1
|
Mou R, Ma J, Ju X, Wu Y, Chen Q, Li J, Shang T, Chen S, Yang Y, Li Y, Lv K, Chen X, Zhang Q, Liang T, Feng Y, Lu X. Vasopressin drives aberrant myeloid differentiation of hematopoietic stem cells, contributing to depression in mice. Cell Stem Cell 2024:S1934-5909(24)00358-8. [PMID: 39442524 DOI: 10.1016/j.stem.2024.09.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 07/18/2024] [Accepted: 09/23/2024] [Indexed: 10/25/2024]
Abstract
Psychological stress is often linked to depression and can also impact the immune system, illustrating the interconnectedness of mental health and immune function. Hematopoietic stem cells (HSCs) can directly sense neuroendocrine signals in bone marrow and play a fundamental role in the maintenance of immune homeostasis. However, it is unclear how psychological stress impacts HSCs in depression. Here, we report that neuroendocrine factor arginine vasopressin (AVP) promotes myeloid-biased HSC differentiation by activating neutrophils. AVP administration increases neutrophil and Ly6Chi monocyte production by triggering HSCs that rely on intrinsic S100A9 in mice. When stimulated with AVP, neutrophils return to the bone marrow and release interleukin 36G (IL-36G), which interacts with interleukin 1 receptor-like 2 (IL-1RL2) on HSCs to produce neutrophils with high Elane expression that infiltrate the brain and induce neuroinflammation. Together, these findings define HSCs as a relay between psychological stress and myelopoiesis and identify the IL-36G-IL-1RL2 axis as a potential target for depression therapy.
Collapse
Affiliation(s)
- Rong Mou
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Junkai Ma
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xuan Ju
- Affiliated Mental Health Center & Hangzhou Seventh People's Hospital, Zhejiang University School of Medicine, Hangzhou 310013, Zhejiang, China
| | - Yixin Wu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, Zhejiang, China
| | - Qiuli Chen
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Jinglin Li
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tongyao Shang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Siying Chen
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; State Key Laboratory for Quality and Safety of Agro-products, Ningbo University, Ningbo 315211, Zhejiang, China
| | - Yue Yang
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Yue Li
- Zhejiang Key Laboratory of Precision Diagnosis and Therapy for Major Gynecological Diseases, Women's Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Kaosheng Lv
- Hunan Key Laboratory of Animal Models and Molecular Medicine, School of BioMedical Sciences, Hunan University, Changsha 410028, Hunan, China
| | - Xuequn Chen
- Department of Neurology of Second Affiliated Hospital and School of Brain Science and Brain Medicine, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Qi Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Tingbo Liang
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ye Feng
- Sir Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| | - Xinjiang Lu
- Department of Physiology and Department of Hepatobiliary and Pancreatic Surgery of the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
2
|
Sugiura K, Fujita H, Komine M, Yamanaka K, Akiyama M. The role of interleukin-36 in health and disease states. J Eur Acad Dermatol Venereol 2024; 38:1910-1925. [PMID: 38779986 DOI: 10.1111/jdv.19935] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2023] [Accepted: 01/29/2024] [Indexed: 05/25/2024]
Abstract
The interleukin (IL)-1 superfamily upregulates immune responses and maintains homeostasis between the innate and adaptive immune systems. Within the IL-1 superfamily, IL-36 plays a pivotal role in both innate and adaptive immune responses. Of the four IL-36 isoforms, three have agonist activity (IL-36α, IL-36β, IL-36γ) and the fourth has antagonist activity (IL-36 receptor antagonist [IL-36Ra]). All IL-36 isoforms bind to the IL-36 receptor (IL-36R). Binding of IL-36α/β/γ to the IL-36R recruits the IL-1 receptor accessory protein (IL-1RAcP) and activates downstream signalling pathways mediated by nuclear transcription factor kappa B and mitogen-activated protein kinase signalling pathways. Antagonist binding of IL-36Ra to IL-36R inhibits recruitment of IL-1RAcP, blocking downstream signalling pathways. Changes in the balance within the IL-36 cytokine family can lead to uncontrolled inflammatory responses throughout the body. As such, IL-36 has been implicated in numerous inflammatory diseases, notably a type of pustular psoriasis called generalized pustular psoriasis (GPP), a chronic, rare, potentially life-threatening, multisystemic skin disease characterised by recurrent fever and extensive sterile pustules. In GPP, IL-36 is central to disease pathogenesis, and the prevention of IL-36-mediated signalling can improve clinical outcomes. In this review, we summarize the literature describing the biological functions of the IL-36 pathway. We also consider the evidence for uncontrolled activation of the IL-36 pathway in a wide range of skin (e.g., plaque psoriasis, pustular psoriasis, hidradenitis suppurativa, acne, Netherton syndrome, atopic dermatitis and pyoderma gangrenosum), lung (e.g., idiopathic pulmonary fibrosis), gut (e.g., intestinal fibrosis, inflammatory bowel disease and Hirschsprung's disease), kidney (e.g., renal tubulointerstitial lesions) and infectious diseases caused by a variety of pathogens (e.g., COVID-19; Mycobacterium tuberculosis, Pseudomonas aeruginosa, Streptococcus pneumoniae infections), as well as in cancer. We also consider how targeting the IL-36 signalling pathway could be used in treating inflammatory disease states.
Collapse
Affiliation(s)
- Kazumitsu Sugiura
- Department of Dermatology, Fujita Health University School of Medicine, Toyoake, Japan
| | - Hideki Fujita
- Department of Dermatology, Nihon University School of Medicine, Tokyo, Japan
| | - Mayumi Komine
- Department of Dermatology, Faculty of Medicine, Jichi Medical University, Tochigi, Japan
| | - Keiichi Yamanaka
- Department of Dermatology, Graduate School of Medicine, Mie University, Tsu, Japan
| | - Masashi Akiyama
- Department of Dermatology, Nagoya University Graduate School of Medicine, Nagoya, Japan
| |
Collapse
|
3
|
Zhan ZY, Jiang M, Zhang ZH, An YM, Wang XY, Wu YL, Nan JX, Lian LH. NETs contribute to psoriasiform skin inflammation: A novel therapeutic approach targeting IL-36 cytokines by a small molecule tetrahydroxystilbene glucoside. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 131:155783. [PMID: 38838402 DOI: 10.1016/j.phymed.2024.155783] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/27/2024] [Revised: 03/09/2024] [Accepted: 05/26/2024] [Indexed: 06/07/2024]
Abstract
BACKGROUND Psoriasis, a chronic immune-mediated skin disease with pathological features such as aberrant differentiation of keratinocytes, dermal-epidermal inflammation, and angiogenesis. 2,3,5,4'-Tetrahydroxy stilbene 2-Ο-β-d-glucoside (2354Glu) is a natural small molecule polyhydrostilbenes isolated from Polygonum multiglorum Thunb. The regulation of IL-36 subfamily has led to new pharmacologic strategies to reverse psoriasiform dermatitis. PURPOSE Here we investigated the therapeutic potential of 2354Glu and elucidated the underlying mechanism in psoriasis. METHODS The effects of 2354Glu on IL-36 signaling were assessed by psoriasiform in vivo, in vitro and ex vivo model. The in vivo mice model of psoriasis-like skin inflammation was established by applying imiquimod (IMQ), and the in vitro and ex vitro models were established by stimulating mouse primary keratinocyte, human keratinocytes cells (HaCaT) and ex vivo skin tissue isolated from the mice back with Polyinosine-polycytidylic acid (Poly(I:C)), IMQ, IL-36γ and Lipopolysaccharide (LPS) respectively. Moreover, NETs formation was inhibited by Cl-amidine to evaluate the effect of NETs in psoriatic mouse model. The effects of 2354Glu on skin inflammation were assessed by western blot, H&E, immunohistochemistry, immunofluorescence, enzyme-linked immunosorbent assay and real-time quantitative PCR. RESULTS In Poly(I:C)-stimulated keratinocytes, the secretion of IL-36 was inhibited after treatment with 2354Glu, similar to the effects of TLR3, P2X7R and caspase-1 inhibitors. In aldara (imiquimod)-induced mice, 2354Glu (100 and 25 mg/kg) improved immune cell infiltration and hyperkeratosis in psoriasis by directly targeting IL-36 in keratinocytes through P2X7R-caspase-1. When treatment with 2354Glu (25 mg/kg) was insufficient to inhibit IL-36γ, NETs reduced pathological features and IL-36 signaling by interacting with keratinocytes to combat psoriasis like inflammation. CONCLUSION These results indicated that NETs had a beneficial effect on psoriasiform dermatitis. 2354Glu alleviates psoriasis by directly targeting IL-36/P2X7R axis and NET formation, providing a potential candidate for the treatment of psoriasis.
Collapse
Affiliation(s)
- Zi-Ying Zhan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Min Jiang
- Department of Pharmacology, Binzhou Medical University, Yantai Campus, Yantai, Shandong Province, China
| | - Zhi-Hong Zhang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ying-Mei An
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Xiang-Yuan Wang
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Yan-Ling Wu
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China
| | - Ji-Xing Nan
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| | - Li-Hua Lian
- Key Laboratory of Traditional Chinese Korean Medicine Research of State Ethnic Affairs Commission, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China; Key Laboratory of Natural Medicines of the Changbai Mountain, Ministry of Education, College of Pharmacy, Yanbian University, Yanji 133002, Jilin Province, China.
| |
Collapse
|
4
|
Zhang Y, Jia W, Wang X, Mao Q, Luo L, Kong L, Guo Y, Mo R, Bu W, Li C. Inflammatory loop involving Staphylococcus aureus, IL-36γ, and cathepsin S drives immunity disorders in familial acne inversa keratinocytes. Heliyon 2024; 10:e31509. [PMID: 38947455 PMCID: PMC11214400 DOI: 10.1016/j.heliyon.2024.e31509] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 05/13/2024] [Accepted: 05/16/2024] [Indexed: 07/02/2024] Open
Abstract
Acne inversa (AI) is an inflammatory skin disease associated with nicastrin (NCSTN) mutations. Despite the dysregulated bacterial-host immune interactions being an essential event in AI, the interaction between bacteria and keratinocytes in AI pathophysiology remains unclear. In this study, the NCSTN gene was suppressed using short hairpin RNA in HaCaT cells. Using RNA sequencing, real-time polymerase chain reaction, and western blotting, the expression of IL-36 cytokines was analyzed. The impact of Staphylococcus aureus on AI keratinocyte inflammation and underlying regulatory molecules was investigated by exposing the HaCaT cells to S. aureus. By stimulating NCSTN knockdown HaCaT cells with IFN-γ, the expression and regulatory mechanism of Cathepsin S (Cat S), an IL-36γ cleavage and activating protease, were investigated. After NCSTN knockdown, the IL-36α expression increased, and the IL-36Ra expression was downregulated. NCSTN/MEK/ERK impairment-induced Krüppel-like factor 4 (KLF4) up-regulation in concert with S. aureus-induced nuclear factor kappa B elevation acts synergistically to promote IL-36γ production with the subsequent IL-8 activation in HaCaT cells. NCSTN/MEK/ERK impairment was also observed in familial AI lesions. IFN-γ-induced Cat S in keratinocytes was enhanced after NCSTN knockdown. The expression of IFN-II pathway molecules was significantly upregulated in both NCSTN knockdown HaCaT cells and familial AI lesions. The Cat S expression was significantly elevated in the patient's AI lesions. Our findings suggested a synergistic relationship between S. aureus and NCSTN/MAPK/KLF4 axis in IL-36γ-induced familial AI keratinocytes.
Collapse
Affiliation(s)
- Yuanyuan Zhang
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
- Department of Dermatology and Venereology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210008, China
| | - Weixue Jia
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Xue Wang
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Qiuxia Mao
- Department of Dermatology, Jiangyin Hospital of Traditional Chinese Medicine, Jiangyin Hospital Affiliated to Nanjing University of Chinese Medicine, Jiangyin, Jiangsu, 214400, China
| | - Lingling Luo
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Lingzhuo Kong
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Youming Guo
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Ran Mo
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Wenbo Bu
- Institute of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and STIs, Chinese Academy of Medical Science & Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| | - Chengrang Li
- Hospital for Skin Diseases (Institute of Dermatology), Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, 210042, China
| |
Collapse
|
5
|
Sato E, Imayoshi H, Tsutsui Y, Shimizu H, Imafuku S. Mature IL-36γ Induces Stratum Corneum Exfoliation in Generalized Pustular Psoriasis by Suppressing Corneodesmosin. J Invest Dermatol 2024; 144:764-773.e4. [PMID: 37827276 DOI: 10.1016/j.jid.2023.09.267] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/31/2023] [Accepted: 09/19/2023] [Indexed: 10/14/2023]
Abstract
Loss-of-function sequence variations in the IL36RN gene encoding IL-36 receptor antagonist cause familial generalized pustular psoriasis, which begins shortly after birth and is difficult to treat, and its effects on the epidermis are unclear. This study investigated the involvement of IL-36 receptor agonists in the epidermal formation of generalized pustular psoriasis. We found that the IL-36 receptor agonists, especially mature IL-36γ, stimulated IL-8 and pro-IL-36γ production in the epidermis while downregulating the genes encoding epidermal cornified envelope-related proteins, for example, corneodesmosin. IL-36 receptor antagonist and monoclonal anti-IL-36γ antibodies counteracted the effect of mature IL-36γ on corneodesmosin in keratinocytes in a dose-dependent manner. In the epidermis of patients with generalized pustular psoriasis with IL36RN loss-of-function sequence variations, pro-IL-36γ was overproduced in the epidermis, and corneodesmosin protein expression was markedly decreased in the region of giant subcorneal pustules (Kogoj's spongiform pustules), with high neutrophil infiltration. IL-8 induced by mature IL-36γ stimulated the infiltration of several neutrophils in the epidermis. The newly produced pro-IL-36γ is cleaved to the mature form by neutrophil proteases. This newly produced mature IL-36γ was predicted to further suppress the gene expression of corneodesmosin, leading to significant stratum corneum exfoliation and formation of the pustules. Overall, our results elucidate the mechanism underlying the formation of Kogoj's spongiform pustules in generalized pustular psoriasis.
Collapse
Affiliation(s)
- Emi Sato
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan.
| | - Hiroko Imayoshi
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Yuki Tsutsui
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Hiroki Shimizu
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| | - Shinichi Imafuku
- Department of Dermatology, Faculty of Medicine, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
6
|
Ahmad F, Alam MA, Ansari AW, Jochebeth A, Leo R, Al-Abdulla MN, Al-Khawaga S, AlHammadi A, Al-Malki A, Al Naama K, Ahmad A, Buddenkotte J, Steinhoff M. Emerging Role of the IL-36/IL-36R Axis in Multiple Inflammatory Skin Diseases. J Invest Dermatol 2024; 144:206-224. [PMID: 38189700 DOI: 10.1016/j.jid.2023.11.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2023] [Revised: 10/26/2023] [Accepted: 11/14/2023] [Indexed: 01/09/2024]
Abstract
IL-36 is a most recent member of the IL-1 cytokine family, primarily expressed at barrier sites of the body such as the skin, lungs, and intestine. It plays a vital role in inflammation and is implicated in the development of various cutaneous; intestinal; and pulmonary disorders, including psoriasis, inflammatory bowel disease, and chronic obstructive pulmonary disease. IL-36 comprises 4 isoforms: the proinflammatory IL-36α, IL-36β, and IL-36γ and the anti-inflammatory IL-36R antagonist. An imbalance between proinflammatory and anti-inflammatory IL-36 isoforms can contribute to the inflammatory fate of cells and tissues. IL-36 cytokines signal through an IL-36R heterodimer mediating their function through canonical signaling cacade, including the NF-B pathway. Prominent for its role in psoriasis, IL-36 has recently been associated with disease mechanisms in atopic dermatitis, hidradenitis suppurativa, neutrophilic dermatoses, autoimmune blistering disease, and Netherton syndrome. The major cutaneous source of IL-36 cytokines is keratinocytes, pointing to its role in the communication between the epidermis, innate (neutrophils, dendritic cells) immune system, and adaptive (T helper [Th]1 cells, Th17) immune system. Thus, cutaneous IL-36 signaling is crucial for the immunopathological outcome of various skin diseases. Consequently, the IL-36/IL-36R axis has recently been recognized as a promising drug target for the treatment of inflammatory disorders beyond psoriasis. This review summarizes the current update on IL-36 cytokines in inflammatory skin diseases.
Collapse
Affiliation(s)
- Fareed Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Majid Ali Alam
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Abdul Wahid Ansari
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Anh Jochebeth
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Rari Leo
- Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | | | - Sara Al-Khawaga
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Ayda AlHammadi
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aysha Al-Malki
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Khalifa Al Naama
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar
| | - Aamir Ahmad
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar
| | - Jörg Buddenkotte
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar.
| | - Martin Steinhoff
- Department of Dermatology and Venereology, Hamad Medical Corporation, Doha, Qatar; Dermatology Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Translational Research Institute, Academic Health System, Hamad Medical Corporation, Doha, Qatar; Medical School, Qatar University, Doha, Qatar; Weill Cornell Medicine, Weill Cornell University, New York, New York, USA; Weill Cornell Medicine-Qatar, Doha, Qatar.
| |
Collapse
|
7
|
Bombassaro A, Figueiredo JM, Taborda CP, Joosten LAB, Vicente VA, Queiroz-Telles F, Meis JF, Kischkel B. Skin innate immune response against fungal infections and the potential role of trained immunity. Mycoses 2024; 67. [PMID: 38282360 DOI: 10.1111/myc.13682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Revised: 11/27/2023] [Accepted: 11/28/2023] [Indexed: 01/30/2024]
Abstract
Fungal skin infections are distributed worldwide and can be associated with economic and social traits. The immune response related to skin cells is complex and its understanding is essential to the comprehension of each cell's role and the discovery of treatment alternatives. The first studies of trained immunity (TI) described the ability of monocytes, macrophages and natural killer (NK) cells to develop a memory-like response. However, the duration of TI does not reflect the shorter lifespan of these cells. These conclusions supported later studies showing that TI can be observed in stem and haematopoietic cells and, more recently, also in non-immune skin cells such as fibroblasts, highlighting the importance of resident cells in response to skin disorders. Besides, the participation of less studied proinflammatory cytokines in the skin immune response, such as IL-36γ, shed light into a new possibility of inflammatory pathway blockade by drugs. In this review, we will discuss the skin immune response associated with fungal infections, the role of TI in skin and clinical evidence supporting opportunities and challenges of TI and other inflammatory responses in the pathogenesis of fungal skin infections.
Collapse
Affiliation(s)
- Amanda Bombassaro
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
| | - Julia Marcondes Figueiredo
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
| | - Carlos P Taborda
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Dermatology, LIM53, Institute of Tropical Medicine, University of São Paulo, São Paulo, Brazil
| | - Leo A B Joosten
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
- Department of Medical Genetics, Iuliu Hatieganu University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Vania A Vicente
- Program in Microbiology, Parasitology and Pathology, Biological Sciences, Department of Basic Pathology, Federal University of Paraná, Curitiba, Brazil
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
| | - Flavio Queiroz-Telles
- Department of Public Health, Hospital de Clínicas, Federal University of Paraná, Curitiba, Brazil
| | - Jacques F Meis
- Department of Medical Microbiology and Infectious Diseases, Canisius-Wilhelmina Hospital, Nijmegen, The Netherlands
- Engineering Bioprocess and Biotechnology Post-graduation Program, Department of Bioprocess Engineering and Biotechnology, Federal University of Paraná, Curitiba, Brazil
- Department I of Internal Medicine, University of Cologne, Faculty of Medicine and University Hospital Cologne, Excellence Center for Medical Mycology, Cologne, Germany
| | - Brenda Kischkel
- Department of Microbiology, Institute of Biomedical Sciences, University of São Paulo, São Paulo, Brazil
- Department of Internal Medicine and Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Zhang J, Shu J, Sun H, Zhai T, Li H, Li H, Sun Y, Huo R, Shen B, Sheng H. CCN1 upregulates IL-36 via AKT/NF-κB and ERK/CEBP β-mediated signaling pathways in psoriasis-like models. J Dermatol 2023; 50:337-348. [PMID: 36376243 DOI: 10.1111/1346-8138.16611] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/26/2022] [Accepted: 09/25/2022] [Indexed: 11/16/2022]
Abstract
Psoriasis is a chronic skin disorder characterized by epidermal keratinocyte hyperproliferation and inflammatory infiltration. CCN1 (also termed CYR61 or cysteine-rich angiogenic inducer 61) is an extracellular matrix-associated protein that is involved in multiple physiological functions. In psoriasis, we recently demonstrated that the overexpression of CCN1 promoted keratinocyte proliferation and activation. Furthermore, CCN1 was highly expressed in psoriatic skin lesions from psoriasis vulgaris patients. Here, we dissect the underlying molecular mechanism in imiquimod (IMQ) and interleukin (IL)-23-induced psoriasis-like models. Our results demonstrate that CCN1 can significantly upregulate IL-36 production in the murine skin of IMQ and IL-23-induced psoriasis-like models. Injection of CCN1-neutralizing antibody improved epidermal acanthosis and significantly reduced IL-36 production in vivo. These results suggest that CCN1 can be a critical upstream pro-inflammatory factor in psoriasis. In primary normal human epidermal keratinocytes, we demonstrated that CCN1 can selectively induced the production of IL-36α and IL-36γ through the activation of the protein kinase B (AKT)/nuclear factor kappa light chain enhancer of activated B cells (NF-κB) and extracellular-regulated kinase (ERK)/CCAAT/enhancer binding protein β (CEBPβ) signaling pathways via integrin receptor α6β1 in vitro. Our results suggest that targeting CCN1 can be a potential therapeutic strategy for psoriasis.
Collapse
Affiliation(s)
- Jie Zhang
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Jie Shu
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hanxiao Sun
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Tianhang Zhai
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huidan Li
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haichuan Li
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yue Sun
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rongfen Huo
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baihua Shen
- Shanghai Institute of Immunology & Department of Immunology and Microbiology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huiming Sheng
- Department of Clinical Laboratory of Tongren Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
9
|
Sullivan GP, Davidovich P, Muñoz-Wolf N, Ward RW, Hernandez Santana YE, Clancy DM, Gorman A, Najda Z, Turk B, Walsh PT, Lavelle EC, Martin SJ. Myeloid cell-derived proteases produce a proinflammatory form of IL-37 that signals via IL-36 receptor engagement. Sci Immunol 2022; 7:eade5728. [PMID: 36525507 DOI: 10.1126/sciimmunol.ade5728] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Interleukin-1 (IL-1) family cytokines are key barrier cytokines that are typically expressed as inactive, or partially active, precursors that require proteolysis within their amino termini for activation. IL-37 is an enigmatic member of the IL-1 family that has been proposed to be activated by caspase-1 and to exert anti-inflammatory activity through engagement of the IL-18R and SIGIRR. However, here we show that the longest IL-37 isoform, IL-37b, exhibits robust proinflammatory activity upon amino-terminal proteolysis by neutrophil elastase or cathepsin S. In sharp contrast, caspase-1 failed to process or activate IL-37 at concentrations that robustly activated its canonical substrate, IL-1β. IL-37 and IL-36 exhibit high structural homology, and, consistent with this, a K53-truncated form of IL-37, mimicking the cathepsin S-processed form of this cytokine, was found to exert its proinflammatory effects via IL-36 receptor engagement and produced an inflammatory signature practically identical to IL-36. Administration of K53-truncated IL-37b intraperitoneally into wild-type mice also elicited an inflammatory response that was attenuated in IL-36R-/- animals. These data demonstrate that, in common with other IL-1 family members, mature IL-37 can also elicit proinflammatory effects upon processing by specific proteases.
Collapse
Affiliation(s)
- Graeme P Sullivan
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Pavel Davidovich
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Natalia Muñoz-Wolf
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland.,4National Children's Research Centre, CHI-Crumlin, Dublin, Ireland
| | - Ross W Ward
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | | | - Danielle M Clancy
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Aoife Gorman
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Zaneta Najda
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| | - Boris Turk
- Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Patrick T Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College, Dublin 2, Ireland.,Department of Biochemistry, Molecular and Structural Biology, Jožef Stefan Institute, Ljubljana, Slovenia
| | - Ed C Lavelle
- Adjuvant Research Group, School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin 2, Ireland
| | - Seamus J Martin
- Molecular Cell Biology Laboratory, Department of Genetics, Smurfit Institute, Trinity College, Dublin 2, Ireland
| |
Collapse
|
10
|
Dong H, Hao Y, Li W, Yang W, Gao P. IL-36 Cytokines: Their Roles in Asthma and Potential as a Therapeutic. Front Immunol 2022; 13:921275. [PMID: 35903102 PMCID: PMC9314646 DOI: 10.3389/fimmu.2022.921275] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
Interleukin (IL)-36 cytokines are members of the IL-1 superfamily, which consists of three agonists (IL-36α, IL-36β and IL-36γ) and an IL-36 receptor antagonist (IL-36Ra). IL-36 cytokines are crucial for immune and inflammatory responses. Abnormal levels of IL-36 cytokine expression are involved in the pathogenesis of inflammation, autoimmunity, allergy and cancer. The present study provides a summary of recent reports on IL-36 cytokines that participate in the pathogenesis of inflammatory diseases, and the potential mechanisms underlying their roles in asthma. Abnormal levels of IL-36 cytokines are associated with the pathogenesis of different types of asthma through the regulation of the functions of different types of cells. Considering the important role of IL-36 cytokines in asthma, these may become a potential therapeutic target for asthma treatment. However, existing evidence is insufficient to fully elucidate the specific mechanism underlying the action of IL-36 cytokines during the pathological process of asthma. The possible mechanisms and functions of IL-36 cytokines in different types of asthma require further studies.
Collapse
Affiliation(s)
- Hongna Dong
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Yuqiu Hao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Li
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
| | - Wei Yang
- Department of Immunology, College of Basic Medical Sciences, Jilin University, Changchun, China
| | - Peng Gao
- Department of Respiratory Medicine, The Second Hospital of Jilin University, Changchun, China
- *Correspondence: Peng Gao,
| |
Collapse
|
11
|
Zhu J, Xu Y, Li Z, Liu S, Fu W, Wei Y. Interleukin-36β exacerbates DSS-induce acute colitis via inhibiting Foxp3+ regulatory T cell response and increasing Th2 cell response. Int Immunopharmacol 2022; 108:108762. [DOI: 10.1016/j.intimp.2022.108762] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2022] [Revised: 03/18/2022] [Accepted: 04/03/2022] [Indexed: 12/28/2022]
|
12
|
Hernandez Santana YE, Irwin N, Walsh PT. IL-36: a therapeutic target for ulcerative colitis? Expert Opin Ther Targets 2022; 26:507-512. [PMID: 35634891 DOI: 10.1080/14728222.2022.2084381] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Yasmina E Hernandez Santana
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Naoise Irwin
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| | - Patrick T Walsh
- National Children's Research Centre, Children's Health Ireland Crumlin, Dublin 12, Ireland.,Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Ireland
| |
Collapse
|
13
|
Yang W, Dong H, Wang P, Xu Z, Xian J, Chen J, Wu H, Lou Y, Lin D, Zhong B. IL-36γ and IL-36Ra Reciprocally Regulate Colon Inflammation and Tumorigenesis by Modulating the Cell-Matrix Adhesion Network and Wnt Signaling. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2103035. [PMID: 35119210 PMCID: PMC8981487 DOI: 10.1002/advs.202103035] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 12/14/2021] [Indexed: 05/07/2023]
Abstract
Inflammatory bowel disease and colorectal cancer are associated with dysregulation of cytokine networks. However, it is challenging to target cytokines for effective intervention because of the overlapping functions and unpredictable interactions of cytokines in such diverse networks. Here, it is shown that IL-36γ and IL-36Ra, an agonist and an antagonist for IL-36R signaling respectively, reciprocally regulate the experimental colitis and the colon cancer development in mice. Knockout or neutralization of IL-36γ alleviates dextran sulfate sodium (DSS)-induced colitis and inhibits colon cancer development, whereas knockout of IL-36Ra exacerbates DSS-induced colitis and promotes colonic tumorigenesis in multiple colon cancer models in mice. Mechanistically, IL-36γ upregulates extracellular matrix and cell-matrix adhesion molecules and facilitates Wnt signaling, which is mitigated by IL-36Ra or IL-36γ neutralizing antibody. Consistently, IL-36γ levels are positively correlated with extracellular matrix levels and β-catenin levels in human colorectal tumor biopsies. These findings suggest the critical role of IL-36γ and IL-36Ra in gut inflammation and tumorigenesis and indicate that targeting the IL-36γ/IL-36Ra signal balance provides potential therapeutic strategy for inflammatory bowel disease and gastrointestinal cancers.
Collapse
Affiliation(s)
- Wei Yang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Hong‐Peng Dong
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Peng Wang
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
| | - Zhi‐Gao Xu
- Institute of Hepatobiliary Diseases and Transplant CenterZhongnan Hospital of Wuhan UniversityWuhan430071China
| | - Jiahuan Xian
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Jiachen Chen
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Hai Wu
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Yang Lou
- Yurogen Biosystems LLC (Wuhan)666 Gaoxin Avenue, Building C6, Donghu DistrictWuhan430064China
| | - Dandan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430061China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryMedical Research InstituteZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Department of VirologyCollege of Life SciencesWuhan UniversityWuhan430072China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| |
Collapse
|
14
|
Peñaloza HF, van der Geest R, Ybe JA, Standiford TJ, Lee JS. Interleukin-36 Cytokines in Infectious and Non-Infectious Lung Diseases. Front Immunol 2021; 12:754702. [PMID: 34887860 PMCID: PMC8651476 DOI: 10.3389/fimmu.2021.754702] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/14/2021] [Indexed: 12/26/2022] Open
Abstract
The IL-36 family of cytokines were identified in the early 2000’s as a new subfamily of the IL-1 cytokine family, and since then, the role of IL-36 cytokines during various inflammatory processes has been characterized. While most of the research has focused on the role of these cytokines in autoimmune skin diseases such as psoriasis and dermatitis, recent studies have also shown the importance of IL-36 cytokines in the lung inflammatory response during infectious and non-infectious diseases. In this review, we discuss the biology of IL-36 cytokines in terms of how they are produced and activated, as well as their effects on myeloid and lymphoid cells during inflammation. We also discuss the role of these cytokines during lung infectious diseases caused by bacteria and influenza virus, as well as other inflammatory conditions in the lungs such as allergic asthma, lung fibrosis, chronic obstructive pulmonary disease, cystic fibrosis and cancer. Finally, we discuss the current therapeutic advances that target the IL-36 pathway and the possibility to extend these tools to treat lung inflammatory diseases.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, IN, United States
| | - Theodore J Standiford
- Division of Pulmonary and Critical Care Medicine, University of Michigan, Ann Arbor, MI, United States
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.,Vascular Medicine Institute, University of Pittsburgh, Pittsburgh, PA, United States
| |
Collapse
|
15
|
Wang P, Yang W, Guo H, Dong H, Guo Y, Gan H, Wang Z, Cheng Y, Deng Y, Xie S, Yang X, Lin D, Zhong B. IL-36γ and IL-36Ra Reciprocally Regulate NSCLC Progression by Modulating GSH Homeostasis and Oxidative Stress-Induced Cell Death. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101501. [PMID: 34369094 PMCID: PMC8498882 DOI: 10.1002/advs.202101501] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 05/31/2021] [Indexed: 05/05/2023]
Abstract
The balance between antioxidants and reactive oxygen species (ROS) critically regulates tumor initiation and progression. However, whether and how the tumor-favoring redox status is controlled by cytokine networks remain poorly defined. Here, it is shown that IL-36γ and IL-36Ra reciprocally regulate the progression of non-small cell lung cancer (NSCLC) by modulating glutathione metabolism and ROS resolution. Knockout, inhibition, or neutralization of IL-36γ significantly inhibits NSCLC progression and prolongs survival of the KrasLSL-G12D/+ Tp53fl/fl and KrasLSL-G12D/+ Lkb1fl/fl mice after tumor induction, whereas knockout of IL-36Ra exacerbates tumorigenesis in these NSCLC mouse models and accelerates death of mice. Mechanistically, IL-36γ directly upregulates an array of genes involved in glutathione homeostasis to reduce ROS and prevent oxidative stress-induced cell death, which is mitigated by IL-36Ra or IL-36γ neutralizing antibody. Consistently, IL-36γ staining is positively and negatively correlated with glutathione biosynthesis and ROS in human NSCLC tumor biopsies, respectively. These findings highlight essential roles of cytokine networks in redox for tumorigenesis and provide potential therapeutic strategy for NSCLC.
Collapse
Affiliation(s)
- Peng Wang
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| | - Wei Yang
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hao Guo
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hong‐Peng Dong
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Yu‐Yao Guo
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Hu Gan
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
| | - Zou Wang
- Wuhan Biobank Co., Ltd, WuhanWuhan430075China
| | | | - Yu Deng
- Department of Thoracic SurgeryTongji HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shizhe Xie
- CAS Key Laboratory of Special PathogensWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Xinglou Yang
- CAS Key Laboratory of Special PathogensWuhan Institute of VirologyCenter for Biosafety Mega‐ScienceChinese Academy of SciencesWuhan430071China
- University of Chinese Academy of SciencesBeijing100049China
| | - Dandan Lin
- Cancer CenterRenmin Hospital of Wuhan UniversityWuhan430060China
| | - Bo Zhong
- Department of Gastrointestinal SurgeryCollege of Life SciencesZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of Pulmonary and Critical Care MedicineZhongnan Hospital of Wuhan UniversityWuhan430071China
- Department of ImmunologyMedical Research Institute and Frontier Science Center for Immunology and MetabolismWuhan UniversityWuhan430071China
- Wuhan Research Center for Infectious Diseases and CancerChinese Academy of Medical SciencesWuhan430071China
| |
Collapse
|
16
|
Boersma B, Jiskoot W, Lowe P, Bourquin C. The interleukin-1 cytokine family members: Role in cancer pathogenesis and potential therapeutic applications in cancer immunotherapy. Cytokine Growth Factor Rev 2021; 62:1-14. [PMID: 34620560 DOI: 10.1016/j.cytogfr.2021.09.004] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 09/20/2021] [Indexed: 02/06/2023]
Abstract
The interleukin-1 (IL-1) family is one of the first described cytokine families and consists of eight cytokines (IL-1β, IL-1α, IL-18, IL-33, IL-36α, IL-36β, IL-36γ and IL-37) and three receptor antagonists (IL-1Ra, IL-36Ra and IL-38). The family members are known to play an essential role in inflammation. The importance of inflammation in cancer has been well established in the past decades. This review sets out to give an overview of the role of each IL-1 family member in cancer pathogenesis and show their potential as potential anticancer drug candidates. First, the molecular structure is described. Next, both the pro- and anti-tumoral properties are highlighted. Additionally, a critical interpretation of current literature is given. To conclude, the IL-1 family is a toolbox with a collection of powerful tools that can be considered as potential drugs or drug targets.
Collapse
Affiliation(s)
- Bart Boersma
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland.
| | - Wim Jiskoot
- Division of BioTherapeutics, Leiden Academic Centre for Drug Research (LACDR), Leiden University, Einsteinweg 55, 2333 CC, Leiden, The Netherlands.
| | - Peter Lowe
- Department of Biomolecule Generation and Optimization, Institut de Recherche Pierre Fabre, Centre d'Immunologie Pierre Fabre, Saint-Julien-en-Genevois, France.
| | - Carole Bourquin
- Institute of Pharmaceutical Sciences of Western Switzerland, University of Geneva, 1211 Geneva, Switzerland; School of Pharmaceutical Sciences, University of Geneva, 1211 Geneva, Switzerland; Department of Anesthesiology, Pharmacology and Intensive Care, Faculty of Medicine, University of Geneva, 1211 Geneva, Switzerland.
| |
Collapse
|
17
|
Elias M, Zhao S, Le HT, Wang J, Neurath MF, Neufert C, Fiocchi C, Rieder F. IL-36 in chronic inflammation and fibrosis - bridging the gap? J Clin Invest 2021; 131:144336. [PMID: 33463541 DOI: 10.1172/jci144336] [Citation(s) in RCA: 70] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
IL-36 is a member of the IL-1 superfamily and consists of three agonists and one receptor antagonist (IL-36Ra). The three endogenous agonists, IL-36α, -β, and -γ, act primarily as proinflammatory cytokines, and their signaling through the IL-36 receptor (IL-36R) promotes immune cell infiltration and secretion of inflammatory and chemotactic molecules. However, IL-36 signaling also fosters secretion of profibrotic soluble mediators, suggesting a role in fibrotic disorders. IL-36 isoforms and IL-36 have been implicated in inflammatory diseases including psoriasis, arthritis, inflammatory bowel diseases, and allergic rhinitis. Moreover, IL-36 has been connected to fibrotic disorders affecting the kidney, lung, and intestines. This review summarizes the expression, cellular source, and function of IL-36 in inflammation and fibrosis in various organs, and proposes that IL-36 modulation may prove valuable in preventing or treating inflammatory and fibrotic diseases and may reveal a mechanistic link between inflammation and fibrosis.
Collapse
Affiliation(s)
- Michael Elias
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Shuai Zhao
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Hongnga T Le
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Jie Wang
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Henan Key Laboratory of Immunology and Targeted Drug, Xinxiang Medical University, Xinxiang, Henan Province, China
| | - Markus F Neurath
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Clemens Neufert
- Department of Medicine 1 and Deutsches Zentrum Immuntherapie DZI, Universitaetsklinikum Erlangen, University of Erlangen-Nürnberg, Erlangen, Germany
| | - Claudio Fiocchi
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| | - Florian Rieder
- Department of Inflammation and Immunity, Lerner Research Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Gastroenterology, Hepatology and Nutrition, Digestive Diseases and Surgery Institute, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
18
|
El-Kalioby M, El-Komy MHM, Said ER, Amer MA, Saadi DG, Nouredin Mohammed F, Rashed LA, El Desouky ED, AlOrbani AM. Downregulation of interleukin 36γ and its cleaver cathepsin G following treatment with narrow-band ultraviolet B phototherapy in psoriasis vulgaris. J DERMATOL TREAT 2021; 33:2358-2363. [PMID: 34376113 DOI: 10.1080/09546634.2021.1967265] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND Growing evidence suggests the important role of IL-36 in the pathogenesis of psoriasis. Cathepsin G is a neutrophil-derived protease that can activate IL-36γ. OBJECTIVE To assess the expression of IL-36γ and cathepsin G in psoriasis and to quantify the impact of treatment with narrow-band ultraviolet B phototherapy (NB-UVB) on their levels. METHODS This case-control study involved 26 patients with moderate-severe psoriasis and 25 healthy volunteers. Psoriasis patients eligible for phototherapy received 24 NB-UVB sessions. Punch skin biopsies were obtained from all participants at recruitment and after phototherapy from patients. Real-time PCR was utilized for quantitative assessment of IL-36γ and cathepsin G expression in tissue samples. RESULTS The expression of IL-36γ and cathepsin G was significantly higher in psoriasis before NB-UVB therapy compared to controls (p < .001). Both proteins decreased significantly with clinical improvement following NB-UVB therapy compared to baseline (p < .001). However, their expression after treatment was still higher than controls (p < .001). CONCLUSION IL-36γ and cathepsin G expression is upregulated in psoriatic lesions, supporting their role as mediators of inflammation in psoriasis. Downregulation of IL-36γ and cathepsin G is a possible mechanism for psoriasis improvement after NB-UVB therapy. IL-36 and cathepsin G can be considered as therapeutic targets for psoriasis.
Collapse
Affiliation(s)
- Mona El-Kalioby
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Kasr AL-Ainy Psoriasis Unit (KAPU), Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Mohamed H M El-Komy
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Kasr AL-Ainy Psoriasis Unit (KAPU), Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman R Said
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Kasr AL-Ainy Psoriasis Unit (KAPU), Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Marwa Ahmed Amer
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Kasr AL-Ainy Psoriasis Unit (KAPU), Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Dina G Saadi
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Kasr AL-Ainy Psoriasis Unit (KAPU), Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| | | | - Laila A Rashed
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Cairo University, Cairo, Egypt
| | - Eman D El Desouky
- Department of Epidemiology and Biostatistics, National Cancer Institute, Cairo University, Cairo, Egypt
| | - Aya M AlOrbani
- Department of Dermatology, Faculty of Medicine, Cairo University, Cairo, Egypt.,Kasr AL-Ainy Psoriasis Unit (KAPU), Dermatology Department, Faculty of Medicine, Cairo University, Cairo, Egypt
| |
Collapse
|
19
|
Establishment of an Intradermal Ear Injection Model of IL-17A and IL-36γ as a Tool to Investigate the Psoriatic Cytokine Network. Life (Basel) 2021; 11:life11080846. [PMID: 34440590 PMCID: PMC8402141 DOI: 10.3390/life11080846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/28/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
Psoriasis is a chronic skin disease affecting 2–3% of the global population. The proinflammatory IL-17A is a key cytokine in psoriasis. Accumulating evidence has revealed that IL-36γ plays also a pathogenic role. To understand more precisely the role of the IL-17A–IL-36γ cytokine network in skin pathology, we used an ear injection model. We injected IL-17A or IL-36γ alone and in combination into the ear pinnae of mice. This resulted in a significant increase in ear thickness measured over time. Histological evaluation of IL-17A + IL-36γ-treated skin showed a strong acanthosis, hyperparakeratosis and infiltration of neutrophils. The same histological features were found in mice after injection of IL-36γ alone, but to a lesser extent. IL-17A alone was not able to induce psoriasis-like changes. Genes encoding proteins of the S100 family, antimicrobial peptides and chemo-attractants for neutrophils were upregulated in the IL-17A + IL-36γ group. A much weaker expression was seen after the injection of each cytokine alone. These results strengthen the hypothesis that IL-17A and IL-36γ drive psoriatic inflammation via a synergistic interaction. Our established intradermal ear injection model can be utilized in the future to monitor effects of various inhibitors of this cytokine network.
Collapse
|
20
|
Byrne J, Baker K, Houston A, Brint E. IL-36 cytokines in inflammatory and malignant diseases: not the new kid on the block anymore. Cell Mol Life Sci 2021; 78:6215-6227. [PMID: 34365521 PMCID: PMC8429149 DOI: 10.1007/s00018-021-03909-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2021] [Revised: 07/27/2021] [Accepted: 07/29/2021] [Indexed: 11/02/2022]
Abstract
The IL-36 family of cytokines were first identified in 2000 based on their sequence homology to IL-1 cytokines. Over subsequent years, the ability of these cytokines to either agonise or antagonise an IL-1R homologue, now known as the IL-36 Receptor (IL-36R), was identified and these cytokines went through several cycles of renaming with the current nomenclature being proposed in 2010. Despite being identified over 20 years ago, it is only during the last decade that the function of these cytokines in health and disease has really begun to be appreciated, with both homeostatic functions in wound healing and response to infection, as well as pathological functions now ascribed. In the disease context, over activation of IL-36 has now been associated with many inflammatory diseases including Psoriasis and inflammatory bowel diseases, with roles in cancer also now being investigated. This review summarises the current knowledge of IL-36 biology, its role in inflammatory diseases and focuses on an emerging role for IL-36 in cancer.
Collapse
Affiliation(s)
- James Byrne
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Kevin Baker
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, Cork University Hospital, University College Cork, Clinical Sciences Building, Cork, Ireland. .,APC Microbiome Ireland, University College Cork, Cork, Ireland.
| |
Collapse
|
21
|
Peñaloza HF, Olonisakin TF, Bain WG, Qu Y, van der Geest R, Zupetic J, Hulver M, Xiong Z, Newstead MW, Zou C, Alder JK, Ybe JA, Standiford TJ, Lee JS. Thrombospondin-1 Restricts Interleukin-36γ-Mediated Neutrophilic Inflammation during Pseudomonas aeruginosa Pulmonary Infection. mBio 2021; 12:e03336-20. [PMID: 33824208 PMCID: PMC8092289 DOI: 10.1128/mbio.03336-20] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 02/25/2021] [Indexed: 01/05/2023] Open
Abstract
Interleukin-36γ (IL-36γ), a member of the IL-1 cytokine superfamily, amplifies lung inflammation and impairs host defense during acute pulmonary Pseudomonas aeruginosa infection. To be fully active, IL-36γ is cleaved at its N-terminal region by proteases such as neutrophil elastase (NE) and cathepsin S (CatS). However, it remains unclear whether limiting extracellular proteolysis restrains the inflammatory cascade triggered by IL-36γ during P. aeruginosa infection. Thrombospondin-1 (TSP-1) is a matricellular protein with inhibitory activity against NE and the pathogen-secreted Pseudomonas elastase LasB-both proteases implicated in amplifying inflammation. We hypothesized that TSP-1 tempers the inflammatory response during lung P. aeruginosa infection by inhibiting the proteolytic environment required for IL-36γ activation. Compared to wild-type (WT) mice, TSP-1-deficient (Thbs1-/-) mice exhibited a hyperinflammatory response in the lungs during P. aeruginosa infection, with increased cytokine production and an unrestrained extracellular proteolytic environment characterized by higher free NE and LasB, but not CatS activity. LasB cleaved IL-36γ proximally to M19 at a cleavage site distinct from those generated by NE and CatS, which cleave IL-36γ proximally to Y16 and S18, respectively. N-terminal truncation experiments in silico predicted that the M19 and the S18 isoforms bind the IL-36R complex almost identically. IL-36γ neutralization ameliorated the hyperinflammatory response and improved lung immunity in Thbs1-/- mice during P. aeruginosa infection. Moreover, administration of cleaved IL-36γ induced cytokine production and neutrophil recruitment and activation that was accentuated in Thbs1-/- mice lungs. Collectively, our data show that TSP-1 regulates lung neutrophilic inflammation and facilitates host defense by restraining the extracellular proteolytic environment required for IL-36γ activation.IMPORTANCEPseudomonas aeruginosa pulmonary infection can lead to exaggerated neutrophilic inflammation and tissue destruction, yet host factors that regulate the neutrophilic response are not fully known. IL-36γ is a proinflammatory cytokine that dramatically increases in bioactivity following N-terminal processing by proteases. Here, we demonstrate that thrombospondin-1, a host matricellular protein, limits N-terminal processing of IL-36γ by neutrophil elastase and the Pseudomonas aeruginosa-secreted protease LasB. Thrombospondin-1-deficient mice (Thbs1-/-) exhibit a hyperinflammatory response following infection. Whereas IL-36γ neutralization reduces inflammatory cytokine production, limits neutrophil activation, and improves host defense in Thbs1-/- mice, cleaved IL-36γ administration amplifies neutrophilic inflammation in Thbs1-/- mice. Our findings indicate that thrombospondin-1 guards against feed-forward neutrophilic inflammation mediated by IL-36γ in the lung by restraining the extracellular proteolytic environment.
Collapse
Affiliation(s)
- Hernán F Peñaloza
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Tolani F Olonisakin
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - William G Bain
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Yanyan Qu
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Rick van der Geest
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jill Zupetic
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Mei Hulver
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Zeyu Xiong
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Michael W Newstead
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Chunbin Zou
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Jonathan K Alder
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| | - Joel A Ybe
- Department of Environmental and Occupational Health, School of Public Health, Indiana University, Bloomington, Indiana, USA
| | - Theodore J Standiford
- Pulmonary and Critical Care Medicine, Department of Medicine, University of Michigan, Ann Arbor, Michigan, USA
| | - Janet S Lee
- Acute Lung Injury Center of Excellence, Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, Pennsylvania, USA
| |
Collapse
|
22
|
Ngo VL, Kuczma M, Maxim E, Denning TL. IL-36 cytokines and gut immunity. Immunology 2021; 163:145-154. [PMID: 33501638 DOI: 10.1111/imm.13310] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 01/12/2021] [Accepted: 01/13/2021] [Indexed: 12/19/2022] Open
Abstract
Interleukin 36 (IL-36) constitutes a group of cytokines that belong to the IL-1 superfamily. Emerging evidence has suggested a role of IL-36 in the pathogenesis of many inflammatory disorders. Intriguingly, in the gastrointestinal tract, IL-36 has a rather complex function. IL-36 receptor ligands are overexpressed in both animal colitis models and human IBD patients and may play both pathogenic and protective roles, depending on the context. IL-36 cytokines comprise three receptor agonists: IL-36α, IL-36β and IL-36γ, and two receptor antagonists: IL-36Ra and IL-38. All IL-36 receptor agonists bind to the IL-36R complex and exert pleiotropic effects during inflammatory settings. Here, we first briefly review the processing and secretion of IL-36 cytokines. We then focus on the current understanding of the immunology effects of IL-36 in gut immunity. In addition, we also discuss the ongoing trials that aim to blockage IL-36R signalling for treating chronic intestinal inflammation and present some unexplored questions regarding IL-36 research.
Collapse
Affiliation(s)
- Vu L Ngo
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Michal Kuczma
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Estera Maxim
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| | - Timothy L Denning
- Institute for Biomedical Sciences, Georgia State University, Atlanta, GA, USA
| |
Collapse
|
23
|
Leon G, Hussey S, Walsh PT. The Diverse Roles of the IL-36 Family in Gastrointestinal Inflammation and Resolution. Inflamm Bowel Dis 2021; 27:440-450. [PMID: 32860042 DOI: 10.1093/ibd/izaa232] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Indexed: 12/16/2022]
Abstract
The interleukin (IL)-36 family is a member of the IL-1 superfamily of cytokines and, in common with other IL-1 family members, has been shown to exhibit pleiotropic effects in homeostasis and inflammation. Although the important role these cytokines play in the skin has been widely reported, recent evidence suggests that IL-36 family members are expressed and can also exert significant influence at the intestinal mucosa. In this review, we summarize current knowledge surrounding the role of the IL-36 in the intestines. In particular, we examine its likely dichotomous role as a mediator of both inflammation and resolution, highlighting its overlapping roles in innate and adaptive inflammation at the mucosa and its contribution to pathophysiology of inflammatory bowel disease. We also summarize the complexities of targeting this cytokine family in a clinical setting.
Collapse
Affiliation(s)
- Gemma Leon
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Seamus Hussey
- National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| | - Patrick T Walsh
- Department of Clinical Medicine, School of Medicine, Trinity College Dublin, Dublin, Ireland.,National Children's Research Centre, Our Lady's Children's Hospital, Crumlin, Dublin, Ireland
| |
Collapse
|
24
|
Neurath MF. IL-36 in chronic inflammation and cancer. Cytokine Growth Factor Rev 2020; 55:70-79. [DOI: 10.1016/j.cytogfr.2020.06.006] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 06/04/2020] [Indexed: 12/20/2022]
|
25
|
Goldstein JD, Bassoy EY, Caruso A, Palomo J, Rodriguez E, Lemeille S, Gabay C. IL-36 signaling in keratinocytes controls early IL-23 production in psoriasis-like dermatitis. Life Sci Alliance 2020; 3:e202000688. [PMID: 32345660 PMCID: PMC7190273 DOI: 10.26508/lsa.202000688] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/04/2023] Open
Abstract
IL-36R signaling plays an important role in the pathogenesis of psoriasis. We ought to assess the specific function of IL-36R in keratinocytes for the pathology of Aldara-induced psoriasis-like dermatitis. Il36r ΔK mice presenting deletion of IL-36R in keratinocytes were similarly resistant to Aldara-induced ear inflammation as Il36r -/- mice, but acanthosis was only prevented in Il36r -/- mice. FACS analysis revealed that IL-36R signaling in keratinocytes is mandatory for early neutrophil infiltration in Aldara-treated ears. RNASeq and qRT-PCR experiments demonstrated the crucial role of IL-36R signaling in keratinocytes for induction of IL-23, IL-17, and IL-22 at early time points. Taken together, our results demonstrate that IL-36R signaling in keratinocytes plays a major role in the induction of Aldara-induced psoriasis-like dermatitis by triggering early production of IL-23/IL-17/IL-22 cytokines and neutrophil infiltration.
Collapse
Affiliation(s)
- Jérémie D Goldstein
- Department of Pathology-Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Esen Y Bassoy
- Department of Pathology-Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Assunta Caruso
- Department of Pathology-Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Jennifer Palomo
- Department of Pathology-Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Emiliana Rodriguez
- Department of Pathology-Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Sylvain Lemeille
- Department of Pathology-Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
| | - Cem Gabay
- Department of Pathology-Immunology, University of Geneva Faculty of Medicine, Geneva, Switzerland
- Division of Rheumatology, Department of Medicine, University Hospitals of Geneva, Geneva, Switzerland
| |
Collapse
|
26
|
Boutet MA, Nerviani A, Lliso-Ribera G, Lucchesi D, Prediletto E, Ghirardi GM, Goldmann K, Lewis M, Pitzalis C. Interleukin-36 family dysregulation drives joint inflammation and therapy response in psoriatic arthritis. Rheumatology (Oxford) 2020; 59:828-838. [PMID: 31504934 PMCID: PMC7188345 DOI: 10.1093/rheumatology/kez358] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 07/17/2019] [Indexed: 01/08/2023] Open
Abstract
OBJECTIVES IL-36 agonists are pro-inflammatory cytokines involved in the pathogenesis of psoriasis. However, their role in the pathogenesis of arthritis and treatment response to DMARDs in PsA remains uncertain. Therefore, we investigated the IL-36 axis in the synovium of early, treatment-naïve PsA, and for comparison RA patients, pre- and post-DMARDs therapy. METHODS Synovial tissues were collected by US-guided biopsy from patients with early, treatment-naïve PsA and RA at baseline and 6 months after DMARDs therapy. IL-36 family members were investigated in synovium by RNA sequencing and immunohistochemistry, and expression levels correlated with DMARDs treatment response ex vivo. Additionally, DMARDs effects on IL-36 were investigated in vitro in fibroblast-like synoviocytes. RESULTS PsA synovium displayed a reduced expression of IL-36 antagonists, while IL-36 agonists were comparable between PsA and RA. Additionally, neutrophil-related molecules, which drive a higher activation of the IL-36 pathway, were upregulated in PsA compared with RA. At baseline, the synovial expression of IL-36α was significantly higher in PsA non-responders to DMARDs treatment, with the differential expression being sustained at 6 months post-treatment. In vitro, primary PsA-derived fibroblasts were more responsive to IL-36 stimulation compared with RA and, importantly, DMARDs treatment increased IL-36 expression in PsA fibroblasts. CONCLUSION The impaired balance between IL-36 agonists-antagonists described herein for the first time in PsA synovium and the decreased sensitivity to DMARDs in vitro may explain the apparent lower efficacy of DMARDs in PsA compared with RA. Exogenous replacement of IL-36 antagonists may be a novel promising therapeutic target for PsA patients.
Collapse
Affiliation(s)
- Marie-Astrid Boutet
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Alessandra Nerviani
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Gloria Lliso-Ribera
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Davide Lucchesi
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Edoardo Prediletto
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Giulia Maria Ghirardi
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Katriona Goldmann
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Myles Lewis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - Costantino Pitzalis
- Centre for Experimental Medicine & Rheumatology, William Harvey Research Institute and Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| |
Collapse
|
27
|
Hachim MY, Khalil BA, Elemam NM, Maghazachi AA. Pyroptosis: The missing puzzle among innate and adaptive immunity crosstalk. J Leukoc Biol 2020; 108:323-338. [PMID: 32083338 DOI: 10.1002/jlb.3mir0120-625r] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2019] [Revised: 01/23/2020] [Accepted: 01/27/2020] [Indexed: 12/11/2022] Open
Abstract
Pyroptosis is a newly discovered programmed cell death with inflammasome formation. Pattern recognition receptors that identify repetitive motifs of prospective pathogens such as LPS of gram-negative bacteria are crucial to pyroptosis. Upon stimulation by pathogen-associated molecular patterns or damage-associated molecular patterns, proinflammatory cytokines, mainly IL-1 family members IL-1β and IL-18, are released through pyroptosis specific pore-forming protein, gasdermin D. Even though IL-1 family members are mainly involved in innate immunity, they can be factors in adaptive immunity. Given the importance of IL-1 family members in health and diseases, deciphering the role of pyroptosis in the regulation of innate and adaptive immunity is of great importance, especially with the recent progress in identifying the exact mechanism of such a pathway. In this review, we will focus on how the innate inflammatory mediators can regulate the adaptive immune system and vice versa via pyroptosis.
Collapse
Affiliation(s)
- Mahmood Y Hachim
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Bariaa A Khalil
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Noha M Elemam
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| | - Azzam A Maghazachi
- Department of Clinical Sciences, College of Medicine, and the Sharjah Institute for Medical Research (SIMR), University of Sharjah, Sharjah, United Arab Emirates
| |
Collapse
|
28
|
Chelvanambi M, Weinstein AM, Storkus WJ. IL-36 Signaling in the Tumor Microenvironment. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1240:95-110. [PMID: 32060891 DOI: 10.1007/978-3-030-38315-2_8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
The ability of the immune system to prevent or control the growth of tumor cells is critically dependent on inflammatory processes that lead to the activation, expansion, and recruitment of antitumor effector cells into the tumor microenvironment (TME). These processes are orchestrated by soluble cytokines produced in tissues that alarm local immune surveillance cells (such as dendritic cells, DCs) to mobilize protective antitumor immune populations (B cells, T cells). The interleukin (IL)-36 family of pro-inflammatory cytokines plays an important role in multiple disease processes, ranging from an instigator of autoimmune psoriasis to an initiator of therapeutic immune responses against tumor cells. This chapter will focus on the biologic role of immunomodulatory IL-36 family cytokines in the cancer setting and their potential utility in the design of effective interventional therapies. (127 words).
Collapse
Affiliation(s)
- Manoj Chelvanambi
- Departments of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Aliyah M Weinstein
- Departments of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Walter J Storkus
- Departments of Immunology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
- Departments of Dermatology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA.
| |
Collapse
|
29
|
Dheer D, Nicolas J, Shankar R. Cathepsin-sensitive nanoscale drug delivery systems for cancer therapy and other diseases. Adv Drug Deliv Rev 2019; 151-152:130-151. [PMID: 30690054 DOI: 10.1016/j.addr.2019.01.010] [Citation(s) in RCA: 84] [Impact Index Per Article: 16.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2019] [Accepted: 01/23/2019] [Indexed: 12/26/2022]
Abstract
Cathepsins are an important category of enzymes that have attracted great attention for the delivery of drugs to improve the therapeutic outcome of a broad range of nanoscale drug delivery systems. These proteases can be utilized for instance through actuation of polymer-drug conjugates (e.g., triggering the drug release) to bypass limitations of many drug candidates. A substantial amount of work has been witnessed in the design and the evaluation of Cathepsin-sensitive drug delivery systems, especially based on the tetra-peptide sequence (Gly-Phe-Leu-Gly, GFLG) which has been extensively used as a spacer that can be cleaved in the presence of Cathepsin B. This Review Article will give an in-depth overview of the design and the biological evaluation of Cathepsin-sensitive drug delivery systems and their application in different pathologies including cancer before discussing Cathepsin B-cleavable prodrugs under clinical trials.
Collapse
|
30
|
The IL-1 family of cytokines and receptors in rheumatic diseases. Nat Rev Rheumatol 2019; 15:612-632. [DOI: 10.1038/s41584-019-0277-8] [Citation(s) in RCA: 168] [Impact Index Per Article: 33.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/18/2019] [Indexed: 02/07/2023]
|
31
|
Eckhart L, Tschachler E. Control of cell death-associated danger signals during cornification prevents autoinflammation of the skin. Exp Dermatol 2019; 27:884-891. [PMID: 29862564 DOI: 10.1111/exd.13700] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/30/2018] [Indexed: 12/26/2022]
Abstract
The function of the skin as a barrier to the environment is mainly achieved by the outermost layers of the epidermis. In the granular layer, epidermal keratinocytes undergo the last steps of their terminal differentiation program resulting in cornification. The coordinated conversion of living keratinocytes into corneocytes, the building blocks of the cornified layer, represents a unique form of programmed cell death. Recent studies have identified numerous genes that are specifically expressed in terminally differentiated keratinocytes and, surprisingly, this genetic program does not only include mediators of cornification but also suppressors of pyroptosis, another mode of programmed cell death. Pyroptosis is activated by inflammasomes, leads to the release of interleukin-1 (IL-1) family cytokines, and thereby activates inflammation. In addition, inhibitors of potentially pro-inflammatory proteases and enzymes removing danger-associated cytoplasmic DNA are expressed in differentiated keratinocytes. We propose the concept of cornification as an inherently hazardous process in which damaging side effects are actively suppressed by protective mechanisms. In support of this hypothesis, loss-of-function mutations in epidermal protease inhibitors and IL-1 family antagonists suffice to induce autoinflammation. Similarly, exogenous disturbances of either cornification or its accompanying control mechanisms may be starting points for skin inflammation. Further studies into the relationship between cornification, pyroptosis and other forms of cell death will help to define the initiation phase of inflammatory skin diseases and offer new targets for disease prevention and therapy.
Collapse
Affiliation(s)
- Leopold Eckhart
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| | - Erwin Tschachler
- Research Division of Biology and Pathobiology of the Skin, Department of Dermatology, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
32
|
Madonna S, Girolomoni G, Dinarello CA, Albanesi C. The Significance of IL-36 Hyperactivation and IL-36R Targeting in Psoriasis. Int J Mol Sci 2019; 20:E3318. [PMID: 31284527 PMCID: PMC6650959 DOI: 10.3390/ijms20133318] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2019] [Revised: 06/26/2019] [Accepted: 07/04/2019] [Indexed: 12/14/2022] Open
Abstract
Psoriasis is an immune-mediated inflammatory skin disease that involves mainly T helper (Th)17, Th1 and Th22 lymphocytes, which cause hyper-proliferation of the epidermis with aberrant differentiation of keratinocytes, and local production of chemokines and cytokines. These fuel a self-amplifying loop where these products act on T cells to perpetuate cutaneous inflammatory processes. Among the various inflammatory mediators involved, interleukin (IL)-36 cytokines are important for the recruitment and activation of neutrophils and Th17 cells in psoriatic skin. In particular, IL-36s induce chemokines and cytokines interfere with differentiation/cornification programs in the epidermis, as well as promote pathological angiogenesis and endothelial cell activation. IL-36 cytokines belong to the IL-1 family, and comprise IL-36α, IL-36β, and IL-36γ agonists as well as IL-36 receptor antagonist and IL-38 antagonists. IL-36 cytokines are up-regulated in psoriatic epidermis, and their expression is strongly induced by TNF-α and IL-17. Contrarily, IL-38 antagonist is downregulated, and its impaired expression may be relevant to the dysregulated inflammatory processes induced by IL-36. Here, we discuss on the pathogenic mechanisms leading to the altered balance of IL-36 agonists/antagonists and the significance of this dysregulation in psoriasis. Collection of the information will provide a theoretical basis for the development of novel therapeutic strategies based on IL-36 agonist/antagonist manipulation in psoriasis.
Collapse
Affiliation(s)
- Stefania Madonna
- Laboratory of Experimental Immunology, IDI-IRCCS, via Monti di Creta, 104, 00167 Rome, Italy.
| | - Giampiero Girolomoni
- Section of Dermatology, Department of Medicine, University of Verona, P.zza Stefani, 1, 37126 Verona, Italy
| | - Charles A Dinarello
- Department of Medicine, Radboud University Medical Center, 6525 HP Nijmegen, The Netherlands
- Department of Medicine, School of Medicine, University of Colorado, Denver 80045, Anschutz Campus, Aurora, CO, USA
| | - Cristina Albanesi
- Laboratory of Experimental Immunology, IDI-IRCCS, via Monti di Creta, 104, 00167 Rome, Italy
| |
Collapse
|
33
|
Baker KJ, Houston A, Brint E. IL-1 Family Members in Cancer; Two Sides to Every Story. Front Immunol 2019; 10:1197. [PMID: 31231372 PMCID: PMC6567883 DOI: 10.3389/fimmu.2019.01197] [Citation(s) in RCA: 159] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Accepted: 05/13/2019] [Indexed: 12/22/2022] Open
Abstract
The IL-1 family of cytokines currently comprises of seven ligands with pro-inflammatory activity (IL-1α and IL-1β, IL-18, IL-33, IL-36α, IL-36β, IL-36γ) as well as two ligands with anti-inflammatory activity (IL-37, IL-38). These cytokines are known to play a key role in modulating both the innate and adaptive immunes response, with dysregulation linked to a variety of autoimmune and inflammatory diseases. Given the increasing appreciation of the link between inflammation and cancer, the role of several members of this family in the pathogenesis of cancer has been extensively investigated. In this review, we highlight both the pro- and anti-tumorigenic effects identified for almost all members of this family, and explore potential underlying mechanisms accounting for these divergent effects. Such dual functions need to be carefully assessed when developing therapeutic intervention strategies targeting these cytokines in cancer.
Collapse
Affiliation(s)
- Kevin J Baker
- Department of Pathology, University College Cork, Cork, Ireland.,Department of Medicine, University College Cork, Cork, Ireland.,APC Microbiome Ireland, University College Cork, Cork, Ireland
| | - Aileen Houston
- Department of Medicine, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| | - Elizabeth Brint
- Department of Pathology, University College Cork, Cork, Ireland.,CancerResearch@UCC, University College Cork, Cork, Ireland
| |
Collapse
|
34
|
Buhl AL, Wenzel J. Interleukin-36 in Infectious and Inflammatory Skin Diseases. Front Immunol 2019; 10:1162. [PMID: 31191535 PMCID: PMC6545975 DOI: 10.3389/fimmu.2019.01162] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 05/08/2019] [Indexed: 12/20/2022] Open
Abstract
Interleukin-36 (IL-36) comprises to a cytokine family consisting of four isoforms IL-36α, IL-36β, IL-36γ, and IL-36 receptor antagonist (IL-36 Ra). These IL-36 cytokines, in turn, belong to the IL-1 superfamily. The IL-36 receptor (IL-1R6) is functional as a heterodimer formed of IL-1R6 and IL-1 receptor accessory protein (IL-1RAcP). IL-36α, IL-36β, and IL-36γ are regarded as pro-inflammatory ligands and IL-36 Ra as well as IL-38 as anti-inflammatory ligands of IL-1R6. IL-36 cytokines are mainly expressed on the barrier sites of the body e.g., bronchial, intestinal, and dermal epithelium. One of their most important biological functions is the bridging of innate and adaptive immune responses. A disturbed balance between pro-inflammatory and anti-inflammatory branches easily leads to inflammation of the corresponding tissue. The most prominent example for an altered IL-36 expression is the spectrum of psoriasis. In addition to inflammatory dermatoses, IL-36 also seems to play a role in infectious dermatoses. Microbial triggers, especially Staphylococcus aureus infection, increase the production of pro-inflammatory IL-36 cytokines and initiate/promote the inflammation of skin lesions. Due to the discovery of IL-36 as an important immune mediator, it has already been possible to develop important diagnostic tools for dermatitis. Not only in the field of inflammatory skin diseases, but also in pulmonary and intestinal inflammation, there is evidence that IL-36 cytokines might have diagnostic and/or therapeutic relevance.
Collapse
Affiliation(s)
- Anna-Lena Buhl
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
| | - Joerg Wenzel
- Department of Dermatology and Allergy, University Hospital of Bonn, Bonn, Germany
| |
Collapse
|
35
|
Groborz K, Kołt S, Kasperkiewicz P, Drag M. Internally quenched fluorogenic substrates with unnatural amino acids for cathepsin G investigation. Biochimie 2019; 166:103-111. [PMID: 31103725 DOI: 10.1016/j.biochi.2019.05.013] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Accepted: 05/14/2019] [Indexed: 02/01/2023]
Abstract
Cathepsin G is one of four members of the neutrophil serine protease family and constitutes an important biological target in various human inflammatory diseases, such as chronic obstructive pulmonary disease, acute respiratory distress syndrome and cystic fibrosis. Many studies have been focused on determining its biological roles, the latest ones concerning its involvement in acute myeloid leukemia, and as such, multiple chemical and biochemical tools were developed to investigate cathepsin G. Nevertheless, most of them lack selectivity or sensitivity and therefore cannot be used in complex systems. Here we present the development of an optimal cathepsin G Internally Quenched Fluorescence (IQF) substrate that incorporates unnatural amino acids causing the increase of its selectivity toward neutrophil elastase and potency in in vitro studies.
Collapse
Affiliation(s)
- Katarzyna Groborz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Sonia Kołt
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Paulina Kasperkiewicz
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland
| | - Marcin Drag
- Department of Bioorganic Chemistry, Faculty of Chemistry, Wroclaw University of Science and Technology, Wyb. Wyspianskiego 27, 50-370, Wroclaw, Poland.
| |
Collapse
|
36
|
IL-36, IL-37, and IL-38 Cytokines in Skin and Joint Inflammation: A Comprehensive Review of Their Therapeutic Potential. Int J Mol Sci 2019; 20:ijms20061257. [PMID: 30871134 PMCID: PMC6470667 DOI: 10.3390/ijms20061257] [Citation(s) in RCA: 55] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Revised: 03/07/2019] [Accepted: 03/08/2019] [Indexed: 02/06/2023] Open
Abstract
The interleukin (IL)-1 family of cytokines is composed of 11 members, including the most recently discovered IL-36α, β, γ, IL-37, and IL-38. Similar to IL-1, IL-36 cytokines are initiators and amplifiers of inflammation, whereas both IL-37 and IL-38 display anti-inflammatory activities. A few studies have outlined the role played by these cytokines in several inflammatory diseases. For instance, IL-36 agonists seem to be relevant for the pathogenesis of skin psoriasis whereas, despite being expressed within the synovial tissue, their silencing or overexpression do not critically influence the course of arthritis in mice. In this review, we will focus on the state of the art of the molecular features and biological roles of IL-36, IL-37, and IL-38 in representative skin- and joint-related inflammatory diseases, namely psoriasis, rheumatoid arthritis, and psoriatic arthritis. We will then offer an overview of the therapeutic potential of targeting the IL-36 axis in these diseases, either by blocking the proinflammatory agonists or enhancing the physiologic inhibitory feedback on the inflammation mediated by the antagonists IL-37 and IL-38.
Collapse
|
37
|
Guo J, Tu J, Hu Y, Song G, Yin Z. Cathepsin G cleaves and activates IL-36γ and promotes the inflammation of psoriasis. DRUG DESIGN DEVELOPMENT AND THERAPY 2019; 13:581-588. [PMID: 30804664 PMCID: PMC6372007 DOI: 10.2147/dddt.s194765] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Background IL-36γ is considered to be a valuable biomarker in psoriatic patients, which is expressed as an inactive precursor that needs to be proteolytically processed and activated, and neutrophil-derived proteases seemed to be potent activating enzymes of IL-36γ. Objectives This study aims to investigate the activation of IL-36γ by cathepsin G (CG) and neutrophil elastase (NE). Materials and methods We used inactive recombinant full-length (FL)-IL-36γ with different doses of NE or CG to stimulate HaCaT cells; neutrophil extracellular traps (NETs) were prepared to act on FL-IL-36γ and then stimulate HaCaT cells. Real-time quantitative PCR and ELISA were performed to detect CXCL-1 and CXCL-8 expression. We developed imiquimod-induced psoriasis-like mouse model to evaluate the effect of hypodermic injection of neutrophil-derived protease or its inhibitor. Histopathology and Western blotting were conducted for effect assessment. Results Purified CG cleaved and activated recombinant human FL-IL-36γ to promote CXCL-1 and CXCL-8 expression by human keratinocytes, and NETs activated FL-IL-36γ and the activation was inhibited by serpin A3. CG induced expression of a more truncated IL-36γ in psoriasiform lesion of mice and aggravated the psoriasis-like lesion induced by imiquimod, whereas recombinant serpin A3 alleviated the severity of the psoriasis-like mouse mode. Conclusion CG has the ability to cleave and activate IL-36γ and aggravate imiquimod-induced mouse psoriasiform lesion. Thus, CG-specific inhibitors might be promising therapeutic drugs for psoriasis.
Collapse
Affiliation(s)
- Jing Guo
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,
| | - Jie Tu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,
| | - YingYing Hu
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China, .,Department of Medical Cosmetology, Wuqing People's Hospital, Wuqing, Tianjin, China
| | - GuoXin Song
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - ZhiQiang Yin
- Department of Dermatology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China,
| |
Collapse
|