1
|
Ho KH, Hsu SY, Chen PH, Cheng CH, Liu AJ, Chien MH, Chen KC. Hypoxia enhances IL-8 signaling through inhibiting miR-128-3p expression in glioblastomas. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2025; 1872:119885. [PMID: 39631468 DOI: 10.1016/j.bbamcr.2024.119885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 11/05/2024] [Accepted: 11/25/2024] [Indexed: 12/07/2024]
Abstract
Glioblastoma multiforme (GBM) is an aggressive type of brain tumor known for its hypoxic microenvironment. Understanding the dysregulated mechanisms in hypoxic GBM is crucial for its effective treatment. Through data mining of The Cancer Genome Atlas (TCGA) with hypoxia enrichment scores and in vitro experiments, miR-128-3p was negatively correlated with hypoxia signaling and the epithelial-mesenchymal transition (EMT). Additionally, lower miR-128-3p levels existed in hypoxic GBM, leading to desensitizing temozolomide (TMZ)'s efficacy, a first-line therapeutic drug for GBM. Overexpressing miR-128-3p enhanced both the in vitro and in vivo sensitivity of hypoxic gliomas to TMZ treatment. Mechanistically, HIF-1α suppressed miR-128-3p expression in hypoxic GBM. Through establishing miR-128-3p-mediated transcriptomic profiles and data mining, interleukin (IL)-8 was selected. IL-8 respectively showed positive and negative correlations with hypoxia and miR-128-3p, and was associated with poor TMZ therapeutic results in GBM. Elevated miR-128-3p, which targets both the 3'-untranslated region (UTR) and 5'UTR of IL-8, resulted in suppression of IL-8 expression. Moreover, IL-8 was validated to be involved in HIF-1α/miR-128-3p-regulated TMZ sensitivity and the EMT in hypoxic GBM cells. Collectively, the HIF-1α/miR-128-3p/IL-8 signaling pathway plays a critical role in promoting the progression of hypoxic GBM. Targeting this signaling pathway holds promise as a potential therapeutic strategy.
Collapse
Affiliation(s)
- Kuo-Hao Ho
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Shao-Yuan Hsu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Peng-Hsu Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Chia-Hsiung Cheng
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Ann-Jeng Liu
- Department of Neurosurgery, Taipei City Hospital Ren-Ai Branch, Taipei, Taiwan
| | - Ming-Hsien Chien
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan; Pulmonary Research Center, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan; Traditional Herbal Medicine Research Center, Taipei Medical University Hospital Taipei, Taiwan
| | - Ku-Chung Chen
- Department of Biochemistry and Molecular Cell Biology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Graduate Institute of Medical Sciences, College of Medicine, Taipei Medical University, Taipei, Taiwan; International Ph.D. Program in Cell Therapy and Regenerative Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan.
| |
Collapse
|
2
|
Ferrarese R, Joseph K, Andrieux G, Haase IV, Zanon F, Kling E, Izzo A, Corrales E, Schwabenland M, Prinz M, Ravi VM, Boerries M, Heiland DH, Carro MS. ZBTB18 regulates cytokine expression and affects microglia/macrophage recruitment and commitment in glioblastoma. Commun Biol 2024; 7:1472. [PMID: 39516530 PMCID: PMC11549471 DOI: 10.1038/s42003-024-07144-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 10/24/2024] [Indexed: 11/16/2024] Open
Abstract
Glioma associated macrophages/microglia (GAMs) play an important role in glioblastoma (GBM) progression, due to their massive recruitment to the tumor site and polarization to a tumor promoting phenotype. GAMs secrete a variety of cytokines, which facilitate tumor cell growth and invasion, and prevent other immune cells from mounting an immune response against the tumor. Here, we demonstrate that zinc finger and BTB containing domain 18 (ZBTB18), a transcriptional repressor with tumor suppressive function in glioblastoma, impairs the production of key cytokines, which function as chemoattractant for GAMs. Consistently, we observe a reduced migration of GAMs when ZBTB18 is expressed by glioblastoma cells, both in cell culture and in vivo experiments. Moreover, RNA sequencing analysis shows that the presence of ZBTB18 in glioblastoma cells alters the commitment of conditioned microglia, suggesting the loss of the immune-suppressive phenotype and the acquisition of pro-inflammatory features. Thus, therapeutic approaches to increase ZBTB18 expression in GBM cells could represent an effective adjuvant to immune therapy in GBM.
Collapse
Affiliation(s)
- Roberto Ferrarese
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
- Laboratory of General Pathology and Immunology, University of Insubria, Varese, Italy
| | - Kevin Joseph
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Geoffroy Andrieux
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Ira Verena Haase
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Francesca Zanon
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Eva Kling
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Annalisa Izzo
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Eyleen Corrales
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
| | - Marius Schwabenland
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Signaling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- Center for NeuroModulation (NeuroModul), University of Freiburg, Freiburg, Germany
| | - Vidhya Madapusi Ravi
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
- Institute of Molecular Medicine and Cell Research, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, Freiburg, Germany
| | - Dieter Henrik Heiland
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Partner site Freiburg, a partnership between DKFZ and Medical Center, University of Freiburg, Freiburg, Germany
| | - Maria Stella Carro
- Department of Neurosurgery, Medical Center-University of Freiburg, Freiburg, Germany.
- Laboratory of General Pathology and Immunology, University of Insubria, Varese, Italy.
| |
Collapse
|
3
|
Corsaro A, Tremonti B, Bajetto A, Barbieri F, Thellung S, Florio T. Chemokine signaling in tumors: potential role of CXC chemokines and their receptors as glioblastoma therapeutic targets. Expert Opin Ther Targets 2024; 28:937-952. [PMID: 39582130 DOI: 10.1080/14728222.2024.2433130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Accepted: 11/19/2024] [Indexed: 11/26/2024]
Abstract
INTRODUCTION Glioblastoma is the most aggressive brain tumor, typically associated with poor prognosis. Its treatment is challenging due to the peculiar glioblastoma cell biology and its microenvironment complexity. Specifically, a small fraction of glioma stem cells within the tumor mass drives tumor growth and invasiveness by hijacking brain resident and immune cells. This process also involves modification of extracellular matrix components, such as collagen and glycoproteins, where the secretion of soluble mediators, particularly CXC chemokines, plays a significant role. AREAS COVERED We analyze the critical role of chemokines in glioblastoma tumorigenesis, proliferation, angiogenesis, tumor progression, and brain parenchyma invasiveness. Recent evidence highlights how chemokines and their receptors impact glioblastoma biology and represent potential therapeutic targets. Several studies show that chemokines modulate glioblastoma development by acting on glioma stem cell proliferation and self-renewal, promoting vasculogenic mimicry, and altering the extracellular matrix to facilitate tumor invasiveness. EXPERT OPINION There is clear evidence supporting CXC receptors (such as CXCR1, 2, 3, 4, and ACKR3/CXCR7) and their signaling pathways as promising pharmacological targets. This in-depth review of chemokine roles in glioblastoma development provides a critical evaluation of the possible clinical translation of innovative compounds targeting these ligand/receptor systems, leading to improved therapeutic outcomes for glioblastoma patients.
Collapse
Affiliation(s)
- Alessandro Corsaro
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Beatrice Tremonti
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Adriana Bajetto
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
| | - Federica Barbieri
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Stefano Thellung
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| | - Tullio Florio
- Sezione di Farmacologia, Dipartimento di Medicina Interna, Università di Genova, Genova, Italy
- IRCCS Policlinico San Martino, Genova, Italy
| |
Collapse
|
4
|
Lu J, Huo W, Ma Y, Wang X, Yu J. Suppressive immune microenvironment and CART therapy for glioblastoma: Future prospects and challenges. Cancer Lett 2024; 600:217185. [PMID: 39142498 DOI: 10.1016/j.canlet.2024.217185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 08/08/2024] [Accepted: 08/09/2024] [Indexed: 08/16/2024]
Abstract
Glioblastoma, a highly malignant intracranial tumor, has acquired slow progress in treatment. Previous clinical trials involving targeted therapy and immune checkpoint inhibitors have shown no significant benefits in treating glioblastoma. This ineffectiveness is largely due to the complex immunosuppressive environment of glioblastoma. Glioblastoma cells exhibit low immunogenicity and strong heterogeneity and the immune microenvironment is replete with inhibitory cytokines, numerous immunosuppressive cells, and insufficient effective T cells. Fortunately, recent Phase I clinical trials of CART therapy for glioblastoma have confirmed its safety, with a small subset of patients achieving survival benefits. However, CART therapy continues to face challenges, including blood-brain barrier obstruction, antigen loss, and an immunosuppressive tumor microenvironment (TME). This article provides a detailed examination of glioblastoma's immune microenvironment, both from intrinsic and extrinsic tumor cell factors, reviews current clinical and basic research on multi-targets CART treatment, and concludes by outlining the key challenges in using CART cells for glioblastoma therapy.
Collapse
Affiliation(s)
- Jie Lu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China
| | - Wen Huo
- Department of Radiation Oncology, Affiliated Tumor Hospital of Xinjiang Medical University, China
| | - Yingze Ma
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Department of Radiation Oncology, Shandong University Cancer Center, Jinan, Shandong, China
| | - Xin Wang
- Department of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China.
| | - Jinming Yu
- Department of Radiation Oncology and Shandong Provincial Key Laboratory of Radiation Oncology, Shandong First Medical University and Shandong Academy of Medical Sciences, Shandong Cancer Hospital and Institute, Jinan, Shandong, China; Research Unit of Radiation Oncology, Chinese Academy of Medical Sciences, Jinan, Shandong, China.
| |
Collapse
|
5
|
Dadario NB, Boyett DM, Teasley DE, Chabot PJ, Winans NJ, Argenziano MG, Sperring CP, Canoll P, Bruce JN. Unveiling the Inflammatory Landscape of Recurrent Glioblastoma through Histological-Based Assessments. Cancers (Basel) 2024; 16:3283. [PMID: 39409905 PMCID: PMC11476027 DOI: 10.3390/cancers16193283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2024] [Revised: 09/18/2024] [Accepted: 09/20/2024] [Indexed: 10/20/2024] Open
Abstract
The glioblastoma (GBM) tumor microenvironment consists of a heterogeneous mixture of neoplastic and non-neoplastic cells, including immune cells. Tumor recurrence following standard-of-care therapy results in a rich landscape of inflammatory cells throughout the glioma-infiltrated cortex. Immune cells consisting of glioma-associated macrophages and microglia (GAMMs) overwhelmingly constitute the bulk of the recurrent glioblastoma (rGBM) microenvironment, in comparison to the highly cellular and proliferative tumor microenvironment characteristic of primary GBM. These immune cells dynamically interact within the tumor microenvironment and can contribute to disease progression and therapy resistance while also providing novel targets for emerging immunotherapies. Within these varying contexts, histological-based assessments of immune cells in rGBM, including immunohistochemistry (IHC) and immunofluorescence (IF), offer a critical way to visualize and examine the inflammatory landscape. Here, we exhaustively review the available body of literature on the inflammatory landscape in rGBM as identified through histological-based assessments. We highlight the heterogeneity of immune cells throughout the glioma-infiltrated cortex with a focus on microglia and macrophages, drawing insights from canonical and novel immune-cell histological markers to estimate cell phenotypes and function. Lastly, we discuss opportunities for immunomodulatory treatments aiming to harness the inflammatory landscape in rGBM.
Collapse
Affiliation(s)
- Nicholas B. Dadario
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Deborah M. Boyett
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Damian E. Teasley
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter J. Chabot
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Nathan J. Winans
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Michael G. Argenziano
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Colin P. Sperring
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| | - Peter Canoll
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA
| | - Jeffrey N. Bruce
- Department of Neurological Surgery, Columbia University Irving Medical Center, NY-Presbyterian Hospital, New York, NY 10032, USA; (D.M.B.); (D.E.T.); (P.J.C.); (N.J.W.); (M.G.A.); (C.P.S.); (P.C.)
| |
Collapse
|
6
|
Budhiraja S, Baisiwala S, Cho S, Chojak R, Kazi HA, Stepniak A, Perrault EN, Chen L, Park CH, Dmello C, Lin P, Sonabend AM, Ahmed AU. THOC1 complexes with SIN3A to regulate R-loops and promote glioblastoma progression. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.24.614748. [PMID: 39386597 PMCID: PMC11463517 DOI: 10.1101/2024.09.24.614748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/12/2024]
Abstract
Glioblastoma (GBM), the most common and aggressive malignant brain tumor in adults, has a median survival of 21 months. To identify drivers of GBM proliferation, we conducted a CRISPR-knockout screen, which revealed THO Complex 1 (THOC1) as a key driver. Knocking down THOC1 significantly reduced GBM cell viability across patient-derived xenograft (PDX) lines, enhancing survival (p<0.01) in primary PDX models. Conversely, overexpressing THOC1 in non-cancerous cells bolstered viability, decreasing survival and causing tumor engraftment in vivo (p<0.01). Further investigation revealed THOC1's robust interaction with SIN3A, a histone deacetylase complex. Histone deacetylation has been previously shown to prevent the buildup of R-loops, structures that form normally during transcription but can be lethal in excess. We found that THOC1-knockdown leads to elevated R-loop levels and reduced histone deacetylation levels. Next, to understand the networks specifically regulated by THOC1-mediated R-loop prevention, we conducted unbiased RNA-sequencing on control and THOC1-knockdown GBM cells. We found that THOC1's role in R-loop prevention primarily affects telomeres, critical regions for cell replication. We further show that THOC1-knockdown results in significantly increased telomeric R-loop levels and shortened telomeres. Ultimately, this study suggests that targeting THOC1 shows promise as a therapeutic strategy to disrupt the delicate R-loop landscape and undermine GBM's replicative potential.
Collapse
|
7
|
Gu K, May HA, Kang MH. Targeting Molecular Signaling Pathways and Cytokine Responses to Modulate c-MYC in Acute Myeloid Leukemia. Front Biosci (Schol Ed) 2024; 16:15. [PMID: 39344393 DOI: 10.31083/j.fbs1603015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 08/07/2024] [Accepted: 08/18/2024] [Indexed: 10/01/2024]
Abstract
Overexpression of the MYC oncogene, encoding c-MYC protein, contributes to the pathogenesis and drug resistance of acute myeloid leukemia (AML) and many other hematopoietic malignancies. Although standard chemotherapy has predominated in AML therapy over the past five decades, the clinical outcomes and patient response to treatment remain suboptimal. Deeper insight into the molecular basis of this disease should facilitate the development of novel therapeutics targeting specific molecules and pathways that are dysregulated in AML, including fms-like tyrosine kinase 3 (FLT3) gene mutation and cluster of differentiation 33 (CD33) protein expression. Elevated expression of c-MYC is one of the molecular features of AML that determines the clinical prognosis in patients. Increased expression of c-MYC is also one of the cytogenetic characteristics of drug resistance in AML. However, direct targeting of c-MYC has been challenging due to its lack of binding sites for small molecules. In this review, we focused on the mechanisms involving the bromodomain and extra-terminal (BET) and cyclin-dependent kinase 9 (CDK9) proteins, phosphoinositide-Akt-mammalian target of rapamycin (PI3K/AKT/mTOR) and Janus kinase-signal transduction and activation of transcription (JAK/STAT) pathways, as well as various inflammatory cytokines, as an indirect means of regulating MYC overexpression in AML. Furthermore, we highlight Food and Drug Administration (FDA)-approved drugs for AML, and the results of preclinical and clinical studies on novel agents that have been or are currently being tested for efficacy and tolerability in AML therapy. Overall, this review summarizes our current knowledge of the molecular processes that promote leukemogenesis, as well as the various agents that intervene in specific pathways and directly or indirectly modulate c-MYC to disrupt AML pathogenesis and drug resistance.
Collapse
Affiliation(s)
- Kyle Gu
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Harry A May
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| | - Min H Kang
- School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Cancer Center, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Graduate School of Biomedical Sciences, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
- Department of Pediatrics, School of Medicine, Texas Tech University Health Sciences Center, Lubbock, TX 79430, USA
| |
Collapse
|
8
|
Niu X, Liu W, Zhang Y, Liu J, Zhang J, Li B, Qiu Y, Zhao P, Wang Z, Wang Z. Cancer plasticity in therapy resistance: Mechanisms and novel strategies. Drug Resist Updat 2024; 76:101114. [PMID: 38924995 DOI: 10.1016/j.drup.2024.101114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Revised: 06/12/2024] [Accepted: 06/15/2024] [Indexed: 06/28/2024]
Abstract
Therapy resistance poses a significant obstacle to effective cancer treatment. Recent insights into cell plasticity as a new paradigm for understanding resistance to treatment: as cancer progresses, cancer cells experience phenotypic and molecular alterations, corporately known as cell plasticity. These alterations are caused by microenvironment factors, stochastic genetic and epigenetic changes, and/or selective pressure engendered by treatment, resulting in tumor heterogeneity and therapy resistance. Increasing evidence suggests that cancer cells display remarkable intrinsic plasticity and reversibly adapt to dynamic microenvironment conditions. Dynamic interactions between cell states and with the surrounding microenvironment form a flexible tumor ecosystem, which is able to quickly adapt to external pressure, especially treatment. Here, this review delineates the formation of cancer cell plasticity (CCP) as well as its manipulation of cancer escape from treatment. Furthermore, the intrinsic and extrinsic mechanisms driving CCP that promote the development of therapy resistance is summarized. Novel treatment strategies, e.g., inhibiting or reversing CCP is also proposed. Moreover, the review discusses the multiple lines of ongoing clinical trials globally aimed at ameliorating therapy resistance. Such advances provide directions for the development of new treatment modalities and combination therapies against CCP in the context of therapy resistance.
Collapse
Affiliation(s)
- Xing Niu
- China Medical University, Shenyang, Liaoning 110122, China; Experimental Center of BIOQGene, YuanDong International Academy Of Life Sciences, 999077, Hong Kong, China
| | - Wenjing Liu
- Medical Oncology Department of Thoracic Cancer (2), Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Yinling Zhang
- Department of Oncology Radiotherapy 1, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, Shandong 266042, China
| | - Jing Liu
- Department of Oncology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianjun Zhang
- Department of Gastric Surgery, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Bo Li
- Department of Orthopedics, Beijing Luhe Hospital, Capital Medical University, Beijing 101149, China
| | - Yue Qiu
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Peng Zhao
- Department of Medical Imaging, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China
| | - Zhongmiao Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhe Wang
- Department of Digestive Diseases 1, Cancer Hospital of China Medical University, Cancer Hospital of Dalian University of Technology, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| |
Collapse
|
9
|
Budhiraja S, McManus G, Baisiwala S, Perrault EN, Cho S, Saathoff M, Chen L, Park CH, Kazi HA, Dmello C, Lin P, James CD, Sonabend AM, Heiland DH, Ahmed AU. ARF4-mediated retrograde trafficking as a driver of chemoresistance in glioblastoma. Neuro Oncol 2024; 26:1421-1437. [PMID: 38506351 PMCID: PMC11300013 DOI: 10.1093/neuonc/noae059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Indexed: 03/21/2024] Open
Abstract
BACKGROUND Cellular functions hinge on the meticulous orchestration of protein transport, both spatially and temporally. Central to this process is retrograde trafficking, responsible for targeting proteins to the nucleus. Despite its link to many diseases, the implications of retrograde trafficking in glioblastoma (GBM) are still unclear. METHODS To identify genetic drivers of TMZ resistance, we conducted comprehensive CRISPR-knockout screening, revealing ADP-ribosylation factor 4 (ARF4), a regulator of retrograde trafficking, as a major contributor. RESULTS Suppressing ARF4 significantly enhanced TMZ sensitivity in GBM patient-derived xenograft (PDX) models, leading to improved survival rates (P < .01) in both primary and recurrent lines. We also observed that TMZ exposure stimulates ARF4-mediated retrograde trafficking. Proteomics analysis of GBM cells with varying levels of ARF4 unveiled the influence of this pathway on EGFR signaling, with increased nuclear trafficking of EGFR observed in cells with ARF4 overexpression and TMZ treatment. Additionally, spatially resolved RNA-sequencing of GBM patient tissues revealed substantial correlations between ARF4 and crucial nuclear EGFR (nEGFR) downstream targets, such as MYC, STAT1, and DNA-PK. Decreased activity of DNA-PK, a DNA repair protein downstream of nEGFR signaling that contributes to TMZ resistance, was observed in cells with suppressed ARF4 levels. Notably, treatment with DNA-PK inhibitor, KU-57788, in mice with a recurrent PDX line resulted in prolonged survival (P < .01), highlighting the promising therapeutic implications of targeting proteins reliant on ARF4-mediated retrograde trafficking. CONCLUSIONS Our findings demonstrate that ARF4-mediated retrograde trafficking contributes to the development of TMZ resistance, cementing this pathway as a viable strategy to overcome chemoresistance in GBM.
Collapse
Affiliation(s)
- Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Graysen McManus
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | | | - Ella N Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Sia Cho
- Department of Neurobiology, Northwestern University, Evanston, Illinois, USA
| | - Miranda Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Li Chen
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Hasaan A Kazi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Crismita Dmello
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Adam M Sonabend
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| | - Dieter H Heiland
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Microenvironment and Immunology Research Laboratory, Medical Center - University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical Center - University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Freiburg, Germany
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, USA
| |
Collapse
|
10
|
Zhang J, Yin Y, Tang J, Zhang Y, Tian Y, Sun F. Changes in Serum Interleukin-8 Levels Predict Response to Immune Checkpoint Inhibitors Immunotherapy in Unresectable Hepatocellular Carcinoma Patients. J Inflamm Res 2024; 17:3397-3406. [PMID: 38813541 PMCID: PMC11135337 DOI: 10.2147/jir.s460931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Accepted: 05/14/2024] [Indexed: 05/31/2024] Open
Abstract
Background Effective biomarkers are needed to predict the efficacy of immune checkpoint inhibitors (ICIs) therapy in hepatocellular carcinoma (HCC). We evaluated the early changes in serum interleukin-8 (IL-8) levels as a biomarker of response to ICIs in patients with unresectable HCC. Methods Eighty patients who received ICIs therapy alone or in combination with other treatments for unresectable HCC were included. Serum was collected at baseline and 2-4 weeks after the first dose. Serum IL-8 levels were measured using by ELISA. Results In the progressive disease (PD) group, serum IL-8 levels increased significantly before the second dose of ICIs therapy compared with baseline levels (P < 0.001). Early changes in serum IL-8 levels were significantly associated with the response to ICIs therapy (P < 0.001). A cutoff value of 8.1% increase over the baseline most effectively predicted the response to ICIs. Increases in serum IL-8 levels > 8.1% indicated the uselessness of ICIs immunotherapy in patients with unresectable HCC. Patients with increases in serum IL-8 levels > 8.1% had significantly shorter overall survival (OS) and progression-free survival (PFS) than those with increases in serum IL-8 levels ≤ 8.1% (P < 0.001). Increases in serum IL-8 levels > 8.1% were independent prognosticators of worse OS (P = 0.003) and PFS (P < 0.001). Conclusion Early changes in serum IL-8 levels, measured only 2-4 weeks after starting therapy, could predict the response to ICIs therapy, as well as OS and PFS of patients with unresectable HCC. Increases in serum IL-8 levels > 8.1% indicated the uselessness of ICIs immunotherapy and predicted worse OS and PFS.
Collapse
Affiliation(s)
- Jiao Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yi Yin
- Department of Paediatrics, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Department of Paediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Jiliang Tang
- Emergency Department, Rizhao Central Hospital, Rizhao, People’s Republic of China
| | - Yingrong Zhang
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Yanan Tian
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
| | - Fengkai Sun
- Department of Gastroenterology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, People’s Republic of China
- Department of Gastroenterology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, People’s Republic of China
- College of Acupuncture and Massage, Shandong University of Traditional Chinese Medicine, Jinan, People’s Republic of China
| |
Collapse
|
11
|
Azimi P, Yazdanian T, Ahmadiani A. mRNA markers for survival prediction in glioblastoma multiforme patients: a systematic review with bioinformatic analyses. BMC Cancer 2024; 24:612. [PMID: 38773447 PMCID: PMC11106946 DOI: 10.1186/s12885-024-12345-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2024] [Accepted: 05/06/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND Glioblastoma multiforme (GBM) is a type of fast-growing brain glioma associated with a very poor prognosis. This study aims to identify key genes whose expression is associated with the overall survival (OS) in patients with GBM. METHODS A systematic review was performed using PubMed, Scopus, Cochrane, and Web of Science up to Journey 2024. Two researchers independently extracted the data and assessed the study quality according to the New Castle Ottawa scale (NOS). The genes whose expression was found to be associated with survival were identified and considered in a subsequent bioinformatic study. The products of these genes were also analyzed considering protein-protein interaction (PPI) relationship analysis using STRING. Additionally, the most important genes associated with GBM patients' survival were also identified using the Cytoscape 3.9.0 software. For final validation, GEPIA and CGGA (mRNAseq_325 and mRNAseq_693) databases were used to conduct OS analyses. Gene set enrichment analysis was performed with GO Biological Process 2023. RESULTS From an initial search of 4104 articles, 255 studies were included from 24 countries. Studies described 613 unique genes whose mRNAs were significantly associated with OS in GBM patients, of which 107 were described in 2 or more studies. Based on the NOS, 131 studies were of high quality, while 124 were considered as low-quality studies. According to the PPI network, 31 key target genes were identified. Pathway analysis revealed five hub genes (IL6, NOTCH1, TGFB1, EGFR, and KDR). However, in the validation study, only, the FN1 gene was significant in three cohorts. CONCLUSION We successfully identified the most important 31 genes whose products may be considered as potential prognosis biomarkers as well as candidate target genes for innovative therapy of GBM tumors.
Collapse
Affiliation(s)
- Parisa Azimi
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| | | | - Abolhassan Ahmadiani
- Neurosurgeon, Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Arabi Ave, Daneshjoo Blvd, Velenjak, Tehran, 19839- 63113, Iran.
| |
Collapse
|
12
|
Medina S, Brockman AA, Cross CE, Hayes MJ, Mobley BC, Mistry AM, Chotai S, Weaver KD, Thompson RC, Chambless LB, Ihrie RA, Irish JM. IL-8 Instructs Macrophage Identity in Lateral Ventricle Contacting Glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.03.29.587030. [PMID: 38585888 PMCID: PMC10996638 DOI: 10.1101/2024.03.29.587030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Adult IDH-wildtype glioblastoma (GBM) is a highly aggressive brain tumor with no established immunotherapy or targeted therapy. Recently, CD32+ HLA-DRhi macrophages were shown to have displaced resident microglia in GBM tumors that contact the lateral ventricle stem cell niche. Since these lateral ventricle contacting GBM tumors have especially poor outcomes, identifying the origin and role of these CD32+ macrophages is likely critical to developing successful GBM immunotherapies. Here, we identify these CD32+ cells as M_IL-8 macrophages and establish that IL-8 is sufficient and necessary for tumor cells to instruct healthy macrophages into CD32+ M_IL-8 M2 macrophages. In ex vivo experiments with conditioned medium from primary human tumor cells, inhibitory antibodies to IL-8 blocked the generation of CD32+ M_IL-8 cells. Finally, using a set of 73 GBM tumors, IL-8 protein is shown to be present in GBM tumor cells in vivo and especially common in tumors contacting the lateral ventricle. These results provide a mechanistic origin for CD32+ macrophages that predominate in the microenvironment of the most aggressive GBM tumors. IL-8 and CD32+ macrophages should now be explored as targets in combination with GBM immunotherapies, especially for patients whose tumors present with radiographic contact with the ventricular-subventricular zone stem cell niche.
Collapse
Affiliation(s)
- Stephanie Medina
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Asa A Brockman
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
| | - Claire E Cross
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Madeline J Hayes
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Bret C Mobley
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Akshitkumar M Mistry
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Silky Chotai
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Kyle D Weaver
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Reid C Thompson
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Lola B Chambless
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Rebecca A Ihrie
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
- Department of Neurosurgery, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Brain Institute, Vanderbilt University, Nashville, TN, USA
| | - Jonathan M Irish
- Department of Cell and Developmental Biology, Vanderbilt University, Nashville, TN, USA
- Department of Pathology, Microbiology and Immunology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt Center for Immunobiology, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt-Ingram Cancer Center, Vanderbilt University Medical Center, Nashville, TN, USA
| |
Collapse
|
13
|
Lai Y, Lu X, Liao Y, Ouyang P, Wang H, Zhang X, Huang G, Qi S, Li Y. Crosstalk between glioblastoma and tumor microenvironment drives proneural-mesenchymal transition through ligand-receptor interactions. Genes Dis 2024; 11:874-889. [PMID: 37692522 PMCID: PMC10491977 DOI: 10.1016/j.gendis.2023.05.025] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2023] [Revised: 04/28/2023] [Accepted: 05/25/2023] [Indexed: 09/12/2023] Open
Abstract
Glioblastoma (GBM) is the most common intrinsic and aggressive primary brain tumor in adults, with a median survival of approximately 15 months. GBM heterogeneity is considered responsible for the treatment resistance and unfavorable prognosis. Proneural-mesenchymal transition (PMT) represents GBM malignant progression and recurrence, which might be a breakthrough to understand GBM heterogeneity and overcome treatment resistance. PMT is a complicated process influenced by crosstalk between GBM and tumor microenvironment, depending on intricate ligand-receptor interactions. In this review, we summarize the autocrine and paracrine pathways in the GBM microenvironment and related ligand-receptor interactions inducing PMT. We also discuss the current therapies targeting the PMT-related autocrine and paracrine pathways. Together, this review offers a comprehensive understanding of the failure of GBM-targeted therapy and ideas for future tendencies of GBM treatment.
Collapse
Affiliation(s)
- Yancheng Lai
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xiaole Lu
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yankai Liao
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Pei Ouyang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Hai Wang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Xian Zhang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Guanglong Huang
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Songtao Qi
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Yaomin Li
- Department of Neurosurgery, Institute of Brain Disease, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
- Laboratory for Precision Neurosurgery, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| |
Collapse
|
14
|
武 若, 刘 睿, 张 一, 李 晓. [Parecoxib sodium down-regulates CXCL8-CXCR1/2 to improve inflammatory microenvironment and promote patient recovery following laparoscopic radical resection of rectal cancer]. NAN FANG YI KE DA XUE XUE BAO = JOURNAL OF SOUTHERN MEDICAL UNIVERSITY 2024; 44:363-369. [PMID: 38501422 PMCID: PMC10954531 DOI: 10.12122/j.issn.1673-4254.2024.02.19] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 09/03/2023] [Indexed: 03/20/2024]
Abstract
OBJECTIVE To study the effect of parecoxib sodium on tumor microenvironment in patients undergoing laparoscopic radical resection of rectal cancer. METHODS Sixty patients undergoing laparoscopic surgery for radical rectal cancer resection were randomized into test group and control group (n=30). The patients in test control group received intravenous injections of 40 mg parecoxib sodium at the time of anesthesia induction, immediately after and at 12 h after the surgery, and those in the control group were injected with an equal volume of physiological saline at the same time points. Plasma levels of IL-6, TNF-α, and CXCL8 of the patients were measured using ELISA, and expressions of CXCL8, CXCR1, and CXCR2 in the peripheral blood mononuclear cells (PBMCs) were detected with Western blotting. Postoperative VAS scores and gastrointestinal reactions and disease regression at 6 months after the operation were recorded. RESULTS Compared with the control patients, the patients in the test group showed significantly reduced plasma levels of IL-6, TNF-α, and CXCL8 (P < 0.05) and milder elevations of CXCL8, CXCR1, and CXCR2 proteins in PBMCs (P < 0.05) with significantly lower VAS scores at 12 h and 24 h after the operation (P < 0.05) and lower postoperative incidence of adverse gastrointestinal reactions (P < 0.05). At 6 months after the operation, the number of patients with metastasis or tumor recurrence was significantly smaller in the test group than in the control group (P>0.05). CONCLUSION Parecoxib sodium can improve the inflammatory microenvironment to promote patient recovery after laparoscopic radical resection of rectal cancer possibly through a mechanism that down-regulates CXCL8-CXCR1/2 expressions in the PBMCs.
Collapse
Affiliation(s)
- 若杰 武
- />蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 睿 刘
- />蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 一粟 张
- />蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| | - 晓红 李
- />蚌埠医学院第一附属医院麻醉科,安徽 蚌埠 233000Department of Anesthesiology, First Affiliated Hospital of Bengbu Medical College, Bengbu 233000, China
| |
Collapse
|
15
|
Jarmuzek P, Defort P, Kot M, Wawrzyniak-Gramacka E, Morawin B, Zembron-Lacny A. Cytokine Profile in Development of Glioblastoma in Relation to Healthy Individuals. Int J Mol Sci 2023; 24:16206. [PMID: 38003396 PMCID: PMC10671437 DOI: 10.3390/ijms242216206] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 11/07/2023] [Accepted: 11/08/2023] [Indexed: 11/26/2023] Open
Abstract
Cytokines play an essential role in the control of tumor cell development and multiplication. However, the available literature provides ambiguous data on the involvement of these proteins in the formation and progression of glioblastoma (GBM). This study was designed to evaluate the inflammatory profile and to investigate its potential for the identification of molecular signatures specific to GBM. Fifty patients aged 66.0 ± 10.56 years with newly diagnosed high-grade gliomas and 40 healthy individuals aged 71.7 ± 4.9 years were included in the study. White blood cells were found to fall within the referential ranges and were significantly higher in GBM than in healthy controls. Among immune cells, neutrophils showed the greatest changes, resulting in elevated neutrophil-to-lymphocyte ratio (NLR). The neutrophil count inversely correlated with survival time expressed by Spearman's coefficient rs = -0.359 (p = 0.010). The optimal threshold values corresponded to 2.630 × 103/µL for NLR (the area under the ROC curve AUC = 0.831, specificity 90%, sensitivity 76%, the relative risk RR = 7.875, the confidence intervals 95%CI 3.333-20.148). The most considerable changes were recorded in pro-inflammatory cytokines interleukin IL-1β, IL-6, and IL-8, which were approx. 1.5-2-fold higher, whereas tumor necrosis factor α (TNFα) and high mobility group B1 (HMGB1) were lower in GBM than healthy control (p < 0.001). The results of the ROC, AUC, and RR analysis of IL-1β, IL-6, IL-8, and IL-10 indicate their high diagnostics potential for clinical prognosis. The highest average RR was observed for IL-6 (RR = 2.923) and IL-8 (RR = 3.151), which means there is an approx. three-fold higher probability of GBM development after exceeding the cut-off values of 19.83 pg/mL for IL-6 and 10.86 pg/mL for IL-8. The high values of AUC obtained for the models NLR + IL-1β (AUC = 0.907), NLR + IL-6 (AUC = 0.908), NLR + IL-8 (AUC = 0.896), and NLR + IL-10 (AUC = 0.887) prove excellent discrimination of GBM patients from healthy individuals and may represent GBM-specific molecular signatures.
Collapse
Affiliation(s)
- Pawel Jarmuzek
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Piotr Defort
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Marcin Kot
- Department of Nervous System Diseases, Collegium Medicum, Neurosurgery Center University Hospital, University of Zielona Gora, 65-417 Zielona Gora, Poland; (P.J.); (M.K.)
| | - Edyta Wawrzyniak-Gramacka
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Barbara Morawin
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| | - Agnieszka Zembron-Lacny
- Department of Applied and Clinical Physiology, Collegium Medicum, University of Zielona Gora, 65-417 Zielona Gora, Poland; (E.W.-G.); (B.M.); (A.Z.-L.)
| |
Collapse
|
16
|
Kim JH, Kang KW, Park Y, Kim BS. CXCR2 inhibition overcomes ponatinib intolerance by eradicating chronic myeloid leukemic stem cells through PI3K/Akt/mTOR and dipeptidylpeptidase Ⅳ (CD26). Heliyon 2023; 9:e22091. [PMID: 38045173 PMCID: PMC10692791 DOI: 10.1016/j.heliyon.2023.e22091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 10/30/2023] [Accepted: 11/03/2023] [Indexed: 12/05/2023] Open
Abstract
This study explores the therapeutic potential of targeting CXCR2 in patients afflicted with ponatinib-resistant chronic myeloid leukemia (CML). Ponatinib, a third-generation tyrosine kinase inhibitor (TKI), was initially designed for treating patients with CML harboring the T315I mutation. However, resistance or intolerance issues may lead to treatment discontinuation. Additionally, TKIs have exhibited limitations in eradicating quiescent CML stem cells. Our investigation reveals the activation of CXC chemokine receptor 2 (CXCR2) signaling in response to chemotherapeutic stress. Treatment with the CXCR2 antagonist, SB225002, effectively curtails cell proliferation and triggers apoptosis in ponatinib-resistant CML cells. SB225002 intervention also results in the accumulation of reactive oxygen species and disruption of mitochondrial function, phenomena associated with TKI chemoresistance and apoptosis. Furthermore, we demonstrate that activated CXCR2 expression induces the activity of dipeptidylpeptidase Ⅳ (DPP4/CD26), a CML leukemic stem cell marker, and concomitantly inhibits the PI3K/Akt/mTOR pathway cascades. These findings underscore the novel role of CXCR2 in the regulation of not only ponatinib-resistant CML cells, but also CML leukemic stem cells. Consequently, our study proposes that targeting CXCR2 holds promise as a viable therapeutic strategy for addressing patients with CML grappling with ponatinib resistance.
Collapse
Affiliation(s)
- Ji-Hea Kim
- Institute of Stem Cell Research, Korea University College of Medicine, Seoul, South Korea
- Department of Biomedical Science, Graduate School of Medicine, Korea University, Seoul, South Korea
| | - Ka-Won Kang
- Department of Internal Medicine, Anam Hospital Korea University Medical Center, Seoul, South Korea
| | - Yong Park
- Department of Internal Medicine, Anam Hospital Korea University Medical Center, Seoul, South Korea
| | - Byung Soo Kim
- Department of Internal Medicine, Anam Hospital Korea University Medical Center, Seoul, South Korea
| |
Collapse
|
17
|
Shireman JM, Cheng L, Goel A, Garcia DM, Partha S, Quiñones-Hinojosa A, Kendziorski C, Dey M. Spatial transcriptomics in glioblastoma: is knowing the right zip code the key to the next therapeutic breakthrough? Front Oncol 2023; 13:1266397. [PMID: 37916170 PMCID: PMC10618006 DOI: 10.3389/fonc.2023.1266397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 09/27/2023] [Indexed: 11/03/2023] Open
Abstract
Spatial transcriptomics, the technology of visualizing cellular gene expression landscape in a cells native tissue location, has emerged as a powerful tool that allows us to address scientific questions that were elusive just a few years ago. This technological advance is a decisive jump in the technological evolution that is revolutionizing studies of tissue structure and function in health and disease through the introduction of an entirely new dimension of data, spatial context. Perhaps the organ within the body that relies most on spatial organization is the brain. The central nervous system's complex microenvironmental and spatial architecture is tightly regulated during development, is maintained in health, and is detrimental when disturbed by pathologies. This inherent spatial complexity of the central nervous system makes it an exciting organ to study using spatial transcriptomics for pathologies primarily affecting the brain, of which Glioblastoma is one of the worst. Glioblastoma is a hyper-aggressive, incurable, neoplasm and has been hypothesized to not only integrate into the spatial architecture of the surrounding brain, but also possess an architecture of its own that might be actively remodeling the surrounding brain. In this review we will examine the current landscape of spatial transcriptomics in glioblastoma, outline novel findings emerging from the rising use of spatial transcriptomics, and discuss future directions and ultimate clinical/translational avenues.
Collapse
Affiliation(s)
- Jack M. Shireman
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| | - Lingxin Cheng
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Amiti Goel
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| | - Diogo Moniz Garcia
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, United States
| | - Sanil Partha
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| | | | - Christina Kendziorski
- Department of Biostatistics and Medical Informatics, University of Wisconsin School of Medicine and Public Health, Madison, WI, United States
| | - Mahua Dey
- Department of Neurosurgery, University of Wisconsin School of Medicine and Public Health, University of Wisconsin-Madison (UW) Carbone Cancer Center, Madison, WI, United States
| |
Collapse
|
18
|
Mao P, Wang T, Du CW, Yu X, Wang MD. CXCL5 promotes tumorigenesis and angiogenesis of glioblastoma via JAK-STAT/NF-κb signaling pathways. Mol Biol Rep 2023; 50:8015-8023. [PMID: 37541997 DOI: 10.1007/s11033-023-08671-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Accepted: 07/06/2023] [Indexed: 08/06/2023]
Abstract
BACKGROUND The tumor microenvironment contains chemokines that play a crucial role in various processes, such as tumorigenesis, inflammation, and therapy resistance, in different types of cancer. CXCL5 is a significant chemokine that has been shown to promote tumor proliferation, invasion, angiogenesis, and therapy resistance when overexpressed in various types of cancer. This research aims to investigate the impact of CXCL5 on the biological functions of glioblastoma (GBM). METHODS The TCGA GBM and GEO databases were utilized to perform transcriptome microarray analysis and oncogenic signaling pathway analysis of CXCL5 in GBM. Validation of CXCL5 expression was performed using RT-qPCR and Western Blot. The impact of CXCL5 on cell proliferation, tumorigenesis, and angiogenesis in GBM was assessed through various methods, including cell proliferation assay, cloning assay, intracranial xenograft tumor models, and tube formation assay. Clinical prognosis was evaluated in 59 samples of gliomas with varying degrees of malignancy (grades 2, 3, and 4) and the TCGA GBM database, based on CXCL5 expression levels. The activities of the JAK-STAT and NF-κB signaling pathways were detected using Western Blot. RESULTS The expression of CXCL5 was highly enriched in GBM. Moreover, the inhibition of CXCL5 showed a significant efficacy in suppressing cellular proliferation and angiogenesis, resulting in extended survival rates in xenograft mouse models in comparison to the control group. Notably, pretreatment with dapsone exhibited a reversal of the impact of CXCL5 on the formation of colonies and tubes in GBM cells. Elevated expression of CXCL5 was correlated with poor outcomes in GBM patients. Furthermore, the overexpression of CXCL5 has been associated with the activation of JAK-STAT and NF-κB signaling pathways. CONCLUSIONS CXCL5 plays an important role in tumorigenesis and angiogenesis, indicating the potential for novel therapies targeting CXCL5 in GBM.
Collapse
Affiliation(s)
- Ping Mao
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China.
| | - Tuo Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Chang-Wang Du
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Xiao Yu
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| | - Mao-De Wang
- Department of Neurosurgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, 710061, Shaanxi, China
| |
Collapse
|
19
|
Yuan W, Zhang Q, Gu D, Lu C, Dixit D, Gimple RC, Gao Y, Gao J, Li D, Shan D, Hu L, Li L, Li Y, Ci S, You H, Yan L, Chen K, Zhao N, Xu C, Lan J, Liu D, Zhang J, Shi Z, Wu Q, Yang K, Zhao L, Qiu Z, Lv D, Gao W, Yang H, Lin F, Wang Q, Man J, Li C, Tao W, Agnihotri S, Qian X, Mack SC, Zhang N, You Y, Rich JN, Sun G, Wang X. Dual Role of CXCL8 in Maintaining the Mesenchymal State of Glioblastoma Stem Cells and M2-Like Tumor-Associated Macrophages. Clin Cancer Res 2023; 29:3779-3792. [PMID: 37439870 DOI: 10.1158/1078-0432.ccr-22-3273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 03/16/2023] [Accepted: 07/10/2023] [Indexed: 07/14/2023]
Abstract
PURPOSE The dynamic interplay between glioblastoma stem cells (GSC) and tumor-associated macrophages (TAM) sculpts the tumor immune microenvironment (TIME) and promotes malignant progression of glioblastoma (GBM). However, the mechanisms underlying this interaction are still incompletely understood. Here, we investigate the role of CXCL8 in the maintenance of the mesenchymal state of GSC populations and reprogramming the TIME to an immunosuppressive state. EXPERIMENTAL DESIGN We performed an integrative multi-omics analyses of RNA sequencing, GBM mRNA expression datasets, immune signatures, and epigenetic profiling to define the specific genes expressed in the mesenchymal GSC subsets. We then used patient-derived GSCs and a xenograft murine model to investigate the mechanisms of tumor-intrinsic and extrinsic factor to maintain the mesenchymal state of GSCs and induce TAM polarization. RESULTS We identified that CXCL8 was preferentially expressed and secreted by mesenchymal GSCs and activated PI3K/AKT and NF-κB signaling to maintain GSC proliferation, survival, and self-renewal through a cell-intrinsic mechanism. CXCL8 induced signaling through a CXCR2-JAK2/STAT3 axis in TAMs, which supported an M2-like TAM phenotype through a paracrine, cell-extrinsic pathway. Genetic- and small molecule-based inhibition of these dual complementary signaling cascades in GSCs and TAMs suppressed GBM tumor growth and prolonged survival of orthotopic xenograft-bearing mice. CONCLUSIONS CXCL8 plays critical roles in maintaining the mesenchymal state of GSCs and M2-like TAM polarization in GBM, highlighting an interplay between cell-autonomous and cell-extrinsic mechanisms. Targeting CXCL8 and its downstream effectors may effectively improve GBM treatment.
Collapse
Affiliation(s)
- Wei Yuan
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
- Department of Central Laboratory, Yancheng Medical Research Center of Nanjing University Medical School, Yancheng, Jiangsu, China
| | - Qian Zhang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danling Gu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Chenfei Lu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Deobrat Dixit
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Ryan C Gimple
- Department of Pathology, Case Western Reserve University, Cleveland, Ohio
| | - Yisu Gao
- Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Jiancheng Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Daqi Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Danyang Shan
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lang Hu
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lu Li
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Yangqing Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu, China
| | - Shusheng Ci
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hao You
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Linping Yan
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Kexin Chen
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | | | - Chuanhai Xu
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Jianyun Lan
- Department of Pathology, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Dong Liu
- School of Life Science, Nantong Laboratory of Development and Diseases, Key Laboratory of Neuroregeneration of Jiangsu and Ministry of Education, Co-innovation Center of Neuroregeneration, Nantong University, Nantong, Jiangsu, China
| | - Junxia Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Zhumei Shi
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qiulian Wu
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
| | - Kailin Yang
- Department of Radiation Oncology, Taussig Cancer Center, Cleveland Clinic, Cleveland, Ohio
| | - Linjie Zhao
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Zhixin Qiu
- Institute for Translational Brain Research, Fudan University, Shanghai, China
| | - Deguan Lv
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
| | - Wei Gao
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Hui Yang
- Department of Neurosurgery, Huashan Hospital, Shanghai Key laboratory of Brain Function Restoration and Neural Regeneration, Shanghai Clinical Medical Center of Neurosurgery, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Institute for Translational Brain Research, Shanghai Medical College, Fudan University, Shanghai, China
| | - Fan Lin
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Qianghu Wang
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jianghong Man
- State Key Laboratory of Proteomics, National Center of Biomedical analysis, Beijing, China
| | - Chaojun Li
- Ministry of Education Key Laboratory of Model Animals for Disease Study, Model Animal Research Center and School of Medicine, Nanjing University, National Resource Center for Mutant Mice, Nanjing, Jiangsu, China
| | - Weiwei Tao
- College of Biomedicine and Health & College of Life Science and Technology, Huazhong Agricultural University, Wuhan, Hubei, China
| | - Sameer Agnihotri
- Department of Neurological Surgery, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania
| | - Xu Qian
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Department of Nutrition and Food Hygiene, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Stephen C Mack
- Division of Brain Tumor Research, Department of Developmental Neurobiology, St. Jude Children's Research Hospital, Memphis, Tennessee
| | - Nu Zhang
- Department of Neurosurgery, The First Affiliated Hospital of Sun Yat-sen University, Guangdong Provincial Key Laboratory of Brain Function and Disease, Guangdong Translational Medicine Innovation Platform, Guangzhou, Guangdong, China
| | - Yongping You
- Department of Neurosurgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jeremy N Rich
- Department of Medicine, Division of Regenerative Medicine, University of California, San Diego, La Jolla, California
- UPMC Hillman Cancer Center, Pittsburgh, Pennsylvania
- Department of Neurology, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Guan Sun
- Department of Central Laboratory, Yancheng Medical Research Center of Nanjing University Medical School, Yancheng, Jiangsu, China
- Department of Neurosurgery, The Yancheng Clinical College of Xuzhou Medical University, The First people's Hospital of Yancheng, Yancheng, Jiangsu, China
| | - Xiuxing Wang
- National Health Commission Key Laboratory of Antibody Techniques, Department of Cell Biology, Jiangsu Provincial Key Laboratory of Human Functional Genomics, School of Basic Medical Sciences, Nanjing Medical University, Nanjing, Jiangsu, China
- Institute for Brain Tumors, Jiangsu Key Lab of Cancer Biomarkers, Prevention and Treatment, Collaborative Innovation Center for Personalized Cancer Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
- Jiangsu Cancer Hospital, Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, Jiangsu, China
| |
Collapse
|
20
|
Kutwin M, Sosnowska M, Ostrowska A, Trzaskowski M, Lange A, Wierzbicki M, Jaworski S. Influence of GO-Antisense miRNA-21 on the Expression of Selected Cytokines at Glioblastoma Cell Lines. Int J Nanomedicine 2023; 18:4839-4855. [PMID: 37662685 PMCID: PMC10473248 DOI: 10.2147/ijn.s419957] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2023] [Accepted: 07/24/2023] [Indexed: 09/05/2023] Open
Abstract
Introduction Graphene oxide (GO) is a single layer of carbon atoms with unique properties, which are beneficial due to its surface functionalisation by miRNA. miRNAs are a non-coding small form of RNA that suppress the expression of protein-coding genes by translational repression or degradation of messenger RNA. Antisense miRNA-21 is very promising for future investigation in cancer therapy. This study aimed to detect cytokine expression levels after the administration of GO-antisense miRNA-21 into U87, U118, U251 and T98 glioma cell lines. Methods U87, U118, U251 and T98 glioma cell line were investigated in term of viability, human cytokine expression level at protein and genes after treatment with GO, GO-antisense miRNA-21 and antisense miRNA-21. The delivery of antisense miRNA-21 into the glioma cell at in vitro investigation were conducted by GO based transfection and electroporation. Results The results of the protein microarray and gene expression profile showed that complexes of GO-antisense miRNA-21 modified the metallopeptidase inhibitor 2 (TIMP-2), interleukin-6 (IL-6), interleukin 8 (IL-8), intercellular adhesion molecule 1 (ICAM-1), and monocyte chemoattractant protein-1 (MCP-1) expression level compared to transfection by electroporation of antisense miRNA-21 at investigated glioblastoma cell lines. The TIMP-2 protein and gene expression level was upregulated after antisense miRNA-21 delivery by GO complex into U87, U251 and T98 glioblastoma cell lines comparing to the non-treated control group. The downregulation at protein expression level of ICAM - 1 was observed at U87, U118, U251 and T98 glioma cell lines. Moreover, the IL-8 expression level at mRNA for genes and protein was decreased significantly after delivery the antisense-miRNA-21 by GO compared to electroporation as a transfection method. Discussion This work demonstrated that the graphene oxide complexes with antisense miRNA-21 can effectively modulate the cytokine mRNA and protein expression level at U87, U118, U251 and T98 glioma cell lines.
Collapse
Affiliation(s)
- Marta Kutwin
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Malwina Sosnowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Agnieszka Ostrowska
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Maciej Trzaskowski
- Centre for Advanced Materials and Technologies CEZAMAT, Warsaw University of Technology, Warsaw, 02-822, Poland
| | - Agata Lange
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Mateusz Wierzbicki
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| | - Sławomir Jaworski
- Department of Nanobiotechnology, Institute of Biology, Warsaw University of Life Sciences, Warsaw, 02-786, Poland
| |
Collapse
|
21
|
Wadhwani N, Nayak S, Wang Y, Hashizume R, Jie C, Mania-Farnell B, James CD, Xi G, Tomita T. WDR82-Mediated H3K4me3 Is Associated with Tumor Proliferation and Therapeutic Efficacy in Pediatric High-Grade Gliomas. Cancers (Basel) 2023; 15:3429. [PMID: 37444539 PMCID: PMC10340597 DOI: 10.3390/cancers15133429] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/29/2023] [Accepted: 06/23/2023] [Indexed: 07/15/2023] Open
Abstract
Pediatric high-grade gliomas (pHGGs) are common malignant brain tumors without effective treatment and poor patient survival. Abnormal posttranslational modification at the histone H3 tail plays critical roles in tumor cell malignancy. We have previously shown that the trimethylation of lysine 4 at histone H3 (H3K4me3) plays a significant role in pediatric ependymoma malignancy and is associated with tumor therapeutic sensitivity. Here, we show that H3K4me3 and its methyltransferase WDR82 are elevated in pHGGs. A reduction in H3K4me3 by downregulating WDR82 decreases H3K4me3 promoter occupancy and the expression of genes associated with stem cell features, cell proliferation, the cell cycle, and DNA damage repair. A reduction in WDR82-mediated H3K4me3 increases the response of pediatric glioma cells to chemotherapy. These findings suggest that WDR82-mediated H3K4me3 is an important determinant of pediatric glioma malignancy and therapeutic response. This highlights the need for a more thorough understanding of the potential of WDR82 as an epigenetic target to increase therapeutic efficacy and improve the prognosis for children with malignant gliomas.
Collapse
Affiliation(s)
- Nitin Wadhwani
- Department of Pathology, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Sonali Nayak
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Yufen Wang
- Department of Radio-oncology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Rintaro Hashizume
- Department of Pediatrics, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Chunfa Jie
- Department of Biochemistry and Nutrition, Des Moines University Medicine and Health Sciences, Des Moines, IA 50312, USA
| | - Barbara Mania-Farnell
- Department of Biological Sciences, Purdue University Northwest, Hammond, IN 46323, USA
| | - Charles David James
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Guifa Xi
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | - Tadanori Tomita
- Division of Pediatric Neurosurgery, Ann & Robert H. Lurie Children’s Hospital of Chicago, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
- Department of Neurological Surgery, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| |
Collapse
|
22
|
Sun YM, Zhang YM, Shi HL, Yang S, Zhao YL, Liu HJ, Li C, Liu HL, Yang JP, Song J, Sun GZ, Yang JK. Enhancer-driven transcription of MCM8 by E2F4 promotes ATR pathway activation and glioma stem cell characteristics. Hereditas 2023; 160:29. [PMID: 37349788 DOI: 10.1186/s41065-023-00292-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 06/13/2023] [Indexed: 06/24/2023] Open
Abstract
BACKGROUND Glioma stem cells (GSCs) are responsible for glioma recurrence and drug resistance, yet the mechanisms underlying their maintenance remains unclear. This study aimed to identify enhancer-controlled genes involved in GSCs maintenance and elucidate the mechanisms underlying their regulation. METHODS We analyzed RNA-seq data and H3K27ac ChIP-seq data from GSE119776 to identify differentially expressed genes and enhancers, respectively. Gene Ontology analysis was performed for functional enrichment. Transcription factors were predicted using the Toolkit for Cistrome Data Browser. Prognostic analysis and gene expression correlation was conducted using the Chinese Glioma Genome Atlas (CGGA) data. Two GSC cell lines, GSC-A172 and GSC-U138MG, were isolated from A172 and U138MG cell lines. qRT-PCR was used to detect gene transcription levels. ChIP-qPCR was used to detect H3K27ac of enhancers, and binding of E2F4 to target gene enhancers. Western blot was used to analyze protein levels of p-ATR and γH2AX. Sphere formation, limiting dilution and cell growth assays were used to analyze GSCs growth and self-renewal. RESULTS We found that upregulated genes in GSCs were associated with ataxia-telangiectasia-mutated-and-Rad3-related kinase (ATR) pathway activation, and that seven enhancer-controlled genes related to ATR pathway activation (LIN9, MCM8, CEP72, POLA1, DBF4, NDE1, and CDKN2C) were identified. Expression of these genes corresponded to poor prognosis in glioma patients. E2F4 was identified as a transcription factor that regulates enhancer-controlled genes related to the ATR pathway activation, with MCM8 having the highest hazard ratio among genes positively correlated with E2F4 expression. E2F4 bound to MCM8 enhancers to promote its transcription. Overexpression of MCM8 partially restored the inhibition of GSCs self-renewal, cell growth, and the ATR pathway activation caused by E2F4 knockdown. CONCLUSION Our study demonstrated that E2F4-mediated enhancer activation of MCM8 promotes the ATR pathway activation and GSCs characteristics. These findings offer promising targets for the development of new therapies for gliomas.
Collapse
Affiliation(s)
- Yu-Meng Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yi-Meng Zhang
- Medical Department, The First Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hai-Liang Shi
- Department of Neurosurgery, Hebei General Hospital, Shijiazhuang, 050000, Hebei, China
| | - Song Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Yin-Long Zhao
- Department of Anesthesiology and Intensive Care, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Jiang Liu
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Chen Li
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Hong-Lei Liu
- Department of Neurosurgery, Shijiazhuang Third Hospital, Shijiazhuang, 050011, Hebei, China
| | - Ji-Peng Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian Song
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Guo-Zhu Sun
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China
| | - Jian-Kai Yang
- Department of Neurosurgery, The Second Hospital of Hebei Medical University, Shijiazhuang, 050000, Hebei, China.
| |
Collapse
|
23
|
Perrault EN, Shireman JM, Ali ES, Lin P, Preddy I, Park C, Budhiraja S, Baisiwala S, Dixit K, James CD, Heiland DH, Ben-Sahra I, Pott S, Basu A, Miska J, Ahmed AU. Ribonucleotide reductase regulatory subunit M2 drives glioblastoma TMZ resistance through modulation of dNTP production. SCIENCE ADVANCES 2023; 9:eade7236. [PMID: 37196077 PMCID: PMC10191446 DOI: 10.1126/sciadv.ade7236] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Accepted: 04/13/2023] [Indexed: 05/19/2023]
Abstract
During therapy, adaptations driven by cellular plasticity are partly responsible for driving the inevitable recurrence of glioblastoma (GBM). To investigate plasticity-induced adaptation during standard-of-care chemotherapy temozolomide (TMZ), we performed in vivo single-cell RNA sequencing in patient-derived xenograft (PDX) tumors of GBM before, during, and after therapy. Comparing single-cell transcriptomic patterns identified distinct cellular populations present during TMZ therapy. Of interest was the increased expression of ribonucleotide reductase regulatory subunit M2 (RRM2), which we found to regulate dGTP and dCTP production vital for DNA damage response during TMZ therapy. Furthermore, multidimensional modeling of spatially resolved transcriptomic and metabolomic analysis in patients' tissues revealed strong correlations between RRM2 and dGTP. This supports our data that RRM2 regulates the demand for specific dNTPs during therapy. In addition, treatment with the RRM2 inhibitor 3-AP (Triapine) enhances the efficacy of TMZ therapy in PDX models. We present a previously unidentified understanding of chemoresistance through critical RRM2-mediated nucleotide production.
Collapse
Affiliation(s)
- Ella N. Perrault
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Jack M. Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Eunus S. Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Peiyu Lin
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Isabelle Preddy
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Cheol Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shreya Budhiraja
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Karan Dixit
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - C. David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Northwestern Medicine Malnati Brain Tumor Institute of the Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Dieter H Heiland
- Microenvironment and Immunology Research Laboratory, Medical-Center, University of Freiburg, Freiburg, Germany
- Department of Neurosurgery, Medical-Center, University of Freiburg, Freiburg, Germany
- Faculty of Medicine, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), partner site Freiburg, Freiburg, Germany
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Sebastian Pott
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Anindita Basu
- Section of Genetic Medicine, Department of Medicine, University of Chicago, Chicago, IL, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Atique U. Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
- Department of Neurology, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
24
|
Roddy AC, McInerney CE, Flannery T, Healy EG, Stewart JP, Spence VJ, Walsh J, Salto-Tellez M, McArt DG, Prise KM. Transcriptional Profiling of a Patient-Matched Cohort of Glioblastoma (IDH-Wildtype) for Therapeutic Target and Repurposing Drug Identification. Biomedicines 2023; 11:biomedicines11041219. [PMID: 37189838 DOI: 10.3390/biomedicines11041219] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 04/11/2023] [Accepted: 04/13/2023] [Indexed: 05/17/2023] Open
Abstract
Glioblastoma (GBM) is the most prevalent and aggressive adult brain tumor. Despite multi-modal therapies, GBM recurs, and patients have poor survival (~14 months). Resistance to therapy may originate from a subpopulation of tumor cells identified as glioma-stem cells (GSC), and new treatments are urgently needed to target these. The biology underpinning GBM recurrence was investigated using whole transcriptome profiling of patient-matched initial and recurrent GBM (recGBM). Differential expression analysis identified 147 significant probes. In total, 24 genes were validated using expression data from four public cohorts and the literature. Functional analyses revealed that transcriptional changes to recGBM were dominated by angiogenesis and immune-related processes. The role of MHC class II proteins in antigen presentation and the differentiation, proliferation, and infiltration of immune cells was enriched. These results suggest recGBM would benefit from immunotherapies. The altered gene signature was further analyzed in a connectivity mapping analysis with QUADrATiC software to identify FDA-approved repurposing drugs. Top-ranking target compounds that may be effective against GSC and GBM recurrence were rosiglitazone, nizatidine, pantoprazole, and tolmetin. Our translational bioinformatics pipeline provides an approach to identify target compounds for repurposing that may add clinical benefit in addition to standard therapies against resistant cancers such as GBM.
Collapse
Affiliation(s)
- Aideen C Roddy
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Caitríona E McInerney
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Tom Flannery
- Department of Neurosurgery, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK
| | - Estelle G Healy
- Regional Service for Neuropathology, Institute of Pathology, Royal Victoria Hospital, Belfast Health and Social Care Trust, Belfast BT12 6BA, UK
| | - James P Stewart
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Veronica J Spence
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Jamie Walsh
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Manuel Salto-Tellez
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
- Integrated Pathology Unit, Division of Molecular Pathology, The Institute of Cancer Research, Sutton SM2 5NG, UK
| | - Darragh G McArt
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| | - Kevin M Prise
- Patrick G. Johnson Centre for Cancer Research, Queen's University Belfast, Belfast BT9 7AE, UK
| |
Collapse
|
25
|
Liu H, Zhao Q, Tan L, Wu X, Huang R, Zuo Y, Chen L, Yang J, Zhang ZX, Ruan W, Wu J, He F, Fang Y, Mao F, Zhang P, Zhang X, Yin P, Yan Z, Xu W, Lu H, Li Q, Liang M, Jia Y, Chen C, Xu S, Shi Y, Ping YF, Duan GJ, Yao XH, Han Z, Pang T, Cui Y, Zhang X, Zhu B, Qi C, Wang Y, Lv SQ, Bian XW, Liu X. Neutralizing IL-8 potentiates immune checkpoint blockade efficacy for glioma. Cancer Cell 2023; 41:693-710.e8. [PMID: 36963400 DOI: 10.1016/j.ccell.2023.03.004] [Citation(s) in RCA: 51] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 06/30/2022] [Accepted: 03/02/2023] [Indexed: 03/26/2023]
Abstract
Malignant gliomas are largely refractory to immune checkpoint blockade (ICB) therapy. To explore the underlying immune regulators, we examine the microenvironment in glioma and find that tumor-infiltrating T cells are mainly confined to the perivascular cuffs and express high levels of CCR5, CXCR3, and programmed cell death protein 1 (PD-1). Combined analysis of T cell clustering with T cell receptor (TCR) clone expansion shows that potential tumor-killing T cells are mainly categorized into pre-exhausted/exhausted and effector CD8+ T subsets, as well as cytotoxic CD4+ T subsets. Notably, a distinct subpopulation of CD4+ T cells exhibits innate-like features with preferential interleukin-8 (IL-8) expression. With IL-8-humanized mouse strain, we demonstrate that IL-8-producing CD4+ T, myeloid, and tumor cells orchestrate myeloid-derived suppressor cell infiltration and angiogenesis, which results in enhanced tumor growth but reduced ICB efficacy. Antibody-mediated IL-8 blockade or the inhibition of its receptor, CXCR1/2, unleashes anti-PD-1-mediated antitumor immunity. Our findings thus highlight IL-8 as a combinational immunotherapy target for glioma.
Collapse
Affiliation(s)
- Haofei Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China; Jinfeng Laboratory, Chongqing 401329, P.R. China
| | - Qiwen Zhao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Leyong Tan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xin Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Rui Huang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yonglin Zuo
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Longjuan Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Jigui Yang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zuo-Xin Zhang
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Wenchen Ruan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China; Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Jiayang Wu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China; Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Fei He
- Genergy Biotechnology (Shanghai) Co., Ltd, Shanghai 200235, P.R. China
| | - Yiliang Fang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Fangyuan Mao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Peipei Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiaoning Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Peidi Yin
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zexuan Yan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Wenwen Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Huimin Lu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Qingrui Li
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Mei Liang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yanjun Jia
- Chongqing International Institute for Immunology, Chongqing 401338, P.R. China
| | - Cong Chen
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Senlin Xu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yu Shi
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Yi-Fang Ping
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Guang-Jie Duan
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xiao-Hong Yao
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Zhijian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Department of Tumor Center, Lanzhou University Second Hospital, Lanzhou 730030, P.R. China
| | - Tao Pang
- Jiangsu Key Laboratory of Drug Screening, State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing 210009, P.R. China
| | - Youhong Cui
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Xia Zhang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China
| | - Bo Zhu
- Institute of Cancer, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China
| | - Chunjian Qi
- Medical Research Center, The Affiliated Changzhou No. 2 People's Hospital, Nanjing Medical University, Changzhou 213003, P.R. China
| | - Yan Wang
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China.
| | - Sheng-Qing Lv
- Department of Neurosurgery, Xinqiao Hospital, Third Military Medical University, Chongqing 400037, P.R. China.
| | - Xiu-Wu Bian
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China.
| | - Xindong Liu
- Institute of Pathology and Southwest Cancer Center, Southwest Hospital, Third Military Medical University, Chongqing 400038, P.R. China; Jinfeng Laboratory, Chongqing 401329, P.R. China.
| |
Collapse
|
26
|
Shi ZD, Pang K, Wu ZX, Dong Y, Hao L, Qin JX, Wang W, Chen ZS, Han CH. Tumor cell plasticity in targeted therapy-induced resistance: mechanisms and new strategies. Signal Transduct Target Ther 2023; 8:113. [PMID: 36906600 PMCID: PMC10008648 DOI: 10.1038/s41392-023-01383-x] [Citation(s) in RCA: 77] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 12/07/2022] [Accepted: 02/20/2023] [Indexed: 03/13/2023] Open
Abstract
Despite the success of targeted therapies in cancer treatment, therapy-induced resistance remains a major obstacle to a complete cure. Tumor cells evade treatments and relapse via phenotypic switching driven by intrinsic or induced cell plasticity. Several reversible mechanisms have been proposed to circumvent tumor cell plasticity, including epigenetic modifications, regulation of transcription factors, activation or suppression of key signaling pathways, as well as modification of the tumor environment. Epithelial-to-mesenchymal transition, tumor cell and cancer stem cell formation also serve as roads towards tumor cell plasticity. Corresponding treatment strategies have recently been developed that either target plasticity-related mechanisms or employ combination treatments. In this review, we delineate the formation of tumor cell plasticity and its manipulation of tumor evasion from targeted therapy. We discuss the non-genetic mechanisms of targeted drug-induced tumor cell plasticity in various types of tumors and provide insights into the contribution of tumor cell plasticity to acquired drug resistance. New therapeutic strategies such as inhibition or reversal of tumor cell plasticity are also presented. We also discuss the multitude of clinical trials that are ongoing worldwide with the intention of improving clinical outcomes. These advances provide a direction for developing novel therapeutic strategies and combination therapy regimens that target tumor cell plasticity.
Collapse
Affiliation(s)
- Zhen-Duo Shi
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China.,School of Life Sciences, Jiangsu Normal University, Jiangsu, China.,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China
| | - Kun Pang
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Zhuo-Xun Wu
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA
| | - Yang Dong
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Lin Hao
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Jia-Xin Qin
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China.,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China
| | - Wei Wang
- Department of Medical College, Southeast University, Nanjing, China
| | - Zhe-Sheng Chen
- Department of Pharmaceutical Sciences, College of Pharmacy and Health Sciences, St. John's University, Queens, NY, 11439, USA.
| | - Cong-Hui Han
- Department of Urology, Xuzhou Clinical School of Xuzhou Medical University, Jiangsu, China. .,Department of Urology, Xuzhou Central Hospital, Xuzhou, Jiangsu, China. .,School of Life Sciences, Jiangsu Normal University, Jiangsu, China. .,Department of Urology, Heilongjiang Provincial Hospital, Heilongjiang, China.
| |
Collapse
|
27
|
Jeong JH, Park SH, Kim H, Nam HY, Kim SH, Jeong M, Kong MJ, Son J, Jeong JE, Song JH, Kim SW, Choi KC. ZBTB7A suppresses glioblastoma tumorigenesis through the transcriptional repression of EPB41L5. Exp Mol Med 2023; 55:43-54. [PMID: 36596853 PMCID: PMC9898510 DOI: 10.1038/s12276-022-00908-8] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 01/05/2023] Open
Abstract
Glioblastoma multiforme (GBM), the most aggressive and malignant glioma, has a poor prognosis. Although patients with GBM are treated with surgery, chemotherapy, and radiation therapy, GBM is highly resistant to treatment, making it difficult and expensive to treat. In this study, we analyzed the Gene Expression Profiling Interactive Analysis dataset, the Cancer Genome Atlas dataset, and Gene Expression Omnibus array data. ZBTB7A (also called FBI1/POKEMON/LRF) was found to be highly expressed in low-grade glioma but significantly downregulated in patients with GBM. ZBTB7A is a transcription factor that plays an important role in many developmental stages, including cell proliferation. The activation of epithelial-mesenchymal transition (EMT) is a key process in cancer progression and metastasis. Erythrocyte membrane protein band 4.1 like 5 (EPB41L5) is an essential protein for EMT progression and metastasis in various types of cancer. We found that ZBTB7A depletion in U87 cells induced GBM progression and metastasis. Based on RNA sequencing data, ZBTB7A directly binds to the promoter of the EPB41L5 gene, reducing its expression and inhibiting GBM progression. We demonstrated that ZBTB7A dramatically inhibits GBM tumor growth through transcriptional repression of EPB41L5. Thus, both ZBTB7A and EPB41L5 may be potential biomarkers and novel therapeutic targets for GBM treatment. Overall, we discovered the role of a novel tumor suppressor that directly inhibits GBM progression (ZBTB7A) and identified EPB41L5 as a therapeutic target protein for patients with GBM.
Collapse
Affiliation(s)
- Ji-Hoon Jeong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Seung-Ho Park
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hyunhee Kim
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Hae Yun Nam
- grid.413967.e0000 0001 0842 2126Department of Biochemistry and Molecular Biology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Sung-Hak Kim
- grid.14005.300000 0001 0356 9399Department of Animal Science, Chonnam National University, Gwangju, Korea
| | - Minseok Jeong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Min-Jeong Kong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Jihyun Son
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Eun Jeong
- grid.413967.e0000 0001 0842 2126Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea
| | - Ji-Hye Song
- grid.418974.70000 0001 0573 0246Korea Food Research Institute, Wanju-gun, 55365 Korea
| | - Seong Who Kim
- Department of Biochemistry and Molecular Biology, AMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| | - Kyung-Chul Choi
- Department of Biomedical Sciences, AAMIST, Asan Medical Center, University of Ulsan College of Medicine, Seoul, Korea.
| |
Collapse
|
28
|
DiNatale A, Castelli MS, Nash B, Meucci O, Fatatis A. Regulation of Tumor and Metastasis Initiation by Chemokine Receptors. J Cancer 2022; 13:3160-3176. [PMID: 36118530 PMCID: PMC9475358 DOI: 10.7150/jca.72331] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 08/10/2022] [Indexed: 12/13/2022] Open
Abstract
Tumor-initiating cells (TICs) are a rare sub-population of cells within the bulk of a tumor that are major contributors to tumor initiation, metastasis, and chemoresistance. TICs have a stem-cell-like phenotype that is dictated by the expression of master regulator transcription factors, including OCT4, NANOG, and SOX2. These transcription factors are expressed via activation of multiple signaling pathways that drive cancer initiation and progression. Importantly, these same signaling pathways can be activated by select chemokine receptors. Chemokine receptors are increasingly being revealed as major drivers of the TIC phenotype, as their signaling can lead to activation of stemness-controlling transcription factors. Additionally, the cell surface expression of chemokine receptors provides a unique therapeutic target to disrupt signaling pathways that control the expression of master regulator transcription factors and the TIC phenotype. This review summarizes the master regulator transcription factors known to dictate the TIC phenotype, along with the complex signaling pathways that can mediate their expression and the chemokine receptors that are most upstream of this phenotype.
Collapse
Affiliation(s)
- Anthony DiNatale
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present Address: Janssen Oncology, Spring House, PA, USA
| | - Maria Sofia Castelli
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Present address: Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Bradley Nash
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA
| | - Olimpia Meucci
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Immune Cell Regulation & Targeting, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Alessandro Fatatis
- Department of Pharmacology and Physiology, Drexel University College of Medicine, Philadelphia, PA 19102, USA.,Program in Translational and Cellular Oncology, Sidney Kimmel Cancer Center of Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
29
|
Urbantat RM, Jelgersma C, Vajkoczy P, Brandenburg S, Acker G. Combining TMZ and SB225002 induces changes of CXCR2 and VEGFR signalling in primary human endothelial cells in vitro. Oncol Rep 2022; 48:158. [PMID: 35856448 PMCID: PMC9350968 DOI: 10.3892/or.2022.8373] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 05/27/2022] [Indexed: 11/20/2022] Open
Abstract
Standard of care therapy for glioblastoma (GBM) consisting of surgical removal, temozolomide (TMZ) and radiotherapy fails to cure the disease and median survival is limited to 15 months. Therapeutic approaches targeting vascular endothelial growth factor (VEGF)-mediated angiogenesis, one of the major drivers of tumour growth, have not prolonged patient survival as reported in clinical studies. Apart from VEGFR signalling, proangiogenic C-X-C motif chemokine receptor 2 (CXCR2) is of special interest as its ligands C-X-C motif chemokine ligand 2 (CXCL2) and interleukin-8 (IL8) are upregulated and associated with reduced survival in GBM patients. As CXCR2 is also expressed by endothelial cells, the aim of the present study was to elucidate the effect of combination therapy on gene and protein expression of primary human endothelial cells (HUVECs). To mimic the GBM specific CXCL2/IL8 oversupply environment [referred to as stimulation (STIM)], HUVECs were treated with a cocktail of CXCL2/IL8 and/or TMZ and/or CXCR2-antagonist SB225002 (SB). In brief, six treatment conditions were utilized: i) Control, ii) STIM (CXCL2/IL8), iii) TMZ + SB, iv) STIM + TMZ, v) STIM + SB, vi) STIM + TMZ + SB followed by either RNA-isolation and RT-qPCR for BAX, BCL2, vascular endothelial growth receptor (VEGFR)1/2, VEGF, CXCR1/2, CXCL2 and IL8 or immunofluorescence staining for VEGFR2 and CXCR2. SB and TMZ led to morphological changes of HUVECs and downregulated antiapoptotic BCL2 in vitro. In addition, gene expression of the alternative proangiogenic CXCL2/IL8/CXCR2 signalling pathway was significantly altered by the combination therapy, while the VEGF/VEGFR1/2 axis was only mildly affected. Furthermore, VEGFR2 and CXCR2 gene and protein expression regulation differed. VEGFR2 was not altered at the gene expression level, while combination therapy with TMZ and SB led to a 74% upregulation of VEGFR2 at the protein level. By contrast, CXCR2 was upregulated 5-fold by the combination therapy at the gene expression level and downregulated by 72.5% at the protein expression level. The present study provided first insights into the molecular changes of two major proangiogenic pathways in primary endothelial cells during treatment with TMZ and SB. Different gene and protein expression levels of the proangiogenic receptors CXCR2 and VEGFR2 in vitro must be taken into consideration in future studies.
Collapse
Affiliation(s)
- Ruth M Urbantat
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Claudius Jelgersma
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Susan Brandenburg
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| | - Gueliz Acker
- Department of Neurosurgery, Charité‑Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt‑Universität zu Berlin, D‑10117 Berlin, Germany
| |
Collapse
|
30
|
Testa E, Palazzo C, Mastrantonio R, Viscomi MT. Dynamic Interactions between Tumor Cells and Brain Microvascular Endothelial Cells in Glioblastoma. Cancers (Basel) 2022; 14:3128. [PMID: 35804908 PMCID: PMC9265028 DOI: 10.3390/cancers14133128] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/17/2022] [Accepted: 06/22/2022] [Indexed: 02/01/2023] Open
Abstract
GBM is the most aggressive brain tumor among adults. It is characterized by extensive vascularization, and its further growth and recurrence depend on the formation of new blood vessels. In GBM, tumor angiogenesis is a multi-step process involving the proliferation, migration and differentiation of BMECs under the stimulation of specific signals derived from the cancer cells through a wide variety of communication routes. In this review, we discuss the dynamic interaction between BMECs and tumor cells by providing evidence of how tumor cells hijack the BMECs for the formation of new vessels. Tumor cell-BMECs interplay involves multiple routes of communication, including soluble factors, such as chemokines and cytokines, direct cell-cell contact and extracellular vesicles that participate in and fuel this cooperation. We also describe how this interaction is able to modify the BMECs structure, metabolism and physiology in a way that favors tumor growth and invasiveness. Finally, we briefly reviewed the recent advances and the potential future implications of some high-throughput 3D models to better understanding the complexity of BMECs-tumor cell interaction.
Collapse
Affiliation(s)
- Erika Testa
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Claudia Palazzo
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Roberta Mastrantonio
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
| | - Maria Teresa Viscomi
- Sezione di Istologia ed Embriologia, Dipartimento di Scienze della Vita e Sanità Pubblica, Università Cattolica del Sacro Cuore, L.go F. Vito 1, 00168 Roma, Italy; (C.P.); (R.M.)
- IRCCS, Fondazione Policlinico Universitario “Agostino Gemelli”, L.go A. Gemelli 8, 00168 Roma, Italy
| |
Collapse
|
31
|
Tumor-Associated Inflammation: The Tumor-Promoting Immunity in the Early Stages of Tumorigenesis. J Immunol Res 2022; 2022:3128933. [PMID: 35733919 PMCID: PMC9208911 DOI: 10.1155/2022/3128933] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2022] [Accepted: 05/12/2022] [Indexed: 12/12/2022] Open
Abstract
Tumorigenesis is a multistage progressive oncogenic process caused by alterations in the structure and expression level of multiple genes. Normal cells are continuously endowed with new capabilities in this evolution, leading to subsequent tumor formation. Immune cells are the most important components of inflammation, which is closely associated with tumorigenesis. There is a broad consensus in cancer research that inflammation and immune response facilitate tumor progression, infiltration, and metastasis via different mechanisms; however, their protumor effects are equally important in tumorigenesis at earlier stages. Previous studies have demonstrated that during the early stages of tumorigenesis, certain immune cells can promote the formation and proliferation of premalignant cells by inducing DNA damage and repair inhibition, releasing trophic/supporting signals, promoting immune escape, and activating inflammasomes, as well as enhance the characteristics of cancer stem cells. In this review, we focus on the potential mechanisms by which immune cells can promote tumor initiation and promotion in the early stages of tumorigenesis; furthermore, we discuss the interaction of the inflammatory environment and protumor immune cells with premalignant cells and cancer stem cells, as well as the possibility of early intervention in tumor formation by targeting these cellular mechanisms.
Collapse
|
32
|
Roles for macrophage-polarizing interleukins in cancer immunity and immunotherapy. Cell Oncol (Dordr) 2022; 45:333-353. [PMID: 35587857 DOI: 10.1007/s13402-022-00667-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 02/16/2022] [Accepted: 02/16/2022] [Indexed: 12/14/2022] Open
Abstract
Macrophages are the most abundant and one of the most critical cells of tumor immunity. They provide a bridge between innate and adaptive immunity through releasing cytokines into the tumor microenvironment (TME). A number of interleukin (IL) cytokine family members is involved in shaping the final phenotype of macrophages toward either a classically-activated pro-inflammatory M1 state with anti-tumor activity or an alternatively-activated anti-inflammatory M2 state with pro-tumor activity. Shaping TME macrophages toward the M1 phenotype or recovering this phenotypic state may offer a promising therapeutic approach in patients with cancer. Here, we focus on the impact of macrophage-polarizing ILs on immune cells and IL-mediated cellular cross-interactions within the TME. The key aim of this review is to define therapeutic schedules for addressing ILs in cancer immunotherapy based on their multi-directional impacts in such a milieu. Gathering more knowledge on this area is also important for defining adverse effects related to cytokine therapy and addressing them for reinforcing the efficacy of immunotherapy against cancer.
Collapse
|
33
|
Chen N, Peng C, Li D. Epigenetic Underpinnings of Inflammation: A Key to Unlock the Tumor Microenvironment in Glioblastoma. Front Immunol 2022; 13:869307. [PMID: 35572545 PMCID: PMC9100418 DOI: 10.3389/fimmu.2022.869307] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2022] [Accepted: 03/28/2022] [Indexed: 11/25/2022] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor in adults, and immunotherapies and genetic therapies for GBM have evolved dramatically over the past decade, but GBM therapy is still facing a dilemma due to the high recurrence rate. The inflammatory microenvironment is a general signature of tumors that accelerates epigenetic changes in GBM and helps tumors avoid immunological surveillance. GBM tumor cells and glioma-associated microglia/macrophages are the primary contributors to the inflammatory condition, meanwhile the modification of epigenetic events including DNA methylation, non-coding RNAs, and histone methylation and deacetylases involved in this pathological process of GBM, finally result in exacerbating the proliferation, invasion, and migration of GBM. On the other hand, histone deacetylase inhibitors, DNA methyltransferases inhibitors, and RNA interference could reverse the inflammatory landscapes and inhibit GBM growth and invasion. Here, we systematically review the inflammatory-associated epigenetic changes and regulations in the microenvironment of GBM, aiming to provide a comprehensive epigenetic profile underlying the recognition of inflammation in GBM.
Collapse
Affiliation(s)
- Nian Chen
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Cheng Peng
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| | - Dan Li
- State Key Laboratory of Southwestern Characteristic Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
| |
Collapse
|
34
|
Infiltrating natural killer cells bind, lyse and increase chemotherapy efficacy in glioblastoma stem-like tumorospheres. Commun Biol 2022; 5:436. [PMID: 35538218 PMCID: PMC9090761 DOI: 10.1038/s42003-022-03402-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 04/21/2022] [Indexed: 12/15/2022] Open
Abstract
Glioblastomas remain the most lethal primary brain tumors. Natural killer (NK) cell-based therapy is a promising immunotherapeutic strategy in the treatment of glioblastomas, since these cells can select and lyse therapy-resistant glioblastoma stem-like cells (GSLCs). Immunotherapy with super-charged NK cells has a potential as antitumor approach since we found their efficiency to kill patient-derived GSLCs in 2D and 3D models, potentially reversing the immunosuppression also seen in the patients. In addition to their potent cytotoxicity, NK cells secrete IFN-γ, upregulate GSLC surface expression of CD54 and MHC class I and increase sensitivity of GSLCs to chemotherapeutic drugs. Moreover, NK cell localization in peri-vascular regions in glioblastoma tissues and their close contact with GSLCs in tumorospheres suggests their ability to infiltrate glioblastoma tumors and target GSLCs. Due to GSLC heterogeneity and plasticity in regards to their stage of differentiation personalized immunotherapeutic strategies should be designed to effectively target glioblastomas. “Super-charged” NK cells kill patient-derived glioblastoma stem-like cells (GSLCs) in 2D and 3D tumor models, secrete IFN-γ and upregulate the surface expression of CD54 and MHC class I in GSLCs.
Collapse
|
35
|
Xiao K, Zhao S, Yuan J, Pan Y, Song Y, Tang L. Construction of Molecular Subtypes and Related Prognostic and Immune Response Models Based on M2 Macrophages in Glioblastoma. Int J Gen Med 2022; 15:913-926. [PMID: 35115817 PMCID: PMC8801375 DOI: 10.2147/ijgm.s343152] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022] Open
Abstract
OBJECTIVES To identify the molecular subtypes of glioblastoma multiforme (GBM) related to M2 macrophage-based prognostic genes, then to preliminarily explore their biological functions and construct immunotherapy response gene models. MATERIAL AND METHODS We used R language to analyze GBM microarray data, and other tools, including xCell and CIBERSORTx, to identify subtypes of GBM that related to M2 macrophages. The process started with the exploration of biological functions of the two subtypes by pathway analyses and GSEA, and continued with a combined procedure of constructing an M2 macrophage-related prognostic gene model and exploring the immune treatment response for GBM. RESULTS A high abundance of M2 macrophages in GBM was associated with poor prognosis. According to M2 macrophage-related prognostic genes, GBM was divided into two subtypes (cluster A and cluster B). The differential gene enrichment analysis of the two clusters showed that cluster A was less enriched in M2 macrophages and had immunopotential. The M2score, which was constructed based on M2 macrophage-related prognostic genes, was not only related to the survival and prognosis of patients with GBM, but also predictive of the effectiveness of immunotherapy in these patients. This result has been effectively verified in an external data set. CONCLUSION GBM was successfully divided into two subtypes according to M2-macrophage-related prognostic genes. In GBM, a high M2score may indicate better clinical outcome and enhancement of the immunotherapy response.
Collapse
Affiliation(s)
- Kai Xiao
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Shushan Zhao
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Jian Yuan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Yimin Pan
- Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Ya Song
- Department of Orthopedics, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
| | - Lanhua Tang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, People’s Republic of China
- National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha, People's Republic of China
| |
Collapse
|
36
|
The CBL-LSD1-CXCL8 axis regulates methionine metabolism in glioma. Cytokine 2022; 151:155789. [PMID: 34998158 DOI: 10.1016/j.cyto.2021.155789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/24/2021] [Accepted: 12/20/2021] [Indexed: 11/23/2022]
Abstract
Gliomas are the most frequent type of brain tumors, with a high mortality rate and a lack of efficient targeted therapy. Methionine is an essential amino acid, and restriction of methionine in the diet has been found to prevent metabolic diseases and aging, inhibit cancer growth and improve cancer treatment. However, mechanisms of action by which methionine metabolism affects gliomas remain largely unclear. The present study found that methionine starvation of glioma cells significantly increased the expression of CXCL8. Mechanistically, E3 ubiquitin ligase was found to mediate the ubiquitinated degradation of the histone demethylase LSD1 via CBL, reducing LSD1 protein stability and, enhancing H3K4me1 modification of the CXCL8 gene. CXCL8 was found to be involved in regulating the reprogramming of glycerophospholipid metabolism, enabling it to respond to a methionine-deprived environment. CXCL8 expression was significantly higher in glioma than in normal brain tissue samples, with elevated CXCL8 being associated with poor prognosis. In summary, CBL-mediated degradation of LSD1 acts as an anti-braking system and serves as a quick adaptive mechanism for re-remodeling epigenetic modifications. This, in turn, promotes cell proliferation, even in a methionine-restricted environment. Taken together, these findings indicate that the CBL/LSD1/CXCL8 axis is a novel mechanistic connection linking between methionine metabolism, histone methylation and glycerophospholipid reprogramming in the tumor microenvironment.
Collapse
|
37
|
Patient-Oriented Perspective on Chemokine Receptor Expression and Function in Glioma. Cancers (Basel) 2021; 14:cancers14010130. [PMID: 35008294 PMCID: PMC8749846 DOI: 10.3390/cancers14010130] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2021] [Revised: 12/23/2021] [Accepted: 12/24/2021] [Indexed: 12/16/2022] Open
Abstract
Simple Summary Chemokines and their receptors have been pointed out as key actors in a variety of human cancers, playing pivotal roles in multiples processes and pathways. The present study aims at deciphering the functions of several chemokine receptors in gliomas, starting from publicly available patient-derived transcriptomic data with support from the current literature in the field, and sheds light on the clinical relevance of chemokine receptors in targeted therapeutic approaches for glioma patients. Abstract Gliomas are severe brain malignancies, with glioblastoma (GBM) being the most aggressive one. Despite continuous efforts for improvement of existing therapies, overall survival remains poor. Over the last years, the implication of chemokines and their receptors in GBM development and progression has become more evident. Recently, large amounts of clinical data have been made available, prompting us to investigate chemokine receptors in GBM from a still-unexplored patient-oriented perspective. This study aims to highlight and discuss the involvement of chemokine receptors—CCR1, CCR5, CCR6, CCR10, CX3CR1, CXCR2, CXCR4, ACKR1, ACKR2, and ACKR3—most abundantly expressed in glioma patients based on the analysis of publicly available clinical datasets. Given the strong intratumoral heterogeneity characterizing gliomas and especially GBM, receptor expression was investigated by glioma molecular groups, by brain region distribution, emphasizing tissue-specific receptor functions, and by cell type enrichment. Our study constitutes a clinically relevant and patient-oriented guide that recapitulates the expression profile and the complex roles of chemokine receptors within the highly diversified glioma landscape. Additionally, it strengthens the importance of patient-derived material for development and precise amelioration of chemokine receptor-targeting therapies.
Collapse
|
38
|
Han ZJ, Li YB, Yang LX, Cheng HJ, Liu X, Chen H. Roles of the CXCL8-CXCR1/2 Axis in the Tumor Microenvironment and Immunotherapy. MOLECULES (BASEL, SWITZERLAND) 2021; 27:molecules27010137. [PMID: 35011369 PMCID: PMC8746913 DOI: 10.3390/molecules27010137] [Citation(s) in RCA: 64] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/12/2021] [Accepted: 12/23/2021] [Indexed: 12/14/2022]
Abstract
In humans, Interleukin-8 (IL-8 or CXCL8) is a granulocytic chemokine with multiple roles within the tumor microenvironment (TME), such as recruiting immunosuppressive cells to the tumor, increasing tumor angiogenesis, and promoting epithelial-to-mesenchymal transition (EMT). All of these effects of CXCL8 on individual cell types can result in cascading alterations to the TME. The changes in the TME components such as the cancer-associated fibroblasts (CAFs), the immune cells, the extracellular matrix, the blood vessels, or the lymphatic vessels further influence tumor progression and therapeutic resistance. Emerging roles of the microbiome in tumorigenesis or tumor progression revealed the intricate interactions between inflammatory response, dysbiosis, metabolites, CXCL8, immune cells, and the TME. Studies have shown that CXCL8 directly contributes to TME remodeling, cancer plasticity, and the development of resistance to both chemotherapy and immunotherapy. Further, clinical data demonstrate that CXCL8 could be an easily measurable prognostic biomarker in patients receiving immune checkpoint inhibitors. The blockade of the CXCL8-CXCR1/2 axis alone or in combination with other immunotherapy will be a promising strategy to improve antitumor efficacy. Herein, we review recent advances focusing on identifying the mechanisms between TME components and the CXCL8-CXCR1/2 axis for novel immunotherapy strategies.
Collapse
Affiliation(s)
- Zhi-Jian Han
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| | - Yang-Bing Li
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Lu-Xi Yang
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Hui-Juan Cheng
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
| | - Xin Liu
- The Second Clinical Medical College, Lanzhou University, Lanzhou 730000, China;
| | - Hao Chen
- The Key Laboratory of the Digestive System Tumors of Gansu Province, Tumor Center, Lanzhou University Second Hospital, Lanzhou 730000, China; (Y.-B.L.); (L.-X.Y.); (H.-J.C.)
- Correspondence: (Z.-J.H.); (H.C.); Tel.: +86-186-9310-9388 (Z.-J.H.); +86-150-0946-7790 (H.C.)
| |
Collapse
|
39
|
Dong F, Qin X, Wang B, Li Q, Hu J, Cheng X, Guo D, Cheng F, Fang C, Tan Y, Yan H, He Y, Sun X, Yuan Y, Liu H, Li T, Zhao Y, Kang C, Wu X. ALKBH5 Facilitates Hypoxia-Induced Paraspeckle Assembly and IL8 Secretion to Generate an Immunosuppressive Tumor Microenvironment. Cancer Res 2021; 81:5876-5888. [PMID: 34670781 DOI: 10.1158/0008-5472.can-21-1456] [Citation(s) in RCA: 138] [Impact Index Per Article: 34.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2021] [Revised: 08/26/2021] [Accepted: 10/14/2021] [Indexed: 11/16/2022]
Abstract
The dynamic changes of RNA N6-methyl-adenosine (m6A) during cancer progression contribute to quick adaption to microenvironmental changes. Here, we profiled the cancer cell m6A dynamics in the hypoxic tumor niche and its pathological consequences in glioblastoma multiforme (GBM). The m6A demethylase ALKBH5 was induced in GBM models under hypoxic conditions and was associated with a hypoxic gene signature in GBM patient samples. Depletion or inactivation of ALKBH5 in GBM cells significantly suppressed hypoxia-induced tumor-associated macrophage (TAM) recruitment and immunosuppression in allograft tumors. Expression and secretion of CXCL8/IL8 were significantly suppressed in ALKBH5-deficient tumors. However, ALKBH5 did not regulate CXCL8 m6A directly. Instead, hypoxia-induced ALKBH5 erased m6A deposition from the lncRNA NEAT1, stabilizing the transcript and facilitating NEAT1-mediated paraspeckle assembly, which led to relocation of the transcriptional repressor SFPQ from the CXCL8 promoter to paraspeckles and, ultimately, upregulation of CXCL8/IL8 expression. Accordingly, ectopic expression of CXCL8 in ALKBH5-deficient GBM cells partially restored TAM recruitment and tumor progression. Together, this study links hypoxia-induced epitranscriptomic changes to the emergence of an immunosuppressive microenvironment facilitating tumor evasion. SIGNIFICANCE: Hypoxia induces tumor immune microenvironment remodeling through an ALKBH5-mediated epigenetic and epitranscriptomic mechanism, providing potential immunotherapeutic strategies for treating glioblastoma.
Collapse
Affiliation(s)
- Feng Dong
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaoyang Qin
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Baofeng Wang
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Qian Li
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Jinyang Hu
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Department of Neurosurgery, The People's Hospital of China Three Gorges University, Yichang, China
| | - Xuan Cheng
- The First Department of Breast Cancer, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Huanhuxi Road, Hexi District, Tianjin, China
| | - Dongsheng Guo
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Fangling Cheng
- Department of Neurosurgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Chuan Fang
- Department of Neurosurgery, Affiliated Hospital of Hebei University, Baoding, China
| | - Yanli Tan
- Department of Pathology, Affiliated Hospital of Hebei University, Baoding, China
| | - Han Yan
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - You He
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Xiaoyu Sun
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ye Yuan
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Hang Liu
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Ting Li
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Yingying Zhao
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
| | - Chunsheng Kang
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China
| | - Xudong Wu
- Department of Neurosurgery, Tianjin Medical University General Hospital and Laboratory of Neuro-Oncology, Tianjin Neurological Institute, Tianjin, China.
- Department of Cell Biology, State Key Laboratory of Experimental Hematology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), Tianjin Medical University, Tianjin, China
- Department of Lymphoma, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center of Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Sino-US Center for Lymphoma and Leukemia Research, Tianjin, China
| |
Collapse
|
40
|
Barthel L, Hadamitzky M, Dammann P, Schedlowski M, Sure U, Thakur BK, Hetze S. Glioma: molecular signature and crossroads with tumor microenvironment. Cancer Metastasis Rev 2021; 41:53-75. [PMID: 34687436 PMCID: PMC8924130 DOI: 10.1007/s10555-021-09997-9] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/06/2021] [Indexed: 11/29/2022]
Abstract
In patients with glioblastoma, the average survival time with current treatments is short, mainly due to recurrences and resistance to therapy. This insufficient treatment success is, in large parts, due to the tremendous molecular heterogeneity of gliomas, which affects the overall prognosis and response to therapies and plays a vital role in gliomas’ grading. In addition, the tumor microenvironment is a major player for glioma development and resistance to therapy. Active communication between glioma cells and local or neighboring healthy cells and the immune environment promotes the cancerogenic processes and contributes to establishing glioma stem cells, which drives therapy resistance. Besides genetic alterations in the primary tumor, tumor-released factors, cytokines, proteins, extracellular vesicles, and environmental influences like hypoxia provide tumor cells the ability to evade host tumor surveillance machinery and promote disease progression. Moreover, there is increasing evidence that these players affect the molecular biological properties of gliomas and enable inter-cell communication that supports pro-cancerogenic cell properties. Identifying and characterizing these complex mechanisms are inevitably necessary to adapt therapeutic strategies and to develop novel measures. Here we provide an update about these junctions where constant traffic of biomolecules adds complexity in the management of glioblastoma.
Collapse
Affiliation(s)
- Lennart Barthel
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany. .,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.
| | - Martin Hadamitzky
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| | - Philipp Dammann
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Manfred Schedlowski
- Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany.,Department of Clinical Neuroscience, Osher Center for Integrative Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Ulrich Sure
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany
| | - Basant Kumar Thakur
- Cancer Exosome Research Lab, Department of Pediatric Hematology and Oncology, University Hospital Essen, 45147, Essen, Germany
| | - Susann Hetze
- Department of Neurosurgery and Spine Surgery, Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, Hufelandstraße 55, 45147, Essen, Germany.,Institute of Medical Psychology and Behavioral Immunobiology Center for Translational Neuro- and Behavioral Sciences, University Hospital Essen, 45147, Essen, Germany
| |
Collapse
|
41
|
Urbantat RM, Jelgersma C, Brandenburg S, Nieminen-Kelhä M, Kremenetskaia I, Zollfrank J, Mueller S, Rubarth K, Koch A, Vajkoczy P, Acker G. Tumor-Associated Microglia/Macrophages as a Predictor for Survival in Glioblastoma and Temozolomide-Induced Changes in CXCR2 Signaling with New Resistance Overcoming Strategy by Combination Therapy. Int J Mol Sci 2021; 22:ijms222011180. [PMID: 34681839 PMCID: PMC8538679 DOI: 10.3390/ijms222011180] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Revised: 10/01/2021] [Accepted: 10/10/2021] [Indexed: 02/07/2023] Open
Abstract
Tumor recurrence is the main challenge in glioblastoma (GBM) treatment. Gold standard therapy temozolomide (TMZ) is known to induce upregulation of IL8/CXCL2/CXCR2 signaling that promotes tumor progression and angiogenesis. Our aim was to verify the alterations on this signaling pathway in human GBM recurrence and to investigate the impact of TMZ in particular. Furthermore, a combi-therapy of TMZ and CXCR2 antagonization was established to assess the efficacy and tolerability. First, we analyzed 76 matched primary and recurrent GBM samples with regard to various histological aspects with a focus on the role of TMZ treatment and the assessment of predictors of overall survival (OS). Second, the combi-therapy with TMZ and CXCR2-antagonization was evaluated in a syngeneic mouse tumor model with in-depth immunohistological investigations and subsequent gene expression analyses. We observed a significantly decreased infiltration of tumor-associated microglia/macrophages (TAM) in recurrent tumors, while a high TAM infiltration in primary tumors was associated with a reduced OS. Additionally, more patients expressed IL8 in recurrent tumors and TMZ therapy maintained CXCL2 expression. In mice, enhanced anti-tumoral effects were observed after combi-therapy. In conclusion, high TAM infiltration predicts a survival disadvantage, supporting findings of the tumor-promoting phenotype of TAMs. Furthermore, the combination therapy seemed to be promising to overcome CXCR2-mediated resistance.
Collapse
Affiliation(s)
- Ruth M. Urbantat
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Claudius Jelgersma
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Susan Brandenburg
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Melina Nieminen-Kelhä
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Irina Kremenetskaia
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Julia Zollfrank
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Susanne Mueller
- Department of Neurology and Experimental Neurology, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- NeuroCure Cluster of Excellence and Charité Core Facility 7T Experimental MRIs, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Kerstin Rubarth
- Experimental and Clinical Research Center, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
- Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Arend Koch
- Department of Neuropathology, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany;
| | - Peter Vajkoczy
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
| | - Gueliz Acker
- Department of Neurosurgery, Charité–Universitätsmedizin Berlin Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany; (R.M.U.); (C.J.); (S.B.); (M.N.-K.); (I.K.); (J.Z.); (P.V.)
- Clinician Scientist Program, Berlin Institute of Health at Charité–Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-660357
| |
Collapse
|
42
|
Xiao Z, Zhang W, Li G, Li W, Li L, Sun T, He Y, Liu G, Wang L, Han X, Wen H, Liu Y, Chen Y, Wang H, Li J, Fan Y, Zhang J. Multiomics Analysis Reveals the Prognostic Non-tumor Cell Landscape in Glioblastoma Niches. Front Genet 2021; 12:741325. [PMID: 34603399 PMCID: PMC8481948 DOI: 10.3389/fgene.2021.741325] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 08/11/2021] [Indexed: 11/21/2022] Open
Abstract
A comprehensive characterization of non-tumor cells in the niches of primary glioblastoma is not fully established yet. This study aims to present an overview of non-malignant cells in the complex microenvironment of glioblastoma with detailed characterizations of their prognostic effects. We curate 540 gene signatures covering a total of 64 non-tumor cell types. Cell type-specific expression patterns are interrogated by normalized enrichment score across four large gene expression profiling cohorts of glioblastoma with a total number of 967 cases. The glioblastoma multiforms (GBMs) in each cohort are hierarchically clustered into negative or positive immune response classes with significantly different overall survival. Our results show that astrocytes, macrophages, monocytes, NKTs, and MSC are risk factors, while CD8 T cells, CD8 naive T cells, and plasma cells are protective factors. Moreover, we find that the immune system and organogenesis are uniformly enriched in negative immune response clusters, in contrast to the enrichment of nervous system in positive immune response clusters. Mesenchymal differentiation is also observed in the negative immune response clusters. High enrichment status of macrophages in negative immune response clusters is independently validated by analyzing scRNA-seq data from eight high-grade gliomas, revealing that negative immune response samples comprised 46.63 to 55.12% of macrophages, whereas positive immune response samples comprised only 1.70 to 8.12%, with IHC staining of samples from six short-term and six long-term survivors of GBMs confirming the results.
Collapse
Affiliation(s)
- Zixuan Xiao
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Wei Zhang
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Guanzhang Li
- Department of Molecular Neuropathology, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China.,Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Wendong Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lin Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Ting Sun
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yufei He
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Guang Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Lu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Xiaohan Han
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Hao Wen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yong Liu
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yifan Chen
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Haoyu Wang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Li
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Yubo Fan
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| | - Jing Zhang
- Key Laboratory for Biomechanics and Mechanobiology of Ministry of Education, Beijing Advanced Innovation Centre for Biomedical Engineering, School of Engineering Medicine, School of Biological Science and Medical Engineering, Beihang University, Beijing, China
| |
Collapse
|
43
|
Kai K, Komohara Y, Esumi S, Fujiwara Y, Yamamoto T, Uekawa K, Ohta K, Takezaki T, Kuroda J, Shinojima N, Hamasaki T, Mukasa A. Macrophage/microglia-derived IL-1β induces glioblastoma growth via the STAT3/NF-κB pathway. Hum Cell 2021; 35:226-237. [PMID: 34591282 DOI: 10.1007/s13577-021-00619-8] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 09/21/2021] [Indexed: 11/27/2022]
Abstract
Glioblastoma is a glioma characterized by highly malignant features. Numerous studies conducted on the relationship between glioblastoma and the microenvironment have indicated the significance of tumor-associated macrophages/microglia (TAMs) in glioblastoma progression. Since interleukin (IL)-1β secreted by TAMs has been suggested to promote glioblastoma growth, we attempted to elucidate the detailed mechanisms of IL-1β in glioblastoma growth in this study. A phospho-receptor tyrosine kinase array and RNA-sequencing studies indicated that IL-1β induced the activation of signal transducer and activator of transcription-3 and nuclear factor-kappa B signaling. Glioblastoma cells stimulated by IL-1β induced the production of IL-6 and CXCL8, which synergistically promoted glioblastoma growth via signal transducer and activator of transcription-3 and nuclear factor-kappa B signaling. By immunohistochemistry, IL-1β expression was seen on TAMs, especially in perinecrotic areas. These results suggest that IL-1β might be a useful target molecule for anti-glioblastoma therapy.
Collapse
Affiliation(s)
- Keitaro Kai
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan.,Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yoshihiro Komohara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan. .,Center for Metabolic Regulation of Healthy Aging, Kumamoto University, Kumamoto, Japan.
| | - Shigeyuki Esumi
- Department of Morphological Neural Science, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Yukio Fujiwara
- Department of Cell Pathology, Graduate School of Medical Sciences, Kumamoto University, 1-1-1, Honjo, Kumamoto Chuo-ku, Kumamoto, 860-8556, Japan
| | - Takahiro Yamamoto
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Ken Uekawa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Kazutaka Ohta
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tatsuya Takezaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Junichiro Kuroda
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Naoki Shinojima
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Tadashi Hamasaki
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| | - Akitake Mukasa
- Department of Neurosurgery, Graduate School of Medical Sciences, Kumamoto University, Kumamoto, Japan
| |
Collapse
|
44
|
Payazdan M, Khatami S, Galehdari H, Delfan N, Shafiei M, Heydaran S. The anti-inflammatory effects of sialic acid on the human glia cells by the upregulation of IL-4 and IL-10 genes' expressions. GENE REPORTS 2021. [DOI: 10.1016/j.genrep.2021.101218] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
45
|
Basheer AS, Abas F, Othman I, Naidu R. Role of Inflammatory Mediators, Macrophages, and Neutrophils in Glioma Maintenance and Progression: Mechanistic Understanding and Potential Therapeutic Applications. Cancers (Basel) 2021; 13:4226. [PMID: 34439380 PMCID: PMC8393628 DOI: 10.3390/cancers13164226] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 08/16/2021] [Accepted: 08/17/2021] [Indexed: 02/07/2023] Open
Abstract
Gliomas are the most common, highly malignant, and deadliest forms of brain tumors. These intra-cranial solid tumors are comprised of both cancerous and non-cancerous cells, which contribute to tumor development, progression, and resistance to the therapeutic regimen. A variety of soluble inflammatory mediators (e.g., cytokines, chemokines, and chemotactic factors) are secreted by these cells, which help in creating an inflammatory microenvironment and contribute to the various stages of cancer development, maintenance, and progression. The major tumor infiltrating immune cells of the tumor microenvironment include TAMs and TANs, which are either recruited peripherally or present as brain-resident macrophages (microglia) and support stroma for cancer cell expansion and invasion. These cells are highly plastic in nature and can be polarized into different phenotypes depending upon different types of stimuli. During neuroinflammation, glioma cells interact with TAMs and TANs, facilitating tumor cell proliferation, survival, and migration. Targeting inflammatory mediators along with the reprogramming of TAMs and TANs could be of great importance in glioma treatment and may delay disease progression. In addition, an inhibition of the key signaling pathways such as NF-κB, JAK/STAT, MAPK, PI3K/Akt/mTOR, and TLRs, which are activated during neuroinflammation and have an oncogenic role in glioblastoma (GBM), can exert more pronounced anti-glioma effects.
Collapse
Affiliation(s)
- Abdul Samad Basheer
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Faridah Abas
- Laboratory of Natural Products, Faculty of Science, University Putra Malaysia (UPM), Serdang 43400, Malaysia;
- Department of Food Science, Faculty of Food Science and Technology, University Putra Malaysia (UPM), Serdang 434000, Malaysia
| | - Iekhsan Othman
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| | - Rakesh Naidu
- Jeffrey Cheah School of Medicine and Health Sciences, Monash University Malaysia, Jalan Lagoon Selatan, Bandar Sunway 47500, Malaysia; (A.S.B.); (I.O.)
| |
Collapse
|
46
|
OuYang C, Xie Y, Fu Q, Xu G. SYNPO2 suppresses hypoxia-induced proliferation and migration of colorectal cancer cells by regulating YAP-KLF5 axis. Tissue Cell 2021; 73:101598. [PMID: 34333382 DOI: 10.1016/j.tice.2021.101598] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/22/2021] [Accepted: 07/23/2021] [Indexed: 01/07/2023]
Abstract
Colorectal cancer (CRC) is one of the most common tumors that has a high incidence worldwide. Targeted therapy for CRC has received much attention recently. It is still necessary to develop novel and promising therapeutic targets to improve the prognosis. SYNPO2, also known as synapsopoprotein 2 or myopod, encodes actin binding proteins and has been characterized as a tumor suppressor for aggressive cancers. SYNPO2 has been reported to inhibit the activity of YAP/TAZ. However, whether SYNPO2 could regulate the progression of CRC through the YAP/YAZ signaling pathway remains unclear. Herein, it was found that the expression of SYNPO2 was low in hypoxia-exposed CRC cells, consistent with the data from TCGA database. SYNPO2 inhibited the growth of CRC cells upon hypoxia treatment and promoted the cell apoptosis. Additionally, SYNPO2 inhibited the migration and epithelial-mesenchymal transformation (EMT) CRC cell upon hypoxia treatment. Mechanically, the results demonstrated that SYNPO2 suppressed hypoxia-induced progression of CRC by regulating YAP-Kruppel like factor 5 (KLF5) axis. Therefore, SYNPO2 can serve as a promising therapeutic target for CRC treatment.
Collapse
Affiliation(s)
- Canhui OuYang
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Yun Xie
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Qubo Fu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China
| | - Guofeng Xu
- Department of Gastroenterology, First Affiliated Hospital of Gannan Medical University, Ganzhou City, Jiangxi Province, 341000, China.
| |
Collapse
|
47
|
Feyissa AM, Carrano A, Wang X, Allen M, Ertekin-Taner N, Dickson DW, Jentoft ME, Rosenfeld SS, Tatum WO, Ritaccio AL, Guerrero-Cázares H, Quiñones-Hinojosa A. Analysis of intraoperative human brain tissue transcriptome reveals putative risk genes and altered molecular pathways in glioma-related seizures. Epilepsy Res 2021; 173:106618. [PMID: 33765507 PMCID: PMC9356713 DOI: 10.1016/j.eplepsyres.2021.106618] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2020] [Revised: 03/03/2021] [Accepted: 03/16/2021] [Indexed: 11/16/2022]
Abstract
BACKGROUND The pathogenesis of glioma-related seizures (GRS) is poorly understood. Here in, we aim to identify putative molecular pathways that lead to the development of GRS. METHODS We determined brain transcriptome from intraoperative human brain tissue of patients with either GRS, glioma without seizures (non-GRS), or with idiopathic temporal lobe epilepsy (iTLE). We performed transcriptome-wide comparisons between disease groups tissue from non-epileptic controls (non-EC) to identify differentially-expressed genes (DEG). We compared DEGs to identify those that are specific or common to the groups. Through a gene ontology analysis, we identified molecular pathways enriched for genes with a Log-fold change ≥1.5 or ≤-1.5 and p-value <0.05 compared to non-EC. RESULTS We identified 110 DEGs that are associated with GRS vs. non-GRS: 80 genes showed high and 30 low expression in GRS. There was significant overexpression of genes involved in cell-to-cell and glutamatergic signaling (CELF4, SLC17A7, and CAMK2A) and down-regulation of genes involved immune-trafficking (CXCL8, H19, and VEGFA). In the iTLE vs GRS analysis, there were 1098 DEGs: 786 genes were overexpressed and 312 genes were underexpressed in the GRS samples. There was significant enrichment for genes considered markers of oncogenesis (GSC, MYBL2, and TOP2A). Further, there was down-regulation of genes involved in the glutamatergic neurotransmission (vesicular glutamate transporter-2) in the GRS vs. iTLE samples. CONCLUSIONS We identified a number of altered processes such as cell-to-cell signaling and interaction, inflammation-related, and glutamatergic neurotransmission in the pathogenesis of GRS. Our findings offer a new landscape of targets to further study in the fields of brain tumors and seizures.
Collapse
Affiliation(s)
| | - Anna Carrano
- Department of Neurosurgery, Mayo Clinic, Jacksonville, FL, USA
| | - Xue Wang
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Mariet Allen
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | - Mark E Jentoft
- Department of Pathology, Mayo Clinic, Jacksonville, FL, USA
| | - Steven S Rosenfeld
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA; Department of Hematology/Oncology, Mayo Clinic, Jacksonville, FL, USA; Department of Pharmacology, Mayo Clinic, Jacksonville, FL, USA
| | | | | | | | | |
Collapse
|
48
|
Advances in Chemokine Signaling Pathways as Therapeutic Targets in Glioblastoma. Cancers (Basel) 2021; 13:cancers13122983. [PMID: 34203660 PMCID: PMC8232256 DOI: 10.3390/cancers13122983] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/02/2021] [Accepted: 06/11/2021] [Indexed: 02/07/2023] Open
Abstract
With a median patient survival of 15 months, glioblastoma (GBM) is still one of the deadliest malign tumors. Despite immense efforts, therapeutic regimens fail to prolong GBM patient overall survival due to various resistance mechanisms. Chemokine signaling as part of the tumor microenvironment plays a key role in gliomagenesis, proliferation, neovascularization, metastasis and tumor progression. In this review, we aimed to investigate novel therapeutic approaches targeting various chemokine axes, including CXCR2/CXCL2/IL-8, CXCR3/CXCL4/CXCL9/CXCL10, CXCR4/CXCR7/CXCL12, CXCR6/CXCL16, CCR2/CCL2, CCR5/CCL5 and CX3CR1/CX3CL1 in preclinical and clinical studies of GBM. We reviewed targeted therapies as single therapies, in combination with the standard of care, with antiangiogenic treatment as well as immunotherapy. We found that there are many antagonist-, antibody-, cell- and vaccine-based therapeutic approaches in preclinical and clinical studies. Furthermore, targeted therapies exerted their highest efficacy in combination with other established therapeutic applications. The novel chemokine-targeting therapies have mainly been examined in preclinical models. However, clinical applications are auspicious. Thus, it is crucial to broadly investigate the recently developed preclinical approaches. Promising preclinical applications should then be investigated in clinical studies to create new therapeutic regimens and to overcome therapy resistance to GBM treatment.
Collapse
|
49
|
Shireman JM, Atashi F, Lee G, Ali ES, Saathoff MR, Park CH, Savchuk S, Baisiwala S, Miska J, Lesniak MS, James CD, Stupp R, Kumthekar P, Horbinski CM, Ben-Sahra I, Ahmed AU. De novo purine biosynthesis is a major driver of chemoresistance in glioblastoma. Brain 2021; 144:1230-1246. [PMID: 33855339 DOI: 10.1093/brain/awab020] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 10/08/2020] [Accepted: 11/11/2020] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma is a primary brain cancer with a near 100% recurrence rate. Upon recurrence, the tumour is resistant to all conventional therapies, and because of this, 5-year survival is dismal. One of the major drivers of this high recurrence rate is the ability of glioblastoma cells to adapt to complex changes within the tumour microenvironment. To elucidate this adaptation's molecular mechanisms, specifically during temozolomide chemotherapy, we used chromatin immunoprecipitation followed by sequencing and gene expression analysis. We identified a molecular circuit in which the expression of ciliary protein ADP-ribosylation factor-like protein 13B (ARL13B) is epigenetically regulated to promote adaptation to chemotherapy. Immuno-precipitation combined with liquid chromatography-mass spectrometry binding partner analysis revealed that that ARL13B interacts with the purine biosynthetic enzyme inosine-5'-monophosphate dehydrogenase 2 (IMPDH2). Further, radioisotope tracing revealed that this interaction functions as a negative regulator for purine salvaging. Inhibition of the ARL13B-IMPDH2 interaction enhances temozolomide-induced DNA damage by forcing glioblastoma cells to rely on the purine salvage pathway. Targeting the ARLI3B-IMPDH2 circuit can be achieved using the Food and Drug Administration-approved drug, mycophenolate mofetil, which can block IMPDH2 activity and enhance the therapeutic efficacy of temozolomide. Our results suggest and support clinical evaluation of MMF in combination with temozolomide treatment in glioma patients.
Collapse
Affiliation(s)
- Jack M Shireman
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Fatemeh Atashi
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Gina Lee
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Eunus S Ali
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Miranda R Saathoff
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Cheol H Park
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Sol Savchuk
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Shivani Baisiwala
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Jason Miska
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Maciej S Lesniak
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - C David James
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Roger Stupp
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Priya Kumthekar
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Craig M Horbinski
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Issam Ben-Sahra
- Department of Biochemistry and Molecular Genetics, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| | - Atique U Ahmed
- Department of Neurological Surgery, Feinberg School of Medicine, Northwestern University, Chicago, IL 60616, USA
| |
Collapse
|
50
|
The CXCL2/IL8/CXCR2 Pathway Is Relevant for Brain Tumor Malignancy and Endothelial Cell Function. Int J Mol Sci 2021; 22:ijms22052634. [PMID: 33807899 PMCID: PMC7961945 DOI: 10.3390/ijms22052634] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Revised: 03/01/2021] [Accepted: 03/02/2021] [Indexed: 12/30/2022] Open
Abstract
We aimed to evaluate the angiogenic capacity of CXCL2 and IL8 affecting human endothelial cells to clarify their potential role in glioblastoma (GBM) angiogenesis. Human GBM samples and controls were stained for proangiogenic factors. Survival curves and molecule correlations were obtained from the TCGA (The Cancer Genome Atlas) database. Moreover, proliferative, migratory and angiogenic activity of peripheral (HUVEC) and brain specific (HBMEC) primary human endothelial cells were investigated including blockage of CXCR2 signaling with SB225502. Gene expression analyses of angiogenic molecules from endothelial cells were performed. Overexpression of VEGF and CXCL2 was observed in GBM patients and associated with a survival disadvantage. Molecules of the VEGF pathway correlated but no relation for CXCR1/2 and CXCL2/IL8 was found. Interestingly, receptors of endothelial cells were not induced by addition of proangiogenic factors in vitro. Proliferation and migration of HUVEC were increased by VEGF, CXCL2 as well as IL8. Their sprouting was enhanced through VEGF and CXCL2, while IL8 showed no effect. In contrast, brain endothelial cells reacted to all proangiogenic molecules. Additionally, treatment with a CXCR2 antagonist led to reduced chemokinesis and sprouting of endothelial cells. We demonstrate the impact of CXCR2 signaling on endothelial cells supporting an impact of this pathway in angiogenesis of glioblastoma.
Collapse
|