1
|
Ung TT, Starr CR, Zhylkibayev A, Saltykova I, Gorbatyuk M. Development of TRIB3-Based Therapy as a Gene-Independent Approach to Treat Retinal Degenerative Disorders. Int J Mol Sci 2024; 25:4716. [PMID: 38731938 PMCID: PMC11083933 DOI: 10.3390/ijms25094716] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/08/2024] [Accepted: 04/24/2024] [Indexed: 05/13/2024] Open
Abstract
Inherited retinal degeneration (RD) constitutes a heterogeneous group of genetic retinal degenerative disorders. The molecular mechanisms underlying RD encompass a diverse spectrum of cellular signaling, with the unfolded protein response (UPR) identified as a common signaling pathway chronically activated in degenerating retinas. TRIB3 has been recognized as a key mediator of the PERK UPR arm, influencing various metabolic pathways, such as insulin signaling, lipid metabolism, and glucose homeostasis, by acting as an AKT pseudokinase that prevents the activation of the AKT → mTOR axis. This study aimed to develop a gene-independent approach targeting the UPR TRIB3 mediator previously tested by our group using a genetic approach in mice with RD. The goal was to validate a therapeutic approach targeting TRIB3 interactomes through the pharmacological targeting of EGFR-TRIB3 and delivering cell-penetrating peptides targeting TRIB3 → AKT. The study employed rd10 and P23H RHO mice, with afatinib treatment conducted in p15 rd10 mice through daily intraperitoneal injections. P15 P23H RHO mice received intraocular injections of cell-penetrating peptides twice at a 2-week interval. Our study revealed that both strategies successfully targeted TRIB3 interactomes, leading to an improvement in scotopic A- and B-wave ERG recordings. Additionally, the afatinib-treated mice manifested enhanced photopic ERG amplitudes accompanied by a delay in photoreceptor cell loss. The treated rd10 retinas also showed increased PDE6β and RHO staining, along with an elevation in total PDE activity in the retinas. Consequently, our study demonstrated the feasibility of a gene-independent strategy to target common signaling in degenerating retinas by employing a TRIB3-based therapeutic approach that delays retinal function and photoreceptor cell loss in two RD models.
Collapse
Affiliation(s)
| | | | | | | | - Marina Gorbatyuk
- Department of Optometry and Vision Science, University of Alabama at Birmingham, Birmingham, AL 35233, USA; (T.T.U.); (C.R.S.); (A.Z.)
| |
Collapse
|
2
|
Song DJ, Bao XL, Fan B, Li GY. Mechanism of Cone Degeneration in Retinitis Pigmentosa. Cell Mol Neurobiol 2023; 43:1037-1048. [PMID: 35792991 DOI: 10.1007/s10571-022-01243-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/27/2022]
Abstract
Retinitis pigmentosa (RP) is a group of genetic disorders resulting in inherited blindness due to the degeneration of rod and cone photoreceptors. The various mechanisms underlying rod degeneration primarily rely on genetic mutations, leading to night blindness initially. Cones gradually degenerate after rods are almost eliminated, resulting in varying degrees of visual disability and blindness. The mechanism of cone degeneration remains unclear. An understanding of the mechanisms underlying cone degeneration in RP, a highly heterogeneous disease, is essential to develop novel treatments of RP. Herein, we review recent advancements in the five hypotheses of cone degeneration, including oxidative stress, trophic factors, metabolic stress, light damage, and inflammation activation. We also discuss the connection among these theories to provide a better understanding of secondary cone degeneration in RP. Five current mechanisms of cone degenerations in RP Interactions among different pathways are involved in RP.
Collapse
Affiliation(s)
- De-Juan Song
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Xiao-Li Bao
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Bin Fan
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China
| | - Guang-Yu Li
- Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, 130000, China.
| |
Collapse
|
3
|
Su T, Liang L, Zhang L, Wang J, Chen L, Su C, Cao J, Yu Q, Deng S, Chan HF, Tang S, Guo Y, Chen J. Retinal organoids and microfluidic chip-based approaches to explore the retinitis pigmentosa with USH2A mutations. Front Bioeng Biotechnol 2022; 10:939774. [PMID: 36185441 PMCID: PMC9524156 DOI: 10.3389/fbioe.2022.939774] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 08/23/2022] [Indexed: 11/19/2022] Open
Abstract
Retinitis pigmentosa (RP) is a leading cause of vision impairment and blindness worldwide, with limited medical treatment options. USH2A mutations are one of the most common causes of non-syndromic RP. In this study, we developed retinal organoids (ROs) and retinal pigment epithelium (RPE) cells from induced pluripotent stem cells (iPSCs) of RP patient to establish a sustainable in vitro RP disease model. RT-qPCR, western blot, and immunofluorescent staining assessments showed that USH2A mutations induced apoptosis of iPSCs and ROs, and deficiency of the extracellular matrix (ECM) components. Transcriptomics and proteomics findings suggested that abnormal ECM-receptor interactions could result in apoptosis of ROs with USH2A mutations via the PI3K-Akt pathway. To optimize the culture conditions of ROs, we fabricated a microfluidic chip to co-culture the ROs with RPE cells. Our results showed that this perfusion system could efficiently improve the survival rate of ROs. Further, ECM components such as laminin and collagen IV of ROs in the RP group were upregulated compared with those maintained in static culture. These findings illustrate the potential of microfluidic chip combined with ROs technology in disease modelling for RP.
Collapse
Affiliation(s)
- Ting Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Liying Liang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Lan Zhang
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jianing Wang
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Luyin Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
| | - Caiying Su
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Jixing Cao
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
| | - Quan Yu
- Centric Laboratory, Medical College, Jinan University, Guangzhou, China
| | - Shuai Deng
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | - Hon Fai Chan
- Institute for Tissue Engineering and Regenerative Medicine, Chinese University of Hong Kong, Hong Kong, China
- Key Laboratory for Regenerative Medicine of the Ministry of Education of China, Ministry of Education of China, School of Biomedical Sciences, Faculty of Medicine, Chinese University of Hong Kong, Hong Kong, China
| | | | - Yonglong Guo
- Department of Ophthalmology, First Affiliated Hospital of Jinan University, Jinan University, Guangzhou, China
- College of Veterinary Medicine, South China Agricultural University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| | - Jiansu Chen
- Key Laboratory for Regenerative Medicine, Ministry of Education, Jinan University, Guangzhou, China
- Aier Eye Institute, Changsha, China
- Institute of Ophthalmology, Medical College, Jinan University, Guangzhou, China
- *Correspondence: Jiansu Chen, ; Yonglong Guo,
| |
Collapse
|
4
|
Sefiani A, Rusyn I, Geoffroy CG. Novel adult cortical neuron processing and screening method illustrates sex- and age-dependent effects of pharmaceutical compounds. Sci Rep 2022; 12:13125. [PMID: 35908049 PMCID: PMC9338961 DOI: 10.1038/s41598-022-17389-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2022] [Accepted: 07/25/2022] [Indexed: 11/22/2022] Open
Abstract
Neurodegenerative diseases and neurotraumatic injuries are typically age-associated disorders that can reduce neuron survival, neurite outgrowth, and synaptic plasticity leading to loss of cognitive capacity, executive function, and motor control. In pursuit of reducing the loss of said neurological functions, novel compounds are sought that promote neuron viability, neuritogenesis, and/or synaptic plasticity. Current high content in vitro screenings typically use cells that are iPSC-derived, embryonic, or originate from post-natal tissues; however, most patients suffering from neurodegenerative diseases and neurotrauma are of middle-age and older. The chasm in maturity between the neurons used in drug screens and those in a target population is a barrier for translational success of in vitro results. It has been historically challenging to culture adult neurons let alone conduct screenings; therefore, age-appropriate drug screenings have previously not been plausible. We have modified Miltenyi's protocol to increase neuronal yield, neuron purity, and neural viability at a reduced cost to expand our capacity to screen compounds directly in primary adult neurons. To our knowledge, we developed the first morphology-based screening system using adult cortical neurons and the first to incorporate age and sex as biological variables in a screen using adult cortical neurons. By using primary adult cortical neurons from mice that were 4 to 48 weeks old for screening pharmaceutical agents, we have demonstrated age- and sex-dependent effects on neuritogenesis and neuron survival in vitro. Utilizing age- and sex-appropriate in vitro models to find novel compounds increasing neuron survival and neurite outgrowth, made possible by our modified adult neuron processing method, will greatly increase the relevance of in vitro screening for finding neuroprotective compounds.
Collapse
Affiliation(s)
- Arthur Sefiani
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA
| | - Ivan Rusyn
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine & Biomedical Sciences, Texas A&M University, College Station, TX, 77843, USA
| | - Cédric G Geoffroy
- Department of Neuroscience and Experimental Therapeutics, School of Medicine, Texas A&M University, Bryan, TX, 77807, USA.
| |
Collapse
|
5
|
Landowski M, Bowes Rickman C. Targeting Lipid Metabolism for the Treatment of Age-Related Macular Degeneration: Insights from Preclinical Mouse Models. J Ocul Pharmacol Ther 2021; 38:3-32. [PMID: 34788573 PMCID: PMC8817708 DOI: 10.1089/jop.2021.0067] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Age-related macular degeneration (AMD) is a major leading cause of irreversible visual impairment in the world with limited therapeutic interventions. Histological, biochemical, genetic, and epidemiological studies strongly implicate dysregulated lipid metabolism in the retinal pigmented epithelium (RPE) in AMD pathobiology. However, effective therapies targeting lipid metabolism still need to be identified and developed for this blinding disease. To test lipid metabolism-targeting therapies, preclinical AMD mouse models are needed to establish therapeutic efficacy and the role of lipid metabolism in the development of AMD-like pathology. In this review, we provide a comprehensive overview of current AMD mouse models available to researchers that could be used to provide preclinical evidence supporting therapies targeting lipid metabolism for AMD. Based on previous studies of AMD mouse models, we discuss strategies to modulate lipid metabolism as well as examples of studies evaluating lipid-targeting therapeutics to restore lipid processing in the RPE. The use of AMD mouse models may lead to worthy lipid-targeting candidate therapies for clinical trials to prevent the blindness caused by AMD.
Collapse
Affiliation(s)
- Michael Landowski
- Department of Medical Genetics, University of Wisconsin-Madison, Madison, Wisconsin, USA.,McPherson Eye Research Institute, University of Wisconsin-Madison, Madison, Wisconsin, USA.,Department of Ophthalmology and Visual Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
| | - Catherine Bowes Rickman
- Department of Ophthalmology, Duke University Medical Center, Durham, North Carolina, USA.,Department of Cell Biology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
6
|
Lin B, Youdim MBH. The protective, rescue and therapeutic potential of multi-target iron-chelators for retinitis pigmentosa. Free Radic Biol Med 2021; 174:1-11. [PMID: 34324978 DOI: 10.1016/j.freeradbiomed.2021.07.031] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2021] [Revised: 07/15/2021] [Accepted: 07/23/2021] [Indexed: 12/11/2022]
Abstract
Retinitis pigmentosa (RP) is a group of inherited diseases in which mutations result in the initial loss of night vision, followed by complete blindness. There is currently no effective therapeutic option for RP patients. Given the extremely heterogeneous nature of RP, any causative gene-specific therapy would be practical in a small fraction of patients with RP. Non-gene-specific therapeutics that is applicable to the majority of RP patients regardless of causative mutations may have an enormous impact on RP treatment. Several theories including apoptosis, oxidative stress and neuroinflammation have been proposed as possible underlying mechanisms for photoreceptor death in RP. We have designed and synthesized a series of iron-chelating compounds that possess diverse pharmacological properties and can act in a non-gene-specific manner on multiple pathological features ascribed to Alzheimer's disease, Parkinson's disease and RP. In this review, we discuss the multiple effects of several brain-permeable multi target iron-chelating compounds on photoreceptor degeneration in a mouse model of human RP. Specifically, we focus on the anti-apototic, neuroprotective and neurorescue effects of the compound VK28, M30 and VAR10303 on the histologic and functional preservation of photoreceptors in a mouse model of RP. We consider such drugs as potential therapeutic agents for RP patients.
Collapse
Affiliation(s)
- Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Kowloon, Hong Kong.
| | - Moussa B H Youdim
- Faculty of Medicine, Technion-Israel Institute of Technology, Haifa, Israel.
| |
Collapse
|
7
|
Pan M, Yin Y, Wang X, Wang Q, Zhang L, Hu H, Wang C. Mice deficient in UXT exhibit retinitis pigmentosa-like features via aberrant autophagy activation. Autophagy 2021; 17:1873-1888. [PMID: 32744119 PMCID: PMC8386600 DOI: 10.1080/15548627.2020.1796015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 06/29/2020] [Accepted: 07/09/2020] [Indexed: 11/22/2022] Open
Abstract
UXT (ubiquitously expressed prefoldin like chaperone), a small chaperone-like protein, is widely expressed in diverse human and mouse tissues and is more abundant in retina and kidney. However, the functional characterization of UXT at tissue level was largely unknown. Here, we reported that mice deficient in UXT exhibited salient features of retinal degenerative disease, similar to retinitis pigmentosa. Conditional knockout (CKO) of Uxt led to retinal degeneration and pigmentation in mice retina along with significant alterations of retinitis pigmentosa-related genes, which indicated UXT might be associated with retinal degenerative disease sharing key features to retinitis pigmentosa. Consistently, the electroretinogram (ERG) responses were dramatically impaired in uxt CKO retinas. Strong degenerative features were observed in uxt CKO retinas, including specific and progressive reduction of photoreceptor cells and increased numbers of apoptotic cells. Intriguingly, macroautophagic/autophagic flux was enhanced in uxt CKO retina. Mechanistically, we found UXT was indispensable to suppress photoreceptor apoptotic cell death by inhibiting autophagy through regulating the activity of MTOR (mechanistic target of rapamycin kinase), a key negative regulator of autophagy. Conversely, knockdown of UXT induced the robust expression of the canonical autophagy-related genes and boosted autophagic flux and apoptosis, finally resulting in severe retina degeneration in uxt CKO mice. Taken together, our study reveals a vital role of UXT in preventing retina from degeneration. The loss of UXT results in a hyper-autophagic state leading to massive retinal degeneration. Therefore, UXT may be a crucial target for retinal degenerative disease.Abbreviations: 3-ma: 3-methyladenine; casp3: caspase 3; cko: conditional knockout; erg: electroretinogram; gapdh: glyceraldehyde-3-phosphate dehydrogenase; map1lc3b/lc3b: microtubule-associated protein 1 light chain 3; mtor: mechanistic target of rapamycin kinase; parp: poly (adp-ribose) polymerase family; rna-seq: rna sequencing; rp: retinitis pigmentosa; rps6kb1/s6k: ribosomal protein s6 kinase b1; sqstm1: sequestosome 1; tunel: terminal deoxynucleotidyl transferase mediated dutp nick-end labeling; uxt: ubiquitously expressed prefoldin like chaperone.
Collapse
Affiliation(s)
- Mingyu Pan
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Yue Yin
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Xinxia Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Quanyi Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Lele Zhang
- State Key Laboratory of Cell Biology, CAS Center for Excellence in Molecular Cell Science, Shanghai Institute of Biochemistry and Cell Biology, Chinese Academy of Sciences, University of Chinese Academy of Sciences, Shanghai, China
| | - Haiyang Hu
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| | - Chen Wang
- State Key Laboratory of Natural Medicines, School of Life Science and Technology, China Pharmaceutical University, Nanjing, China
| |
Collapse
|
8
|
Yang JL, Zou TD, Yang F, Yang ZL, Zhang HB. Inhibition of mTOR signaling by rapamycin protects photoreceptors from degeneration in rd1 mice. Zool Res 2021; 42:482-486. [PMID: 34235896 PMCID: PMC8317187 DOI: 10.24272/j.issn.2095-8137.2021.049] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Retinitis pigmentosa (RP) is an inherited retinal degenerative disease that begins with defective rod photoreceptor function, followed by impaired cone function, and complete blindness in its late stage. To date, however, there is no effective treatment for RP. By carrying a nonsense mutation in the Pde6b gene, rd1 mice display elevated cGMP in conjunction with higher intracellular Ca2+ in their rod photoreceptors, resulting in fast retinal degeneration. Ca2+ has been linked to activation of the mammalian target of rapamycin (mTOR) pathway. The mTOR pathway integrates extracellular and intracellular signals to sense the supply of nutrients and plays a central role in regulating protein and lipid synthesis as well as apoptosis and autophagy. In the present study, we showed that mTOR and phosphorylated mTOR (p-mTOR, activated form of mTOR) are up-regulated in rd1 photoreceptors at postnatal day 10 (P10), a pre-degenerative stage. Moreover, the downstream effectors of mTOR, such as pS6K and S6K, are also increased, suggesting activation of the mTOR signaling pathway. Intravitreal administration of rapamycin, a negative regulator of mTOR, inhibits the mTOR pathway in rd1 photoreceptors. Consequently, the progression of retinal degeneration is slower and retinal function is enhanced, possibly mediated by activation of autophagy in the photoreceptors. Taken together, these results highlight rapamycin as a potential therapeutic avenue for retinal degeneration.
Collapse
Affiliation(s)
- Jia-Liang Yang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Tong-Dan Zou
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Fang Yang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China
| | - Zheng-Lin Yang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Institute of Chengdu Biology, Sichuan Translational Medicine Hospital, Chinese Academy of Sciences, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China
| | - Hou-Bin Zhang
- Key Laboratory for Human Disease Gene Study of Sichuan Province and Institute of Laboratory Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, Sichuan 610072, China.,Research Unit for Blindness Prevention of Chinese Academy of Medical Sciences (2019RU026), Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu, Sichuan 610072, China. E-mail:
| |
Collapse
|
9
|
Pan WW, Wubben TJ, Besirli CG. Photoreceptor metabolic reprogramming: current understanding and therapeutic implications. Commun Biol 2021; 4:245. [PMID: 33627778 PMCID: PMC7904922 DOI: 10.1038/s42003-021-01765-3] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Accepted: 01/28/2021] [Indexed: 02/06/2023] Open
Abstract
Acquired and inherited retinal disorders are responsible for vision loss in an increasing proportion of individuals worldwide. Photoreceptor (PR) death is central to the vision loss individuals experience in these various retinal diseases. Unfortunately, there is a lack of treatment options to prevent PR loss, so an urgent unmet need exists for therapies that improve PR survival and ultimately, vision. The retina is one of the most energy demanding tissues in the body, and this is driven in large part by the metabolic needs of PRs. Recent studies suggest that disruption of nutrient availability and regulation of cell metabolism may be a unifying mechanism in PR death. Understanding retinal cell metabolism and how it is altered in disease has been identified as a priority area of research. The focus of this review is on the recent advances in the understanding of PR metabolism and how it is critical to reduction-oxidation (redox) balance, the outer retinal metabolic ecosystem, and retinal disease. The importance of these metabolic processes is just beginning to be realized and unraveling the metabolic and redox pathways integral to PR health may identify novel targets for neuroprotective strategies that prevent blindness in the heterogenous group of retinal disorders.
Collapse
Affiliation(s)
- Warren W Pan
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA
| | - Thomas J Wubben
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| | - Cagri G Besirli
- Department of Ophthalmology and Visual Sciences, Kellogg Eye Center, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
10
|
Yang W, Xiong G, Lin B. Cyclooxygenase-1 mediates neuroinflammation and neurotoxicity in a mouse model of retinitis pigmentosa. J Neuroinflammation 2020; 17:306. [PMID: 33059704 PMCID: PMC7565369 DOI: 10.1186/s12974-020-01993-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Accepted: 10/08/2020] [Indexed: 11/10/2022] Open
Abstract
Background Retinitis pigmentosa (RP) is a group of inherited eye disorders with progressive degeneration of photoreceptors in the retina, ultimately leading to partial or complete blindness. The mechanisms underlying photoreceptor degeneration are not yet completely understood. Neuroinflammation is reported to play a pathological role in RP. However, the mechanisms that trigger neuroinflammation remain largely unknown. To address this question, we investigated the role of cyclooxygenase-1 (COX-1), a key enzyme in the conversion of arachidonic acid to proinflammatory prostaglandins, in the rd10 mouse model of RP. Methods We backcrossed COX-1 knockout mice (COX-1−/−) onto the rd10 mouse model of RP and investigated the impact of COX-1 deletion on neuroinflammation in the resulting COX-1−/−/rd10 mouse line, using a combination of immunocytochemistry, flow cytometry, qPCR, ELISA, and a series of simple visual tests. Results We found that genetic ablation or pharmacological inhibition of COX-1 alleviated neuroinflammation and subsequently preserved retinal photoreceptor and function and visual performance in rd10 mice. Moreover, we observed that the pharmacological inhibition of the prostaglandin E2 (PGE2) EP2 receptors largely replicated the beneficial effects of COX-1 deletion, suggesting that EP2 receptor was a critical downstream effector of COX-1-mediated neurotoxicity in rd10 mice. Conclusion Our data suggest that the COX-1/PGE2/EP2 signaling pathway was partly responsible for significantly increased neuroinflammation and disease progression in rd10 mice, and that EP2 receptor could be targeted therapeutically to block the pathological activity of COX-1 without inducing any potential side effects in treating RP patients. Supplementary information The online version contains supplementary material available at 10.1186/s12974-020-01993-0.
Collapse
Affiliation(s)
- Wei Yang
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Guoyin Xiong
- Department of Ophthalmology, University of Hong Kong, Pokfulam, Hong Kong
| | - Bin Lin
- School of Optometry, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
11
|
Newton F, Megaw R. Mechanisms of Photoreceptor Death in Retinitis Pigmentosa. Genes (Basel) 2020; 11:genes11101120. [PMID: 32987769 PMCID: PMC7598671 DOI: 10.3390/genes11101120] [Citation(s) in RCA: 116] [Impact Index Per Article: 23.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 09/15/2020] [Accepted: 09/22/2020] [Indexed: 02/08/2023] Open
Abstract
Retinitis pigmentosa (RP) is the most common cause of inherited blindness and is characterised by the progressive loss of retinal photoreceptors. However, RP is a highly heterogeneous disease and, while much progress has been made in developing gene replacement and gene editing treatments for RP, it is also necessary to develop treatments that are applicable to all causative mutations. Further understanding of the mechanisms leading to photoreceptor death is essential for the development of these treatments. Recent work has therefore focused on the role of apoptotic and non-apoptotic cell death pathways in RP and the various mechanisms that trigger these pathways in degenerating photoreceptors. In particular, several recent studies have begun to elucidate the role of microglia and innate immune response in the progression of RP. Here, we discuss some of the recent progress in understanding mechanisms of rod and cone photoreceptor death in RP and summarise recent clinical trials targeting these pathways.
Collapse
Affiliation(s)
- Fay Newton
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Correspondence:
| | - Roly Megaw
- MRC Human Genetics Unit, University of Edinburgh, South Bridge, Edinburgh EH8 9YL, UK;
- Princess Alexandra Eye Pavilion, NHS Lothian, Edinburgh EH3 9HA, UK
| |
Collapse
|
12
|
Yao A, Wijngaarden P. Metabolic pathways in context:
mTOR
signalling in the retina and optic nerve ‐ A review. Clin Exp Ophthalmol 2020; 48:1072-1084. [DOI: 10.1111/ceo.13819] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2020] [Revised: 06/21/2020] [Accepted: 07/05/2020] [Indexed: 02/06/2023]
Affiliation(s)
- Anthony Yao
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
| | - Peter Wijngaarden
- Centre for Eye Research Australia Royal Victorian Eye and Ear Hospital East Melbourne, Victoria Australia
- Ophthalmology, Department of Surgery University of Melbourne Melbourne, Victoria Australia
| |
Collapse
|
13
|
Gorbatyuk MS, Starr CR, Gorbatyuk OS. Endoplasmic reticulum stress: New insights into the pathogenesis and treatment of retinal degenerative diseases. Prog Retin Eye Res 2020; 79:100860. [PMID: 32272207 DOI: 10.1016/j.preteyeres.2020.100860] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2019] [Revised: 03/08/2020] [Accepted: 03/17/2020] [Indexed: 12/13/2022]
Abstract
Physiological equilibrium in the retina depends on coordinated work between rod and cone photoreceptors and can be compromised by the expression of mutant proteins leading to inherited retinal degeneration (IRD). IRD is a diverse group of retinal dystrophies with multifaceted molecular mechanisms that are not fully understood. In this review, we focus on the contribution of chronically activated unfolded protein response (UPR) to inherited retinal pathogenesis, placing special emphasis on studies employing genetically modified animal models. As constitutively active UPR in degenerating retinas may activate pro-apoptotic programs associated with oxidative stress, pro-inflammatory signaling, dysfunctional autophagy, free cytosolic Ca2+ overload, and altered protein synthesis rate in the retina, we focus on the regulatory mechanisms of translational attenuation and approaches to overcoming translational attenuation in degenerating retinas. We also discuss current research on the role of the UPR mediator PERK and its downstream targets in degenerating retinas and highlight the therapeutic benefits of reprogramming PERK signaling in preclinical animal models of IRD. Finally, we describe pharmacological approaches targeting UPR in ocular diseases and consider their potential applications to IRD.
Collapse
Affiliation(s)
- Marina S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA.
| | - Christopher R Starr
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| | - Oleg S Gorbatyuk
- The University of Alabama at Birmingham, Department of Optometry and Vision Science, School of Optometry, USA
| |
Collapse
|
14
|
Starr CR, Nyankerh CNA, Qi X, Hu Y, Gorbatyuk OS, Sonenberg N, Boulton ME, Gorbatyuk MS. Role of Translational Attenuation in Inherited Retinal Degeneration. Invest Ophthalmol Vis Sci 2020; 60:4849-4857. [PMID: 31747684 PMCID: PMC6871337 DOI: 10.1167/iovs.19-27512] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Purpose We reported previously that retinas of mice with inherited retinal degeneration make less protein than retinas of normal mice. Despite recent studies suggesting that diminished protein synthesis rates may contribute to neurologic disorders, a direct link between protein synthesis rates and the progression of neurodegeneration has not been established. Moreover, it remains unclear whether reduced protein synthesis could be involved in retinal pathogenesis. Dysregulation of AKT/mTOR signaling has been reported in the retina during retinal degeneration, but to what extent this signaling contributes to translational attenuation in these mice remains uncertain. Methods C57BL/6J and rd16 mice were subcutaneously injected with anisomycin to chronically inhibit protein synthesis rates. An AAV2 construct encoding constitutively active 4ebp1 was subretinally delivered in wildtype animals to lower protein synthesis rates. 4ebp1/2 were knocked out in rd16 mice. Results Anisomycin treatment lowered retinal translation rates, accelerated retinal degeneration in rd16 mice, and initiated cell death in the retinas of C57BL/6J mice. AAV-mediated transfer of constitutively active 4ebp1-4A into the subretinal space of wildtype animals inhibited protein synthesis, and led to reduced electroretinography amplitudes and fewer ONL nuclei. Finally, we report that restoring protein synthesis rates by knocking out 4ebp1/2 was associated with an approximately 2-fold increase in rhodopsin levels and a delay in retinal degeneration in rd16 mice. Conclusions Our study indicates that protein synthesis inhibition is likely not a cell defense mechanism in the retina by which deteriorating photoreceptors survive, but may be harmful to degenerating retinas, and that restoring protein synthesis may have therapeutic potential in delaying the progression of retinal degeneration.
Collapse
Affiliation(s)
- Christopher R Starr
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Cyril N A Nyankerh
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Xiaoping Qi
- Department of Ophthalmology, and Vision Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Yang Hu
- Department of Ophthalmology, School of Medicine, Stanford University, Stanford, California, United States
| | - Oleg S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Nahum Sonenberg
- Department of Biochemistry, McGill University, Montreal, Quebec, Canada
| | - Michael E Boulton
- Department of Ophthalmology, and Vision Sciences, School of Medicine, University of Alabama at Birmingham, Birmingham, Alabama, United States
| | - Marina S Gorbatyuk
- Department of Optometry and Vision Science, School of Optometry, University of Alabama at Birmingham, Birmingham, Alabama, United States
| |
Collapse
|