1
|
Micallef I, Fenech K, Baron B. Therapeutic targeting potential of the protein lysine and arginine methyltransferases to reverse cancer chemoresistance. Front Mol Biosci 2024; 11:1455415. [PMID: 39703687 PMCID: PMC11656028 DOI: 10.3389/fmolb.2024.1455415] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Accepted: 10/10/2024] [Indexed: 12/21/2024] Open
Abstract
Cancer treatments have continued to improve tremendously over the past decade, but therapy resistance is still a common, major factor encountered by patients diagnosed with cancer. Chemoresistance arises due to various circumstances and among these causes, increasing evidence has shown that enzymes referred to as protein methyltransferases (PMTs) play a significant role in the development of chemoresistance in various cancers. These enzymes are responsible for the methylation of different amino acids, particularly lysine and arginine, via protein lysine methyltransferases (PKMTs) and protein arginine methyltransferases (PRMTs), respectively. Various PMTs have been identified to be dysregulated in the development of cancer and chemoresistance. Nonetheless, the functional role of these PMTs in the development of chemoresistance is poorly characterised. This advocates the need for innovative approaches and technologies suitable for better characterisation of these PMTs and their potential clinical inhibitors. In the case of a handful of PMTs, inhibitory small molecules which can function as anticancer drugs have been developed and have also entered clinical trials. Considering all this, PMTs have become a promising and valuable target in cancer chemoresistance related research. This review will give a small introduction on the different PKMTs and PRMTs families which are dysregulated in different cancers and the known proteins targeted by the respective enzymes. The focus will then shift towards PMTs known to be involved in chemoresistance development and the inhibitors developed against these, together with their mode of action. Lastly, the current obstacles and future perspectives of PMT inhibitors in cancer chemoresistance will be discussed.
Collapse
Affiliation(s)
- Isaac Micallef
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
- Department of Tumor Genetics and Biology, Graduate School of Medical Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto, Japan
| | - Kimberly Fenech
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| | - Byron Baron
- Centre for Molecular Medicine and Biobanking, University of Malta, Msida, Malta
| |
Collapse
|
2
|
Saqirile, Deng Y, Li K, Yan W, Li K, Wang C. Gene Expression Regulation and the Signal Transduction of Programmed Cell Death. Curr Issues Mol Biol 2024; 46:10264-10298. [PMID: 39329964 DOI: 10.3390/cimb46090612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Revised: 09/13/2024] [Accepted: 09/14/2024] [Indexed: 09/28/2024] Open
Abstract
Cell death is of great significance in maintaining tissue homeostasis and bodily functions. With considerable research coming to the fore, it has been found that programmed cell death presents in multiple modalities in the body, which is not only limited to apoptosis, but also can be divided into autophagy, pyroptosis, ferroptosis, mitotic catastrophe, entosis, netosis, and other ways. Different forms of programmed cell death have disparate or analogous characteristics with each other, and their occurrence is accompanied by multiple signal transduction and the role of a myriad of regulatory factors. In recent years, scholars across the world have carried out considerable in-depth research on programmed cell death, and new forms of cell death are being discovered continually. Concomitantly, the mechanisms of intricate signaling pathways and regulators have been discovered. More critically, cancer cells tend to choose distinct ways to evade cell death, and different tumors adapt to different manners of death. Therefore, targeting the cell death network has been regarded as an effective tumor treatment strategy for a long time. The objective of our paper is to review the signaling pathways and gene regulation in several typical types of programmed cell death and their correlation with cancer.
Collapse
Affiliation(s)
- Saqirile
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Yuxin Deng
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Kexin Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Wenxin Yan
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Ke Li
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| | - Changshan Wang
- Laboratory of Reproductive Regulation & Breeding of Grassland Livestock, School of Life Science, Inner Mongolia University, 49 Xilingol South Road, Yu Quan District, Hohhot 010020, China
| |
Collapse
|
3
|
Ma S, Long G, Jiang Z, Zhang Y, Sun L, Pan Y, You Q, Guo X. Recent advances in targeting histone H3 lysine 36 methyltransferases for cancer therapy. Eur J Med Chem 2024; 274:116532. [PMID: 38805937 DOI: 10.1016/j.ejmech.2024.116532] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2024] [Revised: 05/14/2024] [Accepted: 05/22/2024] [Indexed: 05/30/2024]
Abstract
Histone H3 lysine 36 (H3K36) methylation is a typical epigenetic histone modification that is involved in various biological processes such as DNA transcription, repair and recombination in vivo. Mutations, translocations, and aberrant gene expression associated with H3K36 methyltransferases have been implicated in different malignancies such as acute myeloid leukemia, lung cancer, multiple myeloma, and others. Herein, we provided a comprehensive overview of the latest advances in small molecule inhibitors targeting H3K36 methyltransferases. We analyzed the structures and biological functions of the H3K36 methyltransferases family members. Additionally, we discussed the potential directions for future development of inhibitors targeting H3K36 methyltransferases.
Collapse
Affiliation(s)
- Sai Ma
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Guanlu Long
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Zheng Jiang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yan Zhang
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Liangkui Sun
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China
| | - Yun Pan
- Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China
| | - Qidong You
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| | - Xiaoke Guo
- Jiangsu Key Laboratory of Drug Design and Optimization and State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, 210009, China; Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing, 210009, China.
| |
Collapse
|
4
|
Feng W, Niu N, Lu P, Chen Z, Rao H, Zhang W, Ma C, Liu C, Xu Y, Gao W, Xue J, Li L. Multilevel Regulation of NF-κB Signaling by NSD2 Suppresses Kras-Driven Pancreatic Tumorigenesis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2309387. [PMID: 38889281 PMCID: PMC11321637 DOI: 10.1002/advs.202309387] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 04/27/2024] [Indexed: 06/20/2024]
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a clinically challenging cancer with a dismal overall prognosis. NSD2 is an H3K36-specific di-methyltransferase that has been reported to play a crucial role in promoting tumorigenesis. Here, the study demonstrates that NSD2 acts as a putative tumor suppressor in Kras-driven pancreatic tumorigenesis. NSD2 restrains the mice from inflammation and Kras-induced ductal metaplasia, while NSD2 loss facilitates pancreatic tumorigenesis. Mechanistically, NSD2-mediated H3K36me2 promotes the expression of IκBα, which inhibits the phosphorylation of p65 and NF-κB nuclear translocation. More importantly, NSD2 interacts with the DNA binding domain of p65, attenuating NF-κB transcriptional activity. Furthermore, inhibition of NF-κB signaling relieves the symptoms of Nsd2-deficient mice and sensitizes Nsd2-null PDAC to gemcitabine. Clinically, NSD2 expression decreased in PDAC patients and negatively correlated to nuclear p65 expression. Together, the study reveals the important tumor suppressor role of NSD2 and multiple mechanisms by which NSD2 suppresses both p65 phosphorylation and downstream transcriptional activity during pancreatic tumorigenesis. This study opens therapeutic opportunities for PDAC patients with NSD2 low/loss by combined treatment with gemcitabine and NF-κBi.
Collapse
Affiliation(s)
- Wenxin Feng
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Ningning Niu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Ping Lu
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Zhuo Chen
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Hanyu Rao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei Zhang
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Chunxiao Ma
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Changwei Liu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Yue Xu
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Wei‐Qiang Gao
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| | - Jing Xue
- State Key Laboratory of Systems Medicine for CancerStem Cell Research CenterRen Ji HospitalShanghai Cancer InstituteShanghai Jiao Tong University School of MedicineShanghai200127China
| | - Li Li
- State Key Laboratory of Systems Medicine for CancerRenji‐Med X Clinical Stem Cell Research CenterRen Ji HospitalSchool of Medicine and School of Biomedical EngineeringShanghai Jiao Tong UniversityShanghai200127China
- School of Biomedical Engineering and Med‐X Research InstituteShanghai Jiao Tong UniversityShanghai200030China
| |
Collapse
|
5
|
Franzese O, Ancona P, Bianchi N, Aguiari G. Apoptosis, a Metabolic "Head-to-Head" between Tumor and T Cells: Implications for Immunotherapy. Cells 2024; 13:924. [PMID: 38891056 PMCID: PMC11171541 DOI: 10.3390/cells13110924] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 06/20/2024] Open
Abstract
Induction of apoptosis represents a promising therapeutic approach to drive tumor cells to death. However, this poses challenges due to the intricate nature of cancer biology and the mechanisms employed by cancer cells to survive and escape immune surveillance. Furthermore, molecules released from apoptotic cells and phagocytes in the tumor microenvironment (TME) can facilitate cancer progression and immune evasion. Apoptosis is also a pivotal mechanism in modulating the strength and duration of anti-tumor T-cell responses. Combined strategies including molecular targeting of apoptosis, promoting immunogenic cell death, modulating immunosuppressive cells, and affecting energy pathways can potentially overcome resistance and enhance therapeutic outcomes. Thus, an effective approach for targeting apoptosis within the TME should delicately balance the selective induction of apoptosis in tumor cells, while safeguarding survival, metabolic changes, and functionality of T cells targeting crucial molecular pathways involved in T-cell apoptosis regulation. Enhancing the persistence and effectiveness of T cells may bolster a more resilient and enduring anti-tumor immune response, ultimately advancing therapeutic outcomes in cancer treatment. This review delves into the pivotal topics of this multifaceted issue and suggests drugs and druggable targets for possible combined therapies.
Collapse
Affiliation(s)
- Ornella Franzese
- Department of Systems Medicine, University of Rome Tor Vergata, Via Montpellier 1, 00133 Rome, Italy;
| | - Pietro Ancona
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Nicoletta Bianchi
- Department of Translational Medicine, University of Ferrara, Via Fossato di Mortara 70, 44121 Ferrara, Italy;
| | - Gianluca Aguiari
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via F. Mortara 74, 44121 Ferrara, Italy;
| |
Collapse
|
6
|
Chen D, Zeng S, Qiu H, Yang M, Lin X, Lv X, Li P, Weng S, Kou S, Luo K, Liu Z, Yi Y, Liu H. Circ-FOXO3 inhibits triple-negative breast cancer growth and metastasis via regulating WHSC1-H3K36me2-Zeb2 axis. Cell Signal 2024; 117:111079. [PMID: 38341124 DOI: 10.1016/j.cellsig.2024.111079] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/31/2024] [Accepted: 02/02/2024] [Indexed: 02/12/2024]
Abstract
Circular RNAs (circRNAs), a subclass of non-coding RNAs characterized by covalently closed continuous loops, play a key role in tumorigenesis and aggressiveness. However, the potential molecular mechanism of circRNAs in triple-negative breast cancer (TNBC) remains largely unknown. Exploring their roles and mechanisms in TNBC progression may help identify new diagnostic markers and therapeutic targets. In this study, we found that circ-FOXO3 was dramatically downregulated in TNBC tissues and blood samples from patients with TNBC. Notably, low circ-FOXO3 expression in TNBC tissues and bloods was associated with lymph node metastasis and unfavorable outcomes in patients with TNBC. Overexpression of circ-FOXO3 significantly inhibited the growth, invasion, and metastasis of TNBC cells both in vitro and in vivo. Moreover, we demonstrated that circ-FOXO3 was predominantly expressed in the cytoplasm and directly interacted with Wolf-Hirschhorn syndrome candidate 1 (WHSC1), thereby inhibiting WHSC1 nuclear localization and activity, resulting in the inhibition of H3K36me2 modifications at the Zeb2 promoter, ultimately inhibiting Zeb2 expression and halting TNBC growth and metastasis. Taken together, these results reveal the tumor-suppressive functions of circ-FOXO3 in inhibiting WHSC1-mediated H3K36me2 modification of Zeb2, suggesting that circ-FOXO3 could serve as a potential novel predictive prognostic biomarker and therapeutic target for TNBC.
Collapse
Affiliation(s)
- Danyang Chen
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Shanshan Zeng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Huisi Qiu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Qingyuan, Guangdong, China
| | - Mingqiang Yang
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Xin Lin
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Xinwu Lv
- School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong, China
| | - Pan Li
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Shaojuan Weng
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Siyue Kou
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Kai Luo
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China
| | - Zongcai Liu
- Laboratory of Endocrinology and Metabolism, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou, Guangdong, China.
| | - Yanmei Yi
- School of Basic Medical Sciences, Guangdong Medical University, Zhanjiang, Guangdong, China.
| | - Hao Liu
- Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou Key Laboratory of "Translational Medicine on Malignant Tumor Treatment", Guangzhou, Guangdong, China.
| |
Collapse
|
7
|
Li M, Chen H, Yang X, Zhang W, Ma C, Wang Q, Wang X, Gao R. Conditional knockout of the NSD2 gene in mouse intestinal epithelial cells inhibits colorectal cancer progression. Animal Model Exp Med 2024. [PMID: 38400589 DOI: 10.1002/ame2.12392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Accepted: 01/16/2024] [Indexed: 02/25/2024] Open
Abstract
BACKGROUND Nuclear receptor-binding SET domain 2 (NSD2) is a histone methyltransferase, that catalyzes dimethylation of lysine 36 of histone 3 (H3K36me2) and is associated with active transcription of a series of genes. NSD2 is overexpressed in multiple types of solid human tumors and has been proven to be related to unfavorable prognosis in several types of tumors. METHODS We established a mouse model in which the NSD2 gene was conditionally knocked out in intestinal epithelial cells. We used azoxymethane and dextran sodium sulfate to chemically induce murine colorectal cancer. The development of colorectal tumors were investigated using post-necropsy quantification, immunohistochemistry, and enzyme-linked immunosorbent assay (ELISA). RESULTS Compared with wild-type (WT) control mice, NSD2fl/fl -Vil1-Cre mice exhibited significantly decreased tumor numbers, histopathological changes, and cytokine expression in colorectal tumors. CONCLUSIONS Conditional knockout of NSD2 in intestinal epithelial cells significantly inhibits colorectal cancer progression.
Collapse
Affiliation(s)
- Mengyuan Li
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Hanxue Chen
- Institute of Basic Medical Sciences, Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xingjiu Yang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Wenlong Zhang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Chengyan Ma
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Qinghong Wang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Xinpei Wang
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| | - Ran Gao
- National Human Diseases Animal Model Resource Center, Institute of Laboratory Animal Science, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- NHC Key Laboratory of Human Disease Comparative Medicine, Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
- Beijing Engineering Research Center for Experimental Animal Models of Human Critical Diseases, Beijing, China
| |
Collapse
|
8
|
Song D, Hu F, Huang C, Lan J, She X, Zhao C, Wu H, Liu A, Wu Q, Chen Y, Luo X, Feng Y, Yang X, Xu C, Hu J, Wang G. Tiam1 methylation by NSD2 promotes Rac1 signaling activation and colon cancer metastasis. Proc Natl Acad Sci U S A 2023; 120:e2305684120. [PMID: 38113258 PMCID: PMC10756287 DOI: 10.1073/pnas.2305684120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2023] [Accepted: 10/03/2023] [Indexed: 12/21/2023] Open
Abstract
Metastasis is a major cause of cancer therapy failure and mortality. However, targeting metastatic seeding and colonization remains a significant challenge. In this study, we identified NSD2, a histone methyltransferase responsible for dimethylating histone 3 at lysine 36, as being overexpressed in metastatic tumors. Our findings suggest that NSD2 overexpression enhances tumor metastasis both in vitro and in vivo. Further analysis revealed that NSD2 promotes tumor metastasis by activating Rac1 signaling. Mechanistically, NSD2 combines with and activates Tiam1 (T lymphoma invasion and metastasis 1) and promotes Rac1 signaling by methylating Tiam1 at K724. In vivo and in vitro studies revealed that Tiam1 K724 methylation could be a predictive factor for cancer prognosis and a potential target for metastasis inhibition. Furthermore, we have developed inhibitory peptide which was proved to inhibit tumor metastasis through blocking the interaction between NSD2 and Tiam1. Our results demonstrate that NSD2-methylated Tiam1 promotes Rac1 signaling and cancer metastasis. These results provide insights into the inhibition of tumor metastasis.
Collapse
Affiliation(s)
- Da Song
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Fuqing Hu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Changsheng Huang
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Jingqin Lan
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiaowei She
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chongchong Zhao
- Department of Protein Chemistry and Proteinomics Facility at Technology Center for Protein Sciences, Tsinghua University, Beijing100084, China
| | - Hong Wu
- Department of Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute Sichuan Cancer Center, School of Medicine University of Electronic Science and Technology, Chengdu610000, China
| | - Anyi Liu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Qi Wu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yaqi Chen
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xuelai Luo
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Yongdong Feng
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Xiangping Yang
- Department of Immunology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan430030, China
| | - Chuan Xu
- Department of Integrative Cancer Center and Cancer Clinical Research Center, Sichuan Cancer Hospital and Institute Sichuan Cancer Center, School of Medicine University of Electronic Science and Technology, Chengdu610000, China
| | - Junbo Hu
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| | - Guihua Wang
- Department of Gastrointestinal Cancer Research Institute, Tongji Hospital, Huazhong University of Science and Technology, Wuhan430030, China
| |
Collapse
|
9
|
Liang Y, Wang C, Yu S, Fan Y, Jiang Y, Zhou R, Yan W, Sun Y. IOX1 epigenetically enhanced photothermal therapy of 3D-printing silicene scaffolds against osteosarcoma with favorable bone regeneration. Mater Today Bio 2023; 23:100887. [PMID: 38144518 PMCID: PMC10746365 DOI: 10.1016/j.mtbio.2023.100887] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 11/19/2023] [Accepted: 11/27/2023] [Indexed: 12/26/2023] Open
Abstract
Osteosarcoma (OS) is the third most common malignancy in adolescence. Currently, the treatments of OS confront great obstacles of tumor recurrence and critical bone defects after surgery, severely affecting the survival rates and living qualities of patients. Hence, it is urged to develop distinct biomaterials with both efficient tumor therapeutic and osteogenic functions. Although photothermal therapy (PTT) has aroused expanding interest, characterizing negligible invasiveness and high spatiotemporal adjustment, few studies discussed its drawbacks, such as thermal injury to adjacent normal tissue and exceeded laser power density, implying that focusing on sensitizing OS to PTT instead of simply elevating the laser power density may be a fresh way to enhance the PTT efficacy and attenuate the side/adverse effects. Herein, we successfully constructed 3D-printing silicene bioactive glass scaffolds with preferable PTT efficacy at the second near-infrared (NIR-II) biowindow and outstanding osteogenic biofunctions owing to the release of bioactive elements during degradation. Impressively, a histone demethylase inhibitor, IOX1, was introduced before PTT to sensitize OS to thermal therapy and minimize the side/adverse effects. This work offered a distinctive paradigm for optimizing the PTT efficacy of osteogenic scaffolds against OS with epigenetic modulation agents.
Collapse
Affiliation(s)
- Yimin Liang
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Chunmeng Wang
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Shiyang Yu
- Department of Orthopedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Yujia Fan
- Department of Stomatology, Shanghai Xuhui District Dental Center, Shanghai, 200032, China
| | - Yuhang Jiang
- Department of Orthopedics, Shanghai Sixth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200233, China
| | - Renpeng Zhou
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, 200011, China
| | - Wangjun Yan
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| | - Yangbai Sun
- Department of Musculoskeletal Oncology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
| |
Collapse
|
10
|
Ma Z, Bolinger AA, Chen H, Zhou J. Drug Discovery Targeting Nuclear Receptor Binding SET Domain Protein 2 (NSD2). J Med Chem 2023; 66:10991-11026. [PMID: 37578463 PMCID: PMC11092389 DOI: 10.1021/acs.jmedchem.3c00948] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Nuclear receptor binding SET domain proteins (NSDs) catalyze the mono- or dimethylation of histone 3 lysine 36 (H3K36me1 and H3K36me2), using S-adenosyl-l-methionine (SAM) as a methyl donor. As a key member of the NSD family of proteins, NSD2 plays an important role in the pathogenesis and progression of various diseases such as cancers, inflammations, and infectious diseases, serving as a promising drug target. Developing potent and specific NSD2 inhibitors may provide potential novel therapeutics. Several NSD2 inhibitors and degraders have been discovered while remaining in the early stage of drug development. Excitingly, KTX-1001, a selective NSD2 inhibitor, has entered clinical trials. In this Perspective, the structures and functions of NSD2, its roles in various human diseases, and the recent advances in drug discovery strategies targeting NSD2 have been summarized. The challenges, opportunities, and future directions for developing NSD2 inhibitors and degraders are also discussed.
Collapse
Affiliation(s)
- Zonghui Ma
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Andrew A Bolinger
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Haiying Chen
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| | - Jia Zhou
- Chemical Biology Program, Department of Pharmacology and Toxicology, University of Texas Medical Branch (UTMB), Galveston, Texas 77555, United States
| |
Collapse
|
11
|
Recent advances in nuclear receptor-binding SET domain 2 (NSD2) inhibitors: An update and perspectives. Eur J Med Chem 2023; 250:115232. [PMID: 36863225 DOI: 10.1016/j.ejmech.2023.115232] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 02/21/2023] [Accepted: 02/21/2023] [Indexed: 02/26/2023]
Abstract
Nuclear receptor-binding SET domain 2 (NSD2) is a histone lysine methyltransferase (HKMTase), which is mainly responsible for the di-methylation of lysine residues on histones, which are involved in the regulation of various biological pathways. The amplification, mutation, translocation, or overexpression of NSD2 can be linked to various diseases. NSD2 has been identified as a promising drug target for cancer therapy. However, relatively few inhibitors have been discovered and this field still needs further exploration. This review provides a detailed summary of the biological studies related to NSD2 and the current progress of inhibitors, research, and describes the challenges in the development of NSD2 inhibitors, including SET (su(var), enhancer-of-zeste, trithorax) domain inhibitors and PWWP1 (proline-tryptophan-tryptophan-proline 1) domain inhibitors. Through analysis and discussion of the NSD2-related crystal complexes and the biological evaluation of related small molecules, we hope to provide insights for future drug design and optimization methods that will stimulate the development of novel NSD2 inhibitors.
Collapse
|
12
|
Inhibition of Macropinocytosis Enhances the Sensitivity of Osteosarcoma Cells to Benzethonium Chloride. Cancers (Basel) 2023; 15:cancers15030961. [PMID: 36765917 PMCID: PMC9913482 DOI: 10.3390/cancers15030961] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Revised: 01/28/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Osteosarcoma (OS) is a primary malignant tumor of bone. Chemotherapy is one of the crucial approaches to prevent its metastasis and improve prognosis. Despite continuous improvements in the clinical treatment of OS, tumor resistance and metastasis remain dominant clinical challenges. Macropinocytosis, a form of non-selective nutrient endocytosis, has received increasing attention as a novel target for cancer therapy, yet its role in OS cells remains obscure. Benzethonium chloride (BZN) is an FDA-approved antiseptic and bactericide with broad-spectrum anticancer effects. Here, we described that BZN suppressed the proliferation, migration, and invasion of OS cells in vitro and in vivo, but simultaneously promoted the massive accumulation of cytoplasmic vacuoles as well. Mechanistically, BZN repressed the ERK1/2 signaling pathway, and the ERK1/2 activator partially neutralized the inhibitory effect of BZN on OS cells. Subsequently, we demonstrated that vacuoles originated from macropinocytosis and indicated that OS cells might employ macropinocytosis as a compensatory survival mechanism in response to BZN. Remarkably, macropinocytosis inhibitors enhanced the anti-OS effect of BZN in vitro and in vivo. In conclusion, our results suggest that BZN may inhibit OS cells by repressing the ERK1/2 signaling pathway and propose a potential strategy to enhance the BZN-induced inhibitory effect by suppressing macropinocytosis.
Collapse
|
13
|
Li Y, Fu Y, Zhang Z, Wang Z, Yin J, Shen J. Mediating effect assessment of ifosfamide on limb salvage rate in osteosarcoma: A study from a single center in China. Front Oncol 2022; 12:1046199. [DOI: 10.3389/fonc.2022.1046199] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Accepted: 10/17/2022] [Indexed: 11/06/2022] Open
Abstract
Osteosarcoma is one of the most prevalent primary bone malignancies in children and adolescents. Surgery and chemotherapy are the standard treatment methods of osteosarcoma. Methotrexate, adriamycin, and cisplatin, and methotrexate, adriamycin, cisplatin, and ifosfamide regimens are both first-line neoadjuvant chemotherapy regimens for osteosarcoma. Moreover, the use of ifosfamide is highly controversial. Most studies of ifosfamide focused on the overall survival rate and event-free survival rate; few studies concentrated on surgical options. We conducted this retrospective study to compare the baseline characteristic of amputation and limb salvage osteosarcoma patients. Furthermore, we analyzed the direct and indirect roles in surgical decision-making and found that ifosfamide may play a partial mediating role in the surgery option choice by mediating tumor mass volume change, tumor response, and the shortest distance from the center of main blood vessels to the margin of the tumor lesion.
Collapse
|
14
|
Lam UTF, Tan BKY, Poh JJX, Chen ES. Structural and functional specificity of H3K36 methylation. Epigenetics Chromatin 2022; 15:17. [PMID: 35581654 PMCID: PMC9116022 DOI: 10.1186/s13072-022-00446-7] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Accepted: 04/04/2022] [Indexed: 12/20/2022] Open
Abstract
The methylation of histone H3 at lysine 36 (H3K36me) is essential for maintaining genomic stability. Indeed, this methylation mark is essential for proper transcription, recombination, and DNA damage response. Loss- and gain-of-function mutations in H3K36 methyltransferases are closely linked to human developmental disorders and various cancers. Structural analyses suggest that nucleosomal components such as the linker DNA and a hydrophobic patch constituted by histone H2A and H3 are likely determinants of H3K36 methylation in addition to the histone H3 tail, which encompasses H3K36 and the catalytic SET domain. Interaction of H3K36 methyltransferases with the nucleosome collaborates with regulation of their auto-inhibitory changes fine-tunes the precision of H3K36me in mediating dimethylation by NSD2 and NSD3 as well as trimethylation by Set2/SETD2. The identification of specific structural features and various cis-acting factors that bind to different forms of H3K36me, particularly the di-(H3K36me2) and tri-(H3K36me3) methylated forms of H3K36, have highlighted the intricacy of H3K36me functional significance. Here, we consolidate these findings and offer structural insight to the regulation of H3K36me2 to H3K36me3 conversion. We also discuss the mechanisms that underlie the cooperation between H3K36me and other chromatin modifications (in particular, H3K27me3, H3 acetylation, DNA methylation and N6-methyladenosine in RNAs) in the physiological regulation of the epigenomic functions of chromatin.
Collapse
Affiliation(s)
- Ulysses Tsz Fung Lam
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Bryan Kok Yan Tan
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - John Jia Xin Poh
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore
| | - Ee Sin Chen
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- National University Health System (NUHS), Singapore, Singapore.
- NUS Center for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, Singapore.
- Integrative Sciences & Engineering Programme, National University of Singapore, Singapore, Singapore.
| |
Collapse
|
15
|
Ma M, Li J, Zhang Z, Sun J, Liu Z, Zeng Z, Ouyang S, Kang W. The Role and Mechanism of microRNA-1224 in Human Cancer. Front Oncol 2022; 12:858892. [PMID: 35494023 PMCID: PMC9046935 DOI: 10.3389/fonc.2022.858892] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/22/2022] [Indexed: 11/24/2022] Open
Abstract
microRNAs (miRNAs) are a type of small endogenous non-coding RNAs composed of 20-22 nucleotides, which can regulate the expression of a gene by targeting 3’ untranslated region (3’-UTR) of mRNA. Many studies have reported that miRNAs are involved in the occurrence and progression of human diseases, including malignant tumors. miR-1224 plays significant roles in different tumors, including tumor proliferation, metastasis, invasion, angiogenesis, biological metabolism, and drug resistance. Mostly, it serves as a tumor suppressor. With accumulating proofs of miR-1224, it can act as a potential bio-indicator in the diagnosis and prognosis of patients with cancer. In this article, we review the characteristics and research progress of miR-1224 and emphasize the regulation and function of miR-1224 in different cancer. Furthermore, we conclude the clinical implications of miR-1224. This review may provide new horizons for deeply understanding the role of miR-1224 as biomarkers and therapeutic targets in human cancer.
Collapse
Affiliation(s)
- Mingwei Ma
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Jie Li
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zimu Zhang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Juan Sun
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Zhen Liu
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Ziyang Zeng
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Siwen Ouyang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Weiming Kang
- Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
- *Correspondence: Weiming Kang,
| |
Collapse
|
16
|
NSD2 activates the E2F transcription factor 1/Y-box binding protein 2 axis to promote the malignant development of oral squamous cell carcinoma. Arch Oral Biol 2022; 138:105412. [DOI: 10.1016/j.archoralbio.2022.105412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2021] [Revised: 03/09/2022] [Accepted: 03/17/2022] [Indexed: 11/23/2022]
|
17
|
Wang J, Zhu X, Dang L, Jiang H, Xie Y, Li X, Guo J, Wang Y, Peng Z, Wang M, Wang J, Wang S, Li Q, Wang Y, Wang Q, Ye L, Zhang L, Liu Z. Epigenomic reprogramming via HRP2-MINA dictates response to proteasome inhibitors in multiple myeloma with t(4;14) translocation. J Clin Invest 2022; 132:149526. [PMID: 35166240 PMCID: PMC8843744 DOI: 10.1172/jci149526] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2021] [Accepted: 12/27/2021] [Indexed: 11/17/2022] Open
Abstract
The chromosomal t(4;14) (p16;q32) translocation drives high expression of histone methyltransferase nuclear SET domain–containing 2 (NSD2) and plays vital roles in multiple myeloma (MM) evolution and progression. However, the mechanisms of NSD2-driven epigenomic alterations in chemoresistance to proteasome inhibitors (PIs) are not fully understood. Using a CRISPR/Cas9 sgRNA library in a bone marrow–bearing MM model, we found that hepatoma-derived growth factor 2 (HRP2) was a suppressor of chemoresistance to PIs and that its downregulation correlated with a poor response and worse outcomes in the clinic. We observed suppression of HRP2 in bortezomib-resistant MM cells, and knockdown of HRP2 induced a marked tolerance to PIs. Moreover, knockdown of HRP2 augmented H3K27me3 levels, consequentially intensifying transcriptome alterations promoting cell survival and restriction of ER stress. Mechanistically, HRP2 recognized H3K36me2 and recruited the histone demethylase MYC-induced nuclear antigen (MINA) to remove H3K27me3. Tazemetostat, a highly selective epigenetic inhibitor that reduces H3K27me3 levels, synergistically sensitized the anti-MM effects of bortezomib both in vitro and in vivo. Collectively, these results provide a better understanding of the origin of chemoresistance in patients with MM with the t(4;14) translocation and a rationale for managing patients with MM who have different genomic backgrounds.
Collapse
Affiliation(s)
- Jingjing Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xu Zhu
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Lin Dang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Hongmei Jiang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ying Xie
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Xin Li
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jing Guo
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Yixuan Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Ziyi Peng
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Mengqi Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Jingya Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Sheng Wang
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China
| | - Qian Li
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Yafei Wang
- Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| | - Qiang Wang
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Lingqun Ye
- Center for Translational Research in Hematological Malignancies, Cancer Center, Houston Methodist Hospital, Houston, Texas, USA
| | - Lirong Zhang
- 2011 Collaborative Innovation Center of Tianjin for Medical Epigenetics, Tianjin Key Laboratory of Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, China
| | - Zhiqiang Liu
- The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Tianjin Key Laboratory of Cellular Homeostasis and Human Diseases, Department of Physiology and Pathophysiology, School of Basic Medical Science, Tianjin Medical University, Heping, Tianjin, China.,Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin Key Laboratory of Cancer Prevention and Therapy, Tianjin Clinical Research Center for Cancer, Tianjin, China
| |
Collapse
|
18
|
Fatema K, Luelling S, Kirkham M, Pavek A, Heyneman AL, Barrott J. Epigenetics and precision medicine in bone and soft tissue sarcomas. EPIGENETICS IN PRECISION MEDICINE 2022:147-191. [DOI: 10.1016/b978-0-12-823008-4.00009-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/04/2025]
|
19
|
Zhang W, Wei L, Weng J, Yu F, Qin H, Wang D, Zeng H. Advances in the Research of Osteosarcoma Stem Cells and its Related Genes. Cell Biol Int 2021; 46:336-343. [PMID: 34941001 DOI: 10.1002/cbin.11752] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/29/2021] [Accepted: 12/12/2021] [Indexed: 11/07/2022]
Abstract
Osteosarcoma is a malignant tumor that often occurs in adolescents. There is an urgent need of new treatment options for osteosarcoma due to its poor prognosis after metastasis. Cancer stem cell theory states that cancer stem cells represent a small proportion of cancer cells. These cancer stem cells have self-renewal ability and are closely associated with cancer growth and metastasis as well as chemotherapy resistance. Similarly, osteosarcoma stem cells (OSCs) play an important role in the growth, metastasis, and chemotherapy resistance of osteosarcoma cells. Targeting OSCs may represent a future treatment of osteosarcoma. Furthermore, some genes have shown to regulate the growth, metastasis, and chemotherapy resistance of osteosarcoma cells by altering the stemness of OSCs. Targeting these genes may help in the treatment of osteosarcoma. This review mainly discusses recent advances in the research of OSCs and its related genes. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weifei Zhang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Liangchen Wei
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Jian Weng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Fei Yu
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Haotian Qin
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Deli Wang
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| | - Hui Zeng
- Department of Bone & Joint Surgery, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036.,National & Local Joint Engineering Research Center of Orthopaedic Biomaterials, Peking University Shenzhen Hospital, Shenzhen, PR China, 518036
| |
Collapse
|
20
|
Identification of Novel Serum Proteins Associated with Myelination and Cholesterol Transport in Neuromyelitis Optica Spectrum Disorders by Mass Spectrometry. Indian J Clin Biochem 2021; 37:275-284. [DOI: 10.1007/s12291-021-01004-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2021] [Accepted: 09/03/2021] [Indexed: 11/26/2022]
|
21
|
Identification of histone methyltransferase NSD2 as an important oncogenic gene in colorectal cancer. Cell Death Dis 2021; 12:974. [PMID: 34671018 PMCID: PMC8528846 DOI: 10.1038/s41419-021-04267-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 09/15/2021] [Accepted: 09/29/2021] [Indexed: 12/25/2022]
Abstract
Colorectal cancer (CRC) is the second common cause of cancer-related human mortalities. Dysregulation of histone 3 (H3) methylation could lead to transcriptional activation of multiple oncogenes, which is closely associated with CRC tumorigenesis and progression. Nuclear receptor-binding SET Domain protein 2 (NSD2) is a key histone methyltransferase catalyzing histone H3 lysine 36 dimethylation (H3K36me2). Its expression, the potential functions, and molecular mechanisms in CRC are studied here. Gene Expression Profiling Interactive Analysis (GEPIA) bioinformatics results showed that the NSD2 mRNA expression is elevated in both colon cancers and rectal cancers. Furthermore, NSD2 mRNA and protein expression levels in local colon cancer tissues are significantly higher than those in matched surrounding normal tissues. In primary human colon cancer cells and established CRC cell lines, shRNA-induced silencing or CRISPR/Cas9-induced knockout of NSD2 inhibited cell viability, proliferation, cell cycle progression, migration, and invasion. Furthermore, NSD2 shRNA or knockout induced mitochondrial depolarization, DNA damage, and apoptosis in the primary and established CRC cells. Contrarily, ectopic NSD2 overexpression in primary colon cancer cells further enhanced cell proliferation, migration, and invasion. H3K36me2, expressions of multiple oncogenes (ADAM9, EGFR, Sox2, Bcl-2, SYK, and MET) and Akt activation were significantly decreased after NSD2 silencing or knockout in primary colon cancer cells. Their levels were however increased after ectopic NSD2 overexpression. A catalytic inactive NSD2 (Y1179A) also inhibited H3K36me2, multiple oncogenes expression, and Akt activation, as well as cell proliferation and migration in primary colon cancer cells. In vivo, intratumoral injection of adeno-associated virus (AAV)-packed NSD2 shRNA largely inhibited primary colon cancer cell xenograft growth in nude mice. Together, NSD2 exerted oncogenic functions in CRC and could be a promising therapeutic target.
Collapse
|
22
|
Li S, Shi Z, Fu S, Li Q, Li B, Sang L, Wu D. Exosomal-mediated transfer of APCDD1L-AS1 induces 5-fluorouracil resistance in oral squamous cell carcinoma via miR-1224-5p/nuclear receptor binding SET domain protein 2 (NSD2) axis. Bioengineered 2021; 12:7188-7204. [PMID: 34546854 PMCID: PMC8806529 DOI: 10.1080/21655979.2021.1979442] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) poses a threat to public health worldwide. LncRNA APCDD1L-AS1 has been reported to participate in tumorigenesis and development of acquired chemoresistance. However, the role of APCDD1L-AS1 in 5-fluorouracil (5-FU) resistance regulation within OSCC is still obscure. In this study, 5-FU-resistant cell models were established with OSCC cell lines (HSC-3 and HN-4). Gene expressions and protein levels were detected by RT-qPCR and Western blotting, respectively. CCK-8, colony forming, and flow cytometry were utilized to measure IC50 value, cell viability, and cell apoptosis of 5-FU-resistant OSCC cells. Dual-luciferase reporter assay and RIP assay were applied to identify the associations between miR-1224-5p and APCDD1L-AS1 or NSD2. Herein, high APCDD1L-AS1 expression was shown in OSCC tissues and cells resistant to 5-FU and related to the worse prognosis of OSCC patients. APCDD1L-AS1 knockdown impaired 5-FU resistance in 5-FU-resistant OSCC cells by reducing IC50 value, suppressing cell viability, and accelerating cell apoptosis. Besides, extracellular APCDD1L-AS1 could be transferred to sensitive cells via exosome incorporation, thereby transmitting 5-FU resistance in OSCC cells. Besides, miR-1224-5p was a molecular target of APCDD1L-AS1 and directly targeted NSD2 in 5-FU-resistant cells. MiR-1224-5p exhibited a much lower level in 5-FU-resistant tissues and increased 5-FU sensitivity in 5-FU-resistant OSCC cells. Moreover, NSD2 upregulation neutralized the influence of blocking APCDD1L-AS1 in HSC-3/5-FU and HN-4/5-FU cells on 5-FU resistance. To sum up, our study demonstrated that exosomal APCDD1L-AS1 conferred resistance to 5-FU in HSC-3/5-FU and HN-4/5-FU cells via the miR-1224-5p/NSD2 axis, thus providing a novel target for OSCC chemoresistance.
Collapse
Affiliation(s)
- Shen Li
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Zhiyan Shi
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Suwei Fu
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Qingfu Li
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Bei Li
- Department of Gastroenterology, Affiliated Xiaolan Hospital, Southern Medical University, Zhongshan, Henan, 450003, China
| | - Lixiao Sang
- Department of Gynecology and Obstetrics Birth Clinic, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| | - Donghong Wu
- Department of Stomatology, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, Zhengzhou, Henan, 450003, China
| |
Collapse
|
23
|
Shi Y, Gong M, Deng Z, Liu H, Chang Y, Yang Z, Cai L. Tirapazamine suppress osteosarcoma cells in part through SLC7A11 mediated ferroptosis. Biochem Biophys Res Commun 2021; 567:118-124. [PMID: 34147710 DOI: 10.1016/j.bbrc.2021.06.036] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/09/2021] [Indexed: 12/20/2022]
Abstract
Osteosarcoma is the most common primary orthopedic malignant bone tumor in adolescents. However, the traditional neoadjuvant chemotherapy regimen has reached the bottleneck. TPZ is a hypoxic prodrug that has a powerful anti-tumor effect in the hypoxic microenvironment of tumors. And ferroptosis is a newly discovered cell death in 2012, and ferroptosis inducers have been used in anti-tumor therapy research in recent decades. Though, the role of TPZ and ferroptosis in osteosarcoma remains unclear. The aim of this study was to investigate the role of TPZ in osteosarcoma and the specific mechanism. MTT assay showed the extraordinary inhibition of TPZ on three osteosarcoma cells under hypoxia. And fluorescence of Fe2+ staining was enhanced by TPZ. Western blotting showed decreased expression of SLC7A11 and GPX4. Lipid peroxidation was confirmed by MDA assay and C11 BODIPY 581/591 staining. SLC7A11 overexpression could restored the proliferation and migration abilities inhibited by TPZ. Thus, we for the first time demonstrated that TPZ could inhibit the proliferation and migration of osteosarcoma cells, and induce ferroptosis in part through inhibiting SLC7A11.
Collapse
Affiliation(s)
- Yihua Shi
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Ming Gong
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhouming Deng
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Huifan Liu
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Yiqiang Chang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Zhiqiang Yang
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China
| | - Lin Cai
- Department of Orthopedics, Zhongnan Hospital of Wuhan University, Wuhan, People's Republic of China.
| |
Collapse
|
24
|
Lan H, Wang H, Gao M, Luo G, Zhang J, Yi E, Liang C, Xiong X, Chen X, Wu Q, Chen R, Lin B, Qian D, Hong W. Analysis and Construction of a Competitive Endogenous RNA Regulatory Network of Baicalin-Induced Apoptosis in Human Osteosarcoma Cells. BIOMED RESEARCH INTERNATIONAL 2021; 2021:9984112. [PMID: 34337069 PMCID: PMC8315844 DOI: 10.1155/2021/9984112] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/06/2021] [Accepted: 06/14/2021] [Indexed: 12/25/2022]
Abstract
BACKGROUND Baicalin is an extract from the traditional Chinese herb Scutellaria baicalensis and has the potential to treat osteosarcoma (OS). However, the transcriptome-level mechanism of baicalin-mediated antitumor effects in OS has not yet been investigated. The aim of this study was to analyze the competitive endogenous RNA (ceRNA) regulatory network involved in baicalin-induced apoptosis of OS cells. METHODS In this study, CCK-8 and flow cytometry assays were used to detect the antitumor effects of baicalin on human OS MG63 cells. Furthermore, transcriptome sequencing was employed to establish the long noncoding RNA (lncRNA), microRNA (miRNA), and mRNA profiles. RESULTS Baicalin inhibited MG63 cell proliferation and induced apoptosis. Totals of 58 lncRNAs, 31 miRNAs, and 2136 mRNAs in the baicalin-treated MG63 cells were identified as differentially expressed RNAs compared to those in control cells. Of these, 2 lncRNAs, 3 miRNAs, and 18 mRNAs were included in the ceRNA regulatory network. The differentially expressed RNAs were confirmed by quantitative real-time PCR (qRT-PCR). CONCLUSIONS By identifying the ceRNA network, our results provide new information about the possible molecular basis of baicalin, which has potential applications in OS treatment.
Collapse
Affiliation(s)
- Haifeng Lan
- Department of Orthopaedic Surgery, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Haiyan Wang
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Mi Gao
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Guan Luo
- Guangzhou Key Laboratory of Basic and Applied Research in Oral Regenerative Medicine, Affiliated Stomatology Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Jiahuan Zhang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Erkang Yi
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Chunxiao Liang
- State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xiaoxiao Xiong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Xing Chen
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Qinghua Wu
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Ruikun Chen
- The Third Clinical School of Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Biting Lin
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| | - Dongyang Qian
- Department of Orthopaedics, The First Affiliated Hospital, Guangzhou Medical University/Guangdong Key Laboratory of Orthopaedic Technology and Implant Materials, Guangzhou, Guangdong, China
| | - Wei Hong
- GMU-GIBH Joint School of Life Sciences, Guangzhou Medical University, Guangzhou, Guangdong, China
| |
Collapse
|
25
|
Yang B, Li L, Tong G, Zeng Z, Tan J, Su Z, Liu Z, Lin J, Gao W, Chen J, Zeng S, Wu G, Li L, Zhu S, Liu Q, Lin L. Circular RNA circ_001422 promotes the progression and metastasis of osteosarcoma via the miR-195-5p/FGF2/PI3K/Akt axis. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2021; 40:235. [PMID: 34271943 PMCID: PMC8283840 DOI: 10.1186/s13046-021-02027-0] [Citation(s) in RCA: 59] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Accepted: 06/23/2021] [Indexed: 01/01/2023]
Abstract
Background Circular RNAs (circRNAs) are involved in diverse processes that drive cancer development. However, the expression landscape and mechanistic function of circRNAs in osteosarcoma (OS) remain to be studied. Methods Bioinformatic analysis and high-throughput RNA sequencing tools were employed to identify differentially expressed circRNAs between OS and adjacent noncancerous tissues. The expression level of circ_001422 in clinical specimens and cell lines was measured using qRT-PCR. The association of circ_001422 expression with the clinicopathologic features of 55 recruited patients with OS was analyzed. Loss- and gain-of-function experiments were conducted to explore the role of circ_001422 in OS cells. RNA immunoprecipitation, fluorescence in situ hybridization, bioinformatics database analysis, RNA pulldown assays, dual-luciferase reporter assays, mRNA sequencing, and rescue experiments were conducted to decipher the competitive endogenous RNA regulatory network controlled by circ_001422. Results We characterized a novel and abundant circRNA, circ_001422, that promoted OS progression. Circ_001422 expression was dramatically increased in OS cell lines and tissues compared with noncancerous samples. Higher circ_001422 expression correlated with more advanced clinical stage, larger tumor size, higher incidence of distant metastases and poorer overall survival in OS patients. Circ_001422 knockdown markedly repressed the proliferation and metastasis and promoted the apoptosis of OS cells in vivo and in vitro, whereas circ_001422 overexpression exerted the opposite effects. Mechanistically, competitive interactions between circ_001422 and miR-195-5p elevated FGF2 expression while also initiating PI3K/Akt signaling. These events enhanced the malignant characteristics of OS cells. Conclusions Circ_001422 accelerates OS tumorigenesis and metastasis by modulating the miR-195-5p/FGF2/PI3K/Akt axis, implying that circ_001422 can be therapeutically targeted to treat OS. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-021-02027-0.
Collapse
Affiliation(s)
- Bingsheng Yang
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lutao Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Ge Tong
- Department of Medical Ultrasonics, Guangdong Province Key Laboratory of Hepatology Research, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510630, China
| | - Zhirui Zeng
- Guizhou Provincial Key Laboratory of Pathogenesis & Drug Research on Common Chronic Diseases, Department of Physiology, School of Basic Medicine, Guizhou Medical University, Guiyang, 550009, China
| | - Jianye Tan
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Zexin Su
- Department of Musculoskeletal Oncology, The First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, China
| | - Zhengwei Liu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Jiezhao Lin
- Department of Spinal Surgery, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Wenwen Gao
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Jianping Chen
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Sisi Zeng
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China
| | - Guofeng Wu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Lin Li
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Shuang Zhu
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China
| | - Qiuzhen Liu
- Guangdong Provincial Key Laboratory of Cancer Immunotherapy, Guangzhou Key Laboratory of Tumor Immunology Research, Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515, China.
| | - Lijun Lin
- Department of Joint and Orthopedics, Zhujiang Hospital, Southern Medical University, Guangzhou, 510282, China.
| |
Collapse
|
26
|
Menéndez ST, Gallego B, Murillo D, Rodríguez A, Rodríguez R. Cancer Stem Cells as a Source of Drug Resistance in Bone Sarcomas. J Clin Med 2021; 10:jcm10122621. [PMID: 34198693 PMCID: PMC8232081 DOI: 10.3390/jcm10122621] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/10/2021] [Accepted: 06/11/2021] [Indexed: 12/16/2022] Open
Abstract
Bone sarcomas are commonly characterized by a high degree of intra-tumor heterogeneity, which in part is due to the presence of subpopulations of tumor cells presenting stem cell properties. Similar to normal stem cells, these cancer stem cells (CSCs) display a drug resistant phenotype and therefore are responsible for relapses and tumor dissemination. Drug resistance in bone sarcomas could be enhanced/modulated during tumor evolution though the acquisition of (epi)-genetic alterations and the adaptation to changing microenvironments, including drug treatments. Here we summarize findings supporting the involvement of pro-stemness signaling in the development of drug resistance in bone sarcomas. This include the activation of well-known pro-stemness pathways (Wnt/β-Cat, NOTCH or JAT/STAT pathways), changes in the metabolic and autophagic activities, the alteration of epigenetic pathways, the upregulation of specific non-coding RNAs and the crosstalk with different microenvironmental factors. This altered signaling is expected to be translated to the clinic in the form of biomarkers of response and new therapies able to overcome drug resistance.
Collapse
Affiliation(s)
- Sofía T. Menéndez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| | - Borja Gallego
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Dzohara Murillo
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - Aida Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
| | - René Rodríguez
- Instituto de Investigación Sanitaria del Principado de Asturias (ISPA), Hospital Universitario Central de Asturias, Avenida de Roma s/n, 33011 Oviedo, Spain; (B.G.); (D.M.); (A.R.)
- Instituto Universitario de Oncología del Principado de Asturias, Universidad de Oviedo, 33006 Oviedo, Spain
- CIBER en Oncología (CIBERONC), 28029 Madrid, Spain
- Correspondence: (S.T.M.); (R.R.)
| |
Collapse
|
27
|
NSD2 promotes tumor angiogenesis through methylating and activating STAT3 protein. Oncogene 2021; 40:2952-2967. [PMID: 33742125 DOI: 10.1038/s41388-021-01747-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2020] [Revised: 02/23/2021] [Accepted: 03/03/2021] [Indexed: 01/31/2023]
Abstract
Tumor angiogenesis plays vital roles in tumorigenesis and development; regulatory mechanism of angiogenesis is still not been fully elucidated. NSD2, a histone methyltransferase catalyzing di-methylation of histone H3 at lysine 36, has been proved a critical molecule in proliferation, metastasis, and tumorigenesis. But its role in tumor angiogenesis remains unknown. Here we demonstrated that NSD2 promoted tumor angiogenesis in vitro and in vivo. Furthermore, we confirmed that the angiogenic function of NSD2 was mediated by STAT3. Momentously, we found that NSD2 promoted the methylation and activation of STAT3. In addition, mass spectrometry and site-directed mutagenesis assays revealed that NSD2 methylated STAT3 at lysine 163 (K163). Meanwhile, K to R mutant at K163 of STAT3 attenuated the activation and angiogenic function of STAT3. Taken together, we conclude that methylation of STAT3 catalyzed by NSD2 promotes the activation of STAT3 pathway and enhances the ability of tumor angiogenesis. Our findings investigate a NSD2-dependent methylation-phosphorylation regulation pattern of STAT3 and reveal that NSD2/STAT3/VEGFA axis might be a potential target for tumor therapy.
Collapse
|
28
|
Chen M, Jiang Y, Sun Y. KDM4A-mediated histone demethylation of SLC7A11 inhibits cell ferroptosis in osteosarcoma. Biochem Biophys Res Commun 2021; 550:77-83. [PMID: 33689883 DOI: 10.1016/j.bbrc.2021.02.137] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 02/25/2021] [Indexed: 12/12/2022]
Abstract
Osteosarcoma (OS) is the most common type of bone tumor that seriously affects limb function and induces great pain in patients. Lung metastasis and chemotherapy resistance are two key issues leading to the poor prognosis of OS patients, therefore new treatment targets and strategies are urgently needed. In our study, we uncovered the role of histone demethylase KDM4A in regulating OS cell ferroptosis and tumor progression. KDM4A was significantly upregulated in OS specimens and high KDM4A expression was associated with poorer prognosis in OS patients. Our data indicated that targeting KDM4A significantly increased OS cell death, enhanced cisplatin response, and attenuated migration ability in vitro. KDM4A depletion dramatically inhibited tumor progression and lung metastasis of OS in vivo Further experiments confirmed that KDM4A knockdown promoted OS cell ferroptosis, a special non-apoptotic form of cell death. KDM4A regulates SLC7A11 transcription and OS cell ferroptosis by controlling H3K9me3 demethylation in the promoter region of SLC7A11. Our findings deepened the recognition of epigenetic regulatory mechanism in OS tumorigenesis, chemoresistance, and metastasis, suggesting that KDM4A activity may be a potential therapeutic target for future OS treatment.
Collapse
Affiliation(s)
- Meng Chen
- Department of Orthopedics, Trauma Centre of Fujian, The First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China
| | - Yuhang Jiang
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Yangbai Sun
- Department of Musculoskeletal Surgery, Fudan University Shanghai Cancer Center, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
29
|
Teplitz GM, Shi M, Sirard MA, Lombardo DM. Coculture of porcine luteal cells during in vitro porcine oocyte maturation affects blastocyst gene expression and developmental potential. Theriogenology 2021; 166:124-134. [PMID: 33735666 DOI: 10.1016/j.theriogenology.2021.02.014] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/26/2021] [Accepted: 02/22/2021] [Indexed: 12/22/2022]
Abstract
Oocyte maturation in culture is still the weakest part of in vitro fertilization (IVF) and coculture with somatic cells may be an alternative to improve suboptimal culture conditions, especially in the pig in which maturation takes more than 44 h. In the present study, we investigated the effect of a coculture system of porcine luteal cells (PLC) during in vitro maturation (IVM) on embryo development and gene expression. Cumulus-oocyte complexes were matured in vitro in TCM-199 with human menopausal gonadotrophin (control) and in coculture with PLC. IVF was performed with frozen-thawed boar semen in Tris-buffered medium. Presumptive zygotes were cultured in PZM for 7 days. The coculture with PLC significantly increased blastocysts rates. Gene expression changes were measured with a porcine embryo-specific microarray and confirmed by RT-qPCR. The global transcription pattern of embryos developing after PLC coculture exhibited overall downregulation of gene expression. Following global gene expression pattern analysis, genes associated with lipid metabolism, mitochondrial function, endoplasmic reticulum stress, and apoptosis were found downregulated, and genes associated with cell cycle and proliferation were found upregulated in the PLC coculture. Canonical pathway analysis by Ingenuity Pathway revealed that differential expression transcripts were associated with the sirtuin signaling pathway, oxidative phosphorylation pathway, cytokines and ephrin receptor signaling. To conclude, the coculture system of PLC during IVM has a lasting effect on the embryo until the blastocyst stage, modifying gene expression, with a positive effect on embryo development. Our model could be an alternative to replace the conventional maturation medium with gonadotrophins with higher rates of embryo development, a key issue in porcine in vitro embryo production.
Collapse
Affiliation(s)
- G M Teplitz
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425TQB, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280 C1427CWO, Buenos Aires, Argentina
| | - M Shi
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI), Université Laval, Quebec, Canada. Pavillon Des Services, Local 2732, Université Laval, Quebec G1V 0A6, Canada
| | - M A Sirard
- Departement des Sciences Animales, Centre de Recherche en Reproduction, Développement et Santé Inter-générationnelle (CRDSI), Université Laval, Quebec, Canada. Pavillon Des Services, Local 2732, Université Laval, Quebec G1V 0A6, Canada
| | - D M Lombardo
- Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Godoy Cruz 2290 C1425TQB, Buenos Aires, Argentina; Universidad de Buenos Aires, Facultad de Ciencias Veterinarias, Instituto de Investigación y Tecnología en Reproducción Animal, Cátedra de Histología y Embriología, Chorroarín 280 C1427CWO, Buenos Aires, Argentina.
| |
Collapse
|
30
|
Wang W, Chen Y, Zhao J, Chen L, Song W, Li L, Lin GN. Alternatively Splicing Interactomes Identify Novel Isoform-Specific Partners for NSD2. Front Cell Dev Biol 2021; 9:612019. [PMID: 33718354 PMCID: PMC7947288 DOI: 10.3389/fcell.2021.612019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 02/05/2021] [Indexed: 11/13/2022] Open
Abstract
Nuclear receptor SET domain protein (NSD2) plays a fundamental role in the pathogenesis of Wolf-Hirschhorn Syndrome (WHS) and is overexpressed in multiple human myelomas, but its protein-protein interaction (PPI) patterns, particularly at the isoform/exon levels, are poorly understood. We explored the subcellular localizations of four representative NSD2 transcripts with immunofluorescence microscopy. Next, we used label-free quantification to perform immunoprecipitation mass spectrometry (IP-MS) analyses of the transcripts. Using the interaction partners for each transcript detected in the IP-MS results, we identified 890 isoform-specific PPI partners (83% are novel). These PPI networks were further divided into four categories of the exon-specific interactome. In these exon-specific PPI partners, two genes, RPL10 and HSPA8, were successfully confirmed by co-immunoprecipitation and Western blotting. RPL10 primarily interacted with Isoforms 1, 3, and 5, and HSPA8 interacted with all four isoforms, respectively. Using our extended NSD2 protein interactions, we constructed an isoform-level PPI landscape for NSD2 to serve as reference interactome data for NSD2 spliceosome-level studies. Furthermore, the RNA splicing processes supported by these isoform partners shed light on the diverse roles NSD2 plays in WHS and myeloma development. We also validated the interactions using Western blotting, RPL10, and the three NSD2 (Isoform 1, 3, and 5). Our results expand gene-level NSD2 PPI networks and provide a basis for the treatment of NSD2-related developmental diseases.
Collapse
Affiliation(s)
- Weidi Wang
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| | - Yucan Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Jingjing Zhao
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Liang Chen
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Weichen Song
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Li Li
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Guan Ning Lin
- Shanghai Mental Health Center, Shanghai Jiao Tong University School of Medicine, School of Biomedical Engineering, Shanghai Jiao Tong University, Shanghai, China
- Shanghai Key Laboratory of Psychotic Disorders, Shanghai, China
| |
Collapse
|
31
|
Gao B, Liu X, Li Z, Zhao L, Pan Y. Overexpression of EZH2/NSD2 Histone Methyltransferase Axis Predicts Poor Prognosis and Accelerates Tumor Progression in Triple-Negative Breast Cancer. Front Oncol 2021; 10:600514. [PMID: 33665162 PMCID: PMC7921704 DOI: 10.3389/fonc.2020.600514] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Accepted: 12/29/2020] [Indexed: 12/12/2022] Open
Abstract
Two histone methyltransferases, enhancer of zeste homolog 2 (EZH2) and nuclear SET domain-containing 2 (NSD2), are aberrantly expressed in several types of human cancers. However, the regulatory relationship between EZH2 and NSD2 and their prognostic values in breast cancer (BC) have not been fully elucidated. In this study, we demonstrated that EZH2 and NSD2 were overexpressed in BC compared with benign lesions and normal tissues using tissue microarray, immunohistochemistry, and bioinformatic databases. Both EZH2 and NSD2 expression were associated with pathological grade of tumor and lymph node metastasis. A comprehensive survival analysis using Kaplan-Meier Plotter database indicated that EZH2 expression was negatively correlated with relapse-free survival (RFS), overall survival (OS), distant metastasis-free survival (DMFS), and postprogression survival (PPS) in 3951 BC patients, and NSD2 expression was negatively correlated with RFS and DMFS. Notably, EZH2 and NSD2 expression were coordinately higher in triple-negative breast cancer (TNBC) than that in other subtypes. Stable knockdown of EZH2 using lentiviral shRNA vector significantly reduced the proliferation, migration and invasion abilities of TNBC cell line MDA-MB-231 and MDA-MB-468, and downregulated NSD2 expression as well as the levels of H3K27me3 and H3K36me2, two histone methylation markers catalyzed by EZH2 and NSD2, respectively. By contrast, overexpression of EZH2 using adenovirus vector displayed an inverse phenotype. Furthermore, knockdown of NSD2 in EZH2-overexpressing cells could dramatically attenuate EZH2-mediated oncogenic effects. Bioinformatic analysis further revealed the function and pathway enrichments of co-expressed genes and interactive genes of EZH2/NSD2 axis, suggesting that EZH2/NSD2 axis was associated with cell division, mitotic nuclear division and transition of mitotic cell cycle in TNBC. Taken together, EZH2/NSD2 axis may act as a predictive marker for poor prognosis and accelerate the progression of TNBC.
Collapse
Affiliation(s)
- Bo Gao
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Xiumin Liu
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Zhengjin Li
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Lixian Zhao
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| | - Yun Pan
- Department of Pathology, First Affiliated Hospital of Dali University, Dali, China
| |
Collapse
|
32
|
Long non-coding RNAs MACC1-AS1 and FOXD2-AS1 mediate NSD2-induced cisplatin resistance in esophageal squamous cell carcinoma. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 23:592-602. [PMID: 33552680 PMCID: PMC7819824 DOI: 10.1016/j.omtn.2020.12.007] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 12/06/2020] [Indexed: 11/23/2022]
Abstract
The nuclear receptor-binding SET domain (NSD) protein family encoding histone lysine methyltransferases is involved in cancer progression. However, the role of NSDs in esophageal squamous cell carcinoma (ESCC) remains unclear. Here we examined the expression of NSDs in cisplatin-resistant and parental ESCC cells and revealed the upregulation of NSD2 in cisplatin-resistant cells. Ectopic expression of NSD2 increased cisplatin resistance and attenuated cisplatin-induced apoptosis. Colony formation assay indicated that NSD2 overexpression enhanced long-term survival of ESCC cells after treatment with cisplatin. In contrast, knockdown of NSD2 inhibited ESCC cell proliferation and sensitized ESCC cells to cisplatin. Depletion of NSD2 augmented the cytotoxic effect of cisplatin on EC109 xenograft tumors. NSD2 stimulated long non-coding RNA MACC1-AS1 in ESCC cells. Knockdown of MACC1-AS1 impaired NSD2-induced cisplatin resistance. Moreover, MACC1-AS1 overexpression promoted ESCC cell proliferation and cisplatin resistance. Clinically, MACC1-AS1 was upregulated in ESCC relative to adjacent noncancerous tissues. High MACC1-AS1 levels were significantly associated with reduced overall survival of ESCC patients. There was a positive correlation between MACC1-AS1 and NSD2 expression in ESCC specimens. Taken together, MACC1-AS1 induced by NSD2 mediates resistance to cisplatin in ESCC and may represent a novel target to improve cisplatin-based chemotherapy.
Collapse
|
33
|
Lin Z, Fan Z, Zhang X, Wan J, Liu T. Cellular plasticity and drug resistance in sarcoma. Life Sci 2020; 263:118589. [PMID: 33069737 DOI: 10.1016/j.lfs.2020.118589] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 09/29/2020] [Accepted: 10/07/2020] [Indexed: 12/29/2022]
Abstract
Sarcomas, originating from mesenchymal progenitor stem cells, are a group of rare malignant tumors with poor prognosis. Wide surgical resection, chemotherapy, and radiotherapy are the most common sarcoma treatments. However, sarcomas' response rates to chemotherapy are quite low and sarcoma cells can have intrinsic or acquired resistance after treatment with chemotherapeutics drugs, leading to the development of multi-drug resistance (MDR). Cancer cellular plasticity plays pivotal roles in cancer initiation, progression, therapy resistance and cancer relapse. Moreover, cancer cellular plasticity can be regulated by a multitude of factors, such as genetic and epigenetic alterations, tumor microenvironment (TME) or selective pressure imposed by treatment. Recent studies have demonstrated that cellular plasticity is involved in sarcoma progression and chemoresistance. It's essential to understand the molecular mechanisms of cellular plasticity as well as its roles in sarcoma progression and drug resistance. Therefore, this review focuses on the regulatory mechanisms and pathological roles of these diverse cellular plasticity programs in sarcoma. Additionally, we propose cellular plasticity as novel therapeutic targets to reduce sarcoma drug resistance.
Collapse
Affiliation(s)
- Zhengjun Lin
- Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China.
| | - Zhihua Fan
- Xiangya School of Medicine, Central South University, Changsha 410013, Hunan Province, China
| | - Xianghong Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Jia Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Tang Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.
| |
Collapse
|
34
|
Song H, Liu D, Dong S, Zeng L, Wu Z, Zhao P, Zhang L, Chen ZS, Zou C. Epitranscriptomics and epiproteomics in cancer drug resistance: therapeutic implications. Signal Transduct Target Ther 2020; 5:193. [PMID: 32900991 PMCID: PMC7479143 DOI: 10.1038/s41392-020-00300-w] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/18/2020] [Accepted: 07/28/2020] [Indexed: 12/24/2022] Open
Abstract
Drug resistance is a major hurdle in cancer treatment and a key cause of poor prognosis. Epitranscriptomics and epiproteomics are crucial in cell proliferation, migration, invasion, and epithelial–mesenchymal transition. In recent years, epitranscriptomic and epiproteomic modification has been investigated on their roles in overcoming drug resistance. In this review article, we summarized the recent progress in overcoming cancer drug resistance in three novel aspects: (i) mRNA modification, which includes alternative splicing, A-to-I modification and mRNA methylation; (ii) noncoding RNAs modification, which involves miRNAs, lncRNAs, and circRNAs; and (iii) posttranslational modification on molecules encompasses drug inactivation/efflux, drug target modifications, DNA damage repair, cell death resistance, EMT, and metastasis. In addition, we discussed the therapeutic implications of targeting some classical chemotherapeutic drugs such as cisplatin, 5-fluorouridine, and gefitinib via these modifications. Taken together, this review highlights the importance of epitranscriptomic and epiproteomic modification in cancer drug resistance and provides new insights on potential therapeutic targets to reverse cancer drug resistance.
Collapse
Affiliation(s)
- Huibin Song
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Dongcheng Liu
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Shaowei Dong
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Leli Zeng
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.,Tomas Lindahl Nobel Laureate Laboratory, Research Centre, The Seventh Affiliated Hospital, Sun Yat-sen University, Shenzhen, 518107, Guangdong, China
| | - Zhuoxun Wu
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA
| | - Pan Zhao
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China
| | - Litu Zhang
- Department of Research, Affiliated Tumor Hospital of Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Zhe-Sheng Chen
- College of Pharmacy and Health Sciences, St. John's University, Queens, 11439 New York, USA.
| | - Chang Zou
- Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University; The First Affiliated Hospital, Southern University of Science and Technology), Shenzhen, 518001, Guangdong, China. .,Shenzhen Public Service Platform on Tumor Precision Medicine and Molecular Diagnosis, Shenzhen, 518001, Guangdong, China.
| |
Collapse
|
35
|
Zhang W, He L, Liu Z, Ren X, Qi L, Wan L, Wang W, Tu C, Li Z. Multifaceted Functions and Novel Insight Into the Regulatory Role of RNA N 6-Methyladenosine Modification in Musculoskeletal Disorders. Front Cell Dev Biol 2020; 8:870. [PMID: 32984346 PMCID: PMC7493464 DOI: 10.3389/fcell.2020.00870] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/11/2020] [Indexed: 12/21/2022] Open
Abstract
RNA modifications have emerged as key regulators of transcript expression in diverse physiological and pathological processes. As one of the most prevalent types of RNA modifications, N6-methyladenosine (m6A) has become the highlight in modulation of various diseases through interfering RNA splicing, translation, nuclear export, and decay. In many cases, the detailed functions of m6A in cellular processes and diseases remain unclear. Notably, recent studies have determined the relationship between m6A modification and musculoskeletal disorders containing osteosarcoma, osteoarthritis, rheumatoid arthritis, osteoporosis, etc. Herein, this review comprehensively summarizes the recent advances of m6A modification in pathogenesis and progression of musculoskeletal diseases. Specifically, the underlying molecular mechanisms, detection technologies, regulatory functions, clinical implications, and future perspectives of m6A in musculoskeletal disorders are discussed, with the aim to provide a novel insight into their association.
Collapse
Affiliation(s)
- Wenchao Zhang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lile He
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China.,Department of Cardiovascular Surgery, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhongyue Liu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Xiaolei Ren
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lin Qi
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Lu Wan
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Chao Tu
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital, Central South University, Changsha, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
36
|
Chen D, Hu G, Zhang S, Zhang H, Teng X. Ammonia-triggered apoptosis via immune function and metabolic process in the thymuses of chickens by proteomics analysis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2020; 198:110619. [PMID: 32344265 DOI: 10.1016/j.ecoenv.2020.110619] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Revised: 04/07/2020] [Accepted: 04/09/2020] [Indexed: 06/11/2023]
Abstract
Ammonia (NH3), an environmental pollutant with a pungent odor, is not only an important volatile in fertilizer production and ranching, but also main basic component of haze. In present study, we found that ultrastructural changes and 3167 differentially expressed proteins (DEPs) using proteomics analysis in the thymuses of chickens exposed to NH3 on day 42. Obtained DEPs were enriched using GO and KEGG; and 66 DEPs took part in immune function, metabolic process, and apoptosis in the thymuses of chickens treated with NH3. 9 genes of DEPs were validated using qRT-PCR, and mRNA expression of 2 immune-related genes (CTSG and NFATC2), 3 metabolic process-related genes (APOA1, GOT1, and GOLGA3), and 4 apoptosis-related genes (PIK3CD, CTSS, CAMP, and NSD2) were consistent with DEPs in chicken thymuses. Our results indicated that excess NH3 led to immunosuppression, metabolic disorder, and apoptosis in chicken thymuses. Present study gives a novel insight into the mechanism of NH3 toxicity and demonstrated that immune response, metabolism process, and apoptosis were important in the mechanism of NH3 toxicity of chicken exposure to high concentration of NH3.
Collapse
Affiliation(s)
- Dechun Chen
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China; College of Life Science and Technology, Southwest University for Nationalities, Chengdu, 610041, China
| | - Guanghui Hu
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Shuai Zhang
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China
| | - Hongfu Zhang
- State Key Laboratory of Animal Nutrition, Institute of Animal Sciences, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Xiaohua Teng
- College of Animal Science and Technology, Northeast Agricultural University, Harbin, 150030, China.
| |
Collapse
|
37
|
Chen R, Chen Y, Zhao W, Fang C, Zhou W, Yang X, Ji M. The Role of Methyltransferase NSD2 as a Potential Oncogene in Human Solid Tumors. Onco Targets Ther 2020; 13:6837-6846. [PMID: 32764971 PMCID: PMC7367929 DOI: 10.2147/ott.s259873] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Accepted: 06/10/2020] [Indexed: 12/23/2022] Open
Abstract
Malignant solid tumors are the leading cause of death in humans, and epigenetic regulation plays a significant role in studying the mechanism of human solid tumors. Recently, histone lysine methylation has been demonstrated to be involved in the development of human solid tumors due to its epigenetic stability and some other advantages. The 90-kb protein methyltransferase nuclear receptor SET domain-containing 2 (NSD2) is a member of nuclear receptor SET domain-containing (NSD) protein lysine methyltransferase (KMT) family, which can cause epigenomic aberrations via altering the methylation states. Studies have shown that NSD2 is frequently over-expressed in multiple types of aggressive solid tumors, including breast cancer, renal cancer, prostate cancer, cervical cancer, and osteosarcoma, and such up-regulation has been linked to poor prognosis and recurrence. Further studies have identified that over-expression of NSD2 promotes cell proliferation, migration, invasion, and epithelial–mesenchymal transformation (EMT), suggesting its potential oncogenic role in solid tumors. Moreover, Gene Expression Profiling Interactive Analysis (GEPIA) was searched for validation of prognostic value of NSD2 in human solid tumors. However, the underlying specific mechanism remains unclear. In our present work, we summarized the latest advances in NSD2 expression and clinical applications in solid tumors, and our findings provided valuable insights into the targeted therapeutic regimens of solid tumors.
Collapse
Affiliation(s)
- Rui Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Yan Chen
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Weiqing Zhao
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Cheng Fang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Wenjie Zhou
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Xin Yang
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| | - Mei Ji
- Department of Oncology, The Third Affiliated Hospital of Soochow University, The First People's Hospital of Changzhou, Changzhou 213003, People's Republic of China
| |
Collapse
|
38
|
Cheng C, Ding Q, Zhang Z, Wang S, Zhong B, Huang X, Shao Z. PTBP1 modulates osteosarcoma chemoresistance to cisplatin by regulating the expression of the copper transporter SLC31A1. J Cell Mol Med 2020; 24:5274-5289. [PMID: 32207235 PMCID: PMC7205786 DOI: 10.1111/jcmm.15183] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 02/26/2020] [Accepted: 03/06/2020] [Indexed: 12/12/2022] Open
Abstract
Chemoresistance is the main obstacle of treatment in patients with osteosarcoma. RNA‐binding protein PTBP1 has been identified as an oncogene in various cancers. However, the role of PTBP1 in osteosarcoma, especially in chemoresistant osteosarcoma, and the underlying mechanism remain unclear. In this study, we aimed to explore the functions of PTBP1 in chemoresistance of osteosarcoma. We found that PTBP1 was significantly increased in chemotherapeutically insensitive osteosarcoma tissues and cisplatin‐resistant osteosarcoma cell lines (MG‐63CISR and U‐2OSCISR) as compared to chemotherapy‐sensitive osteosarcoma tissues and cell lines. Knock‐down of PTBP1 can enhance the anti‐proliferation and apoptosis‐induced effects of cisplatin in MG‐63CISR and U‐2OSCISR cells. Moreover, PTBP1 knock‐down significantly up‐regulated the expression of the copper transporter SLC31A1, as indicated by transcriptome sequencing. Through RNA immunoprecipitation, dual‐luciferase reporter assay and RNA stability detection, we confirmed that PTBP1 binds to SLC31A1 mRNA and regulates the expression level of SLC31A1 by affecting mRNA stability. Additionally, SLC31A1 silencing abrogated the chemosensitizing effect of PTBP1 knock‐down in MG‐63CISR and U‐2OSCISR cells. Using a nude mouse xenograft model, we further confirmed that PTBP1 knock‐down enhanced chemoresistant osteosarcoma responsiveness to cisplatin treatment in vivo. Collectively, the present study suggests that PTBP1 is a crucial determinant of chemoresistance in osteosarcoma.
Collapse
Affiliation(s)
- Cheng Cheng
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qiuyue Ding
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zhicai Zhang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shangyu Wang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Binlong Zhong
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xin Huang
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Zengwu Shao
- Department of Orthopedics, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
39
|
Li YH, Tong KL, Lu JL, Lin JB, Li ZY, Sang Y, Ghodbane A, Gao XJ, Tam MS, Hu CD, Zhang HT, Zha ZG. PRMT5-TRIM21 interaction regulates the senescence of osteosarcoma cells by targeting the TXNIP/p21 axis. Aging (Albany NY) 2020; 12:2507-2529. [PMID: 32023548 PMCID: PMC7041745 DOI: 10.18632/aging.102760] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2019] [Accepted: 01/10/2020] [Indexed: 01/10/2023]
Abstract
Osteosarcoma (OS) is the most common bone malignancy in adolescents and has poor clinical outcomes. Protein arginine methyltransferase 5 (PRMT5) has recently been shown to be aberrantly expressed in various cancers, yet its role in OS remains elusive. Here, we found that PRMT5 was overexpressed in OS and its overexpression predicted poor clinical outcomes. PRMT5 knockdown significantly triggered pronounced senescence in OS cells, as evidenced by the increase in senescence-associated β-galactosidase (SA-β-gal)-stained cells, induction of p21 expression, and upregulation of senescence-associated secretory phenotype (SASP) gene expression. In addition, we found that PRMT5 plays a key role in regulating DNA damaging agents-induced OS cell senescence, possibly, via affecting the repair of DNA damage. Furthermore, we found that TXNIP acts as a key factor mediating PRMT5 depletion-induced DNA damage and cellular senescence. Mechanistically, TRIM21, which interacts with PRMT5, was essential for the regulation of TXNIP/p21 expression. In summary, we propose a model in which PRMT5, by interaction with TRIM21, plays a key role in regulating the TXNIP/p21 axis during senescence in OS cells. The present findings suggest that PRMT5 overexpression in OS cells might confer resistance to chemotherapy and that targeting the PRMT5/TRIM21/TXNIP signaling may enhance the therapeutic efficacy in OS.
Collapse
Affiliation(s)
- Yu-Hang Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Kui-Leung Tong
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Jun-Lei Lu
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Jie-Bin Lin
- Department of Orthopedics, The Third Affiliated Hospital, Guangzhou University of Chinese Medicine, Guangzhou 510405, Guangdong, China
| | - Zhen-Yan Li
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Yuan Sang
- Department of Orthopaedic Surgery, The Third Affiliated Hospital, Sun Yat-sen University, Guangzhou 510000, Guangdong, China
| | - Abdelmoumin Ghodbane
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Xue-Juan Gao
- Key Laboratory of Functional Protein Research of Guangdong Higher Education Institutes, College of Life Science and Technology, Jinan University, Guangzhou 510632, Guangdong, China
| | - Man-Seng Tam
- IAN WO Medical Center, Macao Special Administrative Region, Macao 999078, China
| | - Chang-Deng Hu
- Department of Medicinal Chemistry and Molecular Pharmacology, Purdue University, West Lafayette, IN 47907, USA.,Purdue University Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
| | - Huan-Tian Zhang
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| | - Zhen-Gang Zha
- Institute of Orthopedic Diseases and Department of Bone and Joint Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, Guangdong, China
| |
Collapse
|
40
|
Han X, Piao L, Xu X, Luo F, Liu Z, He X. NSD2 Promotes Renal Cancer Progression Through Stimulating Akt/Erk Signaling. Cancer Manag Res 2020; 12:375-383. [PMID: 32021450 PMCID: PMC6974414 DOI: 10.2147/cmar.s222673] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2019] [Accepted: 11/06/2019] [Indexed: 12/24/2022] Open
Abstract
Background Nuclear receptor suppressor of variegation, enhancer of zeste, and trithorax (SET) domain-containing 2 (NSD2), is a well-known histone lysine methyltransferase (HMTase). The aim of this study was to investigate the biological role of NSD2 in clear cell renal cell carcinoma (ccRCC). Methods GEO and OncoLnc databases were used to identify NSD2 expression and estimate its clinical value in ccRCC. Immunohistochemistry (IHC) was applied to further evaluate NSD2 protein level in ccRCC tissues. The expression of NSD2 in different cell lines and the transfection efficiency were determined by quantitative real-time PCR and Western blot analysis. The effect of NSD2 and the underlying mechanism in ccRCC progression were investigated via MTT, flow cytometry, Western blotting and xenograft tumor assays. Results NSD2 was over-expressed in both ccRCC tissues and cell lines. NSD2 expression could discriminate ccRCC samples from normal samples, and moreover, high NSD2 expression was characterized with a short overall survival (OS) time. Additionally, knockdown of NSD2 suppressed proliferation and induced apoptosis of cancer cells by inhibiting Akt/Erk signaling and regulating Bcl-2 and Bax expression. Meanwhile, up-regulation of NSD2 contributed to the opposite effects. Silencing of NSD2 reduced xenograft tumor growth in vivo. Conclusion NSD2 serves as an oncogenic factor in the progression of ccRCC via activation of Akt/Erk signaling.
Collapse
Affiliation(s)
- Xu Han
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Lianhua Piao
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, People's Republic of China
| | - Xiaoshuang Xu
- Institute of Bioinformatics and Medical Engineering, Jiangsu University of Technology, Changzhou 213001, People's Republic of China
| | - Fengbao Luo
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Zhiwei Liu
- Department of Orthopaedics, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| | - Xiaozhou He
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, People's Republic of China
| |
Collapse
|
41
|
Zhu L, Yu CL, Zheng Y. NSD2 inhibition suppresses metastasis in cervical cancer by promoting TGF-β/TGF-βRI/SMADs signaling. Biochem Biophys Res Commun 2019; 519:489-496. [PMID: 31526565 DOI: 10.1016/j.bbrc.2019.08.020] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/06/2019] [Indexed: 11/18/2022]
Abstract
The molecular mechanisms revealing cervical cancer progression remain unclear. NSD2 belongs to the NSD family of histone lysine methyltransferases (HMTases), and is a histone methyltransferase that regulates dimethylation of histone 3 lysine 36 (H3K36me2). In this study, we explored the effects of NSD2 on the tumorigenesis and metastasis in cervical cancer. We found that NSD2 exhibited a pattern of gradual up-regulation from normal cervix (NC) to cervical carcinoma in situ (CIS) and then to invasive cervical cancer (ICC). NSD2 knockdown markedly reduced the cervical cancer cell proliferation. Loss of function assay in vitro suggested that NSD2 deletion markedly prevented the cervical cancer cell migration and invasion. Consistently, the in vivo results demonstrated that NSD2 knockdown not only reduced tumor growth, but also prevented the development of tumor metastasis. In addition, NSD2 knockdown clearly reduced the expression levels of transforming growth factor-β1 (TGF-β1), TGF-βRI, phosphorylated SMAD2 and SMAD3 in cervical cancer cells, accompanied with the decreased expression of genes that promoted tumor metastasis. Importantly, we found that NSD2 knockdown-regulated expression levels of metastasis-associated genes were reversed by TGF-β1 incubation. Therefore, our findings demonstrated that NSD2-modulated activation of TGF-β1/TGF-βRI/SMADs signaling pathway was crucial for cervical cancer progression, which might be a promising therapeutic strategy to overcome metastasis in cervical cancer.
Collapse
Affiliation(s)
- Lei Zhu
- Department of Gynecology and Obstetrics, Beijing Chaoyang Hospital Affiliated Capital Medical University, Beijing, 100020, China
| | - Chun-Ling Yu
- Department of Gynecological Clinic, Daqing Oilfield General Hospital, DaQing, Heilongjiang, 163000, China
| | - Yuwei Zheng
- Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai, 200032, China; Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China; Institute of Pathology, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
42
|
Ying H, Ying B, Zhang J, Kong D. Sirt1 modulates H3 phosphorylation and facilitates osteosarcoma cell autophagy. ARTIFICIAL CELLS NANOMEDICINE AND BIOTECHNOLOGY 2019; 47:3374-3381. [PMID: 31390921 DOI: 10.1080/21691401.2019.1648280] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Hongliang Ying
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Boda Ying
- Department of Joint Surgery of Orthopaedic Center, The Second Hospital of Jilin University, Changchun, China
| | - Jinrui Zhang
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| | - Daliang Kong
- Department of Orthopaedics, China-Japan Union Hospital of Jilin University, Changchun, China
| |
Collapse
|
43
|
Kumar A, Kumari N, Nallabelli N, Prasad R. Pathogenic and Therapeutic Role of H3K4 Family of Methylases and Demethylases in Cancers. Indian J Clin Biochem 2019; 34:123-132. [PMID: 31092985 DOI: 10.1007/s12291-019-00828-x] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2019] [Accepted: 03/26/2019] [Indexed: 02/07/2023]
Abstract
Histone modifications occupy an essential position in the epigenetic landscape of the cell, and their alterations have been linked to cancers. Histone 3 lysine 4 (H3K4) methylation has emerged as a critical epigenetic cue for the regulation of gene transcription through dynamic modulation by several H3K4 methyltransferases (writers) and demethylases (erasers). Any disturbance in the delicate balance of writers and erasers can result in the mis-regulation of H3K4 methylation, which has been demonstrated in several human cancers. Therefore, H3K4 methylation has been recognized as a putative therapeutic or prognostic tool and drug trials of different inhibitors of this process have demonstrated promising results. Henceforth, more detailed knowledge of H3K4 methylation is utmost important for elucidating the complex cellular processes, which might help in improving the disease outcome. The primary focus of this review will be directed on deciphering the role of H3K4 methylation along with its writers/erasers in different cancers.
Collapse
Affiliation(s)
- Aman Kumar
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Niti Kumari
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Nayudu Nallabelli
- 2Department of Endocrinology, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| | - Rajendra Prasad
- 1Department of Biochemistry, Postgraduate Institute of Medical Education and Research (PGIMER), Sector 12, Chandigarh, India
| |
Collapse
|