and underlying mechanisms of SKCM, we conducted bioinformatics analysis and in vivo experiments. Results We found its role as a tumor suppressor gene in SKCM and its effect on prognosis. In addition, this study found that miR-100-5p had a bidirectional effect on SKCM microenvironment. After exploring the relationship between the two, it was found that tumors with intermediate miR-100-5p expression had the highest level of immune cell infiltration. In addition, the value of miR-100-5p was assessed by survival analysis, univariate Cox regression analysis, and nomogram prognostic prediction. Finally, we constructed a regulatory network to illustrate the regulatory relationship of miR-100-5p. Conclusions In conclusion, the antitumor effect of miR-100-5p is revealed, and the present study is followed by a discussion of its molecular regulatory network, followed by novel insights into SKCM therapy.
Collapse
Affiliation(s)
- Xiao Zhang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yuqi Deng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xiao Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Yamin Rao
- Department of Pathology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Haiyan Zheng
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Fei Liu
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Xusong Luo
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun Yang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| | - Jun Chen
- Department of Dermatology, Shanghai Ninth People's Hospital, Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai 200011, China
| | - Di Sun
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200011, China
| |
Collapse
|
6
|
Myers PJ, Lee SH, Lazzara MJ. MECHANISTIC AND DATA-DRIVEN MODELS OF CELL SIGNALING: TOOLS FOR FUNDAMENTAL DISCOVERY AND RATIONAL DESIGN OF THERAPY. CURRENT OPINION IN SYSTEMS BIOLOGY 2021; 28:100349. [PMID: 35935921 PMCID: PMC9348571 DOI: 10.1016/j.coisb.2021.05.010] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
A full understanding of cell signaling processes requires knowledge of protein structure/function relationships, protein-protein interactions, and the abilities of pathways to control phenotypes. Computational models offer a valuable framework for integrating that knowledge to predict the effects of system perturbations and interventions in health and disease. Whereas mechanistic models are well suited for understanding the biophysical basis for signal transduction and principles of therapeutic design, data-driven models are particularly suited to distill complex signaling relationships among samples and between multivariate signaling changes and phenotypes. Both approaches have limitations and provide incomplete representations of signaling biology, but their careful implementation and integration can provide new understanding for how manipulating system variables impacts cellular decisions.
Collapse
Affiliation(s)
- Paul J. Myers
- Department of Chemical Engineering, Charlottesville, VA 22904
| | - Sung Hyun Lee
- Department of Chemical Engineering, Charlottesville, VA 22904
| | - Matthew J. Lazzara
- Department of Chemical Engineering, Charlottesville, VA 22904
- Department of Biomedical Engineering University of Virginia, Charlottesville, VA 22904
| |
Collapse
|
7
|
Vetma V, Guttà C, Peters N, Praetorius C, Hutt M, Seifert O, Meier F, Kontermann R, Kulms D, Rehm M. Convergence of pathway analysis and pattern recognition predicts sensitization to latest generation TRAIL therapeutics by IAP antagonism. Cell Death Differ 2020; 27:2417-2432. [PMID: 32081986 PMCID: PMC7370234 DOI: 10.1038/s41418-020-0512-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Revised: 01/30/2020] [Accepted: 01/31/2020] [Indexed: 12/28/2022] Open
Abstract
Second generation TRAIL-based therapeutics, combined with sensitising co-treatments, have recently entered clinical trials. However, reliable response predictors for optimal patient selection are not yet available. Here, we demonstrate that a novel and translationally relevant hexavalent TRAIL receptor agonist, IZI1551, in combination with Birinapant, a clinically tested IAP antagonist, efficiently induces cell death in various melanoma models, and that responsiveness can be predicted by combining pathway analysis, data-driven modelling and pattern recognition. Across a panel of 16 melanoma cell lines, responsiveness to IZI1551/Birinapant was heterogeneous, with complete resistance and pronounced synergies observed. Expression patterns of TRAIL pathway regulators allowed us to develop a combinatorial marker that predicts potent cell killing with high accuracy. IZI1551/Birinapant responsiveness could be predicted not only for cell lines, but also for 3D tumour cell spheroids and for cells directly isolated from patient melanoma metastases (80–100% prediction accuracies). Mathematical parameter reduction identified 11 proteins crucial to ensure prediction accuracy, with x-linked inhibitor of apoptosis protein (XIAP) and procaspase-3 scoring highest, and Bcl-2 family members strongly represented. Applied to expression data of a cohort of n = 365 metastatic melanoma patients in a proof of concept in silico trial, the predictor suggested that IZI1551/Birinapant responsiveness could be expected for up to 30% of patient tumours. Overall, response frequencies in melanoma models were very encouraging, and the capability to predict melanoma sensitivity to combinations of latest generation TRAIL-based therapeutics and IAP antagonists can address the need for patient selection strategies in clinical trials based on these novel drugs.
Collapse
Affiliation(s)
- Vesna Vetma
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland
| | - Cristiano Guttà
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Nathalie Peters
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Christian Praetorius
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany
| | - Meike Hutt
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Oliver Seifert
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany
| | - Friedegund Meier
- Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,National Center for Tumor Diseases (NCT), Dresden, Germany.,German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Roland Kontermann
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany.,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany
| | - Dagmar Kulms
- Center for Regenerative Therapies, Technical University Dresden, Dresden, Germany.,Skin Cancer Center at the University Cancer Centre, Department of Dermatology, Faculty of Medicine, University Hospital Carl Gustav Carus, Technical University Dresden, Dresden, Germany.,Experimental Dermatology, Department of Dermatology, Technical University Dresden, Dresden, Germany
| | - Markus Rehm
- Institute of Cell Biology and Immunology, University of Stuttgart, Stuttgart, Germany. .,Department of Physiology & Medical Physics, Royal College of Surgeons in Ireland, Dublin, Ireland. .,Stuttgart Research Center Systems Biology, University of Stuttgart, Stuttgart, Germany. .,Stuttgart Centre for Simulation Science (SC SimTech), University of Stuttgart, Stuttgart, Germany. .,Centre for Systems Medicine, Royal College of Surgeons in Ireland, Dublin, Ireland.
| |
Collapse
|
8
|
Smolko CM, Janes KA. An ultrasensitive fiveplex activity assay for cellular kinases. Sci Rep 2019; 9:19409. [PMID: 31857650 PMCID: PMC6923413 DOI: 10.1038/s41598-019-55998-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 09/30/2019] [Indexed: 02/06/2023] Open
Abstract
Protein kinases are enzymes whose abundance, protein-protein interactions, and posttranslational modifications together determine net signaling activity in cells. Large-scale data on cellular kinase activity are limited, because existing assays are cumbersome, poorly sensitive, low throughput, and restricted to measuring one kinase at a time. Here, we surmount the conventional hurdles of activity measurement with a multiplexing approach that leverages the selectivity of individual kinase-substrate pairs. We demonstrate proof of concept by designing an assay that jointly measures activity of five pleiotropic signaling kinases: Akt, IκB kinase (IKK), c-jun N-terminal kinase (JNK), mitogen-activated protein kinase (MAPK)-extracellular regulated kinase kinase (MEK), and MAPK-activated protein kinase-2 (MK2). The assay operates in a 96-well format and specifically measures endogenous kinase activation with coefficients of variation less than 20%. Multiplex tracking of kinase-substrate pairs reduces input requirements by 25-fold, with ~75 µg of cellular extract sufficient for fiveplex activity profiling. We applied the assay to monitor kinase signaling during coxsackievirus B3 infection of two different host-cell types and identified multiple differences in pathway dynamics and coordination that warrant future study. Because the Akt-IKK-JNK-MEK-MK2 pathways regulate many important cellular functions, the fiveplex assay should find applications in inflammation, environmental-stress, and cancer research.
Collapse
Affiliation(s)
- Christian M Smolko
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA
| | - Kevin A Janes
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA, 22908, USA.
- Department of Biochemistry & Molecular Genetics, University of Virginia, Charlottesville, VA, 22908, USA.
| |
Collapse
|
9
|
Rydenfelt M, Wongchenko M, Klinger B, Yan Y, Blüthgen N. The cancer cell proteome and transcriptome predicts sensitivity to targeted and cytotoxic drugs. Life Sci Alliance 2019; 2:2/4/e201900445. [PMID: 31253656 PMCID: PMC6600015 DOI: 10.26508/lsa.201900445] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 06/13/2019] [Accepted: 06/14/2019] [Indexed: 12/21/2022] Open
Abstract
This study shows that the proteomic and transcriptomic states of cancer cells are more predictive of drug sensitivity than genomic markers for most drugs, both within and across tumor types. Tumors of different molecular subtypes can show strongly deviating responses to drug treatment, making stratification of patients based on molecular markers an important part of cancer therapy. Pharmacogenomic studies have led to the discovery of selected genomic markers (e.g., BRAFV600E), whereas transcriptomic and proteomic markers so far have been largely absent in clinical use, thus constituting a potentially valuable resource for further substratification of patients. To systematically assess the explanatory power of different -omics data types, we assembled a panel of 49 melanoma cell lines, including genomic, transcriptomic, proteomic, and pharmacological data, showing that drug sensitivity models trained on transcriptomic or proteomic data outperform genomic-based models for most drugs. These results were confirmed in eight additional tumor types using published datasets. Furthermore, we show that drug sensitivity models can be transferred between tumor types, although after correcting for training sample size, transferred models perform worse than within-tumor–type predictions. Our results suggest that transcriptomic/proteomic signals may be alternative biomarker candidates for the stratification of patients without known genomic markers.
Collapse
Affiliation(s)
- Mattias Rydenfelt
- Charité-Universitätsmedizin, Institute of Pathology, Berlin, Germany
| | - Matthew Wongchenko
- Genentech Inc., Oncology Biomarker Development, South San Francisco CA, USA
| | - Bertram Klinger
- Charité-Universitätsmedizin, Institute of Pathology, Berlin, Germany.,Humboldt Universität zu Berlin, Integrative Research Institute for the Life Sciences, Berlin, Germany
| | - Yibing Yan
- Genentech Inc., Oncology Biomarker Development, South San Francisco CA, USA
| | - Nils Blüthgen
- Charité-Universitätsmedizin, Institute of Pathology, Berlin, Germany .,Humboldt Universität zu Berlin, Integrative Research Institute for the Life Sciences, Berlin, Germany
| |
Collapse
|