1
|
Lv J, Wu T, Xue J, Shen C, Gao W, Chen X, Guo Y, Liu M, Yu J, Huang X, Zheng B. ASB1 engages with ELOB to facilitate SQOR ubiquitination and H 2S homeostasis during spermiogenesis. Redox Biol 2025; 79:103484. [PMID: 39733518 PMCID: PMC11743861 DOI: 10.1016/j.redox.2024.103484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Accepted: 12/25/2024] [Indexed: 12/31/2024] Open
Abstract
Male infertility, frequently driven by oxidative stress, impacts half of infertile couples globally. Despite its significance, the precise mechanisms governing this process remain elusive. In this study, we demonstrate that ASB1, the substrate recognition subunit of a ubiquitin ligase, is highly expressed in the mouse testis. Mice lacking the Asb1 gene exhibit severe fertility impairment, characterized by oligoasthenoteratozoospermia. Subsequent investigations unveiled that Asb1 knockout (Asb1-KO) mice encountered excessive oxidative stress and decreased hydrogen sulfide (H2S) levels in their testes, and severe sperm DNA damage. Notably, the compromised fertility and sperm quality in Asb1-KO mice was significantly ameliorated by administering NaHS, a H2S donor. Mechanistically, ASB1 interacts with ELOB to induce the instability of sulfide-quinone oxidoreductase (SQOR) by enhancing its K48-linked ubiquitination on residues K207 and K344, consequently triggering proteasomal degradation. This process is crucial for preserving H2S homeostasis and redox balance. Overall, our findings offer valuable insights into the role of ASB1 during spermiogenesis and propose H2S supplementation as a promising therapeutic approach for oxidative stress-related male infertility.
Collapse
Affiliation(s)
- Jinxing Lv
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China.
| | - Tiantian Wu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China; State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jiajia Xue
- Center for Reproduction, The Fourth Affiliated Hospital of Soochow University (Suzhou Dushu Lake Hospital), Suzhou, 215124, China
| | - Cong Shen
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China
| | - Wenxin Gao
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Xia Chen
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China
| | - Yueshuai Guo
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Mingxi Liu
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China
| | - Jun Yu
- Institute of Reproductive Medicine, Medical School of Nantong University, Nantong University, Nantong, 226001, China.
| | - Xiaoyan Huang
- State Key Laboratory of Reproductive Medicine and Offspring Health, Department of Histology and Embryology, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, 211166, China.
| | - Bo Zheng
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Reproduction and Genetics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, 215002, China.
| |
Collapse
|
2
|
Dong Q, Tan M, Zhou Y, Zhang Y, Li J. Causal Inference and Annotation of Phosphoproteomics Data in Multi-omics Cancer Studies. Mol Cell Proteomics 2025:100905. [PMID: 39793886 DOI: 10.1016/j.mcpro.2025.100905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2024] [Revised: 12/18/2024] [Accepted: 01/07/2025] [Indexed: 01/13/2025] Open
Abstract
Protein phosphorylation plays a crucial role in regulating diverse biological processes. Perturbations in protein phosphorylation are closely associated with downstream pathway dysfunctions, while alterations in protein expression could serve as sensitive indicators of pathological status. However, there are currently few methods that can accurately identify the regulatory links between protein phosphorylation and expression, given issues like reverse causation and confounders. Here, we present Phoslink, a causal inference model to infer causal effects between protein phosphorylation and expression, integrating prior evidence and multi-omics data. We demonstrated the feasibility and advantages of our method under various simulation scenarios. Phoslink exhibited more robust estimates and lower FDR than commonly used Pearson and Spearman correlations, with better performance than canonical IV selection methods for Mendelian randomization. Applying this approach, we identified 345 causal links involving 109 phosphosites and 310 proteins in 79 lung adenocarcinoma (LUAD) samples. Based on these links, we constructed a causal regulatory network and identified 26 key regulatory phosphosites as regulators strongly associated with LUAD. Notably, 16 of these regulators were exclusively identified through phosphosite-protein causal regulatory relationships, highlighting the significance of causal inference. We explored potentially druggable phosphoproteins and provided critical clues for drug repurposing in LUAD. We also identified significant mediation between protein phosphorylation and LUAD through protein expression. In summary, our study introduces a new approach for causal inference in phosphoproteomics studies. Phoslink demonstrates its utility in potential drug target identification thereby accelerating the clinical translation of cancer proteomics and phosphoproteomic data.
Collapse
Affiliation(s)
- Qun Dong
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Minjia Tan
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Shanghai 201203, China; University of Chinese Academy of Sciences Beijing, China; Zhongshan Institute for Drug Discovery, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, Guangdong, 528400, China
| | - Yingchun Zhou
- Key Laboratory of Advanced Theory and Application in Statistics and Data Science - MOE, School of Statistics, East China Normal University, Shanghai 200062, China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Jing Li
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
3
|
da Silva EL, Mesquita FP, Pinto LC, Gomes BPS, de Oliveira EHC, Burbano RMR, Moraes MEAD, de Souza PFN, Montenegro RC. Transcriptome analysis displays new molecular insights into the mechanisms of action of Mebendazole in gastric cancer cells. Comput Biol Med 2025; 184:109415. [PMID: 39566281 DOI: 10.1016/j.compbiomed.2024.109415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2024] [Revised: 10/15/2024] [Accepted: 11/08/2024] [Indexed: 11/22/2024]
Abstract
Gastric cancer (GC) is a common cancer worldwide. Therefore, searching for effective treatments is essential, and drug repositioning can be a promising strategy to find new potential drugs for GC therapy. For the first time, we sought to identify molecular alterations and validate new mechanisms related to Mebendazole (MBZ) treatment in GC cells through transcriptome analysis using microarray technology. Data revealed 1066 differentially expressed genes (DEGs), of which 345 (2.41 %) genes were upregulated, 721 (5.04 %) genes were downregulated, and 13,231 (92.54 %) genes remained unaltered after MBZ exposure. The overexpressed genes identified were CCL2, IL1A, and CDKN1A. In contrast, the H3C7, H3C11, and H1-5 were the top 3 underexpressed genes. Gene set enrichment analysis (GSEA) identified 8 pathways significantly overexpressed in the treated group (p < 0.05 and FDR<0.25). The validation of the expression of top desregulated genes by RT-qPCR confirmed the transcriptome results, where MBZ increased the CCL2, IL1A, and CDKN1A and reduced the H3C7, H3C11, and H1-5 transcript levels. Expression analysis in samples from TCGA databases correlated that the lower ILI1A and higher H3C11 and H1-5 gene expression are associated with decreased overall survival rates in patients with GC, indicating that MBZ treatment can improve the prognosis of patients. Thus, the data demonstrated that the drug MBZ alters the transcriptome of the AGP-01 lineage, mainly modulating the expression of histone proteins and inflammatory cytokines, indicating a possible epigenetic and immunological effect on tumor cells, these findings highlight new mechanisms of action related to MBZ treatment. Additional studies are still needed to better clarify the epigenetic and immune mechanism of MBZ in the therapy of GC.
Collapse
Affiliation(s)
- Emerson Lucena da Silva
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Felipe Pantoja Mesquita
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Laine Celestino Pinto
- Laboratory of Experimental Neuropathology, Biological Science Institute, Federal University of Pará, Mundurucus Street, Belém, Brazil
| | - Bruna Puty Silva Gomes
- Laboratory of Cytogenomics and Environmental Mutagenesis, Environment Section (SAMAM), Evandro Chagas Institute (IEC), Ananindeua, Brazil
| | | | - Rommel Mario Rodríguez Burbano
- Molecular Biology Laboratory, Ophir Loyola Hospital, Av. Governador Magalhães Barata, Belém, Brazil; Laboratory of Human Cytogenetics, Institute of Biological Sciences, Federal University of Pará, Augusto Correa Avenue, Belém, Brazil
| | - Maria Elisabete Amaral de Moraes
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil
| | - Pedro Filho Noronha de Souza
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Visiting Researcher at the Cearense Foundation to Support Scientific and Technological Development, Brazil; National Institute of Science and Technology in Human Pathogenic Fungi, Ribeirão Preto, Brazil.
| | - Raquel Carvalho Montenegro
- Laboratory of Pharmacogenetics, Drug Research and Development Center (NPDM), Federal University of Ceará, Cel. Nunes de Melo, Fortaleza, Brazil; Red Latinoamericana de Implementación y Validación de guias clinicas Farmacogenomicas (RELIVAF), Brazil.
| |
Collapse
|
4
|
Cidem A, Chang GRL, Yen CC, Chen MS, Yang SH, Chen CM. Lactoferrin targeting INTL1 receptor inhibits hepatocellular carcinoma progression via apoptosis and cell cycle signaling pathways. Sci Rep 2024; 14:31210. [PMID: 39732873 DOI: 10.1038/s41598-024-82514-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2024] [Accepted: 12/05/2024] [Indexed: 12/30/2024] Open
Abstract
Hepatocellular carcinoma (HCC) constitutes 90% of liver cancer cases and ranks as the third leading cause of cancer-related mortality, necessitating urgent development of alternative therapies. Lactoferrin (LF), a natural iron-binding glycoprotein with reported anticancer effects, is investigated for its potential in liver cancer treatment, an area with limited existing studies. This study focuses on evaluating LF's anti-liver cancer effects on HCC cells and assessing the preventive efficacy of oral LF administration in a murine model. Data showed that LF exerted anti-proliferative effects on HepG2, Hep3B, and SK-Hep1 cells while having no cytotoxicity on healthy liver cells (FL83B). Mechanistically, LF induces mitochondrial-mediated apoptosis and G0/G1 cell cycle arrest in HepG2 cells, associated with increased phosphorylation of p38 MAPK and JNK for apoptosis, and ERK phosphorylation for cell cycle arrest. Intelectin-1 (INTL1) is identified as the receptor facilitating LF endocytosis in HepG2 cells, and downregulation of INTL1 inhibits LF-induced signaling pathways. Notably, oral LF administration prevents HCC development in nude mice with orthotopic HepG2 cell injection. This study unveils the mechanistic basis of LF action in HepG2 cells, showcasing its potential in HCC prevention. Importantly, we report the novel identification of INTL1 as the LF receptor in HepG2 cells, providing valuable insights for future exploration of LF and its derivatives in liver cancer therapy.
Collapse
Affiliation(s)
- Abdulkadir Cidem
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan
- Department of Molecular Biology and Genetics, Erzurum Technical University, Erzurum, 25250, Turkey
| | - Gary Ro-Lin Chang
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan
| | - Chih-Ching Yen
- Department of Internal Medicine, China Medical University Hospital, College of Health Care, China Medical University, Taichung, 404, Taiwan
| | - Ming-Shan Chen
- Department of Anesthesiology, Ditmanson Medical Foundation Chia-Yi Christian Hospital, Chia-Yi, 600, Taiwan
| | - Shang-Hsun Yang
- Department of Physiology, Institute of Basic Medical Sciences, National Cheng Kung University, Tainan, 70101, Taiwan
| | - Chuan-Mu Chen
- Department of Life Sciences, College of Life Sciences, National Chung Hsing University, Kuo Kuang Rd., Taichung, 402, Taiwan.
- The iEGG and Animal Biotechnology Center, and Rong Hsing Research Center for Translational Medicine, National Chung Hsing University, Taichung, 402, Taiwan.
- Center for General Educational, National Quemoy University, Kinmen, 892, Taiwan.
| |
Collapse
|
5
|
Gou Q, Yan B, Duan Y, Guo Y, Qian J, Shi J, Hou Y. Ubiquitination of CD47 Regulates Innate Anti-Tumor Immune Response. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024:e2412205. [PMID: 39665172 DOI: 10.1002/advs.202412205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2024] [Revised: 11/16/2024] [Indexed: 12/13/2024]
Abstract
In addition to adaptive immune checkpoint of PD-1/PD-L1, the innate immune checkpoint SIRPα/CD47 plays an important role in regulation of tumor immune escape. However, the mechanism of CD47 ubiquitination on tumor immune escape remains unclear. Here it is found that TRAF2 bound to the C-terminal of CD47 cytoplasmic fragment and induced its ubiquitination, leading to inhibition of CD47 autophagic degradation by disrupting its binding to LC3, which in turn inhibited macrophage phagocytosis and promoted tumor immune escape. In contrast, loss of TRAF2 facilitated CD47 autophagic degradation and inhibited tumor immune escape. Moreover, autophagy induction promoted CD47 degradation and enhanced the efficacy of CD47 antibody anti-tumor immunotherapy. These findings revealed a novel mechanism of ubiquitination of CD47 on tumor immune escape.
Collapse
Affiliation(s)
- Qian Gou
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Bingjun Yan
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Yalan Duan
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Yilei Guo
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Jing Qian
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Juanjuan Shi
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| | - Yongzhong Hou
- School of Life Science, Jiangsu University, Zhenjiang, Jiangsu Province, 212013, People's Republic of China
| |
Collapse
|
6
|
Qian M, Wan Z, Liang X, Jing L, Zhang H, Qin H, Duan W, Chen R, Zhang T, He Q, Lu M, Jiang J. Targeting autophagy in HCC treatment: exploiting the CD147 internalization pathway. Cell Commun Signal 2024; 22:583. [PMID: 39627812 PMCID: PMC11616386 DOI: 10.1186/s12964-024-01956-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2024] [Accepted: 11/22/2024] [Indexed: 12/06/2024] Open
Abstract
BACKGROUND/AIMS Chemotherapy resistance in liver cancer is a major clinical issue, with CD147 playing a vital role in this process. However, the specific mechanisms underlying these processes remain largely unknown. This study investigates how CD147 internalization leads to cytoprotective autophagy, contributing to chemotherapy resistance in hepatocellular carcinoma (HCC). METHODS Utilizing bioinformatics methods for KEGG pathways enrichment and screening key molecules associated with chemotherapy resistance through analyses of GEO and TCGA databases. An overexpression/knockdown system was used to study how CD147 internalization leads to autophagy in vitro and in vivo. The process was observed using microscopes, and molecular interactions and autophagy flux were analyzed. Analyzing the internalization of CD147 intracellular domains and the interaction with G3BP1 in clinical chemotherapy recurrence HCC tissues by immunohistochemistry, tissue immunofluorescence, and mass spectrometry. A tumor xenograft mice model was used to study cytoprotective autophagy induced by CD147 and test the effectiveness of combining cisplatin with an autophagy inhibitor in nude mice models. RESULTS In our study, we identified the tumor-associated membrane protein CD147, which implicated in chemoresistance lysosome pathways, by evaluating its protein degree value and betweenness centrality using Cytoscape. Our findings revealed that CD147 undergoes internalization and interacts with G3BP1 following treatment with cisplatin and methyl-β-cyclodextrin, forming a complex that is transported to lysosomes via Rab7A. Notably, higher doses of cisplatin enhanced CD147-mediated lysosomal transport while concurrently inhibiting SG assembly. The CD147-G3BP1 complex additionally inhibits mTOR activity, promoting autophagy and augmenting chemoresistance in hepatoma cells. In vivo studies investigations and analyses of clinical samples revealed that elevated internalization of CD147 is associated with chemotherapy recurrence in liver cancer and the maintenance of stem cells. Mice experiments found that the combined administration of cisplatin and hydroxychloroquine enhanced the efficacy of treatment. CONCLUSIONS This study reveals that CD147 internalization and CD147-G3BP1 complex translocation to lysosomes induce cytoprotective autophagy, reducing chemotherapy sensitivity by suppressing mTOR activity. It is also shown that chemotherapy drugs combined with autophagy inhibitors can improve the therapeutic effect of cancer, providing new insights into potential targeted therapeutic approaches in treating HCC.
Collapse
Affiliation(s)
- Meirui Qian
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Ziyu Wan
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Xue Liang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Lin Jing
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Huijie Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Heyao Qin
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Wenli Duan
- School of Basic Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Ruo Chen
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
- State Key Laboratory of New Targets Discovery and Drug Development for Major Diseases, Xi'an, 710032, China
| | - Tianjiao Zhang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Qian He
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Meng Lu
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China
| | - Jianli Jiang
- Department of Cell Biology, National Translational Science Center for Molecular Medicine, Fourth Military Medical University, Xi'an, 710032, China.
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
7
|
Zhou J, Li D, Xu M, Zhu T, Li Z, Fu Z, Wang M, Li S, Gu D. Interactions between polycyclic aromatic hydrocarbons and genetic variants in the cGAS-STING pathway affect the risk of colorectal cancer. Arch Toxicol 2024; 98:4117-4129. [PMID: 39287666 DOI: 10.1007/s00204-024-03862-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2024] [Accepted: 09/05/2024] [Indexed: 09/19/2024]
Abstract
The cGAS-STING pathway plays an essential role in the activation of tumor immune cells. Polycyclic aromatic hydrocarbons (PAHs) are environmental pollutants with potential carcinogenicity, and their exposure is associated with the development of colorectal cancer. However, the impacts of genetic factors in the cGAS‒STING pathway and gene‒environment interactions on colorectal cancer remain understudied. We used logistic regression models and interaction analysis to evaluate the impact of genetic variants on colorectal cancer risk and gene‒environment interactions. We analysed the expression patterns of candidate genes based on the RNA-seq data. Molecular biology experiments were performed to investigate the impact of PAHs exposure on candidate gene expression and the progression of colorectal cancer. We identified the susceptibility locus rs3750511 in the cGAS‒STING pathway, which is associated with colorectal cancer risk. A negative interaction between TRAF2 rs3750511 and PAHs exposure was also identified. Single-cell RNA-seq analysis revealed significantly elevated expression of TRAF2 in colorectal cancer tissues compared with normal tissues, especially in T cells. BPDE exposure increased TRAF2 expression and the malignant phenotype of colorectal cancer cells. The treatment also further increased the expression of the TRAF2 downstream gene NF-κB and decreased the expression of Caspase8. Our results suggest that the genetic variant of rs3750511 affects the expression of TRAF2, thereby increasing the risk of colorectal cancer through interaction with PAHs. Our study provides new insights into the influence of gene‒environment interactions on the risk of developing colorectal cancer.
Collapse
Affiliation(s)
- Jieyu Zhou
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Dongzheng Li
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China
| | - Menghuan Xu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Tianru Zhu
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zhengyi Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China
| | - Zan Fu
- Department of General Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Meilin Wang
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Colorectal Surgery, The Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing, China.
- The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, China.
| | - Shuwei Li
- Department of Genetic Toxicology, The Key Laboratory of Modern Toxicology of Ministry of Education, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, 211166, Jiangsu, China.
- Department of Environmental Genomics, Jiangsu Key Laboratory of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, China.
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical University, Nanjing, 210006, Jiangsu, China.
| |
Collapse
|
8
|
Zhou N, Guo C, Li X, Tu L, Du J, Qian Q, Li J, Huang D, Xu Q, Zheng X. USP24 promotes hepatocellular carcinoma tumorigenesis through deubiquitinating and stabilizing TRAF2. Biochem Pharmacol 2024; 229:116473. [PMID: 39127151 DOI: 10.1016/j.bcp.2024.116473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/17/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
Ubiquitin-specific peptidase 24 (USP24), a member of the deubiquitinase family, plays an important role in tumor regulation. However, the role of USP24 in Hepatocellular carcinoma(HCC)is unknown. The aim of our study was to explore the role of USP24 in HCC to seek new therapeutic targets for HCC. In this study, we found that USP24 was aberrantly upregulated in HCC tissues and predicted poor prognosis. USP24 markedly promoted HCC proliferation and progression in vitro and in vivo. Mechanistically, USP24 binds to tumor necrosis factor receptor-associated factor 2(TRAF2) and inhibits its degradation, thereby promoting the accumulation of TRAF2. Upregulation of TRAF2 activated protein kinase B/nuclear factor kappa-B (AKT/ NF-κB) signaling pathway and promoted HCC cell survival. In addition, USP24 positively correlated with programmed cell death ligand 1(PD-L1) expression in HCC, highlighting the clinical significance of USP24 activation in tumor immune evasion. Deletion of USP24 enhanced the tumor-killing ability of CD8+ T cells. Deletion of USP24 combined with anti-PD-1 antibody significantly enhanced the efficacy of HCC immunotherapy. Taken together, USP24 can be employed as a promising target to restrain tumor growth and increase the efficacy of HCC immunotherapy.
Collapse
Affiliation(s)
- Nana Zhou
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Chaoqin Guo
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Xiangyu Li
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou,310053, China.
| | - Linglan Tu
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou,310053, China.
| | - Jingyang Du
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Qiyi Qian
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Juejiashan Li
- School of Basic Medical Sciences and Forensic Medicine, Hangzhou Medical College, Hangzhou, 310053, China.
| | - Dongsheng Huang
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Qiuran Xu
- Zhejiang Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China.
| | - Xiaoliang Zheng
- School of Laboratory Medicine and Bioengineering, Hangzhou Medical College, Hangzhou,310053, China; Key Discipline of Zhejiang Province in Public Health and Preventive Medicine (First Class, Category A), Hangzhou Medical College, Hangzhou, 310053, China.
| |
Collapse
|
9
|
Ma Z, Li Q, Wang W, Deng Z. Transcription factor E2F4 facilitates SUMOylation to promote HCC progression through interaction with LIN9. Int J Oncol 2024; 65:98. [PMID: 39239750 PMCID: PMC11387118 DOI: 10.3892/ijo.2024.5686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 06/14/2024] [Indexed: 09/07/2024] Open
Abstract
SUMOylation plays a crucial role in numerous cellular biological and pathophysiological processes associated with human disease; however, the mechanisms regulating the genes involved in SUMOylation remain unclear. In the present study, E2F transcription factor 4 (E2F4) was identified as an E2F member related to hepatocellular carcinoma (HCC) progression by public database analysis. It was found that E2F4 promoted the proliferation and invasiveness of HCC cells via SUMOylation using Soft agar and Transwell migration assays. Mechanistically, it was demonstrated that E2F4 upregulated the transcript and protein expression levels of baculoviral IAP repeat containing 5, cell division cycle associated 8 and DNA topoisomerase II α using western blotting. Furthermore, the interaction between E2F4 with lin‑9 DREAM multi‑vulva class B core complex component (LIN9) was explored by co‑immunoprecipitation, immunofluorescence co‑localization and bimolecular fluorescence complementation assays. Moreover, it was demonstrated that E2F4 promoted the progression of HCC cells via LIN9. Rescue experiments revealed that LIN9 facilitated the SUMOylation and proliferation of HCC cells, which was prevented by knocking down E2F4 expression. In conclusion, the findings of the present study indicated that E2F4 plays a major role in the proliferation of HCC cells and may be a potential therapeutic target in the future.
Collapse
Affiliation(s)
- Zhenwei Ma
- Department of Hepatobiliary and Pancreatic Surgery, Tianyou Hospital, Wuhan University of Science and Technology, Wuhan, Hubei 430064, P.R. China
| | - Qilan Li
- Department of Critical Care Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Wenjing Wang
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Zhengdong Deng
- Department of Pediatric Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| |
Collapse
|
10
|
Guo J, Huang M, Hou S, Yuan J, Chang X, Gao S, Zhang Z, Wu Z, Li J. Therapeutic Potential of Terpenoids in Cancer Treatment: Targeting Mitochondrial Pathways. Cancer Rep (Hoboken) 2024; 7:e70006. [PMID: 39234662 PMCID: PMC11375335 DOI: 10.1002/cnr2.70006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 07/30/2024] [Accepted: 08/11/2024] [Indexed: 09/06/2024] Open
Abstract
BACKGROUND In recent decades, natural compounds have been considered a significant source of new antitumor medicines due to their unique advantages. Several in vitro and in vivo studies have focused on the effect of terpenoids on apoptosis mediated by mitochondria in malignant cells. RECENT FINDINGS In this review article, we focused on six extensively studied terpenoids, including sesquiterpenes (dihydroartemisinin and parthenolide), diterpenes (oridonin and triptolide), and triterpenes (betulinic acid and oleanolic acid), and their efficacy in targeting mitochondria to induce cell death. Terpenoid-induced mitochondria-related cell death includes apoptosis, pyroptosis, necroptosis, ferroptosis, autophagy, and necrosis caused by mitochondrial permeability transition. Apoptosis and autophagy interact in meaningful ways. In addition, in view of several disadvantages of terpenoids, such as low stability and bioavailability, advances in research on combination chemotherapy and chemical modification were surveyed. CONCLUSION This article deepens our understanding of the association between terpenoids and mitochondrial cell death, presenting a hypothetical basis for the use of terpenoids in anticancer management.
Collapse
Affiliation(s)
- Jianxin Guo
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Ming Huang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Hou
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jianfeng Yuan
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Xiaoyue Chang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Shuang Gao
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhenhan Zhang
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Zhongbing Wu
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
| | - Jing Li
- College of Integrated Chinese and Western Medicine, Hebei Medical University, Shijiazhuang, China
- The Fourth Hospital of Hebei Medical University, Shijiazhuang, China
| |
Collapse
|
11
|
Tang C, Lai Y, Li L, Situ MY, Li S, Cheng B, Chen Y, Lei Z, Ren Y, Zhou J, Wu Y, Zhong H, Li K, Zeng L, Guo Z, Peng S, Huang H. SERPINH1 modulates apoptosis by inhibiting P62 ubiquitination degradation to promote bone metastasis of prostate cancer. iScience 2024; 27:110427. [PMID: 39161960 PMCID: PMC11332800 DOI: 10.1016/j.isci.2024.110427] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 04/30/2024] [Accepted: 06/28/2024] [Indexed: 08/21/2024] Open
Abstract
Prostate cancer (PCa) is one of the most prevalent urogenital malignancies. Bone metastasis from PCa reduces patient survival rates significantly. There currently exists no effective treatment for bone metastatic PCa, and the underlying mechanisms remain unclear. This study performed transcriptomic screening on PCa bone metastasis specimens and intersection analysis in public databases and identified SERPINH1 as a potential target for treatment. SERPINH1 was found to be upregulated in PCa bone metastases and with poor prognosis, high Gleason score, and advanced metastatic status. SERPINH1 induced PCa cells' bone metastasis in vivo, promoted their proliferation, and mitigated apoptosis. Mechanistically, SERPINH1 bound to P62, reducing TRIM21-mediated K63-linked ubiquitination degradation of P62 and promoting proliferation and resistance to apoptosis of PCa. This study suggests the regulation of ubiquitination degradation of P62 by SERPINH1 that promotes PCa bone metastasis and can be considered as a potential target for treatment of bone metastatic PCa.
Collapse
Affiliation(s)
- Chen Tang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, Huazhong University of Science and Technology Union Shenzhen Hospital, Shenzhen, Guangdong 518052, P.R. China
| | - Yiming Lai
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| | - Lingfeng Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Min-yi Situ
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou 510060, P.R. China
| | - Shurui Li
- Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Bisheng Cheng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Yongming Chen
- Beijing Hospital, National Center of Gerontology Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, Dongcheng, P.R. China
| | - Zhen Lei
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - YanTing Ren
- Department of Pathology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Jie Zhou
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Yongxin Wu
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Haitao Zhong
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
| | - Kaiwen Li
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Lexiang Zeng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Zhenghui Guo
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Shengmeng Peng
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
| | - Hai Huang
- Department of Urology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, Guangdong, P.R. China
- Guangdong Provincial Clinical Research Center for Urological Diseases, Guangzhou 510120, Guangdong, P.R. China
- Department of Urology, the Fifth Affiliated Hospital of Xinjiang Medical University, Urumqi 830011, Xinjiang, P.R. China
| |
Collapse
|
12
|
Ren Y, Zhang P, Li L, Wang M, Hu H, Shen Y, Xu P, Wu Q, Li F. Hyper-methylation and DNMT3A mediated LTC4S downregulation promoted lung adenocarcinoma tumorigenesis via mTORC1 signaling pathway. Heliyon 2024; 10:e33203. [PMID: 39027522 PMCID: PMC11255598 DOI: 10.1016/j.heliyon.2024.e33203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 06/16/2024] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Background Lung adenocarcinoma is a malignancy characterized by high mortality rates and unfavorable prognosis. However, the role of Leukotriene C4 Synthase (LTC4S) in lung cancer remains uninvestigated. Methods The expression and prognostic value of LTC4S in LUAD were analyzed using the GEPIA online database. Subsequently, the function of LTC4S in lung cancer cells was examined through gain-of function experiments, using assays to evaluate tumor malignant behavior. Subcutaneous xenograft experiments in vivo was used for investigating the functions of LTC4S. Then, tumor hallmark pathways were analyzed by GSEA. Western blot assay was used to validate the impact of LTC4S on mTORC1 pathway. Finally, the correlation of mRNA and methylation of LTC4S were analyzed by cBioPortal. qRT-PCR, ChIP-qPCR and ChIP-Atlas were used to verify the regulation factors of LTC4S low expression in LUAD cells. Results LTC4S presented significant decreased expression and favorable prognostic significance in LUAD. LTC4S was correlated with clinical stages in LUAD, which showed decreased expression gradually and significantly along with TNM stages. LTC4S-co-expressed genes were closely related to Ras signaling pathway, and MAPK signaling pathway. Overexpression of LTC4S inhibited cancer malignant phenotype and tumor growth in vitro and vivo. GSEA analysis and Western blot assay suggested low expression of LTC4S activated mTORC1 signaling pathway in LUAD. Moreover, the DNA methylation level of LTC4S in LUAD tissue was markedly elevated compared to normal tissue. The hypermethylation of the LTC4S promoter by DNMT3A leads to the decreased expression of LTC4S in LUAD. Conclusions In conclusion, low expression of LTC4S serves as an unfavorable prognostic marker and the critical function of LTC4S in controlling the progression of LUAD. This highlights the promise for exploring the clinical benefits of manipulating LTC4S in LUAD targeted therapies.
Collapse
Affiliation(s)
- Yang Ren
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Peng Zhang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Liqun Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Mei Wang
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Huiliang Hu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Yidan Shen
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Ping Xu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Qingguo Wu
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
| | - Feng Li
- Department of Respiratory Disease and Critical Care Medicine, Shanghai Public Health Clinical Center, Fudan University, Shanghai, 201508, China
- Shanghai Institute of Infectious Disease and Biosecurity, Fudan University, Shanghai, 200032, China
| |
Collapse
|
13
|
Zaliunas BR, Gedvilaite-Vaicechauskiene G, Kriauciuniene L, Tamasauskas A, Liutkeviciene R. Associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) Polymorphisms and TRAF2, TAB2, IKBKB Protein Levels with Clinical and Morphological Features of Pituitary Adenomas. Cancers (Basel) 2024; 16:2509. [PMID: 39061149 PMCID: PMC11274473 DOI: 10.3390/cancers16142509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/07/2024] [Accepted: 07/08/2024] [Indexed: 07/28/2024] Open
Abstract
AIM The aim of this study was to determine associations of TRAF2 (rs867186), TAB2 (rs237025), IKBKB (rs13278372) gene polymorphisms and TRAF2, TAB2, IKBKB protein levels with clinical and morphological features of pituitary adenomas (PAs). METHODS This case-control study included 459 individuals divided into two groups: a control group (n = 320) and a group of individuals with PAs (n = 139). DNA from peripheral blood leukocytes was isolated using salt precipitation and column method. Real-time PCR was used for TRAF2 (rs867186), TAB2 (rs237025), and IKBKB (rs13278372) SNP genotyping, and TRAF2, TAB2, IKBKB protein concentration measurements were performed by immunoenzymatic analysis tests using a commercial ELISA kit according to the manufacturer's recommendations. The labeling index Ki-67 was determined by immunohistochemical analysis using a monoclonal antibody (clone SP6; Spring Bioscience Corporation). Statistical data analysis was performed using the programs "IMB SPSS Statistics 29.0". RESULTS We found significant differences in TRAF2 (rs867186) genotypes (AA, AG, GG) between groups: 79.1%, 17.3%, 3.6% vs. 55.3%, 20.9%, 23.8% (p < 0.001). The G allele was less frequent in the PA group than in controls (12.2% vs. 34.2%, p < 0.001). The AG and GG genotypes reduced PA occurrence by 1.74-fold and 9.43-fold, respectively, compared to AA (p < 0.001). In the dominant model, GG and AG genotypes reduced PA odds by 3.07-fold, while in the recessive model, the GG genotype reduced PA odds by 8.33-fold (p < 0.001). Each G allele decreased PA odds by 2.49-fold in the additive model (p < 0.001). Microadenomas had significant genotype differences compared to controls: 81.3%, 18.8%, 0.0% vs. 55.3%, 20.9%, 23.8% (p < 0.001), with the G allele being less frequent (9.4% vs. 34.2%, p < 0.001). In macroadenomas, genotype differences were 78%, 16.5%, 5.5% vs. 55.3%, 20.9%, 23.8% (p < 0.001), and the G allele was less common (13.7% vs. 34.2%, p < 0.001). The dominant model showed that GG and AG genotypes reduced microadenoma odds by 3.5-fold (p = 0.001), and each G allele reduced microadenoma odds by 3.1-fold (p < 0.001). For macroadenomas, the GG genotype reduced odds by 6.1-fold in the codominant model (p < 0.001) and by 2.9-fold in GG and AG genotypes combined compared to AA (p < 0.001). The recessive model indicated the GG genotype reduced macroadenoma odds by 5.3-fold (p < 0.001), and each G allele reduced odds by 2.2-fold in the additive model (p < 0.001). CONCLUSIONS The TRAF2 (rs867186) G allele and GG genotype are significantly associated with reduced odds of pituitary adenomas, including both microadenomas and macroadenomas, compared to the AA genotype. These findings suggest a protective role of the G allele against the occurrence of these tumors.
Collapse
Affiliation(s)
- Balys Remigijus Zaliunas
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
| | - Greta Gedvilaite-Vaicechauskiene
- Medical Faculty, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Loresa Kriauciuniene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| | - Arimantas Tamasauskas
- Department of Neurosurgery, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania;
| | - Rasa Liutkeviciene
- Neuroscience Institute, Lithuanian University of Health Sciences, Medical Academy, 44307 Kaunas, Lithuania; (L.K.); (R.L.)
| |
Collapse
|
14
|
Li Z, Zhao J, Wu Y, Fan S, Yuan H, Xia J, Hu L, Yang J, Liu J, Wu X, Lin R, Yang L. TRAF2 decrease promotes the TGF-β-mTORC1 signal in MAFLD-HCC through enhancing AXIN1-mediated Smad7 degradation. FASEB J 2024; 38:e23491. [PMID: 38363556 DOI: 10.1096/fj.202302307r] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2023] [Revised: 01/13/2024] [Accepted: 02/01/2024] [Indexed: 02/17/2024]
Abstract
According to recent research, metabolic-associated fatty liver disease (MAFLD) has emerged as an important underlying etiology of hepatocellular carcinoma (HCC). However, the molecular mechanism of MAFLD-HCC is still unclear. Tumor necrosis factor receptor-associated factor 2 (TRAF2) is the key molecule to mediate the signal of inflammatory NF-κB pathway. This study aims to investigate the potential dysregulation of TRAF2 and its biological function in MAFLD-HCC. Huh7 TRAF2-/- demonstrated increased tumor formation ability compared to huh7 TRAF2+/+ when stimulated with transforming growth factor-β (TGF-β). The decisive role of TGF-β in the development of MAFLD-HCC was confirmed through the specific depletion of TGF-β receptor II gene in the hepatocytes (Tgfbr2ΔHep) of mice. In TRAF2-/- cells treated with TGF-β, both the glycolysis rate and lipid synthesis were enhanced. We proved the signal of the mechanistic target of rapamycin complex 1 (mTORC1) could be activated in the presence of TGF-β, and was enhanced in TRAF2-/- cells. The coimmunoprecipitation (co-IP) experiments revealed that TRAF2 fortified the Smurf2-mediated ubiquitination degradation of AXIN1. Hence, TRAF2 depletion resulted in increased Smad7 degradation induced by AXIN1, thus promoting the TGF-β signal. We also discovered that PLX-4720 could bind with AXIN1 and restrained the tumor proliferation of TRAF2-/- in mice fed with high-fat diet (HFD). Our findings indicate that TRAF2 plays a significant role in the pathogenesis of MAFLD-HCC. The reduction of TRAF2 expression leads to the enhancement of the TGF-β-mTORC1 pathway by facilitating AXIN1-mediated Smad7 degradation.
Collapse
Affiliation(s)
- Zhonglin Li
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jinfang Zhao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ya Wu
- Institute of Resource Biology and Biotechnology, Department of Biotechnology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, China
| | - Siyuan Fan
- Cardiovascular Medicine Department, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Hang Yuan
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jing Xia
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lilin Hu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingze Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jiazheng Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Macau Institute for Applied Research in Medicine and Health, Macau University of Science and Technology, Taipa, Macau, China
| | - Xuefeng Wu
- Shanghai Institute of Immunology, Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rong Lin
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Ling Yang
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
15
|
Wang Z, Zhang Y, Shen Y, Zhou H, Gao Y, Zhu C, Qin X. Unlocking hepatocellular carcinoma aggression: STAMBPL1-mediated TRAF2 deubiquitination activates WNT/PI3K/NF-kb signaling pathway. Biol Direct 2024; 19:18. [PMID: 38419066 PMCID: PMC10903047 DOI: 10.1186/s13062-024-00460-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024] Open
Abstract
STAM Binding Protein Like 1 (STAMBPL1), functions as a deubiquitinase (DUB) and plays a significant role in various types of cancers. However, its effect as a DUB participating in the HCC tumorigenesis and progression still unknown. In the study, the upregulation and strong prognosis value of STAMBPL1 were identified in HCC patients. Functionally, STAMBPL1 significantly promoted HCC cells proliferation and metastasis, and it interacts with TRAF2 and stabilize it via the deubiquitination at the K63 residue. The TRAF2 upregulation stabilized by STAMBPL1 overexpression transfers of P65 protein into the nucleus and activates the WNT/PI3K/ NF-kb signaling pathway. The 251-436 sites of STAMBPL1 particularly interact with the 294-496 sites of TRAF2, thereby exerting the function of DUB and removing the ubiquitin molecules attached to TRAF2. Our research unveiled a new function of STAMBPL1 in mediating TRAF2 deubiquitination and stabilization, thereby activating the WNT/PI3K/NF-kb signaling pathway, suggesting its potential as a novel biomarker and therapeutic target for HCC.
Collapse
Affiliation(s)
- Zhihuai Wang
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yinjie Zhang
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yuhang Shen
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Haiyang Zhou
- Nanjing Medical University, Nanjing, 211166, China
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Yuan Gao
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China
| | - Chunfu Zhu
- Nanjing Medical University, Nanjing, 211166, China.
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| | - Xihu Qin
- Nanjing Medical University, Nanjing, 211166, China.
- Department of General Surgery, The Affiliated Changzhou No. 2 People's Hospital of Nanjing Medical University, Changzhou, 213000, China.
| |
Collapse
|
16
|
Liu Z, Yang LY, Hao JJ, Zhang N, Fan ZL, Cai HQ, Cai Y, Wei WQ, Zhang Y, Wang MR. Nuclear-cytoplasmic translocation of SQSTM1/p62 protein enhances ESCC cell migration and invasion by stabilizing EPLIN expression. Exp Cell Res 2024; 435:113910. [PMID: 38185251 DOI: 10.1016/j.yexcr.2023.113910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 12/30/2023] [Accepted: 12/31/2023] [Indexed: 01/09/2024]
Abstract
Esophageal squamous cell carcinoma (ESCC) is an aggressive malignant disease with a poor prognosis. We previously found that p62 presented a marked nuclear-cytoplasmic translocation in ESCC cells as compared that in normal esophageal epithelial cells, but its effects on ESCC cells remain unclear. This study aims to clarify the impacts of different cellular localization of p62 on the function of ESCC cells and the underlying molecular mechanisms. We here demonstrated that cytoplasmic p62 enhances the migration and invasion abilities of esophageal cancer cells, whereas nuclear p62 has no effect. We further explored the interaction protein of p62 by using GST pull-down experiment and identified EPLIN as a potential protein interacting with p62. In addition, reducing EPLIN expression significantly inhibited the migration and invasion of ESCC cells, which were rescued when EPLIN expression was restored after the p62 knockdown. At a molecular level, p62 in cytoplasm positively regulated the expression of EPLIN via enhancing its protein stability. Data from the TCGA and GEO database displayed a significant up-regulation of EPLIN mRNA expression in ESCC tissues compared with corresponding paired esophageal epithelial samples. Our findings present evidence that the nuclear-cytoplasmic translocation of p62 protein contributes to an aggressive malignancy phenotype, providing candidate molecular biomarkers and potential molecular targets for the diagnosis and treatment of ESCC.
Collapse
Affiliation(s)
- Zou Liu
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Li-Yan Yang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China; Department of Clinical Laboratory, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Jia-Jie Hao
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Na Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Zhi-Lu Fan
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Hong-Qing Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yan Cai
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Wen-Qiang Wei
- Department of Cancer Epidemiology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Yu Zhang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| | - Ming-Rong Wang
- State Key Laboratory of Molecular Oncology, Center for Cancer Precision Medicine, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China.
| |
Collapse
|
17
|
Yao J, Liang X, Xu S, Liu Y, Shui L, Li S, Guo H, Xiao Z, Zhao Y, Zheng M. TRAF2 inhibits senescence in hepatocellular carcinoma cells via regulating the ROMO1/ NAD +/SIRT3/SOD2 axis. Free Radic Biol Med 2024; 211:47-62. [PMID: 38043870 DOI: 10.1016/j.freeradbiomed.2023.11.035] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/15/2023] [Revised: 11/16/2023] [Accepted: 11/28/2023] [Indexed: 12/05/2023]
Abstract
The suppression of tumor proliferation via cellular senescence has emerged as a promising approach for anti-tumor therapy. Tumor necrosis factor receptor-associated factor 2 (TRAF2), an adaptor protein involved in the NF-κB signaling pathway and reactive oxygen species (ROS) production, has been implicated in hepatocellular carcinoma (HCC) proliferation. However, little is currently known about whether TRAF2 promotes HCC development by inhibiting cellular senescence. Replicative senescence model and IR-induced mouse model demonstrated that TRAF2 expression was decrease in senescence cells or liver tissues. Depletion of TRAF2 could inhibit proliferation and arrest the cell cycle via activating p53/p21WAF1 and p16INK4a/pRb signaling pathways in HCC cells and eventually lead to cellular senescence. Mechanistically, TRAF2 deficiency increased the expression of mitochondrial protein reactive oxygen species modulator 1 (ROMO1) and subsequently activated the NAD+/SIRT3/SOD2 pathway to promote the production of ROS and cause mitochondrial dysfunction, which eventually contributed to DNA damage response (DDR). Our findings demonstrate that TRAF2 deficiency inhibits the proliferation of HCC by promoting senescence. Therefore, targeting TRAF2 through various approaches holds therapeutic potential for treating HCC.
Collapse
Affiliation(s)
- Jiping Yao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Gastroenterology, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Xue Liang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Siduo Xu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yanning Liu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Liyan Shui
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Shuangshuang Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Huiting Guo
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Zhengyun Xiao
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China
| | - Yongchao Zhao
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China; Cancer Center, Zhejiang University, Hangzhou, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, 310029, China.
| | - Min Zheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Centre for Infectious Diseases, Collaborative Innovation Centre for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang Province, 310003, China.
| |
Collapse
|
18
|
Zhu M, Rovella V, Scimeca M, Mauriello A, Shi Y, Bischof J, Woodsmith J, Anselmo A, Melino G, Tisone G, Agostini M. Genomic and transcriptomic profiling of hepatocellular carcinoma reveals a rare molecular subtype. Discov Oncol 2024; 15:10. [PMID: 38228856 DOI: 10.1007/s12672-023-00850-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/27/2023] [Accepted: 12/10/2023] [Indexed: 01/18/2024] Open
Abstract
Hepatocellular carcinoma (HCC) is the third leading cause of cancer-related death worldwide, occurring predominantly in patients with underlying chronic liver disease and cirrhosis. Here, we describe a case of a 62-year-old man that was admitted to our hospital and diagnosed with HCC where the cancer has already metastasized to the retroperitoneum and peritoneum. In order to better characterize the HCC, both the cancerous liver tissue and the adjacent normal liver tissue of the patient were collected and subjected to a genomic, transcriptomic and proteomic analysis. Our patient carries a highly mutated HCC, which is characterized by both somatic mutation in the following genes ALK, CDK6, TP53, PGR. In addition, we observe several molecular alterations that are associated with potential therapy resistance, for example the expression of the organic-anion-transporting polypeptide (OATP) family members B1 and B3, that mediate the transport of the anticancer drugs, has been found decreased. Overall, our molecular profiling potentially classify the patient with poor prognosis and possibly displaying resistance to pharmacological therapy.
Collapse
Affiliation(s)
- Mengting Zhu
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Valentina Rovella
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Manuel Scimeca
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Yufang Shi
- The Third Affiliated Hospital of Soochow University, Institutes for Translational Medicine, Soochow University, Suzhou, 215000, China
| | - Julia Bischof
- Indivumed GmbH, Falkenried, 88 Building D, 20251, Hamburg, Germany
| | | | - Alessandro Anselmo
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy
| | - Gerry Melino
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Giuseppe Tisone
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| | - Massimiliano Agostini
- Department of Experimental Medicine, TOR, University of Rome Tor Vergata, 00133, Rome, Italy.
| |
Collapse
|
19
|
Li Y, Zhu J, Yu Z, Zhai F, Li H, Jin X. Regulation of apoptosis by ubiquitination in liver cancer. Am J Cancer Res 2023; 13:4832-4871. [PMID: 37970337 PMCID: PMC10636691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2023] [Accepted: 10/04/2023] [Indexed: 11/17/2023] Open
Abstract
Apoptosis is a programmed cell death process critical to cell development and tissue homeostasis in multicellular organisms. Defective apoptosis is a crucial step in the malignant transformation of cells, including hepatocellular carcinoma (HCC), where the apoptosis rate is higher than in normal liver tissues. Ubiquitination, a post-translational modification process, plays a precise role in regulating the formation and function of different death-signaling complexes, including those involved in apoptosis. Aberrant expression of E3 ubiquitin ligases (E3s) in liver cancer (LC), such as cellular inhibitors of apoptosis proteins (cIAPs), X chromosome-linked IAP (XIAP), and linear ubiquitin chain assembly complex (LUBAC), can contribute to HCC development by promoting cell survival and inhibiting apoptosis. Therefore, the review introduces the main apoptosis pathways and the regulation of proteins in these pathways by E3s and deubiquitinating enzymes (DUBs). It summarizes the abnormal expression of these regulators in HCC and their effects on cancer inhibition or promotion. Understanding the role of ubiquitination in apoptosis and LC can provide insights into potential targets for therapeutic intervention.
Collapse
Affiliation(s)
- Yuxuan Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Jie Zhu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Zongdong Yu
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Fengguang Zhai
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Hong Li
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| | - Xiaofeng Jin
- Department of Hepatobiliary and Pancreatic Surgery, Ningbo Medical Center of LiHuiLi Hospital, Ningbo UniversityNingbo 315040, Zhejiang, P. R. China
- Department of Biochemistry and Molecular Biology, Zhejiang Key Laboratory of Pathophysiology, Health Science Center, Ningbo UniversityNingbo 315211, Zhejiang, P. R. China
| |
Collapse
|