1
|
Liu Y, Huang Y, Le Y, Gao Y, Wang H, Yang J, Wang J, Zou C, Li Q. Prognostic insights, immune infiltration, and therapeutic response: Cytoplasmic poly(A) tail regulators in hepatocellular carcinoma. MOLECULAR THERAPY. ONCOLOGY 2024; 32:200816. [PMID: 38948919 PMCID: PMC11214399 DOI: 10.1016/j.omton.2024.200816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 03/29/2024] [Accepted: 05/19/2024] [Indexed: 07/02/2024]
Abstract
The presence of a poly(A) tail is indispensable for the post-transcriptional regulation of gene expression in cancer. This dynamic and modifiable feature of transcripts is under the control of various nuclear and cytoplasmic proteins. This study aimed to develop a novel cytoplasmic poly(A)-related signature for predicting prognosis, clinical attributes, tumor immune microenvironment (TIME), and treatment response in hepatocellular carcinoma (HCC). Utilizing RNA sequencing (RNA-seq) data from The Cancer Genome Atlas (TCGA), non-negative matrix factorization (NMF), and principal-component analysis (PCA) were employed to categorize HCC patients into three clusters, thus demonstrating the pivotal prognostic role of cytoplasmic poly(A) tail regulators. Furthermore, machine learning algorithms such as least absolute shrinkage and selection operator (LASSO), survival analysis, and Cox proportional hazards modeling were able to distinguish distinct cytoplasmic poly(A) subtypes. As a result, a 5-gene signature derived from TCGA was developed and validated using International Cancer Genome Consortium (ICGC) HCC datasets. This novel classification based on cytoplasmic poly(A) regulators has the potential to improve prognostic predictions and provide guidance for chemotherapy, immunotherapy, and transarterial chemoembolization (TACE) in HCC.
Collapse
Affiliation(s)
- Yi Liu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yan Huang
- Department of Neurobiology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yunting Le
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Yating Gao
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Hui Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jing Yang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Jialin Wang
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
| | - Chaoxia Zou
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang 150081, China
- Translational Medicine Research and Cooperation Center of Northern China, Heilongjiang Academy of Medicine Sciences, Harbin, Heilongjiang 150081, China
| | - Qiang Li
- Department of General Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang 150081, China
| |
Collapse
|
2
|
Zhang S, Huang J, Lan Z, Xiao Y, Liao Y, Basnet S, Huang P, Li Y, Yan J, Sheng Y, Zhou W, Liu Q, Tan H, Tan Y, Yuan L, Wang L, Dai L, Zhang W, Du C. CPEB1 Controls NRF2 Proteostasis and Ferroptosis Susceptibility in Pancreatic Cancer. Int J Biol Sci 2024; 20:3156-3172. [PMID: 38904009 PMCID: PMC11186365 DOI: 10.7150/ijbs.95962] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/22/2024] Open
Abstract
Pancreatic cancer is the deadliest malignancy with a poor response to chemotherapy but is potentially indicated for ferroptosis therapy. Here we identified that cytoplasmic polyadenylation element binding protein 1 (CPEB1) regulates NRF2 proteostasis and susceptibility to ferroptosis in pancreatic ductal adenocarcinoma (PDAC). We found that CPEB1 deficiency in cancer cells promotes the translation of p62/SQSTM1 by facilitating mRNA polyadenylation. Consequently, upregulated p62 enhances NRF2 stability by sequestering KEAP1, an E3 ligase for proteasomal degradation of NRF2, leading to the transcriptional activation of anti-ferroptosis genes. In support of the critical role of this signaling cascade in cancer therapy, CPEB1-deficient pancreatic cancer cells display higher resistance to ferroptosis-inducing agents than their CPEB1-normal counterparts in vitro and in vivo. Furthermore, based on the pathological evaluation of tissue specimens from 90 PDAC patients, we established that CPEB1 is an independent prognosticator whose expression level is closely associated with clinical therapeutic outcomes in PDAC. These findings identify the role of CPEB1 as a key ferroptosis regulator and a potential prognosticator in pancreatic cancer.
Collapse
Affiliation(s)
- Shuxia Zhang
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
- Department of Gastroenterology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Jingnan Huang
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Zhangzhang Lan
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Yanlin Xiao
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Youyou Liao
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Shiva Basnet
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Piying Huang
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Yunze Li
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Jingyu Yan
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Yuling Sheng
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Wenwen Zhou
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Qi Liu
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Haoyuan Tan
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Yi Tan
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Leyong Yuan
- Clinical laboratory, Southern University of Science and Technology Hospital, 6019 Liuxian Street, Xili Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Lisheng Wang
- Department of Gastroenterology, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Lingyun Dai
- Department of Geriatrics, and Shenzhen Clinical Research Centre for Geriatrics, The First Affiliated Hospital (Shenzhen People's Hospital), Southern University of Science and Technology, 1017 Dongmen North Road, Shenzhen, Guangdong 518020, P.R. China
| | - Wenyong Zhang
- School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
| | - Changzheng Du
- Key University Laboratory of Metabolism and Health of Guangdong, Biochemistry Department, School of Medicine, Southern University of Science and Technology, 1088 Xueyuan Avenue, Shenzhen, Guangdong 518055, P.R. China
- Beijing Tsinghua Changgung Hospital & Tsinghua University School of Medicine, 168 Litang Road, Changping District, Beijing 102218, P.R. China
| |
Collapse
|
3
|
Kang JA, Kim YJ, Jang KY, Moon HW, Lee H, Lee S, Song HK, Cho SW, Yoo YS, Han HG, Kim MJ, Chung MJ, Choi CY, Lee C, Chung C, Hur GM, Kim YS, Jeon YJ. SIRT1 ISGylation accelerates tumor progression by unleashing SIRT1 from the inactive state to promote its deacetylase activity. Exp Mol Med 2024; 56:656-673. [PMID: 38443596 PMCID: PMC10985095 DOI: 10.1038/s12276-024-01194-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/29/2023] [Accepted: 12/26/2023] [Indexed: 03/07/2024] Open
Abstract
ISG15 is an interferon-stimulated ubiquitin-like protein (UBL) with multifaceted roles as a posttranslational modifier in ISG15 conjugation (ISGylation). However, the mechanistic consequences of ISGylation in cancer have not been fully elucidated, largely due to a lack of knowledge on the ISG15 target repertoire. Here, we identified SIRT1, a nicotinamide adenine dinucleotide (NAD+)-dependent protein deacetylase, as a new target for ISGylation. SIRT1 ISGylation impairs the association of SIRT1 with its negative regulator, deleted in breast cancer 1 (DBC1), which unleashes SIRT1 from its inactive state and leads to an increase in its deacetylase activity. Importantly, SIRT1 ISGylation promoted lung cancer progression and limited lung cancer cell sensitivity to DNA damage-based therapeutics in vivo and in vitro models. The levels of ISG15 mRNA and protein were significantly higher in lung cancer tissues than in adjacent normal tissues. Accordingly, elevated expression of SIRT1 and ISG15 was associated with poor prognosis in lung cancer patients, a finding that could be translated for lung cancer patient stratification and disease outcome evaluation. Taken together, our findings provide a mechanistic understanding of the regulatory effect of SIRT1 ISGylation on tumor progression and therapeutic efficacy in lung cancer.
Collapse
Affiliation(s)
- Ji An Kang
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Yoon Jung Kim
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Brain Korea 21 FOUR Project for Medical Science, Chungnam National University, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Kyu Yun Jang
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Hye Won Moon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Haeseung Lee
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Seonjeong Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Hyun Kyu Song
- Department of Life Sciences, Korea University, Seoul, 02841, Republic of Korea
| | - Sang Woo Cho
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Yoon Sun Yoo
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Hye Gyeong Han
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - Min-Ju Kim
- College of Pharmacy, Pusan National University, Busan, 46241, Republic of Korea
| | - Myoung Ja Chung
- Department of Pathology, Jeonbuk National University Medical School, Research Institute of Clinical Medicine of Jeonbuk National University-Biomedical Research Institute of Jeonbuk National University Hospital and Research Institute for Endocrine Sciences, Jeonju, 54896, Republic of Korea
| | - Cheol Yong Choi
- Department of Biological Sciences, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Cheolju Lee
- Chemical & Biological Integrative Research Center, Korea Institute of Science and Technology, Seoul, 02792, Republic of Korea
- Division of Bio-Medical Science & Technology, KIST School, University of Science and Technology, Seoul, 02792, Republic of Korea
| | - Chaeuk Chung
- Division of Pulmonology and Critical Care Medicine, Department of Internal Medicine, College of Medicine, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Gang Min Hur
- Department of Pharmacology, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea
| | - You-Sun Kim
- Department of Biochemistry, Ajou University, School of Medicine & Department of Biomedical Sciences, Graduate School, Ajou University, Suwon, 16499, Republic of Korea
| | - Young Joo Jeon
- Department of Biochemistry, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
- Department of Medical Science, Chungnam National University College of Medicine, Daejeon, 35015, Republic of Korea.
| |
Collapse
|
4
|
Shatalov P, Falaleeva N, Bykova E, Korostin D, Belova V, Zabolotneva A, Shinkarkina A, Gorbachev AY, Potievskiy M, Surkova V, Khailova ZV, Kulemin N, Baranovskii D, Kostin A, Kaprin A, Shegai P. Genetic and therapeutic landscapes in cohort of pancreatic adenocarcinomas: next-generation sequencing and machine learning for full tumor exome analysis. Oncotarget 2024; 15:91-103. [PMID: 38329726 PMCID: PMC10852064 DOI: 10.18632/oncotarget.28512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2023] [Accepted: 09/04/2023] [Indexed: 02/09/2024] Open
Abstract
About 7% of all cancer deaths are caused by pancreatic cancer (PCa). PCa is known for its lowest survival rates among all oncological diseases and heterogenic molecular profile. Enormous amount of genetic changes, including somatic mutations, exceeds the limits of routine clinical genetic laboratory tests and further stagnates the development of personalized treatments. We aimed to build a mutational landscape of PCa in the Russian population based on full exome next-generation sequencing (NGS) of the limited group of patients. Applying a machine learning model on full exome individual data we received personalized recommendations for targeted treatment options for each clinical case and summarized them in the unique therapeutic landscape.
Collapse
Affiliation(s)
- P.A. Shatalov
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - N.A. Falaleeva
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - E.A. Bykova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - D.O. Korostin
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - V.A. Belova
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - A.A. Zabolotneva
- Center for Precision Genome Editing and Genetic Technologies for Biomedicine, Pirogov Russian National Research Medical University, Moscow 117997, Russia
| | - A.P. Shinkarkina
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - A. Yu Gorbachev
- FSBI “Lopukhin Federal Research and Clinical Center of Physical-Chemical Medicine” FMBA, Moscow 119435, Russia
| | - M.B. Potievskiy
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - V.S. Surkova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - Zh V. Khailova
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - N.A. Kulemin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| | - Denis Baranovskii
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - A.A. Kostin
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - A.D. Kaprin
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
- Peoples Friendship University of Russia (RUDN University), Moscow 117198, Russia
| | - P.V. Shegai
- National Medical Research Radiological Centre of the Ministry of Health of the Russian Federation, Obninsk 249036, Russia
| |
Collapse
|
5
|
Li J, Tuo D, Cheng T, Deng Z, Gan J. GCF2 mediates nicotine-induced cancer stemness and progression in hepatocellular carcinoma. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 271:115952. [PMID: 38218109 DOI: 10.1016/j.ecoenv.2024.115952] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/10/2023] [Accepted: 01/05/2024] [Indexed: 01/15/2024]
Abstract
Cigarette smoking is one of the most impactful behavior-related risk factors for multiple cancers including hepatocellular carcinoma (HCC). Nicotine, as the principal component of tobacco, is not only responsible for smoking addiction but also a carcinogen; nevertheless, the underlying mechanisms remain unclear. Here we report that nicotine enhances HCC cancer stemness and malignant progression by upregulating the expression of GC-rich binding factor 2 (GCF2), a gene that was revealed to be upregulated in HCC and whose upregulation predicts poor prognosis, and subsequently activating the Wnt/ꞵ-catenin/SOX2 signaling pathway. We found that nicotine significantly increased GCF2 expression and that silencing of GCF2 reduced nicotine-induced cancer stemness and progression. Mechanistically, nicotine could stabilize the protein level of GCF2, and then GCF2 could robustly activate its downstream Wnt/β-catenin signaling pathway. Taken together, our results thus suggest that GCF2 is a potential target for a therapeutic strategy against nicotine-promoted HCC.
Collapse
Affiliation(s)
- Jinping Li
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China.
| | - Dayun Tuo
- Department of Histology and Embryology, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China; Department of Pathology, Liuzhou People's Hospital, Liuzhou, Guangxi, PR China
| | - Tan Cheng
- Department of Human Anatomy, School of Preclinical Medicine, Guilin Medical University, Guilin, Guangxi, PR China
| | - Zhenyan Deng
- Department of Clinical Laboratory, Guilin Hospital of the Second Xiangya Hospital CSU, Guilin, Guangxi, PR China
| | - Jinfeng Gan
- Guangxi Key Laboratory of Tumor Immunology and Microenvironmental Regulation, Guilin Medical University, Guilin, Guangxi, PR China; Guangxi Health Commission Key Laboratory of Tumor Immunology and Receptor-Targeted Drug Basic Research, Guilin Medical University, Guilin, Guangxi, PR China.
| |
Collapse
|
6
|
Li J, Wu Y, Zhang D, Zhang Z, Li S, Cheng X, Chen L, Zhou G, Yuan C. The Roles of Cytoplasmic Polyadenylation Element Binding Protein 1 in Tumorigenesis. Mini Rev Med Chem 2024; 24:2008-2018. [PMID: 38879767 DOI: 10.2174/0113895575293544240605112838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 03/25/2024] [Accepted: 04/03/2024] [Indexed: 10/25/2024]
Abstract
BACKGROUND CPEB1 is an alternative polyadenylation binding protein that promotes or suppresses the expression of related mRNAs and proteins by binding to a highly conserved Cytoplasmic Polyadenylation Element (CPE) in the mRNAs 3'UTR. It is found to express abnormally in multiple tumors and affect tumorigenesis through many pathways. This review summarizes the functions and mechanisms of CPEB1 in a variety of cancers and suggests new directions for future related treatments. METHODS A total of 95 articles were eligible for inclusion based on the year, quality of the research, and the strength of association with CPEB1. In this review, current research about how CPEB1 affects the initiation and progression of glioblastoma, breast cancer, hepatocellular carcinoma, gastric cancer, colorectal cancer, non-small cell lung cancer, prostate cancer, and melanoma are dissected, and the biomedical functions and mechanisms are summarized. RESULTS CPEB1 mostly presents as a tumor suppressor for breast cancer, endometrial carcinoma, hepatocellular carcinoma, non-small cell lung cancer, prostate cancer, and melanoma. However, for glioblastoma, gastric cancer, and colorectal cancer, CPEB1 exhibts two opposing properties of tumorigenesis, either promoting or inhibiting it. CONCLUSION CPEB1 is likely to serve as a target and dynamic detection index or prognostic indicator for its function of apoptosis, activity, proliferation, migration, invasion, stemness, drug resistance, and even ferroptosis in various cancers.
Collapse
Affiliation(s)
- JiaYi Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Yinxin Wu
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Dingyin Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Ziyan Zhang
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Songqiang Li
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Xi Cheng
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Lihan Chen
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| | - Gang Zhou
- College of Traditional Chinese Medicine, China Three Gorges University, Yichang, 443002, China
- Yichang Hospital of Traditional Chinese Medicine, Yichang, 443002, China
| | - Chengfu Yuan
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University
- College of Basic Medical Science, China Three Gorges University, Yichang 443002, China
- Third-grade Pharmacological Laboratory on Traditional Chinese Medicine, State Administration of Traditional Chinese Medicine, China Three Gorges University, China
| |
Collapse
|
7
|
Zhou J, Tang CK. Cytoplasmic Polyadenylation Element Binding Protein 1 and Atherosclerosis: Prospective Target and New Insights. Curr Vasc Pharmacol 2024; 22:95-105. [PMID: 38284693 DOI: 10.2174/0115701611258090231221082502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 12/11/2023] [Accepted: 12/12/2023] [Indexed: 01/30/2024]
Abstract
The ribonucleic acid (RNA)-binding protein Cytoplasmic Polyadenylation Element Binding Protein 1 (CPEB1), a key member of the CPEB family, is essential in controlling gene expression involved in both healthy physiological and pathological processes. CPEB1 can bind to the 3'- untranslated regions (UTR) of substrate messenger ribonucleic acid (mRNA) and regulate its translation. There is increasing evidence that CPEB1 is closely related to the pathological basis of atherosclerosis. According to recent investigations, many pathological processes, including inflammation, lipid metabolism, endothelial dysfunction, angiogenesis, oxidative stress, cellular senescence, apoptosis, and insulin resistance, are regulated by CPEB1. This review considers the prevention and treatment of atherosclerotic heart disease in relation to the evolution of the physiological function of CPEB1, recent research breakthroughs, and the potential participation of CPEB1 in atherosclerosis.
Collapse
Affiliation(s)
- Jing Zhou
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| | - Chao-Ke Tang
- Institute of Cardiovascular Disease, Key Laboratory for Arteriosclerology of Hunan Province, School of Pharmacology, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, China
| |
Collapse
|
8
|
Zhong F, Wang Y. YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1. Biochem Biophys Res Commun 2023; 679:98-109. [PMID: 37677983 DOI: 10.1016/j.bbrc.2023.08.056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/17/2023] [Accepted: 08/25/2023] [Indexed: 09/09/2023]
Abstract
BACKGROUND Cancer stem cells are one fundamental reason for the high recurrence rate of hepatocellular carcinoma (HCC) and its resistance to treatment. This study explored the mechanism by which SOCS2-AS1 affects HCC cell stemness. METHODS Stem cells of HCC cell lines Huh7 and SNU-398 were sorted as NANOG-positive by flow cytometry. Stem cell sphere formation ability was detected. Stem cell viability, migration, invasion, and apoptosis were assessed by colony formation assays, Transwell assays, wound-healing assays, and TUNEL assays, respectively. The binding sites for SOCS2-AS1, miR-454-3p, miR-454-3p, and CPEB1 mRNA were assessed by dual-luciferase reporter assays. Quantitative real-time PCR (qPCR) and Western blot studies were performed to evaluate gene expression levels. ChIP and EMSA assays were conducted to confirm that YY1 binds with the SOCS2-AS1 promoter. A subcutaneous xenograft model was used to verify results in vivo. Tumor tissues were analyzed by H&E and TUNEL staining. RESULTS SOCS2-AS1 was expressed at low levels in NANOG+ HCC stem cells, and HCC patients with a high level of SOCS2-AS1 expression had a higher survival rate. SOCS2-AS1 inhibited HCC cell stemness, migration, and invasion, and increased the cisplatin sensitivity of HCC cells by regulating miR-454-3p/CPEB1. YY1 was confirmed as a transcription factor of SOCS2-AS1, and served to inhibit SOCS2-AS1 transcription. YY1 knockdown suppressed HCC stemness via SOCS2-AS1. The role of SOCS2-AS1 was confirmed in a subcutaneous xenograft model, and SOCS2-AS1 overexpression enhanced the inhibitory effect of cisplatin on HCC in vivo. CONCLUSIONS YY1-regulated lncRNA SOCS2-AS1 suppresses HCC cell stemness and progression via miR-454-3p/CPEB1.
Collapse
Affiliation(s)
- Feng Zhong
- Department of General Surgery, Hospital of Southern University of Science and Technology, Shenzhen, Guangdong, 518055, China
| | - Yuanxi Wang
- Vascular and Endovascular Surgery, Shenzhen Samii Medical Center, Shenzhen, Guangdong, 518118, China.
| |
Collapse
|
9
|
Paula Ceballos M, Darío Quiroga A, Palma NF. Role of sirtuins in hepatocellular carcinoma progression and multidrug resistance: Mechanistical and pharmacological perspectives. Biochem Pharmacol 2023; 212:115573. [PMID: 37127248 DOI: 10.1016/j.bcp.2023.115573] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Revised: 04/20/2023] [Accepted: 04/24/2023] [Indexed: 05/03/2023]
Abstract
Hepatocellular carcinoma (HCC) is the third most common cause of death from cancer worldwide. Therapeutic strategies are still challenging due to the high relapse rate after surgery and multidrug resistance (MDR). It is essential to better understand the mechanisms for HCC progression and MDR for the development of new therapeutic strategies. Mammalian sirtuins (SIRTs), a family of seven members, are related to tumor progression, MDR and prognosis and were proposed as potential prognostic markers, as well as therapeutic targets for treating cancer. SIRT1 is the most studied member and is overexpressed in HCC, playing an oncogenic role and predicting poor prognosis. Several manuscripts describe the role of SIRTs2-7 in HCC; most of them report an oncogenic role for SIRT2 and -7 and a suppressive role for SIRT3 and -4. The scenario is more confusing for SIRT5 and -6, since information is contradictory and scarce. For SIRT1 many inhibitors are available and they seem to hold therapeutic promise in HCC. For the other members the development of specific modulators has just started. This review is aimed to describe the features of SIRTs1-7 in HCC, and the role they play in the onset and progression of the disease. Also, when possible, we will depict the information related to the SIRTs modulators that have been tested in HCC and their possible implication in MDR. With this, we hope to clarify the role of each member in HCC and to shed some light on the most successful strategies to overcome MDR.
Collapse
Affiliation(s)
- María Paula Ceballos
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina.
| | - Ariel Darío Quiroga
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina; Centro de Altos Estudios en Ciencias Humanas y de la Salud (CAECIHS) Sede Regional Rosario, Universidad Abierta Interamericana, Av. Pellegrini 1618 (S2000BUG), Rosario, Argentina
| | - Nicolás Francisco Palma
- Instituto de Fisiología Experimental (IFISE), Facultad de Ciencias Bioquímicas y Farmacéuticas, CONICET, UNR, Suipacha 70 (S2002LRL), Rosario, Argentina; Área Morfología, Facultad de Ciencias Bioquímicas y Farmacéuticas, UNR, Suipachs 570 (S2002LRL), Rosario, Argentina
| |
Collapse
|
10
|
Hashemi M, Sabouni E, Rahmanian P, Entezari M, Mojtabavi M, Raei B, Zandieh MA, Behroozaghdam M, Mirzaei S, Hushmandi K, Nabavi N, Salimimoghadam S, Ren J, Rashidi M, Raesi R, Taheriazam A, Alexiou A, Papadakis M, Tan SC. Deciphering STAT3 signaling potential in hepatocellular carcinoma: tumorigenesis, treatment resistance, and pharmacological significance. Cell Mol Biol Lett 2023; 28:33. [PMID: 37085753 PMCID: PMC10122325 DOI: 10.1186/s11658-023-00438-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2023] [Accepted: 03/15/2023] [Indexed: 04/23/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is considered one of the greatest challenges to human life and is the most common form of liver cancer. Treatment of HCC depends on chemotherapy, radiotherapy, surgery, and immunotherapy, all of which have their own drawbacks, and patients may develop resistance to these therapies due to the aggressive behavior of HCC cells. New and effective therapies for HCC can be developed by targeting molecular signaling pathways. The expression of signal transducer and activator of transcription 3 (STAT3) in human cancer cells changes, and during cancer progression, the expression tends to increase. After induction of STAT3 signaling by growth factors and cytokines, STAT3 is phosphorylated and translocated to the nucleus to regulate cancer progression. The concept of the current review revolves around the expression and phosphorylation status of STAT3 in HCC, and studies show that the expression of STAT3 is high during the progression of HCC. This review addresses the function of STAT3 as an oncogenic factor in HCC, as STAT3 is able to prevent apoptosis and thus promote the progression of HCC. Moreover, STAT3 regulates both survival- and death-inducing autophagy in HCC and promotes cancer metastasis by inducing the epithelial-mesenchymal transition (EMT). In addition, upregulation of STAT3 is associated with the occurrence of chemoresistance and radioresistance in HCC. Specifically, non-protein-coding transcripts regulate STAT3 signaling in HCC, and their inhibition by antitumor agents may affect tumor progression. In this review, all these topics are discussed in detail to provide further insight into the role of STAT3 in tumorigenesis, treatment resistance, and pharmacological regulation of HCC.
Collapse
Affiliation(s)
- Mehrdad Hashemi
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Eisa Sabouni
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Parham Rahmanian
- Faculty of Veterinary Medicine, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Maliheh Entezari
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Behnaz Raei
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohammad Arad Zandieh
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Mitra Behroozaghdam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Science and Research Branch, Islamic Azad University, Tehran, Iran
| | - Kiavash Hushmandi
- Division of Epidemiology, Department of Food Hygiene and Quality Control, Faculty of Veterinary Medicine, University of Tehran, Tehran, Iran
| | - Noushin Nabavi
- Department of Urologic Sciences and Vancouver Prostate Centre, University of British Columbia, Vancouver, BC, V6H3Z6, Canada
| | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Jun Ren
- Department of Cardiology, Zhongshan Hospital, Shanghai Institute of Cardiovascular Diseases, Fudan University, Shanghai, 200032, China
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran.
- The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Rasoul Raesi
- Department of Health Services Management, Mashhad University of Medical Sciences, Mashhad, Iran.
- Department of Medical-Surgical Nursing, Mashhad University of Medical Sciences, Mashhad, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence Sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
- Department of Orthopedics, Faculty of Medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Athanasios Alexiou
- Department of Science and Engineering, Novel Global Community Educational Foundation, Hebersham, Australia
- AFNP Med Austria, Vienna, Austria
| | - Marios Papadakis
- Department of Surgery II, University Hospital Witten-Herdecke, University of Witten-Herdecke, Heusnerstrasse 40, 42283, Wuppertal, Germany.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia
| |
Collapse
|
11
|
Paskeh MDA, Ghadyani F, Hashemi M, Abbaspour A, Zabolian A, Javanshir S, Razzazan M, Mirzaei S, Entezari M, Goharrizi MASB, Salimimoghadam S, Aref AR, Kalbasi A, Rajabi R, Rashidi M, Taheriazam A, Sethi G. Biological impact and therapeutic perspective of targeting PI3K/Akt signaling in hepatocellular carcinoma: Promises and Challenges. Pharmacol Res 2023; 187:106553. [PMID: 36400343 DOI: 10.1016/j.phrs.2022.106553] [Citation(s) in RCA: 53] [Impact Index Per Article: 53.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Revised: 11/09/2022] [Accepted: 11/10/2022] [Indexed: 11/17/2022]
Abstract
Cancer progression results from activation of various signaling networks. Among these, PI3K/Akt signaling contributes to proliferation, invasion, and inhibition of apoptosis. Hepatocellular carcinoma (HCC) is a primary liver cancer with high incidence rate, especially in regions with high prevalence of viral hepatitis infection. Autoimmune disorders, diabetes mellitus, obesity, alcohol consumption, and inflammation can also lead to initiation and development of HCC. The treatment of HCC depends on the identification of oncogenic factors that lead tumor cells to develop resistance to therapy. The present review article focuses on the role of PI3K/Akt signaling in HCC progression. Activation of PI3K/Akt signaling promotes glucose uptake, favors glycolysis and increases tumor cell proliferation. It inhibits both apoptosis and autophagy while promoting HCC cell survival. PI3K/Akt stimulates epithelial-to-mesenchymal transition (EMT) and increases matrix-metalloproteinase (MMP) expression during HCC metastasis. In addition to increasing colony formation capacity and facilitating the spread of tumor cells, PI3K/Akt signaling stimulates angiogenesis. Therefore, silencing PI3K/Akt signaling prevents aggressive HCC cell behavior. Activation of PI3K/Akt signaling can confer drug resistance, particularly to sorafenib, and decreases the radio-sensitivity of HCC cells. Anti-cancer agents, like phytochemicals and small molecules can suppress PI3K/Akt signaling by limiting HCC progression. Being upregulated in tumor tissues and clinical samples, PI3K/Akt can also be used as a biomarker to predict patients' response to therapy.
Collapse
Affiliation(s)
- Mahshid Deldar Abad Paskeh
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Fatemeh Ghadyani
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrdad Hashemi
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Alireza Abbaspour
- Cellular and Molecular Research Center,Qazvin University of Medical Sciences, Qazvin, Iran
| | - Amirhossein Zabolian
- Resident of department of Orthopedics, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Salar Javanshir
- Young Researchers and Elite Club, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mehrnaz Razzazan
- Medical Student, Student Research Committee, Golestan University of Medical Sciences, Gorgan, Iran
| | - Sepideh Mirzaei
- Department of Biology, Faculty of Science, Islamic Azad University, Science and Research Branch, Tehran, Iran
| | - Maliheh Entezari
- Department of Genetics, Faculty of Advanced Science and Technology, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | | | - Shokooh Salimimoghadam
- Department of Biochemistry and Molecular Biology, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Amir Reza Aref
- Belfer Center for Applied Cancer Science, Dana-Farber Cancer Institute, Harvard Medical School, Boston, MA, USA; Translational Sciences, Xsphera Biosciences Inc. 6, Tide Street, Boston, MA 02210, USA
| | - Alireza Kalbasi
- Department of Pharmacy, Brigham and Women's Hospital, Harvard Medical School, Boston, MA 02115, USA
| | - Romina Rajabi
- Faculty of Veterinary Medicine, Islamic Azad University, Science and Research Branch, Tehran, Iran.
| | - Mohsen Rashidi
- Department Pharmacology, Faculty of Medicine, Mazandaran University of Medical Sciences, Sari, Iran; The Health of Plant and Livestock Products Research Center, Mazandaran University of Medical Sciences, Sari, Iran.
| | - Afshin Taheriazam
- Farhikhtegan Medical Convergence sciences Research Center, Farhikhtegan Hospital Tehran Medical Sciences, Islamic Azad University, Tehran, Iran; Department of Orthopedics, Faculty of medicine, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran.
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore.
| |
Collapse
|
12
|
Targeting the "undruggable": RNA-binding proteins in the spotlight in cancer therapy. Semin Cancer Biol 2022; 86:69-83. [PMID: 35772609 DOI: 10.1016/j.semcancer.2022.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 05/19/2022] [Accepted: 06/24/2022] [Indexed: 01/27/2023]
Abstract
Tumors refractory to conventional therapy belong to specific subpopulations of cancer cells, which have acquired a higher number of mutations/epigenetic changes than the majority of cancer cells. This property provides them the ability to become resistant to therapy. Aberrant expression of certain RNA-binding proteins (RBPs) can regulate the sensitivity of tumor cells to chemotherapeutic drugs by binding to specific regions present in the 3´-UTR of certain mRNAs to promote or repress mRNA translation or by interacting with other proteins (including RBPs) and non-coding RNAs that are part of ribonucleoprotein complexes. In particular, an increasing interest in the RBPs involved in chemoresistance has recently emerged. In this review, we discuss how RBPs are not only affected by chemotherapeutic treatments, but also play an active role in therapeutic responses via the direct modulation of crucial cancer-related proteins. A special focus is being placed on the development of therapeutic strategies targeting these RBPs.
Collapse
|
13
|
Zhou Y, Xiao L, Long G, Cao J, Liu S, Tao Y, Zhou L, Tang J. Identification of senescence-related subtypes, establishment of a prognosis model, and characterization of a tumor microenvironment infiltration in breast cancer. Front Immunol 2022; 13:921182. [PMID: 36072578 PMCID: PMC9441960 DOI: 10.3389/fimmu.2022.921182] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/29/2022] [Indexed: 01/10/2023] Open
Abstract
Breast cancer is a malignancy with the highest incidence and mortality in women worldwide. Senescence is a model of arrest in the cell cycle, which plays an important role in tumor progression, while the prognostic value of cellular senescence-related genes (SRGs) in evaluating immune infiltration and clinical outcomes of breast cancer needs further investigation. In the present study, we identified two distinct molecular subtypes according to the expression profiles of 278 SRGs. We further explored the dysregulated pathways between the two subtypes and constructed a microenvironmental landscape of breast cancer. Subsequently, we established a senescence-related scoring signature based on the expression of four SRGs in the training set (GSE21653) and validated its accuracy in two validation sets (GSE20685 and GSE25055). In the training set, patients in the high-risk group had a worse prognosis than patients in the low-risk group. Multivariate Cox regression analysis showed that risk score was an independent prognostic indicator. Receiver operating characteristic curve (ROC) analysis proved the predictive accuracy of the signature. The prognostic value of this signature was further confirmed in the validation sets. We also observed that a lower risk score was associated with a higher pathological response rate in patients with neoadjuvant chemotherapy. We next performed functional experiments to validate the results above. Our study demonstrated that these cellular senescence patterns effectively grouped patients at low or high risk of disease recurrence and revealed their potential roles in the tumor–immune–stromal microenvironment. These findings enhanced our understanding of the tumor immune microenvironment and provided new insights for improving the prognosis of breast cancer patients.
Collapse
Affiliation(s)
- Yanling Zhou
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Liang Xiao
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Guo Long
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Cao
- Department of Breast, Xiangya Hospital, Central South University, Changsha, China
| | - Shuang Liu
- Department of Oncology, Institute of Medical Sciences, National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
| | - Yongguang Tao
- Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Department of Pathology, Xiangya Hospital, Central South University, Changsha, China
- Key Laboratory of Carcinogenesis of the Ministry of Health, Cancer Research Institute, School of Basic Medicine, Central South University, Changsha, China
- Department of Thoracic Surgery, Hunan Key Laboratory of Tumor Models and Individualized Medicine, Second Xiangya Hospital, Central South University, Changsha, China
| | - Ledu Zhou
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Jianing Tang
- Department of Liver Surgery, Xiangya Hospital, Central South University, Changsha, China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Jianing Tang,
| |
Collapse
|
14
|
Yi Q, Deng Z, Yue J, He J, Xiong J, Sun W, Sun W. RNA binding proteins in osteoarthritis. Front Cell Dev Biol 2022; 10:954376. [PMID: 36003144 PMCID: PMC9393224 DOI: 10.3389/fcell.2022.954376] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2022] [Accepted: 06/27/2022] [Indexed: 11/13/2022] Open
Abstract
Osteoarthritis (OA) is a common chronic degenerative joint disease worldwide. The pathological features of OA are the erosion of articular cartilage, subchondral bone sclerosis, synovitis, and metabolic disorder. Its progression is characterized by aberrant expression of genes involved in inflammation, proliferation, and metabolism of chondrocytes. Effective therapeutic strategies are limited, as mechanisms underlying OA pathophysiology remain unclear. Significant research efforts are ongoing to elucidate the complex molecular mechanisms underlying OA focused on gene transcription. However, posttranscriptional alterations also play significant function in inflammation and metabolic changes related diseases. RNA binding proteins (RBPs) have been recognized as important regulators in posttranscriptional regulation. RBPs regulate RNA subcellular localization, stability, and translational efficiency by binding to their target mRNAs, thereby controlling their protein expression. However, their role in OA is less clear. Identifying RBPs in OA is of great importance to better understand OA pathophysiology and to figure out potential targets for OA treatment. Hence, in this manuscript, we summarize the recent knowledge on the role of dysregulated RBPs in OA and hope it will provide new insight for OA study and targeted treatment.
Collapse
Affiliation(s)
- Qian Yi
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- Department of Orthopaedics, Affiliated Hospital of Putian University, Putian, China
- Department of Physiology, School of Basic Medical Science, Southwest Medical University, Luzhou, China
| | - Zhenhan Deng
- Department of Sports Medicine, The First Affiliated Hospital of Shenzhen University, Shenzhen Second People’s Hospital, Shenzhen, China
| | - Jiaji Yue
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jinglong He
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Jianyi Xiong
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
| | - Wei Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| | - Weichao Sun
- Department of Bone and Joint Surgery, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- The Central Laboratory, Shenzhen Second People’s Hospital (The First Affiliated Hospital of Shenzhen University), Shenzhen, China
- *Correspondence: Wei Sun, ; Weichao Sun,
| |
Collapse
|
15
|
Wang G, Ji X, Li P, Wang W. Human bone marrow mesenchymal stem cell-derived exosomes containing microRNA-425 promote migration, invasion and lung metastasis by down-regulating CPEB1. Regen Ther 2022; 20:107-116. [PMID: 35582707 PMCID: PMC9061616 DOI: 10.1016/j.reth.2022.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 02/24/2022] [Accepted: 03/17/2022] [Indexed: 01/23/2023] Open
Abstract
Objective Bone marrow mesenchymal stem cell-derived exosomes (BMSC-Exos) could mediate the malignancy of tumor cells by transmitting targeted cargo. Therein, this study intends to explore the function of BMSC-Exos transmitting microRNA-425 (miR-425)/cytoplasmic polyadenylation binding protein 1 (CPEB1) in lung cancer growth. Methods miR-425 and CPEB1 levels in cancer tissues and cells were measured. BMSCs and their exosomes were collected and identified. After intervention with BMSC-Exos, miR-425 or CPEB1, invasion and migration of A549 and NCI-H1299 cells in vitro, and lung metastasis of A549 cells in vivo were observed. The relationship between miR-425 and CPEB1 was verified. Results miR-425 was highly expressed while CPEB1 was lowly expressed in lung cancer tissues of patients. CPEB1 was the direct target of miR-425. Down-regulating miR-425 or up-regulating CPEB1 decreased cell invasion and migration ability of A549 and NCI-H1299 cells, as well as decreased the number of lung metastasis lesions in vivo. After co-culture with BMSC-Exos, A549 and NCI-H1299 cells showed promoted migration and invasion in vitro and A549 cells demonstrated increased lung metastasis in vivo. Down-regulated miR-425 or up-regulated CPEB1 reversed the promotion of BMSC-Exos on lung cancer cell invasion, migration and lung metastasis. Conclusion BMSC-Exos could deliver miR-425 to inhibit CPEB1 expression in lung cancer cells, thereby promoting the malignant biological properties of lung cancer cells and their metastasis in vivo.
Collapse
Affiliation(s)
- Guoqiang Wang
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong 251700, PR China
| | - Xiuli Ji
- Department of Respiratory, Jinan Municipal Hospital of Traditional Chinese Medicine, Jinan, Shandong 250012, PR China
| | - Pan Li
- Department of Oncology, Binzhou Central Hospital, Binzhou, Shandong 251700, PR China
| | - Wei Wang
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250012, PR China
| |
Collapse
|
16
|
Hlady RA, Zhao X, El Khoury LY, Luna A, Pham K, Wu Q, Lee JH, Pyrsopoulos NT, Liu C, Robertson KD. Interferon drives HCV scarring of the epigenome and creates targetable vulnerabilities following viral clearance. Hepatology 2022; 75:983-996. [PMID: 34387871 PMCID: PMC9416882 DOI: 10.1002/hep.32111] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 07/08/2021] [Accepted: 08/02/2021] [Indexed: 12/14/2022]
Abstract
BACKGROUND AND AIMS Chronic HCV infection is a leading etiologic driver of cirrhosis and ultimately HCC. Of the approximately 71 million individuals chronically infected with HCV, 10%-20% are expected to develop severe liver complications in their lifetime. Epigenetic mechanisms including DNA methylation and histone modifications become profoundly disrupted in disease processes including liver disease. APPROACH AND RESULTS To understand how HCV infection influences the epigenome and whether these events remain as "scars" following cure of chronic HCV infection, we mapped genome-wide DNA methylation, four key regulatory histone modifications (H3K4me3, H3K4me1, H3K27ac, and H3K27me3), and open chromatin in parental and HCV-infected immortalized hepatocytes and the Huh7.5 HCC cell line, along with DNA methylation and gene-expression analyses following elimination of HCV in these models through treatment with interferon-α (IFN-α) or a direct-acting antiviral (DAA). Our data demonstrate that HCV infection profoundly affects the epigenome (particularly enhancers); HCV shares epigenetic targets with interferon-α targets; and an overwhelming majority of epigenetic changes induced by HCV remain as "scars" on the epigenome following viral cure. Similar findings are observed in primary human patient samples cured of chronic HCV infection. Supplementation of IFN-α/DAA antiviral regimens with DNA methyltransferase inhibitor 5-aza-2'-deoxycytidine synergizes in reverting aberrant DNA methylation induced by HCV. Finally, both HCV-infected and cured cells displayed a blunted immune response, demonstrating a functional effect of epigenetic scarring. CONCLUSIONS Integration of epigenetic and transcriptional data elucidate key gene deregulation events driven by HCV infection and how this may underpin the long-term elevated risk for HCC in patients cured of HCV due to epigenome scarring.
Collapse
Affiliation(s)
- Ryan A Hlady
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Xia Zhao
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Louis Y El Khoury
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| | - Aesis Luna
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Kien Pham
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Qunfeng Wu
- Department of Pathology and Laboratory MedicineNew Jersey Medical SchoolRutgersThe State University of New JerseyNewarkNew JerseyUSA
| | - Jeong-Heon Lee
- Department of Biochemistry and Molecular BiologyMayo ClinicRochesterMinnesotaUSA
| | | | - Chen Liu
- Department of PathologyYale School of MedicineNew HavenConnecticutUSA
| | - Keith D Robertson
- Department of Molecular Pharmacology and Experimental TherapeuticsMayo ClinicRochesterMinnesotaUSA
| |
Collapse
|
17
|
Nsengimana B, Khan FA, Ngowi EE, Zhou X, Jin Y, Jia Y, Wei W, Ji S. Processing body (P-body) and its mediators in cancer. Mol Cell Biochem 2022; 477:1217-1238. [PMID: 35089528 DOI: 10.1007/s11010-022-04359-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/11/2022] [Indexed: 12/24/2022]
Abstract
In recent years, processing bodies (P-bodies) formed by liquid-liquid phase separation, have attracted growing scientific attention due to their involvement in numerous cellular activities, including the regulation of mRNAs decay or storage. These cytoplasmic dynamic membraneless granules contain mRNA storage and decay components such as deadenylase and decapping factors. In addition, different mRNA metabolic regulators, including m6A readers and gene-mediated miRNA-silencing, are also associated with such P-bodies. Cancerous cells may profit from these mRNA decay shredders by up-regulating the expression level of oncogenes and down-regulating tumor suppressor genes. The main challenges of cancer treatment are drug resistance, metastasis, and cancer relapse likely associated with cancer stem cells, heterogeneity, and plasticity features of different tumors. The mRNA metabolic regulators based on P-bodies play a great role in cancer development and progression. The dysregulation of P-bodies mediators affects mRNA metabolism. However, less is known about the relationship between P-bodies mediators and cancerous behavior. The current review summarizes the recent studies on P-bodies mediators, their contribution to tumor development, and their potential in the clinical setting, particularly highlighting the P-bodies as potential drug-carriers such as exosomes to anticancer in the future.
Collapse
Affiliation(s)
- Bernard Nsengimana
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Faiz Ali Khan
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Ebenezeri Erasto Ngowi
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Xuefeng Zhou
- Department of Oncology, Dongtai Affiliated Hospital of Nantong University, Dongtai, 224200, Jiangsu, People's Republic of China
| | - Yu Jin
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Yuting Jia
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China
| | - Wenqiang Wei
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| | - Shaoping Ji
- Laboratory of Cell Signal Transduction, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Henan University, Henan, 475004, People's Republic of China.
| |
Collapse
|
18
|
Zhou Z, Liu T, Li Z, Wang L. Circ_0003732 promotes osteosarcoma progression through regulating miR-377-3p/CPEB1 axis and Wnt/β-catenin signaling pathway. Anticancer Drugs 2022; 33:e299-e310. [PMID: 34407049 DOI: 10.1097/cad.0000000000001206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Osteosarcoma is a prevalent malignant bone cancer. This study aimed to explore the biologic role and potential mechanism of circ_0003732 in osteosarcoma carcinogenesis. Quantitative real-time PCR was implemented to detect the RNA expression of circ_0003732, microRNA-377-3p (miR-377-3p) and cytoplasmic polyadenylation element-binding protein 1 (CPEB1). Cell proliferation was evaluated by cell counting kit-8 assay and colony formation assay. Transwell, wound healing and flow cytometry assays were employed to assess cell migration, invasion and apoptosis. In addition, the interaction between miR-377-3p and circ_0003732 or CPEB1 was validated by dual-luciferase reporter assay. The protein expression was detected by western blot assay or immunohistochemistry assay. Xenograft tumor assay was performed to explore the regulation of circ_0003732 on osteosarcoma tumor growth in vivo. Circ_0003732 was upregulated in osteosarcoma tissues and cells. Knockdown of circ_0003732 suppressed osteosarcoma cell proliferation, migration, invasion and triggered cell apoptosis in vitro, as well as reduced osteosarcoma tumor growth in vivo. Meanwhile, miR-377-3p could bind to circ_0003732 and CPEB1 and miR-377-3p inhibitor could reverse the effects of circ_0003732 silence on osteosarcoma cell progression. Furthermore, CPEB1 overexpression could overturn the suppressive impacts of miR-377-3p on osteosarcoma progression. In addition, circ_0003732 silence restrained Wnt/β-catenin signaling pathway via regulating miR-377-3p in osteosarcoma cells. Circ_0003732 might play a positive role in the malignant progression of osteosarcoma by regulating the miR-377-3p/CPEB1 axis and activating the Wnt/β-catenin signaling pathway, which might provide new insights for osteosarcoma therapy.
Collapse
Affiliation(s)
- Zheng Zhou
- Department Of Orthopedics, The Second Xiangya Hospital Of Central South University, China
| | | | | | | |
Collapse
|
19
|
Shi H, Han L, Zhao J, Wang K, Xu M, Shi J, Dong Z. Tumor stemness and immune infiltration synergistically predict response of radiotherapy or immunotherapy and relapse in lung adenocarcinoma. Cancer Med 2021; 10:8944-8960. [PMID: 34741449 PMCID: PMC8683560 DOI: 10.1002/cam4.4377] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 09/12/2021] [Accepted: 10/07/2021] [Indexed: 12/28/2022] Open
Abstract
Cancer stem cells (CSCs) have been shown to accelerate tumor recurrence, radiotherapy, and chemotherapy resistance. Immunotherapy is a powerful anticancer treatment that can significantly prolong the overall survival of patients with lung adenocarcinoma (LUAD). However, little is known about the function of genes related to tumor stemness and immune infiltration in LUAD. After integrating the tumor stemness index based on mRNA expression (mRNAsi), immune score, mRNA expression, and clinical information from the TCGA database, we screened 380 tumor stemness and immune (TSI)-related genes and constructed a five TSI-specific-gene (CPS1, CCR2, NT5E, ANLN, and ABCC2) signature (TSISig) using a machine learning method. Survival analysis indicated that TSISig could stably predict the prognosis of patients with LUAD. Comparison of mRNAsi and immune score between high- and low-TSISig groups suggested that TSISig characterized tumor stemness and immune infiltration. In addition, enrichment of immune subpopulations showed that the low-TSISig group held more immune subpopulations. GSEA revealed that TSISig had a strong association with the cell cycle and human immune response. Further analysis revealed that TSISig not only had a good predictive ability for prognosis but could also serve as an excellent predictor of tumor recurrence and response to radiotherapy and immunotherapy in LUAD patients. TSISig might regulate the development of LUAD by coordinating tumor stemness and immune infiltration. Finally, a connectivity map (CMap) analysis demonstrated that the HDAC inhibitor could target TSISig.
Collapse
Affiliation(s)
- Hongjie Shi
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Linzhi Han
- Department of Radiation and Medical Oncology, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jinping Zhao
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Kaijie Wang
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ming Xu
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jiajun Shi
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Zhe Dong
- Department of Thoracic and Cardiovascular Surgery, Zhongnan Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
20
|
Chen B, Zhang K, Han Q, Zhong W, Yi J, Zhu H, Xia S. LncRNA LINC00460 takes a stimulating role on hepatocellular carcinoma stemness property. Cell Cycle 2021; 20:2102-2113. [PMID: 34612153 DOI: 10.1080/15384101.2021.1940627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
Abundant researches have stated that long noncoding RNAs (lncRNAs) are crucial molecules in intricate progression of various cancers in terms of their influence on cell stemness. However, no research has discussed the role of LINC00460 in the stemness of hepatocellular carcinoma (HCC). RT-qPCR and western blot were utilized to respectively examine the RNA and protein levels. Aldehyde dehydrogenase 1 (ALDH1) assays and sphere formation assay were performed to detect cell stemness property in vitro and in vivo subcutaneous xenograft tumor assay was performed to detect tumor growth. Interaction between RNAs was explored by luciferase reporter assays and RNA pull-down assays. Our results showed that LINC00460 was markedly over-expressed in HCC and silencing LINC00460 impaired cell stemness. Additionally, LINC00460 knockdown curbed proliferation, migration, invasion and epithelial-to-mesenchymal transition (EMT) and drove apoptosis of HCC cells. Further, LINC00460 bound to miR-503-5p and miR-654-3p to protect t-complex 1 (TCP1) from being inhibited by miR-503-5p/miR-654-3p. Rescue experiments confirmed the effect of LINC00460/miR-503-5p/miR-654-3p/TCP1 on HCC cell stemness. In conclusion, LINC00460 aggravated cell stemness in HCC via targeting miR-503-5p/miR-654-3p and TCP1, suggesting that LINC00460 may work as a potential signature for cell stemness in HCC.[Figure: see text].
Collapse
Affiliation(s)
- Bitao Chen
- Department of Gastroenterology, the No.1 People's Hospital of Jingmen, 448000, Hubei, China
| | - Kejun Zhang
- Department of Traditional Chinese Medicine, the No.1 People's Hospital of Jingmen, Jingmen, 448000, Hubei, China
| | - Qinli Han
- Department of Gastroenterology, the No.1 People's Hospital of Jingmen, 448000, Hubei, China
| | - Weiwei Zhong
- Department of Gastroenterology, the No.1 People's Hospital of Jingmen, 448000, Hubei, China
| | - Jie Yi
- Department of Gastroenterology, the No.1 People's Hospital of Jingmen, 448000, Hubei, China
| | - Huiling Zhu
- Department of Gastroenterology, the No.1 People's Hospital of Jingmen, 448000, Hubei, China
| | - Shitao Xia
- Department of Gastroenterology, the No.1 People's Hospital of Jingmen, 448000, Hubei, China
| |
Collapse
|
21
|
Wang J, Wang T, Zhang Y, Liu J, Song J, Han Y, Wang L, Yang S, Zhu L, Geng R, Li W, Yu X. CPEB1 enhances erastin-induced ferroptosis in gastric cancer cells by suppressing twist1 expression. IUBMB Life 2021; 73:1180-1190. [PMID: 34184391 DOI: 10.1002/iub.2525] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 06/22/2021] [Accepted: 06/22/2021] [Indexed: 12/18/2022]
Abstract
The induction of ferroptosis is considered a new strategy for cancer treatment. Cytoplasmic polyadenylation element binding protein 1 (CPEB1) is a post-transcriptional regulatory factor, whose low expression has been reported to link to the enhanced metastasis and angiogenesis of gastric cancer (GC). In this study, to explore the role of CPEB1 in ferroptosis, GC cells with overexpressed or silenced CPEB1 expression were treated with erastin, a classic ferroptosis inducer. The results showed that erastin dose-dependently decreased the viability of four GC cell lines (AGS, SNU-1, Hs-746 T, and HGC-27), suggesting that ferroptosis could be triggered in these GC cells. Interestingly, HGC-27 cells overexpressing CPEB1 were more sensitive to erastin, generated more lipid reactive oxygen species (ROS) and malondialdehyde (MDA), and their glutathione peroxidase 4 (Gpx4) expression and GSH content were reduced. Contrarily, CPEB1-silenced AGS cells were more resistant to erastin. Mechanically, we demonstrated that CPEB1 overexpression reduced the expression of twist1, an inhibitor of activating transcription factor 4 (ATF4), thereby activating the ATF4/ChaC Glutathione Specific Gamma-Glutamylcyclotransferase 1 (CHAC1) pathway (CHAC1, a molecule known to induce GSH degradation). Furthermore, re-expression of twist1 in GC cells impaired the effects of CPEB1 overexpression in presence of erastin. Additionally, similar to the in vitro results, the growth-inhibiting effects of erastin on GC xenografted tumors were also augmented by CPEB1 overexpression in vivo. Collectively, we demonstrate that CPEB1 facilitates erastin-induced ferroptosis by inhibiting twist1.
Collapse
Affiliation(s)
- Jing Wang
- Department of Biology, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, China
| | - Tao Wang
- Department of Ultrasound, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yang Zhang
- Department of Laboratory Medicine, Hongqi Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jiaqi Liu
- Laboratory of Morphology, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Jie Song
- Department of Biology, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Yanlong Han
- Department of Biology, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lihong Wang
- Department of Electrical Diagnosis, Jilin Neuropsychiatric Hospital, Siping, Jilin, China
| | - Shuang Yang
- Office of Academic Affairs, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Lili Zhu
- Department of Foreign Language, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Rui Geng
- Office of Student Affairs, School of Basic Medical Sciences, Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Weimin Li
- Department of Imaging, The Second Affiliated Hospital of Mudanjiang Medical University, Mudanjiang, Heilongjiang, China
| | - Xiaoguang Yu
- Department of Biochemistry and Molecular Biology, Harbin Medical University, Harbin, Heilongjiang, China
| |
Collapse
|
22
|
Shao K, Pu W, Zhang J, Guo S, Qian F, Glurich I, Jin Q, Ma Y, Ju S, Zhang Z, Ding W. DNA hypermethylation contributes to colorectal cancer metastasis by regulating the binding of CEBPB and TFCP2 to the CPEB1 promoter. Clin Epigenetics 2021; 13:89. [PMID: 33892791 PMCID: PMC8063327 DOI: 10.1186/s13148-021-01071-z] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 04/07/2021] [Indexed: 01/05/2023] Open
Abstract
Background Aberrant DNA methylation has been firmly established as a factor contributing to the pathogenesis of colorectal cancer (CRC) via its capacity to silence tumour suppressor genes. However, the methylation status of multiple tumour suppressor genes and their roles in promoting CRC metastasis are not well characterised. Methods We explored the methylation and expression profiles of CPEB1 (the gene encoding cytoplasmic polyadenylation element-binding protein 1), a candidate CRC tumour suppressor gene, using The Cancer Genome Atlas (TCGA) database and validated these results in both CRC cell lines and cells from Han Chinese CRC patients (n = 104). The functional role of CPEB1 in CRC was examined in experiments performed in vitro and in vivo. A candidate transcription factor capable of regulating CPEB1 expression was predicted in silico and validated by luciferase reporter, DNA pull-down, and electrophoretic mobility shift assays. Results Hypermethylation and decreased expression of CPEB1 in CRC tumour tissues were revealed by TCGA database. We also identified a significant inverse correlation (Pearson’s R = − 0.43, P < 0.001) between promoter methylation and CPEB1 expression. We validated these results in CRC samples and two CRC cell lines. We also demonstrated that up-regulation of CPEB1 resulted in significantly decreased tumour growth, migration, invasion, and tumorigenicity and promoted tumour cell apoptosis both in vitro and in vivo. We identified the transcription factors CCAAT enhancer-binding protein beta (CEBPB) and transcription factor CP2 (TFCP2) as critical regulators of CPEB1 expression. Hypermethylation of the CPEB1 promoter resulted in a simultaneous increase in the capacity for TFCP2 binding and a decreased likelihood of CEBPB binding, both of which led to diminished expression of CPEB1. Conclusions Our results identified a novel tumour-suppressive role of CPEB1 in CRC and found that hypermethylation of the CPEB1 promoter may lead to diminished expression due to decreased chromatin accessibility and transcription factor binding. Collectively, these results suggest a potential role for CPEB1 in the diagnosis and treatment of CRC. Supplementary Information The online version contains supplementary material available at 10.1186/s13148-021-01071-z.
Collapse
Affiliation(s)
- Keke Shao
- Department of Laboratory Medicine, the First People's Hospital of Yancheng City/Affiliated Hospital 4 of Nantong University, Yancheng, Jiangsu Province, China
| | - Weilin Pu
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.,State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China
| | - Jianfeng Zhang
- Department of Gastroenterology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Shicheng Guo
- Department of Medical Genetics, School of Medicine and Public Health, University of Wisconsin-Madison, Madison, WI, USA.,Center for Precision Medicine Research, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Fei Qian
- Department of Gastrointestinal Surgery, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Ingrid Glurich
- Office of Research Support Services, Marshfield Clinic Research Institute, Marshfield, WI, USA
| | - Qing Jin
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Yanyun Ma
- State Key Laboratory of Genetic Engineering, Collaborative Innovation Center for Genetics and Development, School of Life Sciences, Fudan University, Shanghai, China.,Six Industrial Research Institute, Fudan University, Shanghai, China.,Human Phenome Institute, Fudan University, Shanghai, China
| | - Shaoqing Ju
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China
| | - Zhao Zhang
- Department of Biochemistry and Molecular Biology, McGovern Medical School at The University of Texas Health Science Center at Houston, Houston, TX, 77030, USA.
| | - Weifeng Ding
- Department of Laboratory Medicine, Affiliated Hospital of Nantong University, Nantong, Jiangsu Province, China.
| |
Collapse
|
23
|
Jia Y, Zhao J, Yang J, Shao J, Cai Z. miR-301 regulates the SIRT1/SOX2 pathway via CPEB1 in the breast cancer progression. MOLECULAR THERAPY-ONCOLYTICS 2021; 22:13-26. [PMID: 34377766 PMCID: PMC8313741 DOI: 10.1016/j.omto.2021.03.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Accepted: 03/09/2021] [Indexed: 12/28/2022]
Abstract
Breast cancer, the most common malignant tumor in women, has become a worldwide burden for family and society. MicroRNAs (miRNAs or miRs) are recognized as critical mediators of cancer-related processes, since they have the ability to coordinately suppress multiple target genes. In this study, we aim to find out specific miRNAs involved in the progression of breast cancer and explore the underlying molecular mechanism. Bioinformatics analysis suggested miR-301 as a differentially overexpressed miRNA in breast cancer, which was confirmed by expression determination. Functional assays were employed to explore the effect of miR-301 and its downstream effectors cytoplasmic polyadenylation element-binding protein 1 (CPEB1), SIRT1, and SOX2 on malignant phenotypes of breast cancer. The interaction among these factors was explained using luciferase and RNA immunoprecipitation (RIP) assays. In addition, the in vivo impact of miR-301 on breast cancer was assessed by cellular tumorigenicity in nude mice. We found that miR-301 overexpression restricted CPEB1 level and further promoted cell proliferation, metastasis, and cell cycle progression and impeded apoptosis. Moreover, CPEB1 regulated breast cancer development by mediating the SIRT1/SOX2 pathway. Further, miR-301 overexpression accelerated tumor formation in nude mice. Our results indicate that miR-301 overexpression accelerates the progression of breast cancer through the CPEB1/SIRT1/SOX2 axis.
Collapse
Affiliation(s)
- Yanjing Jia
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jie Zhao
- Department of Nursing, North Branch of Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Jinjie Yang
- Shanghai MCC Hospital, Shanghai 201900, PR China
| | - Jie Shao
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| | - Zihao Cai
- Department of General Surgery, Huashan Hospital, Fudan University, Shanghai 200040, PR China
| |
Collapse
|
24
|
Bitaraf A, Razmara E, Bakhshinejad B, Yousefi H, Vatanmakanian M, Garshasbi M, Cho WC, Babashah S. The oncogenic and tumor suppressive roles of RNA-binding proteins in human cancers. J Cell Physiol 2021; 236:6200-6224. [PMID: 33559213 DOI: 10.1002/jcp.30311] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 01/14/2021] [Accepted: 01/22/2021] [Indexed: 12/17/2022]
Abstract
Posttranscriptional regulation is a mechanism for the cells to control gene regulation at the RNA level. In this process, RNA-binding proteins (RBPs) play central roles and orchestrate the function of RNA molecules in multiple steps. Accumulating evidence has shown that the aberrant regulation of RBPs makes contributions to the initiation and progression of tumorigenesis via numerous mechanisms such as genetic changes, epigenetic alterations, and noncoding RNA-mediated regulations. In this article, we review the effects caused by RBPs and their functional diversity in the malignant transformation of cancer cells that occurs through the involvement of these proteins in various stages of RNA regulation including alternative splicing, stability, polyadenylation, localization, and translation. Besides this, we review the various interactions between RBPs and other crucial posttranscriptional regulators such as microRNAs and long noncoding RNAs in the pathogenesis of cancer. Finally, we discuss the potential approaches for targeting RBPs in human cancers.
Collapse
Affiliation(s)
- Amirreza Bitaraf
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Ehsan Razmara
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - Babak Bakhshinejad
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Hassan Yousefi
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Mousa Vatanmakanian
- Department of Biochemistry and Molecular Biology, LSUHSC School of Medicine, New Orleans, Louisiana, USA
| | - Masoud Garshasbi
- Department of Medical Genetics, Faculty of Medical Sciences, Tarbiat Modares University, Tehran, Iran
| | - William C Cho
- Department of Clinical Oncology, Queen Elizabeth Hospital, Kowloon, Hong Kong
| | - Sadegh Babashah
- Department of Molecular Genetics, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
25
|
Kanakamani S, Suresh PS, Venkatesh T. Regulation of processing bodies: From viruses to cancer epigenetic machinery. Cell Biol Int 2020; 45:708-719. [PMID: 33325125 DOI: 10.1002/cbin.11527] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2020] [Revised: 10/17/2020] [Accepted: 12/13/2020] [Indexed: 11/08/2022]
Abstract
Processing bodies (PBs) are 100-300 nm cytoplasmic messenger ribonucleoprotein particle (mRNP) granules that regulate eukaryotic gene expression. These cytoplasmic compartments harbor messenger RNAs (mRNAs) and several proteins involved in mRNA decay, microRNA silencing, nonsense-mediated mRNA decay, and splicing. Though membrane-less, PB structures are maintained by RNA-protein and protein-protein interactions. PB proteins have intrinsically disordered regions and low complexity domains, which account for its liquid to liquid phase separation. In addition to being dynamic and actively involved in the exchange of materials with other mRNPs and organelles, they undergo changes on various cellular cues and environmental stresses, including viral infections. Interestingly, several PB proteins are individually implicated in cancer development, and no study has addressed the effects on PB dynamics after epigenetic modifications of cancer-associated PB genes. In the current review, we summarize modulations undergone by P bodies or P body components upon viral infections. Furthermore, we discuss the selective and widely investigated PB proteins that undergo methylation changes in cancer and their potential as biomarkers.
Collapse
Affiliation(s)
- Sunmathy Kanakamani
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| | - Padmanaban S Suresh
- Department of Biotechnology, National Institute of Technology Calicut, Calicut, India
| | - Thejaswini Venkatesh
- Department of Biochemistry and Molecular Biology, Central University of Kerala, Kasargod, India
| |
Collapse
|
26
|
Li K, Guo ZW, Zhai XM, Yang XX, Wu YS, Liu TC. RBPTD: a database of cancer-related RNA-binding proteins in humans. DATABASE-THE JOURNAL OF BIOLOGICAL DATABASES AND CURATION 2020; 2020:5734253. [PMID: 32047888 PMCID: PMC7012770 DOI: 10.1093/database/baz156] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 12/05/2019] [Accepted: 12/23/2019] [Indexed: 12/12/2022]
Abstract
RNA-binding proteins (RBPs) play important roles in regulating the expression of genes involved in human physiological and pathological processes, especially in cancers. Many RBPs have been found to be dysregulated in cancers; however, there was no tool to incorporate high-throughput data from different dimensions to systematically identify cancer-related RBPs and to explore their causes of abnormality and their potential functions. Therefore, we developed a database named RBPTD to identify cancer-related RBPs in humans and systematically explore their functions and abnormalities by integrating different types of data, including gene expression profiles, prognosis data and DNA copy number variation (CNV), among 28 cancers. We found a total of 454 significantly differentially expressed RBPs, 1970 RBPs with significant prognostic value, and 53 dysregulated RBPs correlated with CNV abnormality. Functions of 26 cancer-related RBPs were explored by analysing high-throughput RNA sequencing data obtained by crosslinking immunoprecipitation, and the remaining RBP functions were predicted by calculating their correlation coefficient with other genes. Finally, we developed the RBPTD for users to explore functions and abnormalities of cancer-related RBPs to improve our understanding of their roles in tumorigenesis. Database URL: http: //www.rbptd.com
Collapse
Affiliation(s)
- Kun Li
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Zhi-Wei Guo
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Xiang-Ming Zhai
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Xue-Xi Yang
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Ying-Song Wu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| | - Tian-Cai Liu
- Institute of Antibody Engineering, School of Laboratory Medicine and Biotechnology, Southern Medical University, 1838 N. Guangzhou Ave, Guangzhou, 510515, China
| |
Collapse
|
27
|
Sovijit W, Sovijit W, Ishii Y, Kambe J, Fujita T, Watanabe G, Yamaguchi H, Nagaoka K. Estrogen promotes increased breast cancer cell proliferation and migration through downregulation of CPEB1 expression. Biochem Biophys Res Commun 2020; 534:871-876. [PMID: 33162033 DOI: 10.1016/j.bbrc.2020.10.085] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2020] [Accepted: 10/28/2020] [Indexed: 12/31/2022]
Abstract
The polyadenylation element binding protein 1 (CPEB1) plays an important role in the regulation of poly(A) tail length at the 3'UTR of mRNA during transcription. Downregulation of CPEB1 expression, which is associated with the loss of mammary epithelial polarity, has been reported in breast cancer. CPEB1 downregulation leads to an increase in tumor aggressiveness of breast cancer. Breast cancer is also known to be responsive to the treatment with steroid hormones, which promotes cancer development and progression; however, the nature of these associations remains unclear. This study aimed to investigate whether estrogen and progesterone impacted CPEB1 expression in breast cancer in order to regulate cell proliferation and migration. MCF7 cell proliferation was increased in response to estrogen treatment, and estrogen application suppressed the expression of CPEB1 mRNA. Cells treated with estrogen or those depleted for CPEB1 by shRNA showed increased wound healing capacity compared with that of control cells in migration assay. Moreover, we found that CPEB1 level of expression in human breast cancer tissue was low compared with that in the healthy tissue. CPEB1 expression was downregulated in response to estrogen activity and in turn, that caused a significantly induced cell migration in breast cancer cells. This suggests that CPEB1 is one of the estrogen responsive genes, which stimulates breast cancer progression. Increasing and/or maintaining CPEB1 expression level has the potential to control breast cancer behavior.
Collapse
Affiliation(s)
- Watcharee Sovijit
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Watcharin Sovijit
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yuriko Ishii
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Jun Kambe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Tomoyuki Fujita
- Department of Breast Surgery, Tokyo Medical University Ibaraki Medical Center, 3-20-1 Chuo, Ami-cho, Ibaraki, 300-0395, Japan
| | - Gen Watanabe
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Hirohito Yamaguchi
- Cancer Research Center, Qatar Biomedical Research Institute, Hamad Bin Khalifa University, Qatar Foundation, P.O Box 34110, Doha, Qatar
| | - Kentaro Nagaoka
- Laboratory of Veterinary Physiology, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
28
|
Ashrafizadeh M, Zarrabi A, Hashemipour M, Vosough M, Najafi M, Shahinozzaman M, Hushmandi K, Khan H, Mirzaei H. Sensing the scent of death: Modulation of microRNAs by Curcumin in gastrointestinal cancers. Pharmacol Res 2020; 160:105199. [DOI: 10.1016/j.phrs.2020.105199] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/06/2020] [Accepted: 09/07/2020] [Indexed: 02/06/2023]
|
29
|
Qin H, Ni H, Liu Y, Yuan Y, Xi T, Li X, Zheng L. RNA-binding proteins in tumor progression. J Hematol Oncol 2020; 13:90. [PMID: 32653017 PMCID: PMC7353687 DOI: 10.1186/s13045-020-00927-w] [Citation(s) in RCA: 177] [Impact Index Per Article: 44.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2020] [Accepted: 06/25/2020] [Indexed: 02/08/2023] Open
Abstract
RNA-binding protein (RBP) has a highly dynamic spatiotemporal regulation process and important biological functions. They are critical to maintain the transcriptome through post-transcriptionally controlling the processing and transportation of RNA, including regulating RNA splicing, polyadenylation, mRNA stability, mRNA localization, and translation. Alteration of each process will affect the RNA life cycle, produce abnormal protein phenotypes, and thus lead to the occurrence and development of tumors. Here, we summarize RBPs involved in tumor progression and the underlying molecular mechanisms whereby they are regulated and exert their effects. This analysis is an important step towards the comprehensive characterization of post-transcriptional gene regulation involved in tumor progression.
Collapse
Affiliation(s)
- Hai Qin
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Haiwei Ni
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yichen Liu
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China
| | - Yaqin Yuan
- Guizhou Medical Device Testing Center, Guiyang, 550004, Guizhou, People's Republic of China
| | - Tao Xi
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| | - Xiaoman Li
- Jiangsu Key Laboratory for Pharmacology and Safety Evaluation of Chinese Materia Medica, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, 210023, People's Republic of China.
| | - Lufeng Zheng
- School of Life Science and Technology, Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, 639 Longmian Road, Nanjing, 211198, People's Republic of China.
| |
Collapse
|
30
|
Wang Y, Yang J, Chen P, Song Y, An W, Zhang H, Butegeleqi B, Yan J. MicroRNA-320a inhibits invasion and metastasis in osteosarcoma by targeting cytoplasmic polyadenylation element-binding protein 1. Cancer Med 2020; 9:2833-2845. [PMID: 32064777 PMCID: PMC7163091 DOI: 10.1002/cam4.2919] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2019] [Revised: 01/07/2020] [Accepted: 01/26/2020] [Indexed: 02/06/2023] Open
Abstract
Osteosarcoma is a primary malignant bone tumor, which affects children, adolescents, and young adults commonly. MicroRNAs (miRNAs) have been proved to be dysregulated in different cancers, including osteosarcoma. Although miR‐320a has been implicated in many types of malignancies, little is known about the role of miR‐320a in osteosarcoma. In this study, we show that the overexpression of miR‐320a or knockdown of cytoplasmic polyadenylation element‐binding protein 1 (CPEB1) inhibited osteosarcoma cell migration and invasion. miR‐320a downregulates CPEB1 expression by directly targeting the CPEB1 3′‐UTR. Furthermore, CPEB1 reintroduction reversed the antiproliferation, antimigration, and antiinvasion roles of miR‐320a, indicating that miR‐320a might function as a tumor suppressor in osteosarcoma through CPEB1. In conclusion, our study demonstrates that miR‐320a plays a critical role in osteosarcoma progression and may provide a potential therapeutic target for osteosarcoma.
Collapse
Affiliation(s)
- Yanlong Wang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jiyu Yang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Pangtao Chen
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Yu Song
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Weizheng An
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Haoran Zhang
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Butegeleqi Butegeleqi
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| | - Jinglong Yan
- Departments of Orthopedic Surgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, Heilongjiang, P.R. China
| |
Collapse
|
31
|
Cataloguing and Selection of mRNAs Localized to Dendrites in Neurons and Regulated by RNA-Binding Proteins in RNA Granules. Biomolecules 2020; 10:biom10020167. [PMID: 31978946 PMCID: PMC7072219 DOI: 10.3390/biom10020167] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 01/18/2020] [Accepted: 01/20/2020] [Indexed: 12/15/2022] Open
Abstract
Spatiotemporal translational regulation plays a key role in determining cell fate and function. Specifically, in neurons, local translation in dendrites is essential for synaptic plasticity and long-term memory formation. To achieve local translation, RNA-binding proteins in RNA granules regulate target mRNA stability, localization, and translation. To date, mRNAs localized to dendrites have been identified by comprehensive analyses. In addition, mRNAs associated with and regulated by RNA-binding proteins have been identified using various methods in many studies. However, the results obtained from these numerous studies have not been compiled together. In this review, we have catalogued mRNAs that are localized to dendrites and are associated with and regulated by the RNA-binding proteins fragile X mental retardation protein (FMRP), RNA granule protein 105 (RNG105, also known as Caprin1), Ras-GAP SH3 domain binding protein (G3BP), cytoplasmic polyadenylation element binding protein 1 (CPEB1), and staufen double-stranded RNA binding proteins 1 and 2 (Stau1 and Stau2) in RNA granules. This review provides comprehensive information on dendritic mRNAs, the neuronal functions of mRNA-encoded proteins, the association of dendritic mRNAs with RNA-binding proteins in RNA granules, and the effects of RNA-binding proteins on mRNA regulation. These findings provide insights into the mechanistic basis of protein-synthesis-dependent synaptic plasticity and memory formation and contribute to future efforts to understand the physiological implications of local regulation of dendritic mRNAs in neurons.
Collapse
|
32
|
Das D, Ghosh S, Maitra A, Biswas NK, Panda CK, Roy B, Sarin R, Majumder PP. Epigenomic dysregulation-mediated alterations of key biological pathways and tumor immune evasion are hallmarks of gingivo-buccal oral cancer. Clin Epigenetics 2019; 11:178. [PMID: 31796082 PMCID: PMC6889354 DOI: 10.1186/s13148-019-0782-2] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2019] [Accepted: 11/17/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Gingivo-buccal oral squamous cell carcinoma (OSCC-GB) is the most common cancer among men in India and is associated with high mortality. Although OSCC-GB is known to be quite different from tongue cancer in its genomic presentation and its clinical behavior, it is treated identically as tongue cancer. Predictive markers of prognosis and therapy that are specific to OSCC-GB are, therefore, required. Although genomic drivers of OSCC-GB have been identified by whole exome and whole genome sequencing, no epigenome-wide study has been conducted in OSCC-GB; our study has filled this gap, and has discovered and validated epigenomic hallmarks of gingivobuccal oral cancer. METHODS We have carried out integrative analysis of epigenomic (n = 87) and transcriptomic (n = 72) profiles of paired tumor-normal tissues collected from OSCC-GB patients from India. Genome-wide DNA methylation assays and RNA-sequencing were performed on high-throughput platforms (Illumina) using a half-sample of randomly selected patients to discover significantly differentially methylated probes (DMPs), which were validated on the remaining half-sample of patients. RESULTS About 200 genes showed significant inverse correlation between promoter methylation and expression, of which the most significant genes included genes that act as transcription factors and genes associated with other cancer types. Novel findings of this study include identification of (a) potential immunosuppressive effect in OSCC-GB due to significant promoter hypomethylation driven upregulation of CD274 and CD80, (b) significant dysregulation by epigenetic modification of DNMT3B (upregulation) and TET1 (downregulation); and (c) known drugs that can reverse the direction of dysregulation of gene expression caused by promoter methylation. CONCLUSIONS In OSCC-GB patients, there are significant alterations in expression of key genes that (a) regulate normal cell division by maintenance of balanced DNA methylation and transcription process, (b) maintain normal physiological signaling (PPAR, B cell receptor) and metabolism (arachidonic acid) pathways, and (c) provide immune protection against antigens, including tumor cells. These findings indicate novel therapeutic targets, including immunotherapeutic, for treatment of OSCC-GB.
Collapse
Affiliation(s)
- Debodipta Das
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | - Sahana Ghosh
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | - Arindam Maitra
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | - Nidhan K Biswas
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India
| | | | - Bidyut Roy
- Indian Statistical Institute, Kolkata, India
| | - Rajiv Sarin
- Advanced Centre for Treatment Research and Education in Cancer, Mumbai, India
| | - Partha P Majumder
- National Institute of Biomedical Genomics, P.O.: N.S.S, Kalyani, 741251, India. .,Indian Statistical Institute, Kolkata, India.
| |
Collapse
|
33
|
Farcas M, Gavrea AA, Gulei D, Ionescu C, Irimie A, Catana CS, Berindan-Neagoe I. SIRT1 in the Development and Treatment of Hepatocellular Carcinoma. Front Nutr 2019; 6:148. [PMID: 31608282 PMCID: PMC6773871 DOI: 10.3389/fnut.2019.00148] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2019] [Accepted: 08/27/2019] [Indexed: 12/17/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common causes of cancer-related death worldwide. Current treatment options for inoperable HCCs have decreased therapeutic efficacy and are associated with systemic toxicity and chemoresistance. Sirtuin 1 (SIRT1) is a nicotinamide adenine dinucleotide–dependent enzyme that is frequently overexpressed in HCC, where it promotes tumorigenicity, metastasis, and chemoresistance. SIRT1 also maintains the tumorigenic and self-renewal proprieties of liver cancer stem cells. Multiple tumor-suppressive microRNAs (miRNAs) are downregulated in HCC and, as a consequence, permit SIRT1-induced tumorigenicity. However, either directly targeting SIRT1, combining conventional chemotherapy with SIRT1 inhibitors, or upregulating tumor-suppressive miRNAs may improve therapeutic efficacy and patient outcomes. Here, we present the interaction between SIRT1, miRNAs, and liver cancer stem cells and discuss the consequences of their interplay for the development and treatment of HCC.
Collapse
Affiliation(s)
- Marius Farcas
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Andrei-Alexandru Gavrea
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Diana Gulei
- MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Calin Ionescu
- "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,5th Surgical Department, Municipal Hospital, Cluj-Napoca, Romania
| | - Alexandru Irimie
- 11th Department of Oncological Surgery and Gynecological Oncology, University of Medicine and Pharmacy "Iuliu Hatieganu", Cluj-Napoca, Romania.,Department of Surgery, The Oncology Institute "Prof. Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| | - Cristina S Catana
- Department of Medical Biochemistry, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania
| | - Ioana Berindan-Neagoe
- Research Center for Functional Genomics, Biomedicine and Translational Medicine, "Iuliu Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,MEDFUTURE-Research Center for Advanced Medicine, "Iuliu-Hatieganu" University of Medicine and Pharmacy, Cluj-Napoca, Romania.,Department of Functional Genomics and Experimental Pathology, The Oncology Institute "Prof Dr. Ion Chiricuţǎ", Cluj-Napoca, Romania
| |
Collapse
|
34
|
Xu K, Ren G, Yin D, Guo S, Zhao Y. Depletion of CPEB1 protects against oxidized LDL-induced endothelial apoptosis and inflammation though SIRT1/LOX-1 signalling pathway. Life Sci 2019; 239:116874. [PMID: 31521690 DOI: 10.1016/j.lfs.2019.116874] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2019] [Revised: 09/06/2019] [Accepted: 09/11/2019] [Indexed: 12/26/2022]
Abstract
Atherosclerosis (AS) is a chronic inflammatory disease that results from Oxidized low-density lipoprotein (Ox-LDL) induced endothelial dysfunction. Cytoplasmic polyadenylation element binding protein 1 (CPEB1) is closely related to the development of epithelial cells, but the role of CPEB1 in AS remains unknown. The RNA and protein levels of CPEB1 expression are increased by Ox-LDL exposure, which is abrogated by c-Jun amino-terminal kinase (JNK) inhibitor SP600125. CPEB1 small interfering RNA (siRNA) suppressed the oxidative stress, inflammation, and apoptosis. Furthermore, CPEB1 siRNA enhanced the sirtuin 1 (SIRT1) transcription levels in Ox-LDL-treated HUVECs. Co-Immunoprecipitation (Co-IP) assay showed that CPEB1 siRNA declined the ubiquitination of SIRT1, and SIRT1 siRNA enhanced the Lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1), which were decreased by CPEB1 siRNA. In addition, LOX-1 and SIRT1 attenuated the protection of SIRT1 siRNA on Ox-LDL-induced oxidative stress. Therefore, our study revealed that CPEB1 depletion might play an anti-inflammatory and antiapoptotic role in Ox-LDL-induced apoptosis and inflammation though SIRT1/LOX-1 signalling pathway.
Collapse
Affiliation(s)
- Kaicheng Xu
- Department of Anesthesiology, China-Japan Union Hospital JiLin University, Chang Chun, JiLin, 130033, China
| | - Guanghao Ren
- Department of Vascular Surgery, China-Japan Union Hospital JiLin University, Chang Chun, JiLin, 130033, China
| | - Dexin Yin
- Department of Vascular Surgery, China-Japan Union Hospital JiLin University, Chang Chun, JiLin, 130033, China
| | - Suli Guo
- Department of Vascular Surgery, China-Japan Union Hospital JiLin University, Chang Chun, JiLin, 130033, China
| | - Yue Zhao
- Department of Vascular Surgery, China-Japan Union Hospital JiLin University, Chang Chun, JiLin, 130033, China.
| |
Collapse
|
35
|
Mohibi S, Chen X, Zhang J. Cancer the'RBP'eutics-RNA-binding proteins as therapeutic targets for cancer. Pharmacol Ther 2019; 203:107390. [PMID: 31302171 DOI: 10.1016/j.pharmthera.2019.07.001] [Citation(s) in RCA: 121] [Impact Index Per Article: 24.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 07/02/2019] [Indexed: 12/11/2022]
Abstract
RNA-binding proteins (RBPs) play a critical role in the regulation of various RNA processes, including splicing, cleavage and polyadenylation, transport, translation and degradation of coding RNAs, non-coding RNAs and microRNAs. Recent studies indicate that RBPs not only play an instrumental role in normal cellular processes but have also emerged as major players in the development and spread of cancer. Herein, we review the current knowledge about RNA binding proteins and their role in tumorigenesis as well as the potential to target RBPs for cancer therapeutics.
Collapse
Affiliation(s)
- Shakur Mohibi
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Xinbin Chen
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States
| | - Jin Zhang
- Comparative Oncology Laboratory, Schools of Veterinary Medicine and Medicine, University of California at Davis, United States.
| |
Collapse
|