1
|
Zhang Y, Ai C, Huang F, Zhao JL, Ling Y, Chen W, Li Z, Wang Y, Gao F, Li S, Gao W, Wang YS. β-Nicotinamide mononucleotide blocks UVB-induced collagen reduction via regulation of ROS/MAPK/AP-1 and stimulation of mitochondrial proline biosynthesis. Photochem Photobiol Sci 2025:10.1007/s43630-025-00692-0. [PMID: 40025354 DOI: 10.1007/s43630-025-00692-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 02/08/2025] [Indexed: 03/04/2025]
Abstract
β-Nicotinamide mononucleotide (NMN), as a precursor of long-lived protein co-factor nicotinamide adenine dinucleotide (NAD+) in the human body, has demonstrated promising clinical value in treating photoaging and skin wounds. Previous research showed that NMN possessed significant skin protection against UVB-induced photoaging and promoted collagen synthesis. However, its potential mechanism remains unclear. This study aimed to investigate whether NMN improved UVB-induced collagen degradation by regulating ROS/MAPK/AP-1 signaling and stimulating mitochondrial proline biosynthesis. The results showed that NMN notably inhibited UVB-induced ROS production and down-regulated the MAPK/AP-1 signaling pathway. In addition, NMN significantly increased proline levels in mitochondria, which acted as the primary raw materials for collagen synthesis. Further mechanistic analysis revealed that NMN increased the levels of mitochondrial NAD+ and NADP(H). Besides, NMN supplementation activated pyrroline-5-carboxylatesynthetase (P5CS), a key enzyme in proline biosynthesis, by increasing SIRT3 levels. However, the promoting effects of NMN on proline and collagen synthesis were significantly inhibited when 3-TYP, a SIRT3 inhibitor, was combined applied. Meanwhile, the effects of NMN on collagen synthesis were reversed when the solute carrier family 25 member 51, a mammalian mitochondrial NAD+ transporter, was knocked down. Moreover, animal experiments indicated that NMN ameliorated UVB-induced collagen fiber degradation by activating the SIRT3/P5CS signaling. These results revealed that NMN could combat UVB-induced collagen depletion by regulating the ROS/MAPK/AP-1 and proline synthesis.
Collapse
Affiliation(s)
- Yue Zhang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Chen Ai
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fangzhou Huang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Ji-Li Zhao
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yixin Ling
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Weijing Chen
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Zhenzhu Li
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Yu Wang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Fei Gao
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Siqi Li
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China
| | - Wei Gao
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China.
| | - Yu-Shuai Wang
- Department of Pharmacy, Anhui Engineering Technology Research Center of Biochemical Pharmaceutical, Bengbu Medical University, 2600 Donghai Avenue, Bengbu, 233030, China.
| |
Collapse
|
2
|
Gao X, Xu Y, Hu X, Chen J, Zhang D, Xu X. Comprehensive analysis of mitochondrial solute carrier family 25 (SLC25) identifies member 19 (SLC25A19) as a regulatory factor in hepatocellular carcinoma. Gene 2025; 944:149299. [PMID: 39892835 DOI: 10.1016/j.gene.2025.149299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2024] [Revised: 01/08/2025] [Accepted: 01/28/2025] [Indexed: 02/04/2025]
Abstract
BACKGROUND The mitochondrial solute carrier family 25 (SLC25) is known to play a pivotal role in oncogenesis, yet its specific involvement in hepatocellular carcinoma (HCC) remains poorly elucidated. METHODS In this study, we performed a clustering analysis of HCC patients in the Cancer Genome Atlas database based on the expression levels of SLC25 members, and conducted clinical feature analysis for each patient within the clusters. Subsequently, we developed a prognostic model using a Lasso regression approach with SLC25A19, SLC25A49, and SLC25A51 as features, and generated a risk score for each HCC patient. We then identified SLC25A19 as a potential prognostic marker for HCC through single-cell analysis, and validated this finding using in vitro and in vivo experiments. RESULTS Our results revealed significant differences in the expression of most SLC25 family members in HCC patients, enabling the stratification of patients into three clusters, with those in cluster 1 exhibiting the most favorable prognosis and showing a correlation with enhanced immune infiltration. The risk scores derived from the features SLC25A19, SLC25A49, and SLC25A51 effectively predicted the prognosis of HCC patients, with area under the curve (AUC) values exceeding 0.7 in the test group. Single-cell analysis further demonstrated h eightened expression of SLC25A19 in the immune microenvironment of HCC, and in vitro experiments indicated that SLC25A19 may regulate the proliferation, migration, invasion, cycle, and apoptosis of liver cancer cells through the Wnt pathway. In the HepG2 animal model, overexpression of SLC25A19 significantly promotes tumor growth, while knockdown inhibits tumor growth. Analysis of patient tumor tissues shows that SLC25A19 is highly expressed in liver cancer tissues and is associated with CD8+ T cell infiltration. CONCLUSIONS In conclusion, our comprehensive analysis of the role of SLC25 in HCC unveiled SLC25A19 as a potential regulatory factor in HCC.
Collapse
Affiliation(s)
- Xueke Gao
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China 430060
| | - Yangtao Xu
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China 430060
| | - Xinyao Hu
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China 430060
| | - Jiayu Chen
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China 430060
| | - Daoming Zhang
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China 430060
| | - Ximing Xu
- Renmin Hospital of Wuhan University, Wuhan, Hubei, China 430060.
| |
Collapse
|
3
|
Adzika GK, Velázquez Aponte RA, Baur JA. Mitochondrial NAD + transporter SLC25A51 linked to human aortic disease. NATURE CARDIOVASCULAR RESEARCH 2025:10.1038/s44161-024-00599-6. [PMID: 39843800 DOI: 10.1038/s44161-024-00599-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Affiliation(s)
- Gabriel K Adzika
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Ricardo A Velázquez Aponte
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Joseph A Baur
- Department of Physiology and Institute for Diabetes, Obesity and Metabolism, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
4
|
Liao Y, Chen J, Yao H, Zheng T, Tu J, Chen W, Guo Z, Zou Y, Wen L, Xie X. Single-cell profiling of SLC family transporters: uncovering the role of SLC7A1 in osteosarcoma. J Transl Med 2025; 23:103. [PMID: 39844299 PMCID: PMC11752724 DOI: 10.1186/s12967-025-06086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 01/06/2025] [Indexed: 01/24/2025] Open
Abstract
BACKGROUND Osteosarcoma is the most common malignant bone tumor in children and adolescents, characterized by high disability and mortality rates. Over the past three decades, therapeutic outcomes have plateaued, underscoring the critical need for innovative therapeutic targets. Solute carrier (SLC) family transporters have been implicated in the malignant progression of a variety of tumors, however, their specific role in osteosarcoma remains poorly understood. METHODS The single-cell sequencing data from GSE152048 and GSE162454, along with RNA-seq from the TARGET and GSE21257 cohorts, were utilized for the analysis in this study. LASSO regression analysis was conducted to identify prognostic genes and construct an SLC-related prognostic signature. Survival analysis and ROC analysis evaluated the validity of the prognostic signature. The ESTIMATE and CIBERSORT Packages were utilized to assess the immune infiltration status. Pseudotime and CellChat analyses were performed to investigate the relationship between SLC7A1, malignant phenotypes, and the immune microenvironment. CCK8 assays, EdU staining, colony formation assays, Transwell assays, and co-culture systems were used to assess the effects of SLC7A1 on cell proliferation, metastasis, and macrophage polarization. Finally, virtual docking identified potential drugs targeting SLC7A1. RESULTS SLCs displayed distinct expression patterns across various cell types within the osteosarcoma microenvironment, with myeloid cells exhibiting a preference for amino acid uptake. A prognostic model comprising nine genes was constructed via LASSO regression, with SLC7A1 showing the highest hazard ratio. Multiple analytical algorithms indicated that SLCs were associated with immune cell infiltration and immune checkpoint gene expression. Single-cell analysis indicated that SLC7A1 was predominantly expressed in osteosarcoma cells and correlated with various malignant tumor characteristics. SLC7A1 also regulate interactions between tumor cells and macrophages, as well as modulate macrophage function through multiple pathways. In vitro assays and survival analysis demonstrated that inhibition of SLC7A1 suppressed the malignant phenotype of osteosarcoma cells, with SLC7A1 expression correlating with poor prognosis. Co-culture models confirmed the involvement of SLC7A1 in macrophage polarization. Finally, virtual screening and CETSA identified Cepharanthine as potential inhibitors of SLC7A1. CONCLUSION SLC-related prognostic signatures can be utilized for the prognostic evaluation of osteosarcoma. Pharmacological inhibition of SLC7A1 may be a feasible therapeutic approach for osteosarcoma.
Collapse
Affiliation(s)
- Yan Liao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Junkai Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Hao Yao
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Ting Zheng
- The Affiliated Guangzhou Twelfth People's Hospital, Guangzhou Medical University, Guangzhou, 510620, China
| | - Jian Tu
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Weidong Chen
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - ZeHao Guo
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China
| | - Yutong Zou
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| | - Lili Wen
- Department of Anesthesiology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China.
| | - Xianbiao Xie
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, China.
- Guangdong Provincial Key Laboratory of Orthopedics and Traumatology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, Guangdong, China.
| |
Collapse
|
5
|
Ahmed A, Iaconisi GN, Di Molfetta D, Coppola V, Caponio A, Singh A, Bibi A, Capobianco L, Palmieri L, Dolce V, Fiermonte G. The Role of Mitochondrial Solute Carriers SLC25 in Cancer Metabolic Reprogramming: Current Insights and Future Perspectives. Int J Mol Sci 2024; 26:92. [PMID: 39795950 PMCID: PMC11719790 DOI: 10.3390/ijms26010092] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/23/2024] [Accepted: 12/23/2024] [Indexed: 01/30/2025] Open
Abstract
Cancer cells undergo remarkable metabolic changes to meet their high energetic and biosynthetic demands. The Warburg effect is the most well-characterized metabolic alteration, driving cancer cells to catabolize glucose through aerobic glycolysis to promote proliferation. Another prominent metabolic hallmark of cancer cells is their increased reliance on glutamine to replenish tricarboxylic acid (TCA) cycle intermediates essential for ATP production, aspartate and fatty acid synthesis, and maintaining redox homeostasis. In this context, mitochondria, which are primarily used to maintain energy homeostasis and support balanced biosynthesis in normal cells, become central organelles for fulfilling the heightened biosynthetic and energetic demands of proliferating cancer cells. Mitochondrial coordination and metabolite exchange with other cellular compartments are crucial. The human SLC25 mitochondrial carrier family, comprising 53 members, plays a pivotal role in transporting TCA intermediates, amino acids, vitamins, nucleotides, and cofactors across the inner mitochondrial membrane, thereby facilitating this cross-talk. Numerous studies have demonstrated that mitochondrial carriers are altered in cancer cells, actively contributing to tumorigenesis. This review comprehensively discusses the role of SLC25 carriers in cancer pathogenesis and metabolic reprogramming based on current experimental evidence. It also highlights the research gaps that need to be addressed in future studies. Understanding the involvement of these carriers in tumorigenesis may provide valuable novel targets for drug development.
Collapse
Affiliation(s)
- Amer Ahmed
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Giorgia Natalia Iaconisi
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Daria Di Molfetta
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenzo Coppola
- Department of Cancer Biology and Genetics, College of Medicine, The Ohio State University and Arthur G. James Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Antonello Caponio
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Ansu Singh
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Aasia Bibi
- Department of Translational Biomedicine and Neuroscience, University of Bari, 70125 Bari, Italy
| | - Loredana Capobianco
- Department of Biological and Environmental Sciences and Technologies, University of Salento, 73100 Lecce, Italy
| | - Luigi Palmieri
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| | - Vincenza Dolce
- Department of Pharmacy, Health and Nutritional Sciences, University of Calabria, 87036 Rende, Italy
| | - Giuseppe Fiermonte
- Department of Biosciences, Biotechnologies and Biopharmaceutics, University of Bari, 70125 Bari, Italy
| |
Collapse
|
6
|
Wang H, Cui W, Yue S, Zhu X, Li X, He L, Zhang M, Yang Y, Wei M, Wu H, Wang S. Malic enzymes in cancer: Regulatory mechanisms, functions, and therapeutic implications. Redox Biol 2024; 75:103273. [PMID: 39142180 PMCID: PMC11367648 DOI: 10.1016/j.redox.2024.103273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/21/2024] [Accepted: 07/17/2024] [Indexed: 08/16/2024] Open
Abstract
Malic enzymes (MEs) are metabolic enzymes that catalyze the oxidation of malate to pyruvate and NAD(P)H. While researchers have well established the physiological metabolic roles of MEs in organisms, recent research has revealed a link between MEs and carcinogenesis. This review collates evidence of the molecular mechanisms by which MEs promote cancer occurrence, including transcriptional regulation, post-transcriptional regulation, post-translational protein modifications, and protein-protein interactions. Additionally, we highlight the roles of MEs in reprogramming energy metabolism, suppressing senescence, and modulating the tumor immune microenvironment. We also discuss the involvement of these enzymes in mediating tumor resistance and how the development of novel small-molecule inhibitors targeting MEs might be a good therapeutic approach. Insights through this review are expected to provide a comprehensive understanding of the intricate relationship between MEs and cancer, while facilitating future research on the potential therapeutic applications of targeting MEs in cancer management.
Collapse
Affiliation(s)
- Huan Wang
- Department of Radiotherapy, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| | - Wanlin Cui
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Song Yue
- Department of Ophthalmology, The First Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xianglong Zhu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Xiaoyan Li
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Lian He
- Department of Pathology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China
| | - Mingrong Zhang
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China
| | - Yan Yang
- Department of Gastroenterology, The Fourth Affiliated Hospital of China Medical University, No.4, Chongshan Road, Huanggu District, Shenyang, Liaoning Province, PR China
| | - Minjie Wei
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Shenyang Kangwei Medical Laboratory Analysis Co. LTD, Shenyang City, Liaoning Province, PR China.
| | - Huizhe Wu
- Department of Pharmacology, School of Pharmacy, China Medical University, Shenyang, 110122, Liaoning Province, PR China; Liaoning Key Laboratory of Molecular Targeted Anti-tumor Drug Development and Evaluation, Liaoning Cancer Immune Peptide Drug Engineering Technology Research Center, Key Laboratory of Precision Diagnosis and Treatment of Gastrointestinal Tumors, Ministry of Education, China Medical University, Shenyang, 110122, Liaoning Province, PR China.
| | - Shuo Wang
- Department of Gynecology Surgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Cancer Hospital of Dalian University of Technology, No.44 Xiaoheyan Road, Dadong District, Shenyang, 110042, Liaoning Province, PR China.
| |
Collapse
|
7
|
Sun Z, Nie Z, Xu Y, Cui Y, Ma W, Zhang T. SLC12A8 upregulation promotes colorectal cancer progression and chemoresistance. Transl Cancer Res 2024; 13:3446-3464. [PMID: 39145047 PMCID: PMC11319960 DOI: 10.21037/tcr-24-87] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Accepted: 06/02/2024] [Indexed: 08/16/2024]
Abstract
Background Colorectal cancer (CRC), a prevalent gastrointestinal malignant disease, causes substantial morbidity and mortality. Identification of novel prognostic biomarkers and therapeutic targets is critically needed to improve patient outcomes. Although solute carrier family 12 member 8 (SLC12A8) has high expression in various tumors and affects tumor progression, its role in CRC remains unclear. The aim of this study was to investigate the functions of SLC12A8 in CRC. Methods SLC12A8 expression and its association with clinical significance in CRC patients were explored via multiple public databases, including The Cancer Genome Atlas (TCGA), Genotype-Tissue Expression (GTEx), The Human Protein Atlas (HPA), The University of ALabama at Birmingham CANcer data analysis Portal (UALCAN), and Kaplan-Meier plotter. The effects of SLC12A8 on the CRC cell apoptosis, epithelial-mesenchymal transition (EMT), reactive oxygen species (ROS) production, and sensitivity to oxaliplatin were verified by in vitro experiments. Results SLC12A8 expression was upregulated in CRC tissues compared with normal colorectal tissues. Furthermore, high expression of SLC12A8 was associated with poorer prognosis in CRC patients. Pathway enrichment analyses revealed SLC12A8 involvement in oxidative stress and transforming growth factor-beta (TGF-β) signaling. Experiments in CRC cells showed that SLC12A8 upregulation promoted apoptosis resistance, EMT, and inhibited ROS production. Moreover, SLC12A8 knockdown enhanced the sensitivity of CRC cells to oxaliplatin chemotherapy. Conclusions Our integrative analyses identify SLC12A8 as a candidate biomarker for CRC progression. Targeting SLC12A8 may improve patient responses to oxaliplatin-based treatment regimens.
Collapse
Affiliation(s)
- Zhe Sun
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Zhiyan Nie
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yao Xu
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| | | | - Wenjian Ma
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Qilu Institute of Technology, Jinan, China
| | - Tongcun Zhang
- College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
- Institute of Biology and Medicine, College of Life Sciences and Health, Wuhan University of Science and Technology, Wuhan, China
| |
Collapse
|
8
|
Cao Y, Shu W, Jin P, Li J, Zhu H, Chen X, Zhu Y, Huang X, Cheng W, Shen Y. NAD metabolism-related genes provide prognostic value and potential therapeutic insights for acute myeloid leukemia. Front Immunol 2024; 15:1417398. [PMID: 38966636 PMCID: PMC11222388 DOI: 10.3389/fimmu.2024.1417398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 06/05/2024] [Indexed: 07/06/2024] Open
Abstract
Introduction Acute myeloid leukemia (AML) is an aggressive blood cancer with high heterogeneity and poor prognosis. Although the metabolic reprogramming of nicotinamide adenine dinucleotide (NAD) has been reported to play a pivotal role in the pathogenesis of acute myeloid leukemia (AML), the prognostic value of NAD metabolism and its correlation with the immune microenvironment in AML remains unclear. Methods We utilized our large-scale RNA-seq data on 655 patients with AML and the NAD metabolism-related genes to establish a prognostic NAD metabolism score based on the sparse regression analysis. The signature was validated across three independent datasets including a total of 1,215 AML patients. ssGSEA and ESTIMATE algorithms were employed to dissect the tumor immune microenvironment. Ex vivo drug screening and in vitro experimental validation were performed to identify potential therapeutic approaches for the high-risk patients. In vitro knockdown and functional experiments were employed to investigate the role of SLC25A51, a mitochondrial NAD+ transporter gene implicated in the signature. Results An 8-gene NAD metabolism signature (NADM8) was generated and demonstrated a robust prognostic value in more than 1,800 patients with AML. High NADM8 score could efficiently discriminate AML patients with adverse clinical characteristics and genetic lesions and serve as an independent factor predicting a poor prognosis. Immune microenvironment analysis revealed significant enrichment of distinct tumor-infiltrating immune cells and activation of immune checkpoints in patients with high NADM8 scores, acting as a potential biomarker for immune response evaluation in AML. Furthermore, ex vivo drug screening and in vitro experimental validation in a panel of 9 AML cell lines demonstrated that the patients with high NADM8 scores were more sensitive to the PI3K inhibitor, GDC-0914. Finally, functional experiments also substantiated the critical pathogenic role of the SLC25A51 in AML, which could be a promising therapeutic target. Conclusion Our study demonstrated that NAD metabolism-related signature can facilitate risk stratification and prognosis prediction in AML and guide therapeutic decisions including both immunotherapy and targeted therapies.
Collapse
MESH Headings
- Humans
- Leukemia, Myeloid, Acute/genetics
- Leukemia, Myeloid, Acute/diagnosis
- Leukemia, Myeloid, Acute/therapy
- Leukemia, Myeloid, Acute/drug therapy
- Leukemia, Myeloid, Acute/immunology
- Prognosis
- NAD/metabolism
- Tumor Microenvironment/immunology
- Tumor Microenvironment/genetics
- Biomarkers, Tumor/genetics
- Female
- Male
- Middle Aged
- Gene Expression Regulation, Leukemic
- Gene Expression Profiling
- Transcriptome
- Cell Line, Tumor
Collapse
Affiliation(s)
- Yuncan Cao
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Shu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Peng Jin
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jianfeng Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
- School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hongming Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinjie Chen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongmei Zhu
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Huang
- Department of Critical Care Medicine, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Wenyan Cheng
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Shen
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
9
|
Lu MJ, Busquets J, Impedovo V, Wilson CN, Chan HR, Chang YT, Matsui W, Tiziani S, Cambronne XA. SLC25A51 decouples the mitochondrial NAD +/NADH ratio to control proliferation of AML cells. Cell Metab 2024; 36:808-821.e6. [PMID: 38354740 PMCID: PMC10990793 DOI: 10.1016/j.cmet.2024.01.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 11/30/2023] [Accepted: 01/23/2024] [Indexed: 02/16/2024]
Abstract
SLC25A51 selectively imports oxidized NAD+ into the mitochondrial matrix and is required for sustaining cell respiration. We observed elevated expression of SLC25A51 that correlated with poorer outcomes in patients with acute myeloid leukemia (AML), and we sought to determine the role SLC25A51 may serve in this disease. We found that lowering SLC25A51 levels led to increased apoptosis and prolonged survival in orthotopic xenograft models. Metabolic flux analyses indicated that depletion of SLC25A51 shunted flux away from mitochondrial oxidative pathways, notably without increased glycolytic flux. Depletion of SLC25A51 combined with 5-azacytidine treatment limits expansion of AML cells in vivo. Together, the data indicate that AML cells upregulate SLC25A51 to decouple mitochondrial NAD+/NADH for a proliferative advantage by supporting oxidative reactions from a variety of fuels. Thus, SLC25A51 represents a critical regulator that can be exploited by cancer cells and may be a vulnerability for refractory AML.
Collapse
Affiliation(s)
- Mu-Jie Lu
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Jonathan Busquets
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Valeria Impedovo
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA
| | - Crystal N Wilson
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Hsin-Ru Chan
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA
| | - Yu-Tai Chang
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - William Matsui
- Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, College of Natural Sciences, University of Texas at Austin, Austin, TX, USA; Department of Pediatrics, Dell Medical School, University of Texas at Austin, Austin, TX, USA; Department of Oncology, Dell Medical School, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA
| | - Xiaolu A Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, USA; LIVESTRONG Cancer Institutes, University of Texas at Austin, Austin, TX, USA.
| |
Collapse
|
10
|
Jenkins BC, Neikirk K, Katti P, Claypool SM, Kirabo A, McReynolds MR, Hinton A. Mitochondria in disease: changes in shapes and dynamics. Trends Biochem Sci 2024; 49:346-360. [PMID: 38402097 PMCID: PMC10997448 DOI: 10.1016/j.tibs.2024.01.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 01/14/2024] [Accepted: 01/26/2024] [Indexed: 02/26/2024]
Abstract
Mitochondrial structure often determines the function of these highly dynamic, multifunctional, eukaryotic organelles, which are essential for maintaining cellular health. The dynamic nature of mitochondria is apparent in descriptions of different mitochondrial shapes [e.g., donuts, megamitochondria (MGs), and nanotunnels] and crista dynamics. This review explores the significance of dynamic alterations in mitochondrial morphology and regulators of mitochondrial and cristae shape. We focus on studies across tissue types and also describe new microscopy techniques for detecting mitochondrial morphologies both in vivo and in vitro that can improve understanding of mitochondrial structure. We highlight the potential therapeutic benefits of regulating mitochondrial morphology and discuss prospective avenues to restore mitochondrial bioenergetics to manage diseases related to mitochondrial dysfunction.
Collapse
Affiliation(s)
- Brenita C Jenkins
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA
| | - Kit Neikirk
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA
| | - Prasanna Katti
- National Heart, Lung and Blood Institute, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Steven M Claypool
- Department of Physiology, Mitochondrial Phospholipid Research Center, Department of Genetic Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | - Annet Kirabo
- Department of Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Infection, Immunology and Inflammation, Vanderbilt University Medical Center, Nashville, TN 37232, USA; Vanderbilt Institute for Global Health, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Melanie R McReynolds
- Department of Biochemistry and Molecular Biology, The Huck Institute of the Life Sciences, Pennsylvania State University, State College, PA 16801, USA.
| | - Antentor Hinton
- Department of Molecular Physiology and Biophysics, Vanderbilt University, Nashville, TN 37232, USA.
| |
Collapse
|
11
|
Teng P, Cui K, Yao S, Fei B, Ling F, Li C, Huang Z. SIRT5-mediated ME2 desuccinylation promotes cancer growth by enhancing mitochondrial respiration. Cell Death Differ 2024; 31:65-77. [PMID: 38007551 PMCID: PMC10781994 DOI: 10.1038/s41418-023-01240-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/31/2023] [Accepted: 11/07/2023] [Indexed: 11/27/2023] Open
Abstract
Mitochondrial malic enzyme 2 (ME2), which catalyzes the conversion of malate to pyruvate, is frequently upregulated during tumorigenesis and is a potential target for cancer therapy. However, the regulatory mechanism underlying ME2 activity is largely unknown. In this study, we demonstrate that ME2 is highly expressed in human colorectal cancer (CRC) tissues, and that ME2 knockdown inhibits the proliferation of CRC cells. Furthermore, we reveal that ME2 is succinylated and identify Sirtuins 5 (SIRT5) as an ME2 desuccinylase. Glutamine deprivation directly enhances the interaction of SIRT5 with ME2 and thus promotes SIRT5-mediated desuccinylation of ME2 at lysine 346, activating ME2 enzymatic activity. Activated ME2 significantly enhances mitochondrial respiration, thereby counteracting the effects of glutamine deprivation and supporting cell proliferation and tumorigenesis. Additionally, the levels of succinylated ME2 at K346 and SIRT5 in CRC tissues, which are negatively correlated, are associated with patient prognosis. These observations suggest that SIRT5-catalyzed ME2 desuccinylation is a key signaling event through which cancer cells maintain mitochondrial respiration and promote CRC progression under glutamine deficiency conditions, offering the possibility of targeting SIRT5-mediated ME2 desuccinylation for CRC treatment.
Collapse
Affiliation(s)
- Peng Teng
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Kaisa Cui
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Surui Yao
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Bojian Fei
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China
- Department of General Surgery, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China
| | - Feng Ling
- Chemical Genetics Laboratory, RIKEN Advanced Science Institute, Hirosawa 2-1, Wako-shi, Saitama, 351-0198, Japan
| | - Chaoqun Li
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China.
| | - Zhaohui Huang
- Wuxi Cancer Institute, Affiliated Hospital of Jiangnan University, Wuxi, 214062, Jiangsu, China.
- Laboratory of Cancer Epigenetics, Wuxi School of Medicine, Jiangnan University, Wuxi, 214062, Jiangsu, China.
| |
Collapse
|
12
|
Goyal S, Cambronne XA. Layered mechanisms regulating the human mitochondrial NAD+ transporter SLC25A51. Biochem Soc Trans 2023; 51:1989-2004. [PMID: 38108469 PMCID: PMC10802112 DOI: 10.1042/bst20220318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 11/28/2023] [Accepted: 12/08/2023] [Indexed: 12/19/2023]
Abstract
SLC25A51 is the primary mitochondrial NAD+ transporter in humans and controls many local reactions by mediating the influx of oxidized NAD+. Intriguingly, SLC25A51 lacks several key features compared with other members in the mitochondrial carrier family, thus its molecular mechanism has been unclear. A deeper understanding would shed light on the control of cellular respiration, the citric acid cycle, and free NAD+ concentrations in mammalian mitochondria. This review discusses recent insights into the transport mechanism of SLC25A51, and in the process highlights a multitiered regulation that governs NAD+ transport. The aspects regulating SLC25A51 import activity can be categorized as contributions from (1) structural characteristics of the transporter itself, (2) its microenvironment, and (3) distinctive properties of the transported ligand. These unique mechanisms further evoke compelling new ideas for modulating the activity of this transporter, as well as new mechanistic models for the mitochondrial carrier family.
Collapse
Affiliation(s)
- Shivansh Goyal
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| | - Xiaolu A. Cambronne
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX 78712
| |
Collapse
|