1
|
Lee MC, Lee JS, Kim S, Jamaiyar A, Wu W, Gonzalez ML, Durán TCA, Madrigal-Salazar AD, Bassous N, Carvalho V, Choi C, Kim DS, Seo JW, Rodrigues N, Teixeira SFCF, Alkhateeb AF, Soto JAL, Hussain MA, Leijten J, Feinberg MW, Shin SR. Synergistic effect of Hypoxic Conditioning and Cell-Tethering Colloidal Gels enhanced Productivity of MSC Paracrine Factors and Accelerated Vessel Regeneration. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2408488. [PMID: 39380372 DOI: 10.1002/adma.202408488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2024] [Revised: 09/26/2024] [Indexed: 10/10/2024]
Abstract
Microporous hydrogels have been widely used for delivering therapeutic cells. However, several critical issues, such as the lack of control over the harsh environment they are subjected to under pathological conditions and rapid egression of cells from the hydrogels, have produced limited therapeutic outcomes. To address these critical challenges, cell-tethering and hypoxic conditioning colloidal hydrogels containing mesenchymal stem cells (MSCs) are introduced to increase the productivity of paracrine factors locally and in a long-term manner. Cell-tethering colloidal hydrogels that are composed of tyramine-conjugated gelatin prevent cells from egressing through on-cell oxidative phenolic crosslinks while providing mechanical stimulation and interconnected microporous networks to allow for host-implant interactions. Oxygenating microparticles encapsulated in tyramine-conjugated colloidal microgels continuously generated oxygen for 2 weeks with rapid diffusion, resulting in maintaining a mild hypoxic condition while MSCs consumed oxygen under severe hypoxia. Synergistically, local retention of MSCs within the mild hypoxic-conditioned and mechanically robust colloidal hydrogels significantly increased the secretion of various angiogenic cytokines and chemokines. The oxygenating colloidal hydrogels induced anti-inflammatory responses, reduced cellular apoptosis, and promoted numerous large blood vessels in vivo. Finally, mice injected with the MSC-tethered oxygenating colloidal hydrogels significantly improved blood flow restoration and muscle regeneration in a hindlimb ischemia (HLI) model.
Collapse
Affiliation(s)
- Myung Chul Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Medicinal Materials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Jae Seo Lee
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Harvard Medical School and Wellman Center for Photomedicine, Massachusetts General Hospital, Cambridge, MA, 02139, USA
| | - Seongsoo Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Biomaterials Research Center, Biomedical Research Division, Korea Institute of Science and Technology (KIST), Seoul, 02792, Republic of Korea
| | - Anurag Jamaiyar
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Winona Wu
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
- Division of Vascular and Endovascular Surgery, Beth Israel Deaconess Medical Center, Boston, MA, 02115, USA
| | - Montserrat Legorreta Gonzalez
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Tania Carolina Acevedo Durán
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Andrea Donaxi Madrigal-Salazar
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nicole Bassous
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Violeta Carvalho
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- MEtRICs, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- ALGORITMI/LASI Center, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| | - Cholong Choi
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Da-Seul Kim
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Jeong Wook Seo
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Nelson Rodrigues
- MEtRICs, University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- COMEGI-Center for Research in Organizations, Markets and Industrial Management, Lusíada Norte University, Porto, 1349-001, Portugal
| | | | - Abdulhameed F Alkhateeb
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Javier Alejandro Lozano Soto
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
| | - Mohammad Asif Hussain
- Department of Electrical and Computer Engineering, King Abdulaziz University, Jeddah, 21589, Saudi Arabia
| | - Jeroen Leijten
- Leijten Lab, Department of BioEngineering Technologies, Faculty of Science and Technology, Technical Medical Centre, University of Twente, Drienerlolaan 5, Enschede, 7522 NB, The Netherlands
| | - Mark W Feinberg
- Department of Medicine, Cardiovascular Division, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, 02115, USA
| | - Su Ryon Shin
- Division of Engineering in Medicine, Department of Medicine, Brigham and Women's Hospital, Harvard Medical School, Cambridge, MA, 02139, USA
- Center for MicroElectromechanical Systems (CMEMS-UMinho), University of Minho, Campus de Azurém, Guimarães, 4800-058, Portugal
- LABBELS-Associate Laboratory, Braga/Guimarães, 4710-057, Portugal
| |
Collapse
|
2
|
Kim DY, Kang YH, Kang MK. Umbelliferone alleviates impaired wound healing and skin barrier dysfunction in high glucose-exposed dermal fibroblasts and diabetic skins. J Mol Med (Berl) 2024:10.1007/s00109-024-02491-z. [PMID: 39363131 DOI: 10.1007/s00109-024-02491-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 08/09/2024] [Accepted: 09/18/2024] [Indexed: 10/05/2024]
Abstract
Skin wound healing is a complex process involving various cellular and molecular events. However, chronic wounds, particularly in individuals with diabetes, often experience delayed wound healing, potentially leading to diabetic skin complications. In this study, we examined the effects of umbelliferone on skin wound healing using dermal fibroblasts and skin tissues from a type 2 diabetic mouse model. Our results demonstrate that umbelliferone enhances several crucial aspects of wound healing. It increases the synthesis of key extracellular matrix components such as collagen I and fibronectin, as well as proteins involved in cell migration like EVL and Fascin-1. Additionally, umbelliferone boosts the secretion of angiogenesis factors VEGF and HIF-1α, enhances the expression of cell adhesion proteins including E-cadherin, ZO-1, and Occludin, and elevates levels of skin hydration-related proteins like HAS2 and AQP3. Notably, umbelliferone reduces the expression of HYAL, thereby potentially decreasing tissue permeability. As a result, it promotes extracellular matrix deposition, activates cell migration and proliferation, and stimulates pro-angiogenic factors while maintaining skin barrier functions. In summary, these findings underscore the therapeutic potential of umbelliferone in diabetic wound care, suggesting its promise as a treatment for diabetic skin complications. KEY MESSAGES: Umbelliferone suppressed the breakdown of extracellular matrix components in the skin dermis while promoting their synthesis. Umbelliferone augmented the migratory and proliferative capacities of fibroblasts. Umbelliferone activated the release of angiogenic factors in diabetic wounds, leading to accelerated wound healing. Umbelliferone bolstered intercellular adhesion and reinforced the skin barrier by preventing moisture loss and preserving skin hydration.
Collapse
Affiliation(s)
- Dong Yeon Kim
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea
| | - Young-Hee Kang
- Department of Food and Nutrition, Hallym University, 1, Hallymdaehak-gil, Chuncheon-si, Gangwon-do, Republic of Korea
| | - Min-Kyung Kang
- Department of Food Science and Nutrition, Andong National University, 1375, Gyeongdong-ro, Andong-si, Gyeongsangbuk-do, 36729, Republic of Korea.
| |
Collapse
|
3
|
Zhang Z, Yang W, Chen J, Chen X, Gu Y. Efficacy and mechanism of Schisandra chinensis active component Gomisin A on diabetic skin wound healing: network pharmacology and in vivo experimental validation. JOURNAL OF ETHNOPHARMACOLOGY 2024; 337:118828. [PMID: 39303965 DOI: 10.1016/j.jep.2024.118828] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2024] [Revised: 09/06/2024] [Accepted: 09/12/2024] [Indexed: 09/22/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Schisandra chinensis (Turcz.) Baill., a common traditional Chinese herbal medicine, has been used for the treatment of diabetes mellitus and its complications. However, the major active component for treating diabetic foot ulcers, a serious complication of diabetes mellitus, was unclear. This study aimed to predict the treatment effect of the active components in Schisandra chinensis against diabetic skin wound using network pharmacology and to confirm the underlying mechanism using a diabetic skin wound model in vivo. AIM OF THE STUDY To study the effects and underlying mechanisms of Schisandra chinensis and its main component Gomisin A on diabetic skin wound healing by network pharmacology and high-fat diet (HFD)-induced obese mice model in vivo. MATERIALS AND METHODS To determine the effectiveness of Schisandra chinensis on diabetic skin wound, network pharmacology was first used. Components of Schisandra chinensis were obtained from the Traditional Chinese Medicine Systems Pharmacology database. The active components were further verified through absorption, distribution, metabolism and excretion. The potential targets of the active components were identified from the Traditional Chinese Medicine Systems Pharmacology, SwissTargetPrediction, TargetNet, and the Comparative Toxicogenomics Database. Targets related to diabetic skin wound were collected from the GeneCards, OMIM, DisGeNET, and PharmGKB databases. The interaction network formed by the intersection of the two datasets was analyzed using Gephi. Network-based proximity was used to predict the network distance between the active components of Schisandra chinensis and diabetic skin wound. Gomisin A was found to have the lowest Z-score and was administered either orally or via topical injection to HFD-induced obese mice daily until the wounds healed, and its effects on skin wound healing were evaluated. RESULTS Only five active ingredients of Schisandra chinensis were screened in our system: Gomisin A, Longikaurin A, Deoxyharringtonine, Wuweizisu C, and Interiotherin B, which can regulate biological processes related to diabetic skin wound, including positive regulation of phosphorous metabolic process, positive regulation of cell migration, and response to wounding. Network proximity analysis found that Gomisin A has the closest distance-based Z-score among the diabetic skin wound modules and drug targets in the human protein-protein interaction network. The HFD-induced obese mice model further revealed that Gomisin A accelerated skin wound healing by increasing insulin sensitivity and decreasing the advanced glycation end-products mediated toll-like receptor 4 (TLR4)-p38 MAPK-IL6 inflammation signaling pathway. CONCLUSIONS The network pharmacology and in vivo studies indicated that Gomisin A from Schisandra chinensis played a crucial role in improving diabetic skin wound healing.
Collapse
Affiliation(s)
- Zhongyu Zhang
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Haikou, Hainan, China; Department of Endocrinology, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Haikou, Hainan, China; Medical Research Center, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Wenkui Yang
- Department of Endocrinology, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Haikou, Hainan, China
| | - Jiajia Chen
- Department of Endocrinology, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Haikou, Hainan, China
| | - Xuewen Chen
- Department of Pathology, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Haikou, Hainan, China
| | - Yong Gu
- Clinical Research Center, Hainan Hospital, Guangdong Provincial Hospital of Chinese Medicine, Haikou, Hainan, China.
| |
Collapse
|
4
|
Shan H, Wang X, Zhang J. Dendritic epidermal T cell hydrogel induces the polarization of M2 macrophages to promote the healing of deep tissue pressure injury. J Tissue Viability 2024; 33:440-448. [PMID: 38704336 DOI: 10.1016/j.jtv.2024.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 02/19/2024] [Accepted: 04/25/2024] [Indexed: 05/06/2024]
Abstract
Dendritic epidermal T cells (DETCs) have been shown to promote wound healing. However, the mechanisms involved need to be better understood. In the present study, we investigated the role and mechanism of DETCs in deep tissue pressure injury (DTPI). We established the DTPI model using C57BL/6 mice. Then, DTPI was evaluated and analyzed by histological staining, immunohistochemistry, real-time PCR, Western blotting, and flow cytometry in different treatment groups (DETCs, DETCs/gel, Matrigel, Saline, and Normal group). The results showed that insulin-like growth factor 1 and vascular endothelial growth factor-A expression increased after local DETCs and DETCs/gel implantation in DTPI on days 3 and 7. M1 (inducible nitric oxide synthas-marked) macrophages were predominant at 3 days after DTPI. At 7 days, M1 macrophages were decreased, and M2 (CD206-marked) macrophages were increased in the DETCs and DETCs/gel groups. In vitro, in the co-culture of DETCs and RAW264.7, CD206 expression was significantly increased in M2 macrophages. In addition, Interleukin-17A initially inhibited wound healing 1 day after injury. However, it promoted wound healing at 7, 14, and 21 days after treatment with DETCs and DETCs/gel, respectively. In conclusion, our data suggest that exogenous DETCs improve DTPI wound healing by regulating M1 to M2 macrophage polarization.
Collapse
Affiliation(s)
- Hui Shan
- The Affiliated Hospital of Qingdao University, No. 16, Jiangsu Road, Shinan District, Qingdao, Shandong, China.
| | - Xiaoying Wang
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, No. 9677, Jingshi Road, Jinan, Shandong, China.
| | - Ju Zhang
- Institute of Biomedical Engineering, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 236, Baidi Road, Nankai District, Tianjin, China; School of Nursing, Qingdao University, No. 308, Ningxia Road, Shinan District, Qingdao, China.
| |
Collapse
|
5
|
Biao Y, Li D, Zhang Y, Gao J, Xiao Y, Yu Z, Li L. Wulingsan Alleviates MAFLD by Activating Autophagy via Regulating the AMPK/mTOR/ULK1 Signaling Pathway. Can J Gastroenterol Hepatol 2024; 2024:9777866. [PMID: 39035827 PMCID: PMC11260214 DOI: 10.1155/2024/9777866] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Revised: 04/19/2024] [Accepted: 06/24/2024] [Indexed: 07/23/2024] Open
Abstract
Here, we presented the study of the molecular mechanisms underlying the action of Wulingsan (WLS) in rats with metabolic-associated fatty liver disease (MAFLD) induced by a high-fat diet (HFD). High-performance liquid chromatography was employed to identify the chemical components of WLS. After 2 weeks of HFD induction, MAFLD rats were treated with WLS in three different doses for 6 weeks, a positive control treatment or with a vehicle. Lipid metabolism, liver function, oxidative stress, and inflammatory factors as well as pathomorphological changes in liver parenchyma were assessed in all groups. Finally, the expressions of autophagy-related markers, adenosine monophosphate-activated protein kinase (AMPK)/mechanistic target of rapamycin (mTOR)/unc-51-like kinase-1 (ULK1) signaling pathway-related genes, and proteins in liver were detected. The results revealed that WLS significantly ameliorated liver injury, the dysfunction of the lipid metabolism, the oxidative stress, and overall inflammatory status. Furthermore, WLS increased the expressions of LC3B-II, Beclin1, p-AMPK, and ULK1, along with decreased p62, p-mTOR, and sterol regulatory element-binding protein-1c levels. In conclusion, we showed that WLS is capable of alleviating HFD-induced MAFLD by improving lipid accumulation, suppressing oxidative stress and inflammation, and promoting autophagy.
Collapse
Affiliation(s)
- Yaning Biao
- School of Basic MedicineHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Dantong Li
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yixin Zhang
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Jingmiao Gao
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Yi Xiao
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Zehe Yu
- School of PharmacyHebei University of Chinese Medicine, Shijiazhuang, Hebei, China
| | - Li Li
- School of PharmacyHebei Medical University, Shijiazhuang, Hebei, China
| |
Collapse
|
6
|
Soltani S, Zahedi A, Vergara AJS, Noli M, Soltysik FM, Pociot F, Yarani R. Preclinical Therapeutic Efficacy of Extracellular Vesicles Derived from Adipose-Derived Mesenchymal Stromal/Stem Cells in Diabetic Wounds: a Systematic Review and Meta-Analysis. Stem Cell Rev Rep 2024:10.1007/s12015-024-10753-z. [PMID: 38970763 DOI: 10.1007/s12015-024-10753-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/20/2024] [Indexed: 07/08/2024]
Abstract
Extracellular vesicles isolated from adipose tissue-derived mesenchymal stromal/stem cells (ADSC-EVs) have demonstrated promising potential in wound healing treatment. To determine the therapeutic efficacy of ADSC-EVs for diabetic wounds in preclinical models, we performed a meta-analysis of available studies. PubMed and Embase were searched (to April 23, 2023). All full-text articles describing the therapeutic application of ADSC-EVs in diabetic wounds were included. Study outcomes were pooled using a random effects meta-analysis, including wound closure, angiogenesis, and collagen deposition. Other outcomes were only discussed descriptively. Seventy unique records were identified from our search; 20 full-text articles were included for qualitative analysis. Twelve studies were eligible for quantitative meta-analysis. The results showed that ADSC-EVs accelerated diabetic wound healing compared to controls with a large effect (standardized mean difference (SMD) 4.22, 95% confidence interval (CI) 3.07 to 5.36). The administration of ADSC-EVs also improved neovascularization (SMD 9.27, 95% CI 4.70 to 13.83) and collagen deposition (SMD 2.19, 95% CI 0.94 to 3.44), with a large effect. The risk of bias was unclear in all included studies. Conclusively, ADSC-EV is an effective treatment for diabetic wounds in preclinical trials, and it appears justified for transfer into the clinical field.
Collapse
Affiliation(s)
- Setareh Soltani
- Clinical Research Development Center, Taleghani and Imam Ali Hospital, Kermanshah University of Medical Sciences, Kermanshah, Iran
| | - Ahora Zahedi
- Department of Artificial Intelligence in Medical Sciences, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - April Joy S Vergara
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Marta Noli
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Fumie Mitani Soltysik
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
| | - Flemming Pociot
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Reza Yarani
- Translational Type 1 Diabetes Research, Department of Clinical Research, Steno Diabetes Center Copenhagen, Herlev, Denmark.
| |
Collapse
|
7
|
Hanna M, Elnassag SS, Mohamed DH, Elbaset MA, Shaker O, Khowailed EA, Gouda SAA. Melatonin and mesenchymal stem cells co-administration alleviates chronic obstructive pulmonary disease via modulation of angiogenesis at the vascular-alveolar unit. Pflugers Arch 2024; 476:1155-1168. [PMID: 38740599 PMCID: PMC11166745 DOI: 10.1007/s00424-024-02968-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Revised: 03/31/2024] [Accepted: 04/25/2024] [Indexed: 05/16/2024]
Abstract
Chronic obstructive pulmonary disease (COPD) is considered a severe disease mitigating lung physiological functions with high mortality outcomes, insufficient therapy, and pathophysiology pathways which is still not fully understood. Mesenchymal stem cells (MSCs) derived from bone marrow play an important role in improving the function of organs suffering inflammation, oxidative stress, and immune reaction. It might also play a role in regenerative medicine, but that is still questionable. Additionally, Melatonin with its known antioxidative and anti-inflammatory impact is attracting attention nowadays as a useful treatment. We hypothesized that Melatonin may augment the effect of MSCs at the level of angiogenesis in COPD. In our study, the COPD model was established using cigarette smoking and lipopolysaccharide. The COPD rats were divided into four groups: COPD group, Melatonin-treated group, MSC-treated group, and combined treated group (Melatonin-MSCs). We found that COPD was accompanied by deterioration of pulmonary function tests in response to expiratory parameter affection more than inspiratory ones. This was associated with increased Hypoxia inducible factor-1α expression and vascular endothelial growth factor level. Consequently, there was increased CD31 expression indicating increased angiogenesis with massive enlargement of airspaces and thinning of alveolar septa with decreased mean radial alveolar count, in addition to, inflammatory cell infiltration and disruption of the bronchiolar epithelial wall with loss of cilia and blood vessel wall thickening. These findings were improved significantly when Melatonin and bone marrow-derived MSCs were used as a combined treatment proving the hypothesized target that Melatonin might augment MSCs aiming at vascular changes.
Collapse
Affiliation(s)
- Mira Hanna
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt.
| | - Sabreen Sayed Elnassag
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Dina Hisham Mohamed
- Department of Histology, Faculty of Medicine, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Marawan Abd Elbaset
- Department of Pharmacology, Medical Research and Clinical Studies Institute, National Research Centre, Cairo, Egypt
| | - Olfat Shaker
- Department of Biochemistry, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Effat A Khowailed
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| | - Sarah Ali Abdelhameed Gouda
- Department of Medical Physiology, Faculty of Medicine, Kasr Al-Ainy, Cairo University, El-Maniel 11451, Cairo, Egypt
| |
Collapse
|
8
|
Gu M, Li C, Deng Q, Chen X, Lei R. Celastrol enhances the viability of random-pattern skin flaps by regulating autophagy through the AMPK-mTOR-TFEB axis. Phytother Res 2024; 38:3020-3036. [PMID: 38600729 DOI: 10.1002/ptr.8198] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Revised: 01/06/2024] [Accepted: 03/13/2024] [Indexed: 04/12/2024]
Abstract
In reconstructive and plastic surgery, random-pattern skin flaps (RPSF) are often used to correct defects. However, their clinical usefulness is limited due to their susceptibility to necrosis, especially on the distal side of the RPSF. This study validates the protective effect of celastrol (CEL) on flap viability and explores in terms of underlying mechanisms of action. The viability of different groups of RPSF was evaluated by survival zone analysis, laser doppler blood flow, and histological analysis. The effects of CEL on flap angiogenesis, apoptosis, oxidative stress, and autophagy were evaluated by Western blot, immunohistochemistry, and immunofluorescence assays. Finally, its mechanistic aspects were explored by autophagy inhibitor and Adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK) inhibitor. On the seventh day after surgery, the survival area size, blood supply, and microvessel count of RPSF were augmented following the administration of CEL. Additionally, CEL stimulated angiogenesis, suppressed apoptosis, and lowered oxidative stress levels immediately after elevated autophagy in ischemic regions; These effects can be reversed using the autophagy inhibitor chloroquine (CQ). Specifically, CQ has been observed to counteract the protective impact of CEL on the RPSF. Moreover, it has also been discovered that CEL triggers the AMPK-mTOR-TFEB axis activation in the area affected by ischemia. In CEL-treated skin flaps, AMPK inhibitors were demonstrated to suppress the AMPK-mTOR-TFEB axis and reduce autophagy levels. This investigation suggests that CEL benefits the survival of RPSF by augmenting angiogenesis and impeding oxidative stress and apoptosis. The results are credited to increased autophagy, made possible by the AMPK-mTOR-TFEB axis activation.
Collapse
Affiliation(s)
- Mingbao Gu
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Chenchao Li
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qingyu Deng
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Ximiao Chen
- Department of Orthopaedics, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
- Zhejiang Provincial Key Laboratory of Orthopaedics, Wenzhou, Zhejiang Province, China
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Rui Lei
- Department of Plastic Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| |
Collapse
|
9
|
Qiao W, Niu L, Jiang W, Lu L, Liu J. Berberine ameliorates endothelial progenitor cell function and wound healing in vitro and in vivo via the miR-21-3p/RRAGB axis for venous leg ulcers. Regen Ther 2024; 26:458-468. [PMID: 39100534 PMCID: PMC11296065 DOI: 10.1016/j.reth.2024.06.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 06/07/2024] [Accepted: 06/13/2024] [Indexed: 08/06/2024] Open
Abstract
Purpose Venous leg ulcers (VLUs) are prevalent chronic wounds with limited treatment options. This study aimed to investigate the potential of berberine to enhance endothelial progenitor cell (EPC) function in VLU healing. Methods Histopathological changes and inflammatory cytokine levels in a deep venous thrombosis (DVT) mouse model were assessed using HE staining and ELISA assays. A luciferase reporter assay was employed to identify the miR-21-3p and RRAGB targeting relationship. EPC proliferation, migration, and tube formation were evaluated through CCK-8, Transwell, and tubule formation assays, while the mTOR pathway and autophagy-related proteins were analyzed by immunofluorescence staining and western blotting. Results Berberine significantly improved EPC functions, such as proliferation, migration, and tube formation in vitro, and enhanced in vivo EPC-mediated wound healing in a DVT mouse model. Furthermore, miR-21-3p was downregulated in EPCs from VLU patients, and its overexpression improved model EPC functions. Mechanistically, RRAGB, which regulates the mTOR pathway, was identified as a potential miR-21-3p target in EPCs. Overexpression of RRAGB inhibited autophagic activity and impaired EPC function. Conclusion Berberine shows promise in ameliorating EPC function and promoting wound healing in VLUs. The regulation of the miR-21-3p/RRAGB axis by berberine could offer a promising therapeutic approach for managing VLUs.
Collapse
Affiliation(s)
- Wei Qiao
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Lingying Niu
- Department of Immunology, Nanjing Drum Tower Hospital, Nanjing, Jiangsu, China
| | - Weihua Jiang
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Li Lu
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| | - Jiali Liu
- Department of Vascular Surgery, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu, China
| |
Collapse
|
10
|
Mamun AA, Shao C, Geng P, Wang S, Xiao J. Recent advances in molecular mechanisms of skin wound healing and its treatments. Front Immunol 2024; 15:1395479. [PMID: 38835782 PMCID: PMC11148235 DOI: 10.3389/fimmu.2024.1395479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/03/2024] [Indexed: 06/06/2024] Open
Abstract
The skin, being a multifaceted organ, performs a pivotal function in the complicated wound-healing procedure, which encompasses the triggering of several cellular entities and signaling cascades. Aberrations in the typical healing process of wounds may result in atypical scar development and the establishment of a persistent condition, rendering patients more vulnerable to infections. Chronic burns and wounds have a detrimental effect on the overall quality of life of patients, resulting in higher levels of physical discomfort and socio-economic complexities. The occurrence and frequency of prolonged wounds are on the rise as a result of aging people, hence contributing to escalated expenditures within the healthcare system. The clinical evaluation and treatment of chronic wounds continue to pose challenges despite the advancement of different therapeutic approaches. This is mainly owing to the prolonged treatment duration and intricate processes involved in wound healing. Many conventional methods, such as the administration of growth factors, the use of wound dressings, and the application of skin grafts, are used to ease the process of wound healing across diverse wound types. Nevertheless, these therapeutic approaches may only be practical for some wounds, highlighting the need to advance alternative treatment modalities. Novel wound care technologies, such as nanotherapeutics, stem cell treatment, and 3D bioprinting, aim to improve therapeutic efficacy, prioritize skin regeneration, and minimize adverse effects. This review provides an updated overview of recent advancements in chronic wound healing and therapeutic management using innovative approaches.
Collapse
Affiliation(s)
- Abdullah Al Mamun
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Chuxiao Shao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Peiwu Geng
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Shuanghu Wang
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
| | - Jian Xiao
- Central Laboratory of The Lishui Hospital of Wenzhou Medical University, Lishui People’s Hospital, Lishui, Zhejiang, China
- Molecular Pharmacology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, China
- Department of Wound Healing, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
11
|
Xu X, Wang J, Xia Y, Yin Y, Zhu T, Chen F, Hai C. Autophagy, a double-edged sword for oral tissue regeneration. J Adv Res 2024; 59:141-159. [PMID: 37356803 PMCID: PMC11081970 DOI: 10.1016/j.jare.2023.06.010] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 06/10/2023] [Accepted: 06/20/2023] [Indexed: 06/27/2023] Open
Abstract
BACKGROUND Oral health is of fundamental importance to maintain systemic health in humans. Stem cell-based oral tissue regeneration is a promising strategy to achieve the recovery of impaired oral tissue. As a highly conserved process of lysosomal degradation, autophagy induction regulates stem cell function physiologically and pathologically. Autophagy activation can serve as a cytoprotective mechanism in stressful environments, while insufficient or over-activation may also lead to cell function dysregulation and cell death. AIM OF REVIEW This review focuses on the effects of autophagy on stem cell function and oral tissue regeneration, with particular emphasis on diverse roles of autophagy in different oral tissues, including periodontal tissue, bone tissue, dentin pulp tissue, oral mucosa, salivary gland, maxillofacial muscle, temporomandibular joint, etc. Additionally, this review introduces the molecular mechanisms involved in autophagy during the regeneration of different parts of oral tissue, and how autophagy can be regulated by small molecule drugs, biomaterials, exosomes/RNAs or other specific treatments. Finally, this review discusses new perspectives for autophagy manipulation and oral tissue regeneration. KEY SCIENTIFIC CONCEPTS OF REVIEW Overall, this review emphasizes the contribution of autophagy to oral tissue regeneration and highlights the possible approaches for regulating autophagy to promote the regeneration of human oral tissue.
Collapse
Affiliation(s)
- Xinyue Xu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Jia Wang
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Yunlong Xia
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China; Department of Cardiology, Xijing Hospital, Fourth Military Medical University, Xi'an, PR China
| | - Yuan Yin
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Tianxiao Zhu
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China; Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China
| | - Faming Chen
- State Key Laboratory of Military Stomatology & National Clinical Research Center for Oral Diseases and Shaanxi Engineering Research Center for Dental Materials and Advanced Manufacture, Department of Periodontology, School of Stomatology, Fourth Military Medical University, Xi'an, PR China
| | - Chunxu Hai
- Shaanxi Key Lab of Free Radical Biology and Medicine, Fourth Military Medical University, Xi'an, PR China.
| |
Collapse
|
12
|
Zhang S, Li M, Qiu Y, Wu J, Xu X, Ma Q, Zheng Z, Lu G, Deng Z, Huang H. Enhanced VEGF secretion and blood-brain barrier disruption: Radiation-mediated inhibition of astrocyte autophagy via PI3K-AKT pathway activation. Glia 2024; 72:568-587. [PMID: 38009296 DOI: 10.1002/glia.24491] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Revised: 11/04/2023] [Accepted: 11/06/2023] [Indexed: 11/28/2023]
Abstract
Radiation-induced damage to the blood-brain barrier (BBB) is the recognized pathological basis of radiation-induced brain injury (RBI), a side effect of head and neck cancer treatments. There is currently a lack of therapeutic approaches for RBI due to the ambiguity of its underlying mechanisms. Therefore, it is essential to identify these mechanisms in order to prevent RBI or provide early interventions. One crucial factor contributing to BBB disruption is the radiation-induced activation of astrocytes and oversecretion of vascular endothelial growth factor (VEGF). Mechanistically, the PI3K-AKT pathway can inhibit cellular autophagy, leading to pathological cell aggregation. Moreover, it acts as an upstream pathway of VEGF. In this study, we observed the upregulation of the PI3K-AKT pathway in irradiated cultured astrocytes through bioinformatics analysis, we then validated these findings in animal brains and in vitro astrocytes following radiation exposure. Additionally, we also found the inhibition of autophagy and the oversecretion of VEGF in irradiated astrocytes. By inhibiting the PI3K-AKT pathway or promoting cellular autophagy, we observed a significant amelioration of the inhibitory effect on autophagy, leading to reductions in VEGF oversecretion and BBB disruption. In conclusion, our study suggests that radiation can inhibit autophagy and promote VEGF oversecretion by upregulating the PI3K-AKT pathway in astrocytes. Blocking the PI3K pathway can alleviate both of these effects, thereby mitigating damage to the BBB in patients undergoing radiation treatment.
Collapse
Affiliation(s)
- Shifeng Zhang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Mingping Li
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Yuemin Qiu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Junyu Wu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Xue Xu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Qian Ma
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhihui Zheng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Gengxin Lu
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Zhezhi Deng
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| | - Haiwei Huang
- Department of Neurology, The First Affiliated Hospital, Sun Yat-sen University, Guangdong Provincial Key Laboratory of Diagnosis and Treatment of Major Neurological Diseases, National Key Clinical Department and Key Discipline of Neurology, Guangzhou, China
| |
Collapse
|
13
|
Wu Y, Li L, Ning Z, Li C, Yin Y, Chen K, Li L, Xu F, Gao J. Autophagy-modulating biomaterials: multifunctional weapons to promote tissue regeneration. Cell Commun Signal 2024; 22:124. [PMID: 38360732 PMCID: PMC10868121 DOI: 10.1186/s12964-023-01346-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/29/2023] [Indexed: 02/17/2024] Open
Abstract
Autophagy is a self-renewal mechanism that maintains homeostasis and can promote tissue regeneration by regulating inflammation, reducing oxidative stress and promoting cell differentiation. The interaction between biomaterials and tissue cells significantly affects biomaterial-tissue integration and tissue regeneration. In recent years, it has been found that biomaterials can affect various processes related to tissue regeneration by regulating autophagy. The utilization of biomaterials in a controlled environment has become a prominent approach for enhancing the tissue regeneration capabilities. This involves the regulation of autophagy in diverse cell types implicated in tissue regeneration, encompassing the modulation of inflammatory responses, oxidative stress, cell differentiation, proliferation, migration, apoptosis, and extracellular matrix formation. In addition, biomaterials possess the potential to serve as carriers for drug delivery, enabling the regulation of autophagy by either activating or inhibiting its processes. This review summarizes the relationship between autophagy and tissue regeneration and discusses the role of biomaterial-based autophagy in tissue regeneration. In addition, recent advanced technologies used to design autophagy-modulating biomaterials are summarized, and rational design of biomaterials for providing controlled autophagy regulation via modification of the chemistry and surface of biomaterials and incorporation of cells and molecules is discussed. A better understanding of biomaterial-based autophagy and tissue regeneration, as well as the underlying molecular mechanisms, may lead to new possibilities for promoting tissue regeneration. Video Abstract.
Collapse
Affiliation(s)
- Yan Wu
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Luxin Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Zuojun Ning
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Changrong Li
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Yongkui Yin
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Kaiyuan Chen
- Heilongjiang Key Laboratory of Tissue Damage and Repair, Mudanjiang Medical University, Mudanjiang, 157000, China
| | - Lu Li
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Fei Xu
- Department of plastic surgery, Naval Specialty Medical Center of PLA, Shanghai, 200052, China.
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China.
| |
Collapse
|
14
|
Tao H, Lv Q, Zhang J, Chen L, Yang Y, Sun W. Different Levels of Autophagy Activity in Mesenchymal Stem Cells Are Involved in the Progression of Idiopathic Pulmonary Fibrosis. Stem Cells Int 2024; 2024:3429565. [PMID: 38390035 PMCID: PMC10883747 DOI: 10.1155/2024/3429565] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 11/17/2023] [Accepted: 02/03/2024] [Indexed: 02/24/2024] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is an age-related lung interstitial disease that occurs predominantly in people over 65 years of age and for which there is a lack of effective therapeutic agents. It has demonstrated that mesenchymal stem cells (MSCs) including alveolar epithelial cells (AECs) can perform repair functions. However, MSCs lose their repair functions due to their distinctive aging characteristics, eventually leading to the progression of IPF. Recent breakthroughs have revealed that the degree of autophagic activity influences the renewal and aging of MSCs and determines the prognosis of IPF. Autophagy is a lysosome-dependent pathway that mediates the degradation and recycling of intracellular material and is an efficient way to renew the nonnuclear (cytoplasmic) part of eukaryotic cells, which is essential for maintaining cellular homeostasis and is a potential target for regulating MSCs function. Therefore, this review focuses on the changes in autophagic activity of MSCs, clarifies the relationship between autophagy and health status of MSCs and the effect of autophagic activity on MSCs senescence and IPF, providing a theoretical basis for promoting the clinical application of MSCs.
Collapse
Affiliation(s)
- Hongxia Tao
- School of Medical and Life Sciences, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Qin Lv
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Jing Zhang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Lijuan Chen
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Yang Yang
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| | - Wei Sun
- Department of Respiratory and Critical Medicine, Sichuan Provincial People's Hospital, Sichuan Academy of Medical Sciences, Chengdu, Sichuan, China
- Medical College, University of Electronic Science and Technology, Chengdu, China
| |
Collapse
|
15
|
Li J, Zhang J, Ye H, Wang Q, Ouyang Y, Luo Y, Gong Y. Pulmonary decellularized extracellular matrix (dECM) modified polyethylene terephthalate three-dimensional cell carriers regulate the proliferation and paracrine activity of mesenchymal stem cells. Front Bioeng Biotechnol 2024; 11:1324424. [PMID: 38260733 PMCID: PMC10800494 DOI: 10.3389/fbioe.2023.1324424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2023] [Accepted: 12/07/2023] [Indexed: 01/24/2024] Open
Abstract
Introduction: Mesenchymal stem cells (MSCs) possess a high degree of self-renewal capacity and in vitro multi-lineage differentiation potential. Decellularized materials have garnered considerable attention due to their elevated biocompatibility, reduced immunogenicity, excellent biodegradability, and the ability to partially mimic the in vivo microenvironment conducive to cell growth. To address the issue of mesenchymal stem cells losing their stem cell characteristics during two-dimensional (2D) cultivation, this study established three-dimensional cell carriers modified with lung decellularized extracellular matrix and assessed its impact on the life activities of mesenchymal stem cells. Methods: This study employed PET as a substrate material, grafting with polydopamine (PDA), and constructing a decellularized extracellular matrix (dECM) coating on its surface, thus creating the PET/PDA/dECM three-dimensional (3D) composite carrier. Subsequently, material characterization of the cellular carriers was conducted, followed by co-culturing with human umbilical cord mesenchymal stem cells in vitro, aiming to investigate the material's impact on the proliferation and paracrine activity of mesenchymal stem cells. Results and Discussion: Material characterization demonstrated successful grafting of PDA and dECM materials, and it had complete hydrophilicity, high porosity, and excellent mechanical properties. The material was rich in various ECM proteins (collagen I, collagen IV , laminin, fibronectin, elastin), indicating good biocompatibility. In long-term in vitro cultivation (14 days) experiments, the PET/PDA/dECM three-dimensional composite carrier significantly enhanced adhesion and proliferation of human umbilical cord-derived mesenchymal stem cells (HUCMSCs), with a proliferation rate 1.9 times higher than that of cells cultured on tissue culture polystyrene (TCPS) at day 14. Furthermore, it effectively maintained the stem cell characteristics, expressing specific antigens for HUCMSCs. Through qPCR, Western blot, and ELISA experiments, the composite carrier markedly promoted the expression and secretion of key cell factors in HUCMSCs. These results demonstrate that the PET/PDA/dECM composite carrier holds great potential for scaling up MSCs' long-term in vitro cultivation and the production of paracrine factors.
Collapse
Affiliation(s)
- Jinze Li
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Jiali Zhang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Hao Ye
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Qixuan Wang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yanran Ouyang
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
| | - Yuxi Luo
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China
| | - Yihong Gong
- School of Biomedical Engineering, Shenzhen Campus of Sun Yat-Sen University, Shenzhen, China
- Guangdong Provincial Key Laboratory of Sensor Technology and Biomedical Instrument, Sun Yat-Sen University, Guangzhou, China
| |
Collapse
|
16
|
Saifullah Q, Sharma A. Current Trends on Innovative Technologies in Topical Wound Care for Advanced Healing and Management. Curr Drug Res Rev 2024; 16:319-332. [PMID: 37807417 DOI: 10.2174/0125899775262048230925054922] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 06/19/2023] [Accepted: 08/25/2023] [Indexed: 10/10/2023]
Abstract
OBJECTIVES To investigate critically traditional and modern techniques for cutaneous wound healing and to provide comprehensive information on these novel techniques to encounter the challenges with the existing wound healing methods. SIGNIFICANCE The financial burden and mortality associated with wounds is increasing, so managing wounds is essential. Traditional wound treatments include surgical and non-surgical methods, while modern techniques are advancing rapidly. This review examines the various traditional and modern techniques used for cutaneous wound healing. KEY FINDINGS Traditional wound treatments include surgical techniques such as debridement, skin flaps, and grafts. Non-surgical treatments include skin replacements, topical formulations, scaffold-based skin grafts, and hydrogel-based skin dressings. More modern techniques include using nanoparticles, growth factors, and bioactive substances in wound dressings. Bioengineered skin substitutes using biomaterials, cells, and growth factors are also being developed. Other techniques include stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and 3D-printed/bio-printed wound dressings. CONCLUSION Traditional wound treatments have been replaced by modern techniques such as stem cell therapy, growth factor/cytokine therapy, vacuum-assisted wound closure, and bioengineered skin substitutes. However, most of these strategies lack effectiveness and thorough evaluation. Therefore, further research is required to develop new techniques for cutaneous wound healing that are effective, cost-efficient, and appealing to patients.
Collapse
Affiliation(s)
- Qazi Saifullah
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| | - Abhishek Sharma
- Department of Pharmacy, University Institute of Pharma Sciences, Chandigarh University, Gharuan, Punjab, 140413, India
| |
Collapse
|
17
|
Xue Z, Liao Y, Li Y. Effects of microenvironment and biological behavior on the paracrine function of stem cells. Genes Dis 2024; 11:135-147. [PMID: 37588208 PMCID: PMC10425798 DOI: 10.1016/j.gendis.2023.03.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 02/14/2023] [Accepted: 03/05/2023] [Indexed: 08/18/2023] Open
Abstract
Mesenchymal stem cells (MSCs), the most well-studied cell type in the field of stem cell therapy, have multi-lineage differentiation and self-renewal potential. MSC-based therapies have been used to treat diverse diseases because of their ability to potently repair tissue and locally restore function. An increasing body of evidence demonstrates that paracrine function is central to the effects of MSC-based therapy. Growth factors, cytokines, chemokines, extracellular matrix components, and extracellular vehicles all contribute to the beneficial effects of MSCs on tissue regeneration and repair. The paracrine substances secreted by MSCs change depending on the tissue microenvironment and biological behavior. In this review, we discuss the bioactive substances secreted by MSCs depending on the microenvironment and biological behavior and their regulatory mechanisms, which explain their potential to treat human diseases, to provide new ideas for further research and clinical cell-free therapy.
Collapse
Affiliation(s)
- Zhixin Xue
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yunjun Liao
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Ye Li
- The Department of Plastic and Cosmetic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
18
|
Wang C, Chen R, Zhu X, Zhang X, Lian N. DOT1L decelerates the development of osteoporosis by inhibiting SRSF1 transcriptional activity via microRNA-181-mediated KAT2B inhibition. Genomics 2024; 116:110759. [PMID: 38072145 DOI: 10.1016/j.ygeno.2023.110759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 11/15/2023] [Accepted: 12/05/2023] [Indexed: 12/22/2023]
Abstract
OBJECTIVE Our study explored the function of DOT1L in osteoporosis (OP) via the microRNA (miR)-181/KAT2B/SRSF1 axis. METHODS Osteoclast (OC) number was evaluated via TRAP staining, and serum CTXI, PINP, and ALP contents were tested by ELISA. Following identification of bone marrow mesenchymal stem cells (BMSCs), OC differentiation was induced by M-CSF and RANKL, followed by the detection of OC differentiation and the expression of bone resorption-related genes, DOT1L, miR-181, KAT2B, and SRSF1. RESULTS Overexpressed DOT1L or miR-181 stimulated calcified nodule formation and increased alkaline phosphatase activity and osteogenic marker gene expression. KAT2B knockdown enhanced the osteogenic differentiation of BMSCs by reducing SRSF1 acetylation. The enhancement of OC differentiation induced by overexpressed SRSF1 was inhibited by simultaneous DOT1L or miR-181 overexpression. DOT1L suppressed OP development in vivo via the miR-181/KAT2B/SRSF1 axis. CONCLUSION DOT1L overexpression slowed down bone loss and promoted bone formation via the miR-181/KAT2B/SRSF1 axis, thereby alleviating OP development.
Collapse
Affiliation(s)
- Changsheng Wang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China.
| | - Rongsheng Chen
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xitian Zhu
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Xiaobo Zhang
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| | - Nancheng Lian
- Department of Spinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, PR China
| |
Collapse
|
19
|
Dong Y, Wang Z. ROS-scavenging materials for skin wound healing: advancements and applications. Front Bioeng Biotechnol 2023; 11:1304835. [PMID: 38149175 PMCID: PMC10749972 DOI: 10.3389/fbioe.2023.1304835] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Accepted: 12/01/2023] [Indexed: 12/28/2023] Open
Abstract
The intricate healing process of skin wounds includes a variety of cellular and molecular events. Wound healing heavily relies on reactive oxygen species (ROS), which are essential for controlling various processes, including inflammation, cell growth, angiogenesis, granulation, and the formation of extracellular matrix. Nevertheless, an overabundance of reactive oxygen species (ROS) caused by extended oxidative pressure may result in the postponement or failure of wound healing. It is crucial to comprehend the function of reactive oxygen species (ROS) and create biomaterials that efficiently eliminate ROS to enhance the healing process of skin wounds. In this study, a thorough examination is presented on the role of reactive oxygen species (ROS) in the process of wound healing, along with an exploration of the existing knowledge regarding biomaterials employed for ROS elimination. In addition, the article covers different techniques and substances used in the management of skin wound. The future prospects and clinical applications of enhanced biomaterials are also emphasized, highlighting the potential of biomaterials that scavenge active oxygen to promote skin repair. This article seeks to enhance the understanding of the complex processes of ROS in the healing of wounds and the application of ROS-scavenging materials. Its objective is to create novel strategies for effective treatment skin wounds.
Collapse
Affiliation(s)
- Yongkang Dong
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
- Department of Spine Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| | - Zheng Wang
- Department of Vascular Surgery, The Second Hospital of Jilin University, Changchun, Jilin, China
| |
Collapse
|
20
|
Wang W, Li X, Cui C, Yin G, Ren W, Wang X. Autophagy of umbilical cord mesenchymal stem cells induced by rapamycin conduces to pro-angiogenic function of the conditioned medium. Biochem Biophys Rep 2023; 36:101583. [PMID: 38053620 PMCID: PMC10694647 DOI: 10.1016/j.bbrep.2023.101583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Revised: 10/26/2023] [Accepted: 11/13/2023] [Indexed: 12/07/2023] Open
Abstract
Angiogenesis is critical for wound healing and tissue repair. Umbilical cord mesenchymal stem cells (UCMSCs)-conditioned medium has certain actions to promote angiogenesis, and is expected for wound healing and tissue repair. However, recent studies showed that the pro-angiogenic efficacy of unprocessed MSCs-conditioned medium is low, and insufficient for tissue repair. Autophagy is a process for protein recycling and a contributor for cell exocrine, which may enhance pro-angiogenic efficacy of the conditioned medium by stimulating cytokine release from UCMSCs. Therefore, in this study we attempted to obtain enhanced autophagy in UCMSCs using different concentrations of rapamycin and compared pro-angiogenic functions of the conditioned media. The in vitro data showed that although 100 nM-10 μM rapamycin all could induce autophagy in UCMSCs, 100 nM was the best dose to optimize the angiogenic effect of the conditioned medium. The in vivo data also showed that pro-angiogenic effect of the optimized conditioned medium was more obvious than that of the control conditioned medium (0 nM group) in the injected matrigel plaques. Further, the expressions of VEGF, FGF-2, MMP-9, PDGF-α and PDGF-β were markedly increased in UCMSCs treated with 100 nM rapamycin. In conclusion, appropriately enhancing autophagy of UCMSC can improve pro-angiogenic efficacy of the conditioned medium, which may optimize therapeutic applications of UCMSCs-conditioned medium in wound healing and tissue repair.
Collapse
Affiliation(s)
- Wenya Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xiao Li
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Chaochu Cui
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Guotian Yin
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Wenjie Ren
- Clinical Medical Center of Tissue Engineering and Regeneration, Xinxiang Medical University, Xinxiang, China
| | - Xianwei Wang
- Henan Key Laboratory of Medical Tissue Regeneration, Xinxiang Medical University, Xinxiang, China
| |
Collapse
|
21
|
Yuan X, Yang W, Fu Y, Tao Z, Xiao L, Zheng Q, Wu D, Zhang M, Li L, Lu Z, Wu Y, Gao J, Li Y. Four-Arm Polymer-Guided Formation of Curcumin-Loaded Flower-Like Porous Microspheres as Injectable Cell Carriers for Diabetic Wound Healing. Adv Healthc Mater 2023; 12:e2301486. [PMID: 37556132 DOI: 10.1002/adhm.202301486] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Revised: 06/26/2023] [Indexed: 08/10/2023]
Abstract
Stem cell injection is an effective approach for treating diabetic wounds; however, shear stress during injections can negatively affect their stemness and cell growth. Cell-laden porous microspheres can provide shelter for bone mesenchymal stem cells (BMSC). Herein, curcumin-loaded flower-like porous microspheres (CFPM) are designed by combining phase inversion emulsification with thermally induced phase separation-guided four-arm poly (l-lactic acid) (B-PLLA). Notably, the CFPM shows a well-defined surface topography and inner structure, ensuring a high surface area to enable the incorporation and delivery of a large amount of -BMSC and curcumin. The BMSC-carrying CFPM (BMSC@CFPM) maintains the proliferation, retention, and stemness of -BMSCs, which, in combination with their sustainable curcumin release, facilitates the endogenous production of growth/proangiogenic factors and offers a local anti-inflammatory function. An in vivo bioluminescence assay demonstrates that BMSC@CFPM can significantly increase the retention and survival of BMSC in wound sites. Accordingly, BMSC@CFPM, with no significant systemic toxicity, could significantly accelerate diabetic wound healing by promoting angiogenesis, collagen reconstruction, and M2 macrophage polarization. RNA sequencing further unveils the mechanisms by which BMSC@CFPM promotes diabetic wound healing by increasing -growth factors and enhancing angiogenesis through the JAK/STAT pathway. Overall, BMSC@CFPM represents a potential therapeutic tool for diabetic wound healing.
Collapse
Affiliation(s)
- Xiaohuan Yuan
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Wei Yang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Yingying Fu
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Ziwei Tao
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Center of Biomedical Technology, Queensland University of Technology, Brisbane, 4059, Australia
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, 4059, Australia
| | - Qinzhou Zheng
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Dan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Mengya Zhang
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Zhengmao Lu
- Department of General Surgery, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, China
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, 157011, P. R. China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, P. R. China
| | - Yulin Li
- The Key Laboratory for Ultrafine Materials of Ministry of Education, State Key Laboratory of Bioreactor Engineering, Engineering Research Center for Biomedical Materials of Ministry of Education, School of Materials Science and Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| |
Collapse
|
22
|
Xu L, Mu J, Ma Z, Lin P, Xia F, Hu X, Wu J, Cao J, Liu S, Huang T, Ling D, Gao J, Li F. Nanozyme-Integrated Thermoresponsive In Situ Forming Hydrogel Enhances Mesenchymal Stem Cell Viability and Paracrine Effect for Efficient Spinal Cord Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:37193-37204. [PMID: 37493513 DOI: 10.1021/acsami.3c06189] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/27/2023]
Abstract
Mesenchymal stem cell (MSC)-based therapy has emerged as a promising strategy for the treatment of spinal cord injury (SCI). However, the hostile microenvironment of SCI, which can adversely affect the survival and paracrine effect of the implanted MSCs, severely limits the therapeutic efficacy of this approach. Here, we report on a ceria nanozyme-integrated thermoresponsive in situ forming hydrogel (CeNZ-gel) that can enable dual enhancement of MSC viability and paracrine effect, leading to highly efficient spinal cord repair. The sol-gel transition property of the CeNZ-gel at body temperature ensures uniform coverage of the hydrogel in injured spinal cord tissues. Our results demonstrate that the CeNZ-gel significantly increases the viability of transplanted MSCs in the microenvironment by attenuating oxidative stress and, more importantly, promotes the secretion of angiogenic factors from MSCs by inducing autophagy of MSCs. The synergy between the oxidative stress-relieving effect of CeNZs and the paracrine effect of MSCs accelerates angiogenesis, nerve repair, and motor function recovery after SCI, providing an efficient strategy for MSC-based SCI therapy.
Collapse
Affiliation(s)
- Lilan Xu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jiafu Mu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Zhiyuan Ma
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Peihua Lin
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Fan Xia
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Xi Hu
- School of Pharmacy, Anhui University of Chinese Medicine, Hefei 230012, China
| | - Jiahe Wu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Jian Cao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Shanbiao Liu
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Tianchen Huang
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
| | - Daishun Ling
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
- World Laureates Association (WLA) Laboratories, Shanghai 201203, China
| | - Jianqing Gao
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Dr. Li Dak Sum & Yip Yio Chin Center for Stem Cell and Regenerative Medicine, Zhejiang University, Hangzhou 310058, China
- Department of Pharmacy, The First Affiliated Hospital of Ningbo University, Ningbo University, Zhejiang 315010, China
| | - Fangyuan Li
- Institute of Pharmaceutics, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Hangzhou Institute of Innovative Medicine, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, China
- Frontiers Science Center for Transformative Molecules, School of Chemistry and Chemical Engineering, National Center for Translational Medicine, State Key Laboratory of Oncogenes and Related Genes, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
23
|
Falandt M, Bernal PN, Dudaryeva O, Florczak S, Gröfibacher G, Schweiger M, Longoni A, Greant C, Assunção M, Nijssen O, van Vlierberghe S, Malda J, Vermonden T, Levato R. Spatial-Selective Volumetric 4D Printing and Single-Photon Grafting of Biomolecules within Centimeter-Scale Hydrogels via Tomographic Manufacturing. ADVANCED MATERIALS TECHNOLOGIES 2023; 8:admt.202300026. [PMID: 37811162 PMCID: PMC7615165 DOI: 10.1002/admt.202300026] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/05/2023] [Indexed: 10/10/2023]
Abstract
Conventional additive manufacturing and biofabrication techniques are unable to edit the chemicophysical properties of the printed object postprinting. Herein, a new approach is presented, leveraging light-based volumetric printing as a tool to spatially pattern any biomolecule of interest in custom-designed geometries even across large, centimeter-scale hydrogels. As biomaterial platform, a gelatin norbornene resin is developed with tunable mechanical properties suitable for tissue engineering applications. The resin can be volumetrically printed within seconds at high resolution (23.68 ± 10.75 μm). Thiol-ene click chemistry allows on-demand photografting of thiolated compounds postprinting, from small to large (bio)molecules (e.g., fluorescent dyes or growth factors). These molecules are covalently attached into printed structures using volumetric light projections, forming 3D geometries with high spatiotemporal control and ≈50 μm resolution. As a proof of concept, vascular endothelial growth factor is locally photografted into a bioprinted construct and demonstrated region-dependent enhanced adhesion and network formation of endothelial cells. This technology paves the way toward the precise spatiotemporal biofunctionalization and modification of the chemical composition of (bio)printed constructs to better guide cell behavior, build bioactive cue gradients. Moreover, it opens future possibilities for 4D printing to mimic the dynamic changes in morphogen presentation natively experienced in biological tissues.
Collapse
Affiliation(s)
- Marc Falandt
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Paulina Nuñez Bernal
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Oksana Dudaryeva
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Sammy Florczak
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Gabriel Gröfibacher
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Matthias Schweiger
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Alessia Longoni
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Coralie Greant
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Marisa Assunção
- Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Olaf Nijssen
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands
| | - Sandra van Vlierberghe
- Polymer Chemistry & Biomaterials Group Centre of Macromolecular Chemistry Department of Organic & Macromolecular Chemistry Faculty of Sciences Ghent University Ghent 9000, Belgium; BIO INX BV Technologiepark-Zwijnaarde 66, Ghent 9052, Belgium
| | - Jos Malda
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| | - Tina Vermonden
- Department of Pharmaceutical Sciences Faculty of Science Utrecht University Utrecht 3584CG, The Netherlands
| | - Riccardo Levato
- Department of Clinical Sciences Faculty of Veterinary Medicine Utrecht University Utrecht 3584CT, The Netherlands; Department of Orthopedics University Medical Center Utrecht Utrecht University Utrecht 3584CX, The Netherlands
| |
Collapse
|
24
|
Thai VL, Candelas DO, Leach JK. Tuning the Microenvironment to Create Functionally Distinct Mesenchymal Stromal Cell Spheroids. Ann Biomed Eng 2023; 51:1558-1573. [PMID: 36809393 PMCID: PMC10264490 DOI: 10.1007/s10439-023-03162-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2022] [Accepted: 02/06/2023] [Indexed: 02/23/2023]
Abstract
Mesenchymal stromal cells (MSCs) are under investigation for wound healing and tissue regeneration due to their potent secretome. Compared to monodisperse cells, MSC spheroids exhibit increased cell survival and enhanced secretion of endogenous factors such as vascular endothelial growth factor (VEGF) and prostaglandin E2 (PGE2), two key factors in wound repair. We previously upregulated the proangiogenic potential of homotypic MSC spheroids by manipulating microenvironmental culture conditions. However, this approach depends on the responsiveness of host endothelial cells (ECs)-a limitation when attempting to restore large tissue deficits and for patients with chronic wounds in which ECs are dysfunctional and unresponsive. To address this challenge, we used a Design of Experiments (DOE) approach to engineer functionally distinct MSC spheroids that maximize VEGF production (VEGFMAX) or PGE2 production (PGE2,MAX) while incorporating ECs that could serve as the basic building blocks for vessel formation. VEGFMAX produced 22.7-fold more VEGF with enhanced endothelial cell migration compared to PGE2,MAX, while PGE2,MAX produced 16.7-fold more PGE2 with accelerated keratinocyte migration compared to VEGFMAX. When encapsulated together in engineered protease-degradable hydrogels as a model of cell delivery, VEGFMAX and PGE2,MAX spheroids exhibited robust spreading into the biomaterial and enhanced metabolic activity. The distinct bioactivities of these MSC spheroids demonstrate the highly tunable nature of spheroids and provide a new approach to leverage the therapeutic potential of cell-based therapies.
Collapse
Affiliation(s)
- Victoria L Thai
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA, 95817, USA
| | - Diego O Candelas
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA
| | - J Kent Leach
- Department of Biomedical Engineering, University of California, Davis, Davis, CA, 95616, USA.
- Department of Orthopaedic Surgery, UC Davis Health, 4860 Y Street, Suite 3800, Sacramento, CA, 95817, USA.
| |
Collapse
|
25
|
Yang Q, Fang D, Chen J, Hu S, chen N, Jiang J, Zeng M, Luo M. LncRNAs associated with oxidative stress in diabetic wound healing: Regulatory mechanisms and application prospects. Theranostics 2023; 13:3655-3674. [PMID: 37441585 PMCID: PMC10334824 DOI: 10.7150/thno.85823] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Accepted: 06/12/2023] [Indexed: 07/15/2023] Open
Abstract
Diabetes is a group of chronic diseases with blood glucose imbalance, and long-term hyperglycaemia causes sustained damage to various organs of the body, resulting in vascular lesions, neuropathy and impaired wound healing. Diabetic wound formation involves a variety of complex mechanisms, and they are characterized by a persistent chronic inflammatory response, degradation of angiogenesis and imbalance of extracellular matrix regulation, all of which are related to oxidative stress. Additionally, repair and healing of diabetic wounds require the participation of a variety of cells, cytokines, genes, and other factors, which together constitute a complex biological regulatory network. Recent studies have shown that long noncoding RNAs (lncRNAs) can be involved in the regulation of several key biological pathways and cellular functions demonstrating their critical role in diabetic wound healing. LncRNAs are a major family of RNAs with limited or no protein-coding function. Numerous studies have recently reported a strong link between oxidative stress and lncRNAs. Given that both lncRNAs and oxidative stress have been identified as potential drivers of diabetic wound healing, their link in diabetic wound healing can be inferred. However, the specific mechanism of oxidative stress related to lncRNAs in diabetic wound healing is still unclear, and elucidating the functions of lncRNAs in these processes remains a major challenge. This article reviews the mechanisms of lncRNAs related to oxidative stress in several stages of diabetic wound healing and discusses diagnostic and treatment potential of lncRNAs to treat diabetic wounds by improving oxidative stress, as well as the challenges of using lncRNAs for this purpose. It is hoped that these results will provide new targets and strategies for the diagnosis and treatment of impaired wound healing in diabetic patients.
Collapse
Affiliation(s)
- Qinzhi Yang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Dan Fang
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jinxiang Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Shaorun Hu
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Ni chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
| | - Jun Jiang
- Department of General Surgery (Thyroid Surgery), the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Metabolic Vascular Diseases Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Min Zeng
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| | - Mao Luo
- Key Laboratory of Medical Electrophysiology, Ministry of Education, Drug Discovery Research Center, Southwest Medical University, Luzhou, China
- Laboratory for Cardiovascular Pharmacology, Department of Pharmacology, School of Pharmacy, Southwest Medical University, Luzhou, Sichuan, China
- Luzhou Municipal Key Laboratory of Thrombosis and Vascular Biology, Luzhou, Sichuan, China
- Department of Pharmacy, the Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
| |
Collapse
|
26
|
Chen J, Wang J, Wu X, Simon N, Svensson CI, Yuan J, Hart DA, Ahmed AS, Ackermann PW. eEF2 improves dense connective tissue repair and healing outcome by regulating cellular death, autophagy, apoptosis, proliferation and migration. Cell Mol Life Sci 2023; 80:128. [PMID: 37084140 PMCID: PMC10121543 DOI: 10.1007/s00018-023-04776-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Revised: 03/23/2023] [Accepted: 04/09/2023] [Indexed: 04/22/2023]
Abstract
Outcomes following human dense connective tissue (DCT) repair are often variable and suboptimal, resulting in compromised function and development of chronic painful degenerative diseases. Moreover, biomarkers and mechanisms that guide good clinical outcomes after DCT injuries are mostly unknown. Here, we characterize the proteomic landscape of DCT repair following human Achilles tendon rupture and its association with long-term patient-reported outcomes. Moreover, the potential regulatory mechanisms of relevant biomarkers were assessed partly by gene silencing experiments. A mass-spectrometry based proteomic approach quantified a large number (769) of proteins, including 51 differentially expressed proteins among 20 good versus 20 poor outcome patients. A novel biomarker, elongation factor-2 (eEF2) was identified as being strongly prognostic of the 1-year clinical outcome. Further bioinformatic and experimental investigation revealed that eEF2 positively regulated autophagy, cell proliferation and migration, as well as reduced cell death and apoptosis, leading to improved DCT repair and outcomes. Findings of eEF2 as novel prognostic biomarker could pave the way for new targeted treatments to improve healing outcomes after DCT injuries.Trial registration: NCT02318472 registered 17 December 2014 and NCT01317160 registered 17 March 2011, with URL http://clinicaltrials.gov/ct2/show/NCT02318472 and http://clinicaltrials.gov/ct2/show/study/NCT01317160 .
Collapse
Affiliation(s)
- Junyu Chen
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden.
| | - Jin Wang
- Department of Pharmacology, School of Basic Medical Sciences, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, 710061, People's Republic of China
- The Key Laboratory of Tumor Molecular Diagnosis and Individualized Medicine of Zhejiang Province, Zhejiang Provincial People's Hospital, Affiliated People's Hospital, Hangzhou Medical College, Hangzhou, 310014, China
| | - Xinjie Wu
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
- Peking University China-Japan Friendship School of Clinical Medicine, Beijing, 100029, China
| | - Nils Simon
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Camilla I Svensson
- Department of Physiology and Pharmacology, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| | - Juan Yuan
- Department of Cell and Molecular Biology, Karolinska Institutet, 17176, Stockholm, Sweden
| | - David A Hart
- Department of Surgery, Faculty of Kinesiology, McCaig Institute for Bone and Joint Health, University of Calgary, Calgary, AB, Canada
| | - Aisha S Ahmed
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden.
- Department of Physiology, University of Helsinki, Helsinki, Finland.
| | - Paul W Ackermann
- Department of Molecular Medicine and Surgery, Center for Molecular Medicine, Karolinska Institutet, 171 76, Stockholm, Sweden
| |
Collapse
|
27
|
Hwang J, Kiick KL, Sullivan MO. VEGF-Encoding, Gene-Activated Collagen-Based Matrices Promote Blood Vessel Formation and Improved Wound Repair. ACS APPLIED MATERIALS & INTERFACES 2023; 15:16434-16447. [PMID: 36961242 PMCID: PMC10154048 DOI: 10.1021/acsami.2c23022] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Disruption in vascularization during wound repair can severely impair healing. Proangiogenic growth factor therapies have shown great healing potential; however, controlling growth factor activity and cellular behavior over desired healing time scales remains challenging. In this study, we evaluated collagen-mimetic peptide (CMP) tethers for their capacity to control growth factor gene transfer and growth factor activity using our recently developed gene-activated hyaluronic acid-collagen matrix (GAHCM). GAHCM was comprised of DNA/polyethyleneimine (PEI) polyplexes that were retained on hyaluronic acid (HA)-collagen hydrogels using CMPs. We hypothesized that using CMP-collagen tethers to control vascular endothelial growth factor-A (VEGF-A) gene delivery in fibroblasts would provide a powerful strategy to modulate the proangiogenic behaviors of endothelial cells (ECs) for blood vessel formation, resulting in enhanced wound repair. In co-culture experiments, we observed that CMP-modified GAHCM induced tunable gene delivery in fibroblasts as predicted, and correspondingly, VEGF-A produced by the fibroblasts led to increased growth and persistent migration of ECs for at least 7 days, as compared to non-CMP-modified GAHCM. Moreover, when ECs were exposed to fibroblast-containing VEGF-GAHCM with higher levels of CMP modification (50% CMP-PEI, or 50 CP), high CD31 expression was stimulated, resulting in the formation of an interconnected EC network with a significantly higher network volume and a larger diameter network structure than controls. Application of VEGF-GAHCM with 50 CP in murine splinted excisional wounds facilitated prolonged prohealing and proangiogenic responses resulting in increased blood vessel formation, improved granulation tissue formation, faster re-epithelialization, and overall enhanced repair. These findings suggest the benefits of CMP-collagen tethers as useful tools to control gene transfer and growth factor activity for improved treatment of wounds.
Collapse
Affiliation(s)
- Jeongmin Hwang
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
| | - Kristi L. Kiick
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Materials Science and Engineering, University of Delaware, Newark, DE, USA, 19716
| | - Millicent O. Sullivan
- Department of Biomedical Engineering, University of Delaware, Newark, DE, USA, 19713
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE, USA, 19716
| |
Collapse
|
28
|
Wang J, Zhang Y, Cao J, Wang Y, Anwar N, Zhang Z, Zhang D, Ma Y, Xiao Y, Xiao L, Wang X. The role of autophagy in bone metabolism and clinical significance. Autophagy 2023:1-19. [PMID: 36858962 PMCID: PMC10392742 DOI: 10.1080/15548627.2023.2186112] [Citation(s) in RCA: 58] [Impact Index Per Article: 58.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023] Open
Abstract
The skeletal system is the basis of the vertebral body composition, which affords stabilization sites for muscle attachment, protects vital organs, stores mineral ions, supplies places to the hematopoietic system, and participates in complex endocrine and immune system. Not surprisingly, bones are constantly reabsorbed, formed, and remodeled under physiological conditions. Once bone metabolic homeostasis is interrupted (including inflammation, tumors, fractures, and bone metabolic diseases), the body rapidly initiates bone regeneration to maintain bone tissue structure and quality. Macroautophagy/autophagy is an essential metabolic process in eukaryotic cells, which maintains metabolic energy homeostasis and plays a vital role in bone regeneration by controlling molecular degradation and organelle renewal. One relatively new observation is that mesenchymal cells, osteoblasts, osteoclasts, osteocytes, chondrocytes, and vascularization process exhibit autophagy, and the molecular mechanisms and targets involved are being explored and updated. The role of autophagy is also emerging in degenerative diseases (intervertebral disc degeneration [IVDD], osteoarthritis [OA], etc.) and bone metabolic diseases (osteoporosis [OP], osteitis deformans, osteosclerosis). The use of autophagy regulators to modulate autophagy has benefited bone regeneration, including MTOR (mechanistic target of rapamycin kinase) inhibitors, AMPK activators, and emerging phytochemicals. The application of biomaterials (especially nanomaterials) to trigger autophagy is also an attractive research direction, which can exert superior therapeutic properties from the material-loaded molecules/drugs or the material's properties such as shape, roughness, surface chemistry, etc. All of these have essential clinical significance with the discovery of autophagy associated signals, pathways, mechanisms, and treatments in bone diseases in the future.Abbreviations: Δψm: mitochondrial transmembrane potential AMPK: AMP-activated protein kinase ARO: autosomal recessive osteosclerosis ATF4: activating transcription factor 4 ATG: autophagy-related β-ECD: β-ecdysone BMSC: bone marrow mesenchymal stem cell ER: endoplasmic reticulum FOXO: forkhead box O GC: glucocorticoid HIF1A/HIF-1α: hypoxia inducible factor 1 subunit alpha HSC: hematopoietic stem cell HSP: heat shock protein IGF1: insulin like growth factor 1 IL1B/IL-1β: interleukin 1 beta IVDD: intervertebral disc degradation LPS: lipopolysaccharide MAPK: mitogen-activated protein kinase MSC: mesenchymal stem cell MTOR: mechanistic target of rapamycin kinase NP: nucleus pulposus NPWT: negative pressure wound therapy OA: osteoarthritis OP: osteoporosis PTH: parathyroid hormone ROS: reactive oxygen species SIRT1: sirtuin 1 SIRT3: sirtuin 3 SQSTM1/p62: sequestosome 1 TNFRSF11B/OPG: TNF receptor superfamily member 11b TNFRSF11A/RANK: tumor necrosis factor receptor superfamily, member 11a TNFSF11/RANKL: tumor necrosis factor (ligand) superfamily, member 11 TSC1: tuberous sclerosis complex 1 ULK1: unc-51 like autophagy activating kinase 1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Zhang
- Department of Hygiene Toxicology, School of Public Health, Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Jin Cao
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yi Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Nadia Anwar
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Zihan Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Dingmei Zhang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yaping Ma
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China
| | - Yin Xiao
- Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia.,School of Medicine and Dentistry & Menzies Health Institute Queensland, Griffith University, Queensland, Australia
| | - Lan Xiao
- School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| | - Xin Wang
- Department of Orthopaedic Surgery, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou, People's Republic of China.,School of Mechanical, Medical and Process Engineering, Centre for Biomedical Technologies, Queensland University of Technology, Brisbane, Australia.,Australia-China Centre for Tissue Engineering and Regenerative Medicine, Queensland University of Technology, Brisbane, Queensland, Australia
| |
Collapse
|
29
|
Zou W, Zhang J, Li Z, Zhou Y, Zhou S, Liu G. A novel therapeutic approach for allergic rhinitis by exosome-mimetic nanovesicles derived from mesenchymal stem cells to restore nasal mucosal epithelial barrier. Med Hypotheses 2023. [DOI: 10.1016/j.mehy.2023.111046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/13/2023]
|
30
|
Chen X, Arias Z, Omori K, Yamamoto T, Shinoda-Ito Y, Takashiba S. Autophagy as a potential mechanism underlying the biological effect of 1,25-Dihydroxyvitamin D3 on periodontitis: a narrative review. BMC Oral Health 2023; 23:90. [PMID: 36782172 PMCID: PMC9923934 DOI: 10.1186/s12903-023-02802-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
The major active form of vitamin D, 1,25-dihydroxyvitamin D3 (1,25D3), is known for its wide bioactivity in periodontal tissues. Although the exact mechanisms underlying its protective action against periodontitis remain unclear, recent studies have shown that 1,25D3 regulates autophagy. Autophagy is vital for intracellular pathogen invasion control, inflammation regulation, and bone metabolic balance in periodontal tissue homeostasis, and its regulation could be an interesting pathway for future periodontal studies. Since vitamin D deficiency is a worldwide health problem, its role as a potential regulator of autophagy provides new insights into periodontal diseases. Based on this premise, this narrative literature review aimed to investigate the possible connection between 1,25D3 and autophagy in periodontitis. A comprehensive literature search was conducted on PubMed using the following keywords (e.g., vitamin D, autophagy, periodontitis, pathogens, epithelial cells, immunity, inflammation, and bone loss). In this review, the latest studies on the protective action of 1,25D3 against periodontitis and the regulation of autophagy by 1,25D3 are summarized, and the potential role of 1,25D3-activated autophagy in the pathogenesis of periodontitis is analyzed. 1,25D3 can exert a protective effect against periodontitis through different signaling pathways in the pathogenesis of periodontitis, and at least part of this regulatory effect is achieved through the activation of the autophagic response. This review will help clarify the relationship between 1,25D3 and autophagy in the homeostasis of periodontal tissues and provide perspectives for researchers to optimize prevention and treatment strategies in the future.
Collapse
Affiliation(s)
- Xiaoting Chen
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Zulema Arias
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Kazuhiro Omori
- grid.412342.20000 0004 0631 9477Department of Periodontics and Endodontics, Okayama University Hospital, Okayama, Japan
| | - Tadashi Yamamoto
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Yuki Shinoda-Ito
- grid.261356.50000 0001 1302 4472Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan
| | - Shogo Takashiba
- Department of Pathophysiology-Periodontal Science, Graduate School of Medicine, Dentistry and Pharmaceutical Sciences, Okayama University, 2-5-1 Shikata-Cho, Kita-Ku, Okayama, Japan.
| |
Collapse
|
31
|
Zhao P, Zhou G, Jiang J, Li H, Xiang X. Platelet-rich Plasma (PRP) in the Treatment of Diabetic Foot Ulcers and its Regulation of Autophagy. INT J LOW EXTR WOUND 2023:15347346221144937. [PMID: 36652558 DOI: 10.1177/15347346221144937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Objective: Through clinical trials, this study observes the therapeutic effect of platelet-rich plasma (platelet-rich plasma, PRP) on diabetic foot ulcers and explored the relationship between the relationship between PRP and autophagy. Methods: Thirty patients with diabetic foot ulcer who met the relevant criteria were randomly divided into PRP treatment group and control group. In the PRP treatment group, the formed PRP gel was coated and bandaged on the diabetic foot ulcer wound, and the PRP treatment was repeated on the seventh day. The control group was covered with normal saline sterile gauze. Observe the healing rate of the wound in 7 days, 14 days and 21 days, the pain in 5 consecutive days and the healing time of the wound after treatment, collect wound granulation tissues before and twenty-first days after treatment then detect the expression of autophagy-related proteins (LC-3, P62) and inflammatory factors (IL-6, IL-10) in diabetic foot ulcer wound to investigate the potential relationship between PRP treatment of diabetic foot ulcers and autophagy and inflammatory responses. Results: The wound healing rate of diabetic foot ulcer patients in the PRP treatment group was higher than that in the control group on the seventh, 14th and 21st days, the healing time (31.40 ± 4.47) was better than that in the control group (43.20 ± 5.03) days, and the pain improvement was better than that in the control group (P < .05). The results of Western blot analysis and quantitative PCR of autophagy-related proteins (LC-3 and p62) in granulation tissue showed that the values of LC3 and LC3-II/LC3-I and the expression of LC3 gene in wound granulation tissue of PRP group were significantly higher than those before treatment (P < .05). The value and gene expression of P62 protein were lower than those before treatment (P < .05). In the control group, there was no significant difference in LC3 and P62 protein gray level and gene expression before and after treatment (P > .05). The level of autophagy in the wound of PRP group increased after treatment, while there was no statistical significance in the control group. The results of ELISA showed that the concentration of IL-6 in granulation tissue of the PRP treatment group was lower than that before treatment (P < .05), while there was no significant difference in IL-6 in the control group after treatment. The concentration of IL-10 increased in both groups after treatment, but the concentration in PRP group was higher than that in control group (P < .05). Conclusions: This study shows that PRP gel has advantages in accelerating wound healing, relieving pain, shortening healing time and reducing inflammatory response in treating diabetic foot ulcers wound, which may be related to autophagy, and provides new ideas for the treatment of diabetic foot ulcers.
Collapse
Affiliation(s)
- Pengyu Zhao
- Department of Medical Cosmetology, 117852Chengdu Second People's Hospital, Chengdu, People Republic of China
| | - Guofu Zhou
- Department of Plastic Surgery, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, People Republic of China
| | - Jinglun Jiang
- Department of Plastic Surgery, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, People Republic of China
| | - Hong Li
- Department of Medical Cosmetology, 117852Chengdu Second People's Hospital, Chengdu, People Republic of China
| | - Xiaoyan Xiang
- Department of Plastic Surgery, 117913Affiliated Hospital of North Sichuan Medical College, Nanchong, People Republic of China
| |
Collapse
|
32
|
Parkhideh S, Calderon GA, Janson KD, Mukherjee S, Mai AK, Doerfert MD, Yao Z, Sazer DW, Veiseh O. Perfusable cell-laden matrices to guide patterning of vascularization in vivo. Biomater Sci 2023; 11:461-471. [PMID: 36477015 DOI: 10.1039/d2bm01200f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
The survival and function of transplanted tissue engineered constructs and organs require a functional vascular network. In the body, blood vessels are organized into distinct patterns that enable optimal nutrient delivery and oxygen exchange. Mimicking these same patterns in engineered tissue matrices is a critical challenge for cell and tissue transplantation. Here, we leverage bioprinting to assemble endothelial cells in to organized networks of large (>100 μm) diameter blood vessel grafts to enable spatial control of vessel formation in vivo. Acellular PEG/GelMA matrices with perfusable channels were bioprinted and laminar flow was confirmed within patterned channels, beneficial for channel endothelialization and consistent wall shear stress for endothelial maturation. Next, human umbilical vein endothelial cells (HUVECs) were seeded within the patterned channel and maintained under perfusion culture for multiple days, leading to cell-cell coordination within the construct in vitro. HUVEC and human mesenchymal stromal cells (hMSCs) were additionally added to bulk matrix to further stimulate anastomosis of our bioprinted vascular grafts in vivo. Among multiple candidate matrix designs, the greatest degree of biomaterial vascularization in vivo was seen within matrices fabricated with HUVECs and hMSCs encapsulated within the bulk matrix and HUVECs lining the walls of the patterned channels, dubbed design M-C_E. For this lead design, vasculature was detected within the endothelialized, perfusable matrix channels as early as two weeks and αSMA+ CD31+ vessels greater than 100 μm in diameter had formed by eight weeks, resulting in durable and mature vasculature. Notably, vascularization occurred within the endothelialized, bioprinted channels of the matrix, demonstrating the ability of bioprinted perfusable structures to guide vascularization patterns in vivo. The ability to influence vascular patterning in vivo can contribute to the future development of vascularized tissues and organs.
Collapse
Affiliation(s)
- Siavash Parkhideh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Gisele A Calderon
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Kevin D Janson
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Sudip Mukherjee
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - A Kristen Mai
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | | | - Zhuoran Yao
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Daniel W Sazer
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| | - Omid Veiseh
- Department of Bioengineering, Rice University, Houston, TX 77030, USA.
| |
Collapse
|
33
|
Ni Y, Chen Y, Jiang X, Pu T, Zhang L, Li S, Hu L, Bai B, Hu T, Yu L, Yang Y. Transplantation of Human Amniotic Mesenchymal Stem Cells Up-Regulates Angiogenic Factor Expression to Attenuate Diabetic Kidney Disease in Rats. Diabetes Metab Syndr Obes 2023; 16:331-343. [PMID: 36785675 PMCID: PMC9921454 DOI: 10.2147/dmso.s371752] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 01/10/2023] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND AND AIMS Diabetic kidney disease (DKD) is a prevalent and intractable microvascular complication of diabetes mellitus (DM), the process of which is closely related to abnormal expression of angiogenesis-regulating factors (ARFs). Stem cell transplantation might be a novel strategy for treating DKD. This study aims to explore the effect of transplantation of human amniotic mesenchymal stem cells (hAMSCs) on renal microangiopathy in a type 1 DKD rat model (T1DRM). METHODS Seventy-two rats were randomly divided into three groups, including normal control group, DKD group, and hAMSCs transplantation group. T1DRM was established using a rat tail vein injection of streptozotocin (STZ) (55 mg/kg). hAMSCs were obtained from placental amniotic membranes during cesarean delivery and transplanted at 3 and 4 weeks through penile veins. At 6, 8, and 12 weeks following transplantation, blood glucose levels, renal function, pathological kidney alterations, and the expressions of ARFs' mRNA and protein were analyzed. RESULTS In T1DRM, transplanted hAMSCs that were homed at the injured site of kidneys increased ARFs' expression and decreased blood glucose levels. Compared to the DKD group, the levels of 24-h urinary protein, serum creatinine, urea, and kidney injury molecule-1 (KIM-1) were reduced in hAMSCs transplantation group. In terms of renal pathology such as the degree of basement membrane thickening, hAMSCs transplantation was also less severe than the DKD group, thereby alleviating kidney injury. CONCLUSION hAMSCs transplantation might ameliorate STZ-induced chronic kidney injury through increasing ARFs' expression in kidneys and lowering blood glucose levels.
Collapse
Affiliation(s)
- Yu Ni
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Yuqin Chen
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Xuheng Jiang
- Department of Emergency, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Tao Pu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Ling Zhang
- Zhuhai Campus of Zunyi Medical University, Zhuhai, 519041, People’s Republic of China
| | - Shaobin Li
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Linhong Hu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Bing Bai
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Tingting Hu
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
| | - Limei Yu
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Correspondence: Limei Yu, Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China, Email
| | - Yibin Yang
- Department of Nephrology, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China
- Yibin Yang, Key Laboratory of Cell Engineering of Guizhou Province, Zunyi City, Affiliated Hospital of Zunyi Medical University, Zunyi, 563003, People’s Republic of China, Email
| |
Collapse
|
34
|
Zhang J, Li L, Yu J, Zhang F, Shi J, LI M, Liu J, Li H, Gao J, Wu Y. Autophagy-Modulated Biomaterial: A Robust Weapon for Modulating the Wound Environment to Promote Skin Wound Healing. Int J Nanomedicine 2023; 18:2567-2588. [PMID: 37213350 PMCID: PMC10198186 DOI: 10.2147/ijn.s398107] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 03/28/2023] [Indexed: 05/23/2023] Open
Abstract
Autophagy, a self-renewal mechanism, can help to maintain the stability of the intracellular environment of organisms. Autophagy can also regulate several cellular functions and is strongly related to the onset and progression of several diseases. Wound healing is a biological process that is coregulated by different types of cells. However, it is troublesome owing to prolonged treatment duration and poor recovery. In recent years, biomaterials have been reported to influence the skin wound healing process by finely regulating autophagy. Biomaterials that regulate autophagy in various cells involved in skin wound healing to regulate the differentiation, proliferation and migration of cells, inflammatory responses, oxidative stress and formation of the extracellular matrix (ECM) have emerged as a key method for improving the tissue regeneration ability of biomaterials. During the inflammatory phase, autophagy enhances the clearance of pathogens from the wound site and leads to macrophage polarization from the M1 to the M2 phenotype, thus preventing enhanced inflammation that can lead to further tissue damage. Autophagy plays important roles in facilitating the formation of extracellular matrix (ECM) during the proliferative phase, removing excess intracellular ROS, and promoting the proliferation and differentiation of endothelial cells, fibroblasts, and keratinocytes. This review summarizes the close association between autophagy and skin wound healing and discusses the role of biomaterial-based autophagy in tissue regeneration. The applications of recent biomaterials designed to target autophagy are highlighted, including polymeric materials, cellular materials, metal nanomaterials, and carbon-based materials. A better understanding of biomaterial-regulated autophagy and skin regeneration and the underlying molecular mechanisms may open new possibilities for promoting skin regeneration. Moreover, this can lay the foundation for the development of more effective therapeutic approaches and novel biomaterials for clinical applications.
Collapse
Affiliation(s)
- Jin Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Luxin Li
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jing Yu
- Department of Endocrinology, Hongqi Hospital Affiliated to Mudanjiang Medical University, Mudanjiang, 157011, People’s Republic of China
| | - Fan Zhang
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jiayi Shi
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Meiyun LI
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
| | - Jianyong Liu
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Haitao Li
- Department of Vascular Surgery, Wuhan Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People’s Republic of China
| | - Jie Gao
- Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China
- Jie Gao, Changhai Clinical Research Unit, Shanghai Changhai Hospital, Naval Medical University, Shanghai, 200433, People’s Republic of China, Tel/Fax +86 21-31166666, Email
| | - Yan Wu
- College of Life Science, Mudanjiang Medical University, Mudanjiang, People’s Republic of China
- Correspondence: Yan Wu, College of Life Science, Mudanjiang Medical University, Mudanjiang, Heilongjiang, 157001, People’s Republic of China, Tel/Fax +86-453-6984647, Email
| |
Collapse
|
35
|
Chen J, Li X, Yan S, Li J, Zhou Y, Wu M, Ding J, Yang J, Yuan Y, Zhu Y, Wu W. An autophagy-related long non-coding RNA prognostic model and related immune research for female breast cancer. Front Oncol 2022; 12:929240. [PMID: 36591508 PMCID: PMC9798206 DOI: 10.3389/fonc.2022.929240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 11/25/2022] [Indexed: 12/23/2022] Open
Abstract
Introduction Breast cancer (BRCA) is the most common malignancy among women worldwide. It was widely accepted that autophagy and the tumor immune microenvironment play an important role in the biological process of BRCA. Long non-coding RNAs (lncRNAs), as vital regulatory molecules, are involved in the occurrence and development of BRCA. The aim of this study was to assess the prognosis of BRCA by constructing an autophagy-related lncRNA (ARlncRNA) prognostic model and to provide individualized guidance for the treatment of BRCA. Methods The clinical data and transcriptome data of patients with BRCA were acquired from the Cancer Genome Atlas database (TCGA), and autophagy-related genes were obtained from the human autophagy database (HADb). ARlncRNAs were identified by conducting co‑expression analysis. Univariate and multivariate Cox regression analysis were performed to construct an ARlncRNA prognostic model. The prognostic model was evaluated by Kaplan-Meier survival analysis, plotting risk curve, Independent prognostic analysis, clinical correlation analysis and plotting ROC curves. Finally, the tumor immune microenvironment of the prognostic model was studied. Results 10 ARlncRNAs(AC090912.1, LINC01871, AL358472.3, AL122010.1, SEMA3B-AS1, BAIAP2-DT, MAPT-AS1, DNAH10OS, AC015819.1, AC090198.1) were included in the model. Kaplan-Meier survival analysis of the prognostic model showed that the overall survival(OS) of the low-risk group was significantly better than that of the high-risk group (p< 0.001). Multivariate Cox regression analyses suggested that the prognostic model was an independent prognostic factor for BRCA (HR = 1.788, CI = 1.534-2.084, p < 0.001). ROCs of 1-, 3- and 5-year survival revealed that the AUC values of the prognostic model were all > 0.7, with values of 0.779, 0.746, and 0.731, respectively. In addition, Gene Set Enrichment Analysis (GSEA) suggested that several tumor-related pathways were enriched in the high-risk group, while several immune‑related pathways were enriched in the low-risk group. Patients in the low-risk group had higher immune scores and their immune cells and immune pathways were more active. Patients in the low-risk group had higher PD-1 and CTLA-4 levels and received more benefits from immune checkpoint inhibitors (ICIs) therapy. Discussion The ARlncRNA prognostic model showed good performance in predicting the prognosis of patients with BRCA and is of great significance to guide the individualized treatment of these patients.
Collapse
Affiliation(s)
- Jiafeng Chen
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Xinrong Li
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Shuixin Yan
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Jiadi Li
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Yuxin Zhou
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,School of Medicine, Ningbo University, Ningbo, China
| | - Minhua Wu
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jinhua Ding
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Jiahui Yang
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Yijie Yuan
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Ye Zhu
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China
| | - Weizhu Wu
- Department of Thyroid and Breast surgery, The Affiliated Lihuili Hospital, Ningbo University, Ningbo, China,*Correspondence: Weizhu Wu,
| |
Collapse
|
36
|
Hu Y, Shao J, Shen L, Wang S, Xu K, Mao J, Shen J, Chen W. Protection of adipose-derived mesenchymal stromal cells during acute lung injury requires autophagy maintained by mTOR. Cell Death Dis 2022; 8:481. [PMID: 36470863 PMCID: PMC9722689 DOI: 10.1038/s41420-022-01267-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Revised: 09/15/2022] [Accepted: 11/18/2022] [Indexed: 12/10/2022]
Abstract
Previous studies suggest that mesenchymal stem cells may represent a promising cellular therapy for acute lung injury (ALI); however, the underlying relevant molecular mechanisms remain unclear. Adipose-derived mesenchymal stem cells (ADSCs) were isolated and characterized by alizarin red staining, oil red staining, and flow cytometry. Lung injury and inflammatory cell infiltration were determined using the Evans blue method, wet/dry weight ratio, and H&E staining. An ELISA was used to detect the concentrations of IFN-γ, IL-2, and TNF-α. Autophagy was detected with an mRFP-GFP-LC3 dual-fluorescence autophagy indicator system, Western blotting, and electron microscopy. We first demonstrated that ADSCs did alleviate the inflammatory responses and tissue damage in lipopolysaccharide (LPS)-induced ALI. Next, we further demonstrated in vivo that autophagy plays a key role in the maintenance of ADSC therapeutic efficacy. In vitro experiments demonstrated that ADSCs co-cultured with alveolar epithelial cells depend on autophagy for significant anti-inflammatory functions. Moreover, the mammalian target of rapamycin (mTOR) is a key regulator of autophagy. Taken together, our findings demonstrate that the effect of ADSC on ALI, especially on alveolar epithelial cells, is dependent on mTOR-mediated autophagy maintenance. The significance of our study for ALI therapy is discussed with respect to a more complete understanding of the therapeutic strategy paradigm.
Collapse
Affiliation(s)
- Yue Hu
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| | - Jing Shao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| | - Lanying Shen
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| | - Shengchao Wang
- grid.13402.340000 0004 1759 700XDepartment of Gynecological Oncology, Women’s Hospital, Zhejiang University School of Medicine, 310006 Hangzhou, Zhejiang China
| | - Kaiyan Xu
- grid.412465.0Key Laboratory of Respiratory Disease of Zhejiang Province, Department of Respiratory and Critical Care Medicine, Second Affiliated Hospital of Zhejiang University School of Medicine, 310009 Hangzhou, Zhejiang China
| | - Jiayan Mao
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| | - Jian Shen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| | - Wei Chen
- Cancer Institute of Integrated Traditional Chinese and Western Medicine, Zhejiang Academy of Traditional Chinese Medicine, Tongde Hospital of Zhejiang Province, 310012 Hangzhou, Zhejiang China
| |
Collapse
|
37
|
Wang K, Chen Z, Jin L, Zhao L, Meng L, Kong F, He C, Kong F, Zheng L, Liang F. LPS-pretreatment adipose-derived mesenchymal stromal cells promote wound healing in diabetic rats by improving angiogenesis. Injury 2022; 53:3920-3929. [PMID: 36357245 DOI: 10.1016/j.injury.2022.09.041] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Revised: 07/28/2022] [Accepted: 09/23/2022] [Indexed: 02/02/2023]
Abstract
Mesenchymal stem cells (MSCs) play a key role in wound healing, and the advantages of pretreated MSCs in wound healing have previously been reported. In the present study, we investigated the impact of LPS pretreated human adipose-derived MSCs on skin wound healing in diabetic rats. We found that some improvements occurred through improving angiogenesis. Then, we scrutinized the impact of lipopolysaccharide (LPS) treatment on human adipose-derived MSCs in a high-glucose (HG) medium, as an in vitro diabetic model. In vivo findings revealed significant improvements in epithelialization and angiogenesis of diabetic wounds which received LPS pre-MSCs. Particularly, LPS pre-MSCs-treated diabetic wounds reached considerably higher percentages of wound closure. Also, the granulation tissue of these wounds had higher pronounced epithelialization and more vascularization compared with PBS-treated and MSCs-treated diabetic ones by CD31, VEGF, CD90, collagen 1, and collagen 3 immunostaining. Western-blots analyses indicated that LPS pre-MSCs led to the upregulation of vascular endothelial growth factor (VEGF) and DNMT1. In addition, significantly higher cell viability (proliferation/colonie), and elevated VEGF and DNMT1 protein expression were observed when MSCs were treated with LPS (10 ng/ml, 6 h) in HG culture media. Based on these findings, it is suggested that LPS pre-MSCs could promote wound repair and skin regeneration, in some major processes, via the improvement of cellular behaviors of MSCs in the diabetic microenvironment. The beneficial advantages of LPS treated with mesenchymal stem cells on wound healing may lead to establishing a novel approach as an alternative therapeutic procedure to cure chronic wounds in diabetic conditions.
Collapse
Affiliation(s)
- Kuixiang Wang
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Ziying Chen
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Liang Jin
- Department of Hand and Foot Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lili Zhao
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Libin Meng
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanting Kong
- Department of Oncology Surgery, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Chenxin He
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fanlei Kong
- Department of Orthopaedics, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Lingtao Zheng
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China
| | - Fang Liang
- Department of Endocrinology, Xingtai People's Hospital of Hebei Medical University, Xingtai 054000, Hebei Province, China.
| |
Collapse
|
38
|
Lipopolysaccharide alters VEGF-A secretion of mesenchymal stem cells via the integrin β3-PI3K-AKT pathway. Mol Cell Toxicol 2022. [DOI: 10.1007/s13273-022-00315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
39
|
Shams F, Moravvej H, Hosseinzadeh S, Mostafavi E, Bayat H, Kazemi B, Bandehpour M, Rostami E, Rahimpour A, Moosavian H. Overexpression of VEGF in dermal fibroblast cells accelerates the angiogenesis and wound healing function: in vitro and in vivo studies. Sci Rep 2022; 12:18529. [PMID: 36323953 PMCID: PMC9630276 DOI: 10.1038/s41598-022-23304-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 10/29/2022] [Indexed: 12/13/2022] Open
Abstract
Fibroblasts are the main cells of connective tissue and have pivotal roles in the proliferative and maturation phases of wound healing. These cells can secrete various cytokines, growth factors, and collagen. Vascular endothelial growth factor (VEGF) is a unique factor in the migration process of fibroblast cells through induces wound healing cascade components such as angiogenesis, collagen deposition, and epithelialization. This study aimed to create VEGF165 overexpressing fibroblast cells to evaluate angiogenesis function in wound healing. In vitro, a novel recombinant expression vector, pcDNA3.1(-)-VEGF, was produced and transfected into the fibroblast cells. Following selecting fibroblast cells with hygromycin, recombinant cells were investigated in terms of VEGF expression by quantifying and qualifying methods. Mechanical, physical, and survival properties of polyurethane-cellulose acetate (PU-CA) scaffold were investigated. Finally, in vivo, the angiogenic potential was evaluated in four groups containing control, PU-CA, PU-CA with fibroblast cells, and VEGF-expressing cells on days 0, 2, 5, 12 and 15. Wound biopsies were harvested and the healing process was histopathologically evaluated on different days. qRT-PCR showed VEGF overexpression (sevenfold) in genetically-manipulated cells compared to fibroblast cells. Recombinant VEGF expression was also confirmed by western blotting. Manipulated fibroblast cells represented more angiogenesis than other groups on the second day after surgery, which was also confirmed by the antiCD31 antibody. The percentage of wound closure area on day 5 in genetically-manipulated Hu02 and Hu02 groups showed a significant reduction of wound area compared to other groups. These findings indicate that overexpression of VEGF165 in fibroblast cells results in enhanced angiogenesis and formation of granulated tissue in the early stage of the healing process, which can show its therapeutic potential in patients with impaired wound healing and also provide functional support for gene therapy.
Collapse
Affiliation(s)
- Forough Shams
- grid.411600.2Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamideh Moravvej
- grid.411600.2Skin Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Simzar Hosseinzadeh
- grid.411600.2Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Ebrahim Mostafavi
- grid.168010.e0000000419368956Stanford Cardiovascular Institute, Stanford University School of Medicine, Stanford, CA USA ,grid.168010.e0000000419368956Department of Medicine, Stanford University School of Medicine, Stanford, CA USA
| | - Hadi Bayat
- grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.412266.50000 0001 1781 3962Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Bahram Kazemi
- grid.411600.2Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mojgan Bandehpour
- grid.411600.2Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Elnaz Rostami
- grid.412502.00000 0001 0686 4748Department of Animal Sciences and Biotechnology, Faculty of Life Sciences and Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Azam Rahimpour
- grid.411600.2Medical Nanotechnology and Tissue Engineering Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran ,grid.411600.2Department of Tissue Engineering and Applied Cell Sciences, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Hamidreza Moosavian
- grid.46072.370000 0004 0612 7950Department of Clinical Pathology, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| |
Collapse
|
40
|
Blasiak J, Kaarniranta K. Secretory autophagy: a turn key for understanding AMD pathology and developing new therapeutic targets? Expert Opin Ther Targets 2022; 26:883-895. [PMID: 36529978 DOI: 10.1080/14728222.2022.2157260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
INTRODUCTION Age-related macular degeneration (AMD) is an eye disease leading to vision loss with poorly known pathogenesis and limited therapeutic options. Degradative autophagy (DA) is impaired in AMD, but emerging evidence points to secretary autophagy (SA) as a key element in AMD pathogenesis. AREAS COVERED SA may cause the release of proteins and protein aggregates, lipofuscin, beta amyloid, faulty mitochondria, pro-inflammatory and pro-angiogenic factors from the retinal pigment epithelium (RPE) that may contribute to drusen formation and choroidal neovascularization. SA may replace DA, when formation of autolysosome is impaired, and then a harmful cargo, instead of being degraded, is extruded from the RPE contributing to drusen and/or angiogenic environment. Therefore, the interplay between DA and SA may be critical for drusen formation and choroidal neovascularization, so it can be a turn key to understand AMD pathogenesis. EXPERT OPINION Although SA fulfills some beneficial functions, it is detrimental for the retina in many cases. Therefore, inhibiting SA may be a therapeutic strategy in AMD, but it is challenged by the development of selective SA inhibitors that would not affect DA. The TRIM16, SEC22B and RAB8A proteins, specific for secretory autophagosome, may be primary candidates as therapeutic targets, but their action is not limited to autophagy and therefore requires further studies.
Collapse
Affiliation(s)
- Janusz Blasiak
- Department of Molecular Genetics, University of Lodz, Lodz, Poland
| | - Kai Kaarniranta
- Department of Ophthalmology, University of Eastern Finland, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, Kuopio, Finland
| |
Collapse
|
41
|
Isolation of Aloe saponaria-Derived Extracellular Vesicles and Investigation of Their Potential for Chronic Wound Healing. Pharmaceutics 2022; 14:pharmaceutics14091905. [PMID: 36145653 PMCID: PMC9504946 DOI: 10.3390/pharmaceutics14091905] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/30/2022] [Accepted: 09/05/2022] [Indexed: 11/17/2022] Open
Abstract
A chronic wound is caused by a failure to progress through the normal phases of wound repair in an orderly and timely manner. To induce skin regeneration while inhibiting chronic inflammation, numerous natural products, and in particular, plant-derived biomaterials, have been developed. Aloe saponaria, is known to contain flavonoid and phenolic acid compounds with anti-oxidative and anti-inflammatory properties. Here, we isolated extracellular vesicles (EVs) from Aloe saponaria by polyethylene glycol (PEG)-based precipitation and investigated their potential as a therapeutic for chronic wound healing. The Aloe saponaria-derived EVs (AS-EVs) showed no significant cytotoxicity on several cell types, despite a high level of intracellular uptake. When lipopolysaccharide (LPS)-stimulated RAW264.7 macrophages were treated with AS-EVs, significant reductions in the expression of pro-inflammatory genes, such as interleukin-6 and interleukin-1β, were observed. Proliferation and migration of human dermal fibroblasts, as determined by the water-soluble tetrazolium salt-8 and transwell migration assay, respectively, were shown to be promoted by treatment with AS-EVs. It was also demonstrated that AS-EVs enhanced tube formation in human umbilical vein endothelial cells, indicating a stimulatory activity on angiogenesis; one of the crucial steps for effective wound healing. Collectively, our results suggest the potential of AS-EVs as a natural therapeutic for chronic wound healing.
Collapse
|
42
|
Innovative Treatment Strategies to Accelerate Wound Healing: Trajectory and Recent Advancements. Cells 2022; 11:cells11152439. [PMID: 35954282 PMCID: PMC9367945 DOI: 10.3390/cells11152439] [Citation(s) in RCA: 78] [Impact Index Per Article: 39.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 11/26/2022] Open
Abstract
Wound healing is highly specialized dynamic multiple phase process for the repair of damaged/injured tissues through an intricate mechanism. Any failure in the normal wound healing process results in abnormal scar formation, and chronic state which is more susceptible to infections. Chronic wounds affect patients’ quality of life along with increased morbidity and mortality and are huge financial burden to healthcare systems worldwide, and thus requires specialized biomedical intensive treatment for its management. The clinical assessment and management of chronic wounds remains challenging despite the development of various therapeutic regimens owing to its painstakingly long-term treatment requirement and complex wound healing mechanism. Various conventional approaches such as cell therapy, gene therapy, growth factor delivery, wound dressings, and skin grafts etc., are being utilized for promoting wound healing in different types of wounds. However, all these abovementioned therapies are not satisfactory for all wound types, therefore, there is an urgent demand for the development of competitive therapies. Therefore, there is a pertinent requirement to develop newer and innovative treatment modalities for multipart therapeutic regimens for chronic wounds. Recent developments in advanced wound care technology includes nanotherapeutics, stem cells therapy, bioengineered skin grafts, and 3D bioprinting-based strategies for improving therapeutic outcomes with a focus on skin regeneration with minimal side effects. The main objective of this review is to provide an updated overview of progress in therapeutic options in chronic wounds healing and management over the years using next generation innovative approaches. Herein, we have discussed the skin function and anatomy, wounds and wound healing processes, followed by conventional treatment modalities for wound healing and skin regeneration. Furthermore, various emerging and innovative strategies for promoting quality wound healing such as nanotherapeutics, stem cells therapy, 3D bioprinted skin, extracellular matrix-based approaches, platelet-rich plasma-based approaches, and cold plasma treatment therapy have been discussed with their benefits and shortcomings. Finally, challenges of these innovative strategies are reviewed with a note on future prospects.
Collapse
|
43
|
Goswami AG, Basu S, Huda F, Pant J, Ghosh Kar A, Banerjee T, Shukla VK. An appraisal of vascular endothelial growth factor (VEGF): the dynamic molecule of wound healing and its current clinical applications. Growth Factors 2022; 40:73-88. [PMID: 35584274 DOI: 10.1080/08977194.2022.2074843] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Angiogenesis is a critical step of wound healing, and its failure leads to chronic wounds. The idea of restoring blood flow to the damaged tissues by promoting neo-angiogenesis is lucrative and has been researched extensively. Vascular endothelial growth factor (VEGF), a key dynamic molecule of angiogenesis has been investigated for its functions. In this review, we aim to appraise its biology, the comprehensive role of this dynamic molecule in the wound healing process, and how this knowledge has been translated in clinical application in various types of wounds. Although, most laboratory research on the use of VEGF is promising, its clinical applications have not met great expectations. We discuss various lacunae that might exist in making its clinical application unsuccessful for commercial use, and provide insight to the foundation for future research.
Collapse
Affiliation(s)
- Aakansha Giri Goswami
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Somprakas Basu
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Farhanul Huda
- Department of General surgery, All India Institute of Medical Sciences, Rishikesh, India
| | - Jayanti Pant
- Department of Physiology, All India Institute of Medical Sciences, Rishikesh, India
| | - Amrita Ghosh Kar
- Department of Pathology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Tuhina Banerjee
- Department of Microbiology, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| | - Vijay Kumar Shukla
- Department of General Surgery, Institute of Medical Sciences, Banaras Hindu University, Varanasi, India
| |
Collapse
|
44
|
Autophagy: Guardian of Skin Barrier. Biomedicines 2022; 10:biomedicines10081817. [PMID: 36009363 PMCID: PMC9405116 DOI: 10.3390/biomedicines10081817] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2022] [Revised: 07/22/2022] [Accepted: 07/25/2022] [Indexed: 11/23/2022] Open
Abstract
Autophagy is a major degradation pathway that removes harmful intracellular substances to maintain homeostasis. Various stressors, such as starvation and oxidative stress, upregulate autophagy, and the dysregulation of autophagy is associated with various human diseases, including cancer and skin diseases. The skin is the first defense barrier against external environmental hazards such as invading pathogens, ultraviolet rays, chemical toxins, and heat. Although the skin is exposed to various stressors that can activate autophagy, the roles of autophagy in the skin have not yet been fully elucidated. Accumulating evidence suggests that autophagy is closely associated with pathogenesis and the treatment of immune-related skin diseases. In this study, we review how autophagy interacts with skin cells, including keratinocytes and immune cells, enabling them to successfully perform their protective functions by eliminating pathogens and maintaining skin homeostasis. Furthermore, we discuss the implications of autophagy in immune-related skin diseases, such as alopecia areata, psoriasis, and atopic dermatitis, and suggest that a combination of autophagy modulators with conventional therapies may be a better strategy for the treatment of these diseases.
Collapse
|
45
|
Qin Q, Wang T, Xu Z, Liu S, Zhang H, Du Z, Wang J, Wang Y, Wang Z, Yuan S, Wu J, He W, Wang C, Yan X, Wang Y, Jiang X. Ectoderm-derived frontal bone mesenchymal stem cells promote traumatic brain injury recovery by alleviating neuroinflammation and glutamate excitotoxicity partially via FGF1. Stem Cell Res Ther 2022; 13:341. [PMID: 35883153 PMCID: PMC9327213 DOI: 10.1186/s13287-022-03032-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 07/04/2022] [Indexed: 11/16/2022] Open
Abstract
Background Traumatic brain injury (TBI) leads to cell and tissue impairment, as well as functional deficits. Stem cells promote structural and functional recovery and thus are considered as a promising therapy for various nerve injuries. Here, we aimed to investigate the role of ectoderm-derived frontal bone mesenchymal stem cells (FbMSCs) in promoting cerebral repair and functional recovery in a murine TBI model. Methods A murine TBI model was established by injuring C57BL/6 N mice with moderate-controlled cortical impact to evaluate the extent of brain damage and behavioral deficits. Ectoderm-derived FbMSCs were isolated from the frontal bone and their characteristics were assessed using multiple differentiation assays, flow cytometry and microarray analysis. Brain repairment and functional recovery were analyzed at different days post-injury with or without FbMSC application. Behavioral tests were performed to assess learning and memory improvements. RNA sequencing analysis, immunofluorescence staining, and quantitative reverse-transcription polymerase chain reaction (qRT-PCR) were used to examine inflammation reaction and neural regeneration. In vitro co-culture analysis and quantification of glutamate transportation were carried out to explore the possible mechanism of neurogenesis and functional recovery promoted by FbMSCs. Results Ectoderm-derived FbMSCs showed fibroblast like morphology and osteogenic differentiation capacity. FbMSCs were CD105, CD29 positive and CD45, CD31 negative. Different from mesoderm-derived MSCs, FbMSCs expressed the ectoderm-specific transcription factor Tfap2β. TBI mice showed impaired learning and memory deficits. Microglia and astrocyte activation, as well as neural damage, were significantly increased post-injury. FbMSC application ameliorated the behavioral deficits of TBI mice and promoted neural regeneration. RNA sequencing analysis showed that signal pathways related to inflammation decreased, whereas those related to neural activation increased. Immunofluorescence staining and qRT-PCR data revealed that microglial activation and astrocyte polarization to the A1 phenotype were suppressed by FbMSC application. In addition, FGF1 secreted from FbMSCs enhanced glutamate transportation by astrocytes and alleviated the cytotoxic effect of excessive glutamate on neurons. Conclusions Ectoderm-derived FbMSC application significantly alleviated neuroinflammation, brain injury, and excitatory toxicity to neurons, improved cognition and behavioral deficits in TBI mice. Therefore, ectoderm-derived FbMSCs could be ideal therapeutic candidates for TBI which mostly affect cells from the same embryonic origins as FbMSCs. Supplementary Information The online version contains supplementary material available at 10.1186/s13287-022-03032-6.
Collapse
Affiliation(s)
- Qiaozhen Qin
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China.,Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, People's Republic of China
| | - Ting Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhenhua Xu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Shuirong Liu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Heyang Zhang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhangzhen Du
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Jianing Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Yadi Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Zhenning Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Shanshan Yuan
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Jiamei Wu
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Wenyan He
- China National Clinical Research Center for Neurological Diseases, Jing-Jin Center for Neuroinflammation, Beijing Tiantan Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Changzhen Wang
- Beijing Institute of Radiation Medicine, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China
| | - Xinlong Yan
- Faculty of Environmental and Life Sciences, Beijing University of Technology, Beijing, 100124, People's Republic of China.
| | - Yan Wang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China. .,Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| | - Xiaoxia Jiang
- Beijing Institute of Basic Medical Sciences, 27 Taiping Road, Haidian District, Beijing, 100850, People's Republic of China. .,Anhui Medical University, Hefei, 230032, Anhui, People's Republic of China.
| |
Collapse
|
46
|
SF/PVP nanofiber wound dressings loaded with phlorizin: preparation, characterization, in vivo and in vitro evaluation. Colloids Surf B Biointerfaces 2022; 217:112692. [PMID: 35834996 DOI: 10.1016/j.colsurfb.2022.112692] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 02/08/2023]
Abstract
Electrospinning-based wound dressings have multiple functions such as antibacterial, anti-inflammatory, and therapeutic, and are important in skin wound care. Herein, we designed a phlorizin (PHL)-loaded silk protein/polyvinylpyrrolidone (SF/PVP) composite nanofibrous membrane, which can be used as multiple wound dressings. In particular, SF/PVP/PHL scaffolds have high porosity and mechanical properties, exhibiting suitable permeability and hydrophilicity. The SF/PVP/PHL scaffolds containing PHL also have excellent antibacterial and antioxidant activities. Furthermore, the nanofiber significantly accelerated the wound healing process in a full-thickness skin injury model by enhancing wound re-epithelialization and collagen deposition density, increasing the content of macrophage antigen (CD68), platelet-endothelial cell adhesion molecule (CD31), proliferating cell nuclear antigen (PCNA) and inhibiting the expression of α-smooth muscle actin (α-SMA) at the wound site. The mechanism may be related to the inhibition of activation of phosphatidylinositol 3-kinase/serine-threonine kinase/ target of rapamycin (PI3K/AKT/mTOR) signaling pathway to enhance autophagy. Therefore, SF/PVP/PHL nanofibers can ideally meet the various requirements of the wound healing process and are promising wound dressing candidates for future clinical applications.
Collapse
|
47
|
Ma J, Shen M, Yue D, Wang W, Gao F, Wang B. Extracellular Vesicles from BMSCs Prevent Glucocorticoid-Induced BMECs Injury by Regulating Autophagy via the PI3K/Akt/mTOR Pathway. Cells 2022; 11:2104. [PMID: 35805188 PMCID: PMC9265732 DOI: 10.3390/cells11132104] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 05/22/2022] [Accepted: 05/26/2022] [Indexed: 12/17/2022] Open
Abstract
Osteonecrosis of the femoral head (ONFH) is a common clinical disease with a high disability rate. Injury of bone microvascular endothelial cells (BMECs) caused by glucocorticoid administration is one of the important causes of ONFH, and there is currently a lack of effective clinical treatments. Extracellular vesicles derived from bone stem cells (BMSC-EVs) can prevent ONFH by promoting angiogenesis and can inhibit cell apoptosis by regulating autophagy via the PI3K/Akt/mTOR signaling pathway. The present study aimed to investigate the effect of extracellular vesicles derived from bone marrow stem cells (BMSC) on a glucocorticoid-induced injury of BMECs and possible mechanisms. We found that BMSC-EVs attenuated glucocorticoid-induced viability, angiogenesis capacity injury, and the apoptosis of BMECs. BMSC-EVs increased the LC3 level, but decreased p62 (an autophagy protein receptor) expression, suggesting that BMSC-Exos activated autophagy in glucocorticoid-treated BMECs. The protective effects of BMSC-EVs on the glucocorticoid-induced injury of BMECs was mimicked by a known stimulator of autophagy (rapamycin) and could be enhanced by co-treatment with an autophagy inhibitor (LY294002). BMSC-EVs also suppressed the PI3K/Akt/mTOR signaling pathway, which regulates cell autophagy, in glucocorticoid-treated BMECs. In conclusion, the results indicate that BMSC-EVs prevent the glucocorticoid-induced injury of BMECs by regulating autophagy via the PI3K/Akt/mTOR pathway.
Collapse
Affiliation(s)
- Jinhui Ma
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China; (J.M.); (D.Y.); (W.W.)
| | - Mengran Shen
- Department of Orthopaedic Surgery, Peking University China-Japan Friendship School of Clinical Medicine, Beijing 100029, China;
| | - Debo Yue
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China; (J.M.); (D.Y.); (W.W.)
| | - Weiguo Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China; (J.M.); (D.Y.); (W.W.)
| | - Fuqiang Gao
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China; (J.M.); (D.Y.); (W.W.)
| | - Bailiang Wang
- Department of Orthopaedic Surgery, Center for Osteonecrosis and Joint Preserving & Reconstruction, China-Japan Friendship Hospital, Beijing 100029, China; (J.M.); (D.Y.); (W.W.)
| |
Collapse
|
48
|
Song M, Zong J, Zou L, Fu Z, Liu J, Wang S. Biological debridement combined with stem cell therapy will be a convenient and efficient method for treating chronic wounds in the future. Med Hypotheses 2022. [DOI: 10.1016/j.mehy.2022.110905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
49
|
Molnar V, Pavelić E, Vrdoljak K, Čemerin M, Klarić E, Matišić V, Bjelica R, Brlek P, Kovačić I, Tremolada C, Primorac D. Mesenchymal Stem Cell Mechanisms of Action and Clinical Effects in Osteoarthritis: A Narrative Review. Genes (Basel) 2022; 13:genes13060949. [PMID: 35741711 PMCID: PMC9222975 DOI: 10.3390/genes13060949] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/21/2022] [Accepted: 05/24/2022] [Indexed: 02/04/2023] Open
Abstract
With the insufficient satisfaction rates and high cost of operative treatment for osteoarthritis (OA), alternatives have been sought. Furthermore, the inability of current medications to arrest disease progression has led to rapidly growing clinical research relating to mesenchymal stem cells (MSCs). The availability and function of MSCs vary according to tissue source. The three primary sources include the placenta, bone marrow, and adipose tissue, all of which offer excellent safety profiles. The primary mechanisms of action are trophic and immunomodulatory effects, which prevent the further degradation of joints. However, the function and degree to which benefits are observed vary significantly based on the exosomes secreted by MSCs. Paracrine and autocrine mechanisms prevent cell apoptosis and tissue fibrosis, initiate angiogenesis, and stimulate mitosis via growth factors. MSCs have even been shown to exhibit antimicrobial effects. Clinical results incorporating clinical scores and objective radiological imaging have been promising, but a lack of standardization in isolating MSCs prevents their incorporation in current guidelines.
Collapse
Affiliation(s)
- Vilim Molnar
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
| | - Eduard Pavelić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Kristijan Vrdoljak
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Martin Čemerin
- School of Medicine, University of Zagreb, 10000 Zagreb, Croatia; (K.V.); (M.Č.)
| | - Emil Klarić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Vid Matišić
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | - Roko Bjelica
- Department of Oral Surgery, School of Dental Medicine, University of Zagreb, 10000 Zagreb, Croatia;
| | - Petar Brlek
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
| | | | | | - Dragan Primorac
- St. Catherine Specialty Hospital, 10000 Zagreb, Croatia; (V.M.); (E.P.); (E.K.); (V.M.); (P.B.)
- Faculty of Medicine, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Split, 21000 Split, Croatia
- Faculty of Dental Medicine and Health, Josip Juraj Strossmayer University of Osijek, 31000 Osijek, Croatia
- Medical School, University of Rijeka, 51000 Rijeka, Croatia
- Medical School REGIOMED, 96450 Coburg, Germany
- Eberly College of Science, The Pennsylvania State University, University Park, PA 16802, USA
- The Henry C. Lee College of Criminal Justice and Forensic Sciences, University of New Haven, West Haven, CT 06516, USA
- Correspondence:
| |
Collapse
|
50
|
Bergmann CA, Beltran S, Vega-Letter AM, Murgas P, Hernandez MF, Gomez L, Labrador L, Cortés BI, Poblete C, Quijada C, Carrion F, Woehlbier U, Manque PA. The Autophagy Protein Pacer Positively Regulates the Therapeutic Potential of Mesenchymal Stem Cells in a Mouse Model of DSS-Induced Colitis. Cells 2022; 11:cells11091503. [PMID: 35563809 PMCID: PMC9101276 DOI: 10.3390/cells11091503] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 04/14/2022] [Accepted: 04/21/2022] [Indexed: 02/01/2023] Open
Abstract
Mesenchymal stem cells (MSC) have emerged as a promising tool to treat inflammatory diseases, such as inflammatory bowel disease (IBD), due to their immunoregulatory properties. Frequently, IBD is modeled in mice by using dextran sulfate sodium (DSS)-induced colitis. Recently, the modulation of autophagy in MSC has been suggested as a novel strategy to improve MSC-based immunotherapy. Hence, we investigated a possible role of Pacer, a novel autophagy enhancer, in regulating the immunosuppressive function of MSC in the context of DSS-induced colitis. We found that Pacer is upregulated upon stimulation with the pro-inflammatory cytokine TNFα, the main cytokine released in the inflammatory environment of IBD. By modulating Pacer expression in MSC, we found that Pacer plays an important role in regulating the autophagy pathway in this cell type in response to TNFα stimulation, as well as in regulating the immunosuppressive ability of MSC toward T-cell proliferation. Furthermore, increased expression of Pacer in MSC enhanced their ability to ameliorate the symptoms of DSS-induced colitis in mice. Our results support previous findings that autophagy regulates the therapeutic potential of MSC and suggest that the augmentation of autophagic capacity in MSC by increasing Pacer levels may have therapeutic implications for IBD.
Collapse
Affiliation(s)
- Cristian A. Bergmann
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Sebastian Beltran
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Escuela de Tecnología Médica, Universidad Mayor, Santiago 7500000, Chile
| | - Ana Maria Vega-Letter
- Laboratorio de Inmunología Celular y Molecular, Centro de Investigación Biomédica, Facultad de Medicina, Universidad de Los Andes, Santiago 7620001, Chile;
- Centro de Investigación e Innovación Biomédica, Universidad de los Andes, Santiago 7620157, Chile
| | - Paola Murgas
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Escuela de Tecnología Médica, Universidad Mayor, Santiago 7500000, Chile
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 7500000, Chile
| | - Maria Fernanda Hernandez
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Laura Gomez
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Luis Labrador
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Bastián I. Cortés
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
| | - Cristian Poblete
- Laboratorio de Morfofisiopatología y Citodiagnóstico, Escuela de Tecnología Médica, Facultad de Ciencias, Universidad Mayor, Santiago 7500000, Chile;
| | - Cristobal Quijada
- Servicio de Anatomía Patológica, Hospital Clínico de la Universidad de Chile, Santiago 8380456, Chile;
| | - Flavio Carrion
- Programa de Inmunología Translacional, Facultad de Medicina, Universidad del Desarrollo Clínica Alemana, Santiago 7590943, Chile;
- Departamento de Investigación, Postgrado y Educación Contínua (DIPEC), Facultad de Ciencias de la Salud, Universidad del Alba, Santiago 8320000, Chile
| | - Ute Woehlbier
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Escuela de Biotecnología, Facultad de Ciencias, Universidad Mayor, Santiago 7500000, Chile
- Correspondence: (U.W.); (P.A.M.)
| | - Patricio A. Manque
- Center for Integrative Biology (CIB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile; (C.A.B.); (S.B.); (P.M.); (M.F.H.); (L.G.); (L.L.); (B.I.C.)
- Center for Genomics and Bioinformatics (CGB), Faculty of Science, Universidad Mayor, Santiago 7500000, Chile
- Centro de Oncologia de Precision (COP), Escuela de Medicina, Universidad Mayor, Santiago 7500000, Chile
- Correspondence: (U.W.); (P.A.M.)
| |
Collapse
|