1
|
Huang R, Pang Q, Zheng L, Lin J, Li H, Wan L, Wang T. Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage. Neural Regen Res 2025; 20:1015-1030. [PMID: 38989934 PMCID: PMC11438341 DOI: 10.4103/nrr.nrr-d-23-01462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Revised: 12/19/2023] [Accepted: 01/27/2024] [Indexed: 07/12/2024] Open
Abstract
Cholesterol is an important component of plasma membranes and participates in many basic life functions, such as the maintenance of cell membrane stability, the synthesis of steroid hormones, and myelination. Cholesterol plays a key role in the establishment and maintenance of the central nervous system. The brain contains 20% of the whole body's cholesterol, 80% of which is located within myelin. A huge number of processes (e.g., the sterol regulatory element-binding protein pathway and liver X receptor pathway) participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis, intracellular transport, and efflux. Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences. Therefore, we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases. Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype, with high mortality and morbidity. Historical cholesterol levels are associated with the risk of intracerebral hemorrhage. Moreover, secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation, such as neuroinflammation, demyelination, and multiple types of programmed cell death. Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage. In this paper, we review normal cholesterol metabolism in the central nervous system, the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage, and the links between cholesterol metabolism and cell death. We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage.
Collapse
Affiliation(s)
- Ruoyu Huang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Qiuyu Pang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lexin Zheng
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Jiaxi Lin
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Hanxi Li
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Lingbo Wan
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| | - Tao Wang
- Department of Forensic Science, School of Basic Medicine and Biological Sciences, Suzhou Medicine College of Soochow University, Suzhou, Jiangsu Province, China
| |
Collapse
|
2
|
Liu Y, Qin J, Li X, Wu G. Oxysterols in tumor immune microenvironment (TIME). J Steroid Biochem Mol Biol 2025; 245:106634. [PMID: 39551164 DOI: 10.1016/j.jsbmb.2024.106634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 10/22/2024] [Accepted: 11/09/2024] [Indexed: 11/19/2024]
Abstract
Oxysterols are compounds generated through oxidative reactions involving cholesterol and other steroid molecules. They play a crucial role in the tumor immune microenvironment by interacting with molecules such as the cell membrane receptor EBI2 and nuclear receptors like LXR and PXR. This interaction regulates immune cell signaling pathways, affecting proliferation, apoptosis, migration, and invasion in tumor-related processes. Activating these receptors alters the function and behavior of immune cells-such as macrophages, T cells, and dendritic cells-within the tumor microenvironment, thus promoting or inhibiting tumor development. Certain oxidized steroids can increase both the number and activation of infiltrating T cells, synergizing with anti-PD-1 to enhance anti-tumor efficacy. An in-depth study of the biological mechanisms of oxidized sterols will not only enhance our understanding of the complexity of the tumor immune microenvironment but may also reveal new therapeutic targets, providing innovative strategies for tumor immunotherapy.
Collapse
Affiliation(s)
- Yuanxin Liu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Jie Qin
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| | - Xiaorui Li
- Department of Oncology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang 110042, China.
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China.
| |
Collapse
|
3
|
Singh MK, Han S, Kim S, Kang I. Targeting Lipid Metabolism in Cancer Stem Cells for Anticancer Treatment. Int J Mol Sci 2024; 25:11185. [PMID: 39456967 PMCID: PMC11508222 DOI: 10.3390/ijms252011185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2024] [Revised: 10/14/2024] [Accepted: 10/16/2024] [Indexed: 10/28/2024] Open
Abstract
Cancer stem cells (CSCs), or tumor-initiating cells (TICs), are small subpopulations (0.0001-0.1%) of cancer cells that are crucial for cancer relapse and therapy resistance. The elimination of each CSC is essential for achieving long-term remission. Metabolic reprogramming, particularly lipids, has a significant impact on drug efficacy by influencing drug diffusion, altering membrane permeability, modifying mitochondrial function, and adjusting the lipid composition within CSCs. These changes contribute to the development of chemoresistance in various cancers. The intricate relationship between lipid metabolism and drug resistance in CSCs is an emerging area of research, as different lipid species play essential roles in multiple stages of autophagy. However, the link between autophagy and lipid metabolism in the context of CSC regulation remains unclear. Understanding the interplay between autophagy and lipid reprogramming in CSCs could lead to the development of new approaches for enhancing therapies and reducing tumorigenicity in these cells. In this review, we explore the latest findings on lipid metabolism in CSCs, including the role of key regulatory enzymes, inhibitors, and the contribution of autophagy in maintaining lipid homeostasis. These recent findings may provide critical insights for identifying novel pharmacological targets for effective anticancer treatment.
Collapse
Affiliation(s)
- Manish Kumar Singh
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sunhee Han
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Sungsoo Kim
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Insug Kang
- Department of Biochemistry and Molecular Biology, School of Medicine, Kyung Hee University, Seoul 02447, Republic of Korea; (M.K.S.); (S.H.)
- Biomedical Science Institute, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Biomedical Science, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
4
|
Niu Q, Li D, Guo W, Feng Z, Han Z, Yang Y. Dietary nitrate maintains homeostasis of oxidative stress and gut microbiota to promote flap survival in type 2 diabetes mellitus rats. BMC Endocr Disord 2024; 24:184. [PMID: 39256735 PMCID: PMC11386097 DOI: 10.1186/s12902-024-01691-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2023] [Accepted: 08/13/2024] [Indexed: 09/12/2024] Open
Abstract
BACKGROUND Random-pattern skin flaps are commonly used to repair skin tissue defects in surgical tissue reconstruction. However, flap necrosis in the distal area due to ischemia injury is still challenging for its applications in plastic surgery. The complications of diabetes will further increase the risk of infection and necrosis. METHODS This study induced type 2 diabetes mellitus (T2DM) rats with a high-fat diet and STZ. The survival rate of the skin flap was observed by adding inorganic sodium nitrate to drinking water. Histology and immunohistochemistry were used to detect the damage to the skin flap. The nitrate content was measured by total nitric oxide and nitrate/nitrite parameter assay. Dihydroethidium and malondialdehyde (MDA) assays were used to value oxidative stress. Rat colon feces were collected for 16s rRNA gene sequence. RESULTS Our studies showed that nitrate administration leads to anti-obesity and anti-diabetic effects. Nitrate directly increased the survival area of skin flaps in diabetic rats and mean blood vessel density by enhancing angiogenesis, inhibiting apoptosis, and reducing oxidative stress. The 16s rRNA sequence revealed that nitrate may regulate the homeostasis of the gut microbiota and re-store energy metabolism. CONCLUSION Dietary nitrate has been shown to maintain the homeostasis of oxidative stress and gut microbiota to promote flap survival in rats with T2DM.
Collapse
Affiliation(s)
- Qifang Niu
- Department of Stomatology, Beijing Tiantan Hospital, Capital Medical University, Beijing, China
| | - Delong Li
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Wenwen Guo
- Department of Stomatology, First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Zhien Feng
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Zhengxue Han
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China
| | - Yang Yang
- Department of Oral and Maxillofacial-Head and Neck Oncology, Beijing Stomatological Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
5
|
Yang S, Ye Z, Ning J, Wang P, Zhou X, Li W, Cheng F. Cholesterol Metabolism and Urinary System Tumors. Biomedicines 2024; 12:1832. [PMID: 39200296 PMCID: PMC11351655 DOI: 10.3390/biomedicines12081832] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/06/2024] [Accepted: 08/09/2024] [Indexed: 09/02/2024] Open
Abstract
Cancers of the urinary system account for 13.1% of new cancer cases and 7.9% of cancer-related deaths. Of them, renal cancer, bladder cancer, and prostate cancer are most prevalent and pose a substantial threat to human health and the quality of life. Prostate cancer is the most common malignant tumor in the male urinary system. It is the second most common type of malignant tumor in men, with lung cancer surpassing its incidence and mortality. Bladder cancer has one of the highest incidences and is sex-related, with men reporting a significantly higher incidence than women. Tumor development in the urinary system is associated with factors, such as smoking, obesity, high blood pressure, diet, occupational exposure, and genetics. The treatment strategies primarily involve surgery, radiation therapy, and chemotherapy. Cholesterol metabolism is a crucial physiological process associated with developing and progressing urinary system tumors. High cholesterol levels are closely associated with tumor occurrence, invasion, and metastasis. This warrants thoroughly investigating the role of cholesterol metabolism in urinary system tumors and identifying novel treatment methods for the prevention, early diagnosis, targeted treatment, and drug resistance of urinary system tumors.
Collapse
Affiliation(s)
- Songyuan Yang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Zehua Ye
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Jinzhuo Ning
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Peihan Wang
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Xiangjun Zhou
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| | - Wei Li
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan 430060, China;
| | - Fan Cheng
- Department of Urology, Renmin Hospital of Wuhan University, Wuhan 430060, China; (S.Y.); (Z.Y.); (J.N.); (P.W.); (X.Z.)
| |
Collapse
|
6
|
Riscal R, Gardner SM, Coffey NJ, Carens M, Mesaros C, Xu JP, Xue Y, Davis L, Demczyszyn S, Vogt A, Olia A, Finan JM, Godfrey J, Schultz DC, Blair IA, Keith B, Marmorstein R, Skuli N, Simon MC. Bile Acid Metabolism Mediates Cholesterol Homeostasis and Promotes Tumorigenesis in Clear Cell Renal Cell Carcinoma. Cancer Res 2024; 84:1570-1582. [PMID: 38417134 PMCID: PMC11096083 DOI: 10.1158/0008-5472.can-23-0821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 10/20/2023] [Accepted: 02/23/2024] [Indexed: 03/01/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) incidence has risen steadily over the last decade. Elevated lipid uptake and storage is required for ccRCC cell viability. As stored cholesterol is the most abundant component in ccRCC intracellular lipid droplets, it may also play an important role in ccRCC cellular homeostasis. In support of this hypothesis, ccRCC cells acquire exogenous cholesterol through the high-density lipoprotein receptor SCARB1, inhibition or suppression of which induces apoptosis. Here, we showed that elevated expression of 3 beta-hydroxy steroid dehydrogenase type 7 (HSD3B7), which metabolizes cholesterol-derived oxysterols in the bile acid biosynthetic pathway, is also essential for ccRCC cell survival. Development of an HSD3B7 enzymatic assay and screening for small-molecule inhibitors uncovered the compound celastrol as a potent HSD3B7 inhibitor with low micromolar activity. Repressing HSD3B7 expression genetically or treating ccRCC cells with celastrol resulted in toxic oxysterol accumulation, impaired proliferation, and increased apoptosis in vitro and in vivo. These data demonstrate that bile acid synthesis regulates cholesterol homeostasis in ccRCC and identifies HSD3B7 as a plausible therapeutic target. SIGNIFICANCE The bile acid biosynthetic enzyme HSD3B7 is essential for ccRCC cell survival and can be targeted to induce accumulation of cholesterol-derived oxysterols and apoptotic cell death.
Collapse
Affiliation(s)
- Romain Riscal
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- IRCM, Institut de Recherche en Cancérologie de Montpellier, INSERM U1194, Université de Montpellier, Institut régional du Cancer de Montpellier, Montpellier, France
| | - Sarah M Gardner
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, Graduate Group in Biochemistry and Molecular Biophysics, Perelman School of Medicine University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nathan J Coffey
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Madeleine Carens
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Clementina Mesaros
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jimmy P Xu
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Yizheng Xue
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Urology, Ren Ji Hospital, Shanghai, P.R. China
| | - Leah Davis
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Sara Demczyszyn
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Austin Vogt
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Adam Olia
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jennifer M Finan
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Jason Godfrey
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - David C Schultz
- Department of Biochemistry and Biophysics, High-throughput Screening Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ian A Blair
- Centers for Cancer Pharmacology and Excellence in Environmental Toxicology, Department of Pharmacology, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Brian Keith
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ronen Marmorstein
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Department of Biochemistry and Biophysics, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Nicolas Skuli
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Stem Cell and Xenograft Core, University of Pennsylvania, Philadelphia, Pennsylvania
| | - M Celeste Simon
- Abramson Family Cancer Research Institute, University of Pennsylvania, Philadelphia, Pennsylvania
- Departement of Cell and Developmental Biology, University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
7
|
Zhang J, Liu B, Xu C, Ji C, Yin A, Liu Y, Yao Y, Li B, Chen T, Shen L, Wu Y. Cholesterol homeostasis confers glioma malignancy triggered by hnRNPA2B1-dependent regulation of SREBP2 and LDLR. Neuro Oncol 2024; 26:684-700. [PMID: 38070488 PMCID: PMC10995519 DOI: 10.1093/neuonc/noad233] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/06/2024] Open
Abstract
BACKGROUND Dysregulation of cholesterol metabolism is a significant characteristic of glioma, yet the underlying mechanisms are largely unknown. N6-methyladenosine (m6A) modification has been implicated in promoting tumor development and progression. The aim of this study was to determine the key m6A regulatory proteins involved in the progression of glioma, which is potentially associated with the reprogramming of cholesterol homeostasis. METHODS Bioinformatics analysis was performed to determine the association of m6A modification with glioma malignancy from The Cancer Genome Atlas and Genotype-Tissue Expression datasets. Glioma stem cell (GSC) self-renewal was determined by tumor sphere formation and bioluminescence image assay. RNA sequencing and lipidomic analysis were performed for cholesterol homeostasis analysis. RNA immunoprecipitation and luciferase reporter assay were performed to determine hnRNPA2B1-dependent regulation of sterol regulatory element-binding protein 2 (SREBP2) and low-density lipoprotein receptor (LDLR) mRNA. The methylation status of hnRNPA2B1 promoter was determined by bioinformatic analysis and methylation-specific PCR assay. RESULTS Among the m6A-regulatory proteins, hnRNPA2B1 was demonstrated the most important independent prognostic risk factor for glioma. hnRNPA2B1 ablation exhibited a significant tumor-suppressive effect on glioma cell proliferation, GSC self-renewal and tumorigenesis. hnRNPA2B1 triggers de novo cholesterol synthesis by inducing HMGCR through the stabilization of SREBP2 mRNA. m6A modification of SREBP2 or LDLR mRNA is required for hnRNPA2B1-mediated mRNA stability. The hypomethylation of cg21815882 site on hnRNPA2B1 promoter confers elevated expression of hnRNPA2B1 in glioma tissues. The combination of targeting hnRNPA2B1 and cholesterol metabolism exhibited remarkable antitumor effects, suggesting valuable clinical implications for glioma treatment. CONCLUSIONS hnRNPA2B1 facilitates cholesterol uptake and de novo synthesis, thereby contributing to glioma stemness and malignancy.
Collapse
Affiliation(s)
- Juan Zhang
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bei Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Changwei Xu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Chenchen Ji
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Anan Yin
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Plastic and Reconstructive Surgery, Xijing Hospital, Fourth Military Medical University, Xi’an, China
| | - Yifeng Liu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Yan Yao
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Bowen Li
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- Department of Neurosurgery, Tangdu Hospital, Fourth Military Medical University, Xi’an, China
- Department of Aerospace Hygiene, School of Aerospace Medicine, Fourth Military Medical University, Xi’an, China
| | - Tangdong Chen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| | - Liangliang Shen
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
- State Key Laboratory of Holistic Integrative Management of Gastrointestinal Cancers and National Clinical Research Center for Digestive Diseases, Fourth Military Medical University, Xi’an, China
| | - Yuanming Wu
- Department of Biochemistry and Molecular Biology, Fourth Military Medical University, Xi’an, China
- Shaanxi Provincial Key Laboratory of Clinical Genetics, Fourth Military Medical University, Xi’an, Shaanxi, China
| |
Collapse
|
8
|
Gupta A, Das D, Taneja R. Targeting Dysregulated Lipid Metabolism in Cancer with Pharmacological Inhibitors. Cancers (Basel) 2024; 16:1313. [PMID: 38610991 PMCID: PMC11010992 DOI: 10.3390/cancers16071313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2024] [Revised: 03/19/2024] [Accepted: 03/24/2024] [Indexed: 04/14/2024] Open
Abstract
Metabolic plasticity is recognised as a hallmark of cancer cells, enabling adaptation to microenvironmental changes throughout tumour progression. A dysregulated lipid metabolism plays a pivotal role in promoting oncogenesis. Oncogenic signalling pathways, such as PI3K/AKT/mTOR, JAK/STAT, Hippo, and NF-kB, intersect with the lipid metabolism to drive tumour progression. Furthermore, altered lipid signalling in the tumour microenvironment contributes to immune dysfunction, exacerbating oncogenesis. This review examines the role of lipid metabolism in tumour initiation, invasion, metastasis, and cancer stem cell maintenance. We highlight cybernetic networks in lipid metabolism to uncover avenues for cancer diagnostics, prognostics, and therapeutics.
Collapse
Affiliation(s)
| | | | - Reshma Taneja
- Department of Physiology, Healthy Longevity and NUS Centre for Cancer Research Translation Research Program, Yong Loo Lin School of Medicine, National University of Singapore (NUS), 2 Medical Drive, MD9, Singapore 117593, Singapore
| |
Collapse
|
9
|
Jiang W, Jin WL, Xu AM. Cholesterol metabolism in tumor microenvironment: cancer hallmarks and therapeutic opportunities. Int J Biol Sci 2024; 20:2044-2071. [PMID: 38617549 PMCID: PMC11008265 DOI: 10.7150/ijbs.92274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/27/2024] [Indexed: 04/16/2024] Open
Abstract
Cholesterol is crucial for cell survival and growth, and dysregulation of cholesterol homeostasis has been linked to the development of cancer. The tumor microenvironment (TME) facilitates tumor cell survival and growth, and crosstalk between cholesterol metabolism and the TME contributes to tumorigenesis and tumor progression. Targeting cholesterol metabolism has demonstrated significant antitumor effects in preclinical and clinical studies. In this review, we discuss the regulatory mechanisms of cholesterol homeostasis and the impact of its dysregulation on the hallmarks of cancer. We also describe how cholesterol metabolism reprograms the TME across seven specialized microenvironments. Furthermore, we discuss the potential of targeting cholesterol metabolism as a therapeutic strategy for tumors. This approach not only exerts antitumor effects in monotherapy and combination therapy but also mitigates the adverse effects associated with conventional tumor therapy. Finally, we outline the unresolved questions and suggest potential avenues for future investigations on cholesterol metabolism in relation to cancer.
Collapse
Affiliation(s)
- Wen Jiang
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
| | - Wei-Lin Jin
- Institute of Cancer Neuroscience, Medical Frontier Innovation Research Center, The First Hospital of Lanzhou University, Lanzhou 730000, P. R. China
| | - A-Man Xu
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, Hefei 230022, P. R. China
- Anhui Public Health Clinical Center, Hefei 230022, P. R. China
| |
Collapse
|
10
|
Liu X, Lv M, Zhang W, Zhan Q. Dysregulation of cholesterol metabolism in cancer progression. Oncogene 2023; 42:3289-3302. [PMID: 37773204 DOI: 10.1038/s41388-023-02836-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 08/18/2023] [Accepted: 09/05/2023] [Indexed: 10/01/2023]
Abstract
Cholesterol homeostasis has been implicated in the regulation of cellular and body metabolism. Hence, deregulated cholesterol homeostasis leads to the development of many diseases such as cardiovascular diseases, and neurodegenerative diseases, among others. Recent studies have unveiled the connection between abnormal cholesterol metabolism and cancer development. Cholesterol homeostasis at the cellular level dynamically circulates between synthesis, influx, efflux, and esterification. Any dysregulation of this dynamic process disrupts cholesterol homeostasis and its derivatives, which potentially contributes to tumor progression. There is also evidence that cancer-related signals, which promote malignant progression, also regulate cholesterol metabolism. Here, we described the relationship between cholesterol metabolism and cancer hallmarks, with particular focus on the molecular mechanisms, and the anticancer drugs that target cholesterol metabolism.
Collapse
Affiliation(s)
- Xuesong Liu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
- Peking University International Cancer Institute, Beijing, 100191, China
| | - Mengzhu Lv
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China
| | - Weimin Zhang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
| | - Qimin Zhan
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Laboratory of Molecular Oncology, Peking University Cancer Hospital & Institute, Beijing, 100142, China.
- Research Unit of Molecular Cancer Research, Chinese Academy of Medical Sciences, Beijing, 100021, China.
- Peking University International Cancer Institute, Beijing, 100191, China.
- Institute of Cancer Research, Shenzhen Bay Laboratory, Shenzhen, 518107, China.
- Soochow University Cancer Institute, Suzhou, 215127, China.
| |
Collapse
|
11
|
Xiao M, Xu J, Wang W, Zhang B, Liu J, Li J, Xu H, Zhao Y, Yu X, Shi S. Functional significance of cholesterol metabolism in cancer: from threat to treatment. Exp Mol Med 2023; 55:1982-1995. [PMID: 37653037 PMCID: PMC10545798 DOI: 10.1038/s12276-023-01079-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 05/18/2023] [Accepted: 06/20/2023] [Indexed: 09/02/2023] Open
Abstract
Cholesterol is an essential structural component of membranes that contributes to membrane integrity and fluidity. Cholesterol homeostasis plays a critical role in the maintenance of cellular activities. Recently, increasing evidence has indicated that cholesterol is a major determinant by modulating cell signaling events governing the hallmarks of cancer. Numerous studies have shown the functional significance of cholesterol metabolism in tumorigenesis, cancer progression and metastasis through its regulatory effects on the immune response, ferroptosis, autophagy, cell stemness, and the DNA damage response. Here, we summarize recent literature describing cholesterol metabolism in cancer cells, including the cholesterol metabolism pathways and the mutual regulatory mechanisms involved in cancer progression and cholesterol metabolism. We also discuss various drugs targeting cholesterol metabolism to suggest new strategies for cancer treatment.
Collapse
Affiliation(s)
- Mingming Xiao
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jin Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Wei Wang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Bo Zhang
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jiang Liu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Jialin Li
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Hang Xu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China
| | - Yingjun Zhao
- Institutes of Biomedical Sciences, Shanghai Medical College, Fudan University, Shanghai, 200032, China
| | - Xianjun Yu
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| | - Si Shi
- Department of Pancreatic Surgery, Fudan University Shanghai Cancer Center, Shanghai, 200032, China.
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai, 200032, China.
- Shanghai Pancreatic Center Institute, Shanghai, 200032, China.
- Pancreatic Center Institute, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
12
|
Zhao L, Wang Z, Xu Y, Zhang P, Qiu J, Nie D, Wu G, Chen C, Chang Y, Xia Q. Sphingosine kinase 1 regulates lipid metabolism to promote progression of kidney renal clear cell carcinoma. Pathol Res Pract 2023; 248:154641. [PMID: 37467634 DOI: 10.1016/j.prp.2023.154641] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 06/14/2023] [Accepted: 06/20/2023] [Indexed: 07/21/2023]
Abstract
PURPOSE To detect the expression of sphingosine kinase 1 (SPHK1) in clear cell renal cell carcinoma (ccRCC) and explore its biological role in the occurrence and development of ccRCC through regulation of fatty acid metabolism. METHODS Using the Cancer Genome Atlas database, SPHK1 expression and its clinical significance were detected in clear cell renal cell carcinoma. Immunohistochemistry was performed to detect SPHK1 expression in RCC samples in our hospital. The connection between the SPHK1 levels and clinicopathological features of patients was assessed. Nile Red was used to detect fatty acids in cells. Cell Counting Kit-8 and 5-ethynyl-2'-deoxyuridine assays were performed to determine the effect of SPHK1 on renal cell viability and proliferation, respectively. Additionally, the effects of SPHK1 on the proliferation and metastasis of ccRCC were studied using wound healing and Transwell assays. Fatty acids were added exogenously in recovery experiments and western blotting was performed to determine the effect of SPHK1 on fatty acid metabolism in ccRCC. Finally, the effects of SPHK1 on tumor growth were investigated in a xenograft model. RESULTS Bioinformatics analysis revealed that SPHK1 expression was upregulated in kidney RCC. OverSPHK1 expression was associated with poor prognosis for ccRCC patients. High SPHK1 expression was detected in human ccRCC. SPHK1 expression was related to clinicopathological features, such as tumor size and Furman grade. Additionally, cell proliferation, migration, and invasion were inhibited in ccRCC cells with low SPHK1 expression. In rescue experiments, proliferation, migration, and invasion were restored. In vivo, reduced SPHK1 levels correlated with lower expression of fatty acid synthase, stearoyl-CoA desaturase 1, and acetyl CoA carboxylase, and slowed tumor growth. CONCLUSIONS SPHK1 is abnormally overexpressed in human ccRCC. Patients with ccRCC may benefit from treatments that target SPHK1, which may also serve as a prognostic indicator.
Collapse
Affiliation(s)
- Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China; Department of Urology, Dongying People's Hospital, Dongying 257000, China
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China; Medical Science and Technology Innovation Center, Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan 250117, China
| | - Yingkun Xu
- Department of Breast and Thyroid Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400016, China
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Jiechuan Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Dengke Nie
- Department of Chest Surgery, The First Affiliated Hospital of Henan University, Kaifeng 475001, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, China
| | - Chen Chen
- Department of Urology, Liaocheng People's Hospital, Shandong University 252000, China
| | - Yao Chang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China.
| |
Collapse
|
13
|
Wang H, Zhao J, He H, Xie X, Dai J, Xu D, Huang X. ZNF692 promote proliferation through transcriptional repression of essential genes in clear cell renal carcinoma. Biochem Biophys Res Commun 2023; 671:255-262. [PMID: 37307709 DOI: 10.1016/j.bbrc.2023.06.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/14/2023]
Abstract
Transcription deregulation is recognized as a prominent hallmark of carcinogenesis. However, our understanding of the transcription factors implicated in the dysregulated transcription network of clear cell renal carcinoma (ccRCC) remains incomplete. In this study, we present evidence that ZNF692 drives tumorigenesis in ccRCC through the transcriptional repression of essential genes. We observed overexpression of ZNF692 in various cancers, including ccRCC, and found that the knockdown or knockout of ZNF692 suppressed the growth of ccRCC. Genome-wide binding site analysis using ChIP-seq revealed that ZNF692 regulates genes associated with cell growth, Wnt signaling, and immune response in ccRCC. Furthermore, motif enrichment analysis identified a specific motif (5'-GCRAGKGGAKAY-3') that is recognized and bound by ZNF692. Subsequent luciferase reporter assays demonstrated that ZNF692 transcriptionally represses the expression of IRF4 and FLT4 in a ZNF692 binding motif-dependent manner. Additionally, we observed MYC binding to the promoter regions of ZNF692 in most cancer types, driving ZNF692 overexpression specifically in ccRCC. Overall, our study sheds light on the functional significance of ZNF692 in ccRCC and provides valuable insights into its therapeutic potential as a target in cancer treatment.
Collapse
Affiliation(s)
- Haofei Wang
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| | - Juping Zhao
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Hongchao He
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Xin Xie
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Jun Dai
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China
| | - Danfeng Xu
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| | - Xin Huang
- Department of Urology, Ruijin Hospital, Shanghai JiaoTong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
14
|
Zhu H, Wang X, Lu S, Ou K. Metabolic reprogramming of clear cell renal cell carcinoma. Front Endocrinol (Lausanne) 2023; 14:1195500. [PMID: 37347113 PMCID: PMC10280292 DOI: 10.3389/fendo.2023.1195500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 05/16/2023] [Indexed: 06/23/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is a malignancy that exhibits metabolic reprogramming as a result of genetic mutations. This reprogramming accommodates the energy and anabolic needs of the cancer cells, leading to changes in glucose, lipid, and bio-oxidative metabolism, and in some cases, the amino acid metabolism. Recent evidence suggests that ccRCC may be classified as a metabolic disease. The metabolic alterations provide potential targets for novel therapeutic interventions or biomarkers for monitoring tumor growth and prognosis. This literature review summarized recent discoveries of metabolic alterations in ccRCC, including changes in glucose, lipid, and amino acid metabolism. The development of metabolic drugs targeting these metabolic pathways was also discussed, such as HIF-2α inhibitors, fatty acid synthase (FAS) inhibitors, glutaminase (GLS) inhibitors, indoleamine 2,3-dioxygenase (IDO) inhibitors, and arginine depletion. Future trends in drug development are proposed, including the use of combination therapies and personalized medicine approaches. In conclusion, this review provides a comprehensive overview of the metabolic alterations in ccRCC and highlights the potential for developing new treatments for this disease.
Collapse
Affiliation(s)
- Haiyan Zhu
- Department of Geriatrics, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Xin Wang
- Department of Neurology, The First Affiliated Hospital of China Medical University, Shenyang, Liaoning, China
| | - Shihao Lu
- Orthopaedics, Changzheng Hospital Affiliated to Second Military Medical University, Shanghai, China
| | - Kongbo Ou
- Department of Urology, The Third Affiliated Hospital of Soochow University, Changzhou, China
| |
Collapse
|
15
|
Wang Q, Zhang W, Qi X, Li J, Liu Y, Li Q, Xu Y, Wu G. The mechanism of liver X receptor regulates the balance of glycoFAsynthesis and cholesterol synthesis in clear cell renal cell carcinoma. Clin Transl Med 2023; 13:e1248. [PMID: 37138531 PMCID: PMC10157264 DOI: 10.1002/ctm2.1248;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/09/2023] [Accepted: 04/16/2023] [Indexed: 10/11/2024] Open
Affiliation(s)
- Qifei Wang
- Department of UrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Wei Zhang
- School of Life Sciences and BiotechnologyShanghai Jiao Tong UniversityShanghaiChina
- State Key Laboratory of Medical Genomics and Shanghai Institute of HematologyRuijin Hospital, Shanghai Jiao Tong University School of MedicineShanghaiChina
| | - Xiaochen Qi
- Department of UrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Jiayi Li
- School of BusinessHanyang UniversitySeoulRepublic of Korea
| | - Yuanxin Liu
- Department of UrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Quanlin Li
- Department of UrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| | - Yingkun Xu
- Department of Breast and Thyroid SurgeryThe First Affiliated Hospital of Chongqing Medical UniversityChongqingChina
- Department of UrologyShandong Provincial HospitalCheeloo College of MedicineShandong UniversityJinanChina
| | - Guangzhen Wu
- Department of UrologyThe First Affiliated Hospital of Dalian Medical UniversityDalianChina
| |
Collapse
|
16
|
Dianat-Moghadam H, Abbasspour-Ravasjani S, Hamishehkar H, Rahbarghazi R, Nouri M. LXR inhibitor SR9243-loaded immunoliposomes modulate lipid metabolism and stemness in colorectal cancer cells. Med Oncol 2023; 40:156. [PMID: 37093287 DOI: 10.1007/s12032-023-02027-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 04/13/2023] [Indexed: 04/25/2023]
Abstract
Reprogrammed metabolism and active stemness contribute to cancer stem cells' (CSCs) survival and tumorigenesis. LXR signaling regulates the metabolism of different cancers. A selective LXR inhibitor, SR9243 (SR), can target and eradicate non-CSC tumor cells. CD133 is a stem marker in solid tumors-associated CSCs within the active lipogenesis, and anti-CD133 mAb targeting liposomal drug delivery systems expected to increase drug internalization and improve the therapeutic efficacy of poor-in water solubility drugs, e, g., SR. In this study, anti-CD133 mAbs-targeted Immunoliposomes (ILipo) were developed for specific delivery of SR into MACS-enriched CD133 + CSCs and induce their functional effects. Results have shown that ILipo having an average size of 64.79 nm can encapsulate SR in maximum proportion, and cell association studies have shown cationic ILipo and targeting CD133 provide the CSCs binding. Also, FCM analysis of RhoB has demonstrated that the ILipo uptake was higher in CD133 + CSCs than in the non-targeted liposomes. ILipo-SR was significantly more toxic in CD133 + CSCs compared to the free SR and non-targeted ones. More efficient than Lipo-SR, ILipo-SR improved the reduction of clonogenicity, stemness, and lipogenesis in CD133 + CSCs in vitro, boosted ROS generation, and induced apoptosis. Our study revealed the dual targeting of CD133 and LXR appears to be a promising strategy for targeting CD133 + CSCs-presenting dynamic metabolism and self-renewal potentials.
Collapse
Affiliation(s)
- Hassan Dianat-Moghadam
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| | | | - Hamed Hamishehkar
- Drug Applied Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Reza Rahbarghazi
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mahammad Nouri
- Department of Medical Biotechnology, Faculty of Advanced Medical Sciences, Tabriz University of Medical Sciences, Tabriz, Iran.
- Stem Cell Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
17
|
Cao Y, Chen S, Lu J, Zhang M, Shi L, Qin J, Lv J, Li D, Ma L, Zhang Y. BPA induces placental trophoblast proliferation inhibition and fetal growth restriction by inhibiting the expression of SRB1. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:60805-60819. [PMID: 37037937 DOI: 10.1007/s11356-023-26850-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/03/2023] [Indexed: 04/12/2023]
Abstract
Bisphenol-A (BPA) is a common environmental toxicant that is known to be associated with fetal growth restriction (FGR). However, the mechanisms of how BPA induce FGR is poorly characterized. We conducted proteomics to identify the abnormal expression of SRB1 in female placental tissues with high BPA-induced FGR and further verified its decreased expression in human placenta and BeWo cells. Next, the effect of BPA on fetal development was further confirmed in pregnant C57BL/6 mice. The expression of SRB1 was consistently downregulated in human FGR placentas, BPA-exposed trophoblasts and mouse placentas. In addition, we found that SRB1 interacted with PCNA, and BPA exposure indirectly reduced the expression of PCNA and further inhibited placental proliferation. In vitro studies showed that BPA exposure reduced the expression of CDK1, CDK2, cyclin B and phosphorylated Rb in placental trophoblast cells, indicating cell cycle arrest after exposure to BPA. In addition, the expression of γ-H2AX and phosphorylated ATM was upregulated in BPA-exposed trophoblasts, indicating increased DNA damage. Our results indicate that BPA-induced FGR is achieved by reducing the expression of SRB1, inhibiting placental proliferation and increasing DNA damage. Our findings not only explain the mechanism of BPA-associated developmental toxicity but also shed light upon developing novel therapeutic targets.
Collapse
Affiliation(s)
- Yuming Cao
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China
| | - Sihan Chen
- School of Basic Medical Sciences, Wuhan University, Wuhan, China
| | - Jing Lu
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
| | - Ming Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Lei Shi
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Juling Qin
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Jing Lv
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Danyang Li
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Ling Ma
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China
| | - Yuanzhen Zhang
- Department of Gynaecology and Obstetrics, Zhongnan Hospital of Wuhan University, No 169 of Donghu Road, Wuhan, 430071, Hubei, China.
- Reproductive Medicine Center, Zhongnan Hospital of Wuhan University, Wuhan, China.
- Department of Gynaecology and Obstetrics, The Fifth Affiliated Hospital of Sun Yat-Sen University, Zhuhai, People's Republic of China.
| |
Collapse
|
18
|
Xia W, Wang H, Zhou X, Wang Y, Xue L, Cao B, Song J. The role of cholesterol metabolism in tumor therapy, from bench to bed. Front Pharmacol 2023; 14:928821. [PMID: 37089950 PMCID: PMC10117684 DOI: 10.3389/fphar.2023.928821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Accepted: 03/28/2023] [Indexed: 04/25/2023] Open
Abstract
Cholesterol and its metabolites have important biological functions. Cholesterol is able to maintain the physical properties of cell membrane, play an important role in cellular signaling, and cellular cholesterol levels reflect the dynamic balance between biosynthesis, uptake, efflux and esterification. Cholesterol metabolism participates in bile acid production and steroid hormone biosynthesis. Increasing evidence suggests a strict link between cholesterol homeostasis and tumors. Cholesterol metabolism in tumor cells is reprogrammed to differ significantly from normal cells, and disturbances of cholesterol balance also induce tumorigenesis and progression. Preclinical and clinical studies have shown that controlling cholesterol metabolism suppresses tumor growth, suggesting that targeting cholesterol metabolism may provide new possibilities for tumor therapy. In this review, we summarized the metabolic pathways of cholesterol in normal and tumor cells and reviewed the pre-clinical and clinical progression of novel tumor therapeutic strategy with the drugs targeting different stages of cholesterol metabolism from bench to bedside.
Collapse
Affiliation(s)
- Wenhao Xia
- Cancer Center of Peking University Third Hospital, Beijing, China
- School of Basic Medical Sciences, Peking University Health Science Center, Beijing, China
| | - Hao Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
| | - Xiaozhu Zhou
- Department of Clinical Pharmacy, School of Pharmacy, Capital Medical University, Beijing, China
| | - Yan Wang
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
| | - Lixiang Xue
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Radiation Oncology, Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Baoshan Cao
- Cancer Center of Peking University Third Hospital, Beijing, China
- Department of Medical Oncology and Radiation Sickness, Peking University Third Hospital, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| | - Jiagui Song
- Cancer Center of Peking University Third Hospital, Beijing, China
- Third Hospital Institute of Medical Innovation and Research, Beijing, China
- State Key Laboratory of Natural and Biomimetic Drugs, Peking University as the Third Responsibility Unit of Song Jiagui, Beijing, China
- *Correspondence: Lixiang Xue, ; Baoshan Cao, ; Jiagui Song,
| |
Collapse
|
19
|
Chen TC, Huang CW, Lo CY, Chen CN, Chang SF, Chen YY. Suppression of SREBP-1 Expression by Simvastatin Decreases Visfatin-Induced Chemoresistance to Sunitinib in Human Renal Carcinoma 786-O Cells. LIFE (BASEL, SWITZERLAND) 2022; 12:life12111890. [PMID: 36431025 PMCID: PMC9695258 DOI: 10.3390/life12111890] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 11/05/2022] [Accepted: 11/11/2022] [Indexed: 11/18/2022]
Abstract
The resistance of renal cell carcinoma (RCC) to sunitinib impedes the success of chemotherapy in cancer treatment. Although several sunitinib resistance mechanisms have been proposed, little is known concerning the impact of obesity and adipokines in RCC cells. The upregulation of sterol-regulatory element-binding protein-1 (SREBP-1) has been reported to modulate the progression of tumor cells. The present study investigated the effect of visfatin on sunitinib-induced cytotoxicity in RCC cells through SREBP-1 expression. We found that visfatin-induced Akt and p70S6K activation increased SREBP-1 expression in 786-O cells. The visfatin-induced SREBP-1 mRNA and protein levels were attenuated through the inactivation of Akt and p70S6K by pharmacological inhibitors. In addition, the SREBP-1 knockdown using siRNA enhanced the cytotoxic effects of sunitinib. Our results also revealed the roles of simvastatin in attenuating the effects of visfatin on 786-O cells by inhibiting the production of reactive oxygen species. In particular, simvastatin co-treatment increased the cell cytotoxicity of sunitinib in visfatin-treated 786-O cells, which were associated with down-regulation of SREBP-1 expression. Our results suggest an important role of SREBP-1 in visfatin-induced drug resistance of RCC cells to sunitinib. The cytotoxic mechanism of simvastatin on RCC cells may provide a new strategy to improve therapeutic outcomes for the RCC treatment.
Collapse
Affiliation(s)
- Te-Chuan Chen
- School of Medicine, College of Medicine, National Sun Yat-sen University, Kaohsiung 804, Taiwan
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, Chang Gung University College of Medicine, Kaohsiung 833, Taiwan
| | - Chen-Wei Huang
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Chih-Yu Lo
- Department of Food Science, National Chiayi University, Chiayi 600, Taiwan
| | - Cheng-Nan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
| | - Shun-Fu Chang
- Department of Medical Research and Development, Chang Gung Memorial Hospital Chiayi Branch, Chiayi 613, Taiwan
| | - Yih-Yuan Chen
- Department of Biochemical Science and Technology, National Chiayi University, Chiayi 600, Taiwan
- Correspondence:
| |
Collapse
|
20
|
Qi X, Wang J, Che X, Li Q, Li X, Wang Q, Wu G. The potential value of cuprotosis (copper-induced cell death) in the therapy of clear cell renal cell carcinoma. Am J Cancer Res 2022; 12:3947-3966. [PMID: 36119838 PMCID: PMC9442008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 07/20/2022] [Indexed: 06/15/2023] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) accounts for 75% of the total incidence of renal cancer, and every year the number of morbidity and mortality increases, posing a serious threat to public health. The current main treatment methods for kidney cancer include drug-targeted therapy and immunotherapy. Although there are many treatment options for kidney cancer, they all have limitations, including drug resistance, unsatisfied long-term benefits, and adverse effects. Therefore, it is crucial to identify more effective therapeutic targets. As a newly discovered mechanism of cell death, copper-induced cell death (cuprotosis) is closely related to changes in cell metabolism, particularly in copper metabolism. Current studies have shown that the key signaling pathway of cuprotosis, the FDX1 (Ferredoxin 1)-LIAS (Lipoic Acid Synthetase) axis, plays an important role in the regulation of cellular oxidative stress, which can directly affect cell survival via inducing or promoting cancer cell death. Therefore, we speculated that this regulatory cell death mechanism might serve as a potential therapeutic target for the clinical treatment of renal cancer. To test this, we first performed a pan-cancer analysis based on cuprotosis-related genomic and transcriptomic levels to reveal the expression of cuprotosis in cancer. Next, GSVA-clustering analysis was performed with data from the Cancer Genome Atlas (TCGA) cohort, and the cohort was divided into three clusters according to the gene enrichment levels of cuprotosis marker genes. In addition, we analyzed the potential of using cuprotosis in clinical treatment from multiple perspectives, including chemotherapeutic drug susceptibility test, immune target inhibition treatment responsiveness, and histone modification. Combining the results of multi-omics analysis, we focused on the feasibility of this novel regulatory cell death mechanism in ccRCC treatment and further constructed a prognostic model. Finally, we verified our results by integrating the patient's gene expression information and radiomics information. Our study provides new insights into the development and clinical application of targeting cuprotosis pathway.
Collapse
Affiliation(s)
- Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Jin Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University Dalian 116011, Liaoning, China
| |
Collapse
|
21
|
A multiomics disease progression signature of low-risk ccRCC. Sci Rep 2022; 12:13503. [PMID: 35931808 PMCID: PMC9356046 DOI: 10.1038/s41598-022-17755-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Accepted: 07/30/2022] [Indexed: 12/03/2022] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common renal cancer. Identification of ccRCC likely to progress, despite an apparent low risk at the time of surgery, represents a key clinical issue. From a cohort of adult ccRCC patients (n = 443), we selected low-risk tumors progressing within a 5-years average follow-up (progressors: P, n = 8) and non-progressing (NP) tumors (n = 16). Transcriptome sequencing, miRNA sequencing and proteomics were performed on tissues obtained at surgery. We identified 151 proteins, 1167 mRNAs and 63 miRNAs differentially expressed in P compared to NP low-risk tumors. Pathway analysis demonstrated overrepresentation of proteins related to “LXR/RXR and FXR/RXR Activation”, “Acute Phase Response Signaling” in NP compared to P samples. Integrating mRNA, miRNA and proteomic data, we developed a 10-component classifier including two proteins, three genes and five miRNAs, effectively differentiating P and NP ccRCC and capturing underlying biological differences, potentially useful to identify “low-risk” patients requiring closer surveillance and treatment adjustments. Key results were validated by immunohistochemistry, qPCR and data from publicly available databases. Our work suggests that LXR, FXR and macrophage activation pathways could be critically involved in the inhibition of the progression of low-risk ccRCC. Furthermore, a 10-component classifier could support an early identification of apparently low-risk ccRCC patients.
Collapse
|
22
|
Gu J, Zhu N, Li HF, Zhao TJ, Zhang CJ, Liao DF, Qin L. Cholesterol homeostasis and cancer: a new perspective on the low-density lipoprotein receptor. Cell Oncol 2022; 45:709-728. [PMID: 35864437 DOI: 10.1007/s13402-022-00694-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/14/2022] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND Disturbance of cholesterol homeostasis is considered as one of the manifestations of cancer. Cholesterol plays an essential role in the pleiotropic functions of cancer cells, including mediating membrane trafficking, intracellular signal transduction, and production of hormones and steroids. As a single transmembrane receptor, the low-density lipoprotein receptor (LDLR) can participate in intracellular cholesterol uptake and regulate cholesterol homeostasis. It has recently been found that LDLR is aberrantly expressed in a broad range of cancers, including colon cancer, prostate cancer, lung cancer, breast cancer and liver cancer. LDLR has also been found to be involved in various signaling pathways, such as the MAPK, NF-κB and PI3K/Akt signaling pathways, which affect cancer cells and their surrounding microenvironment. Moreover, LDLR may serve as an independent prognostic factor for lung cancer, breast cancer and pancreatic cancer, and is closely related to the survival of cancer patients. However, the role of LDLR in some cancers, such as prostate cancer, remains controversial. This may be due to the lack of normal feedback regulation of LDLR expression in cancer cells and the severe imbalance between LDLR-mediated cholesterol uptake and de novo biosynthesis of cholesterol. CONCLUSIONS The imbalance of cholesterol homeostasis caused by abnormal LDLR expression provides new therapeutic opportunities for cancer. LDLR interferes with the occurrence and development of cancer by modulating cholesterol homeostasis and may become a novel target for the development of anti-cancer drugs. Herein, we systematically review the contribution of LDLR to cancer progression, especially its dysregulation and underlying mechanism in various malignancies. Besides, potential targeting and immunotherapeutic options are proposed.
Collapse
Affiliation(s)
- Jia Gu
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, 410007, China
| | - Hong-Fang Li
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Tan-Jun Zhao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Chan-Juan Zhang
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Duan-Fang Liao
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China
| | - Li Qin
- Laboratory of Stem Cell Regulation With Chinese Medicine and Its Application, Hunan University of Chinese Medicine, Changsha, 410208, China.
| |
Collapse
|
23
|
Identification of ABCA5 among ATP-Binding Cassette Transporter Family as a New Biomarker for Colorectal Cancer. JOURNAL OF ONCOLOGY 2022; 2022:3399311. [PMID: 35783152 PMCID: PMC9242773 DOI: 10.1155/2022/3399311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Accepted: 05/25/2022] [Indexed: 12/24/2022]
Abstract
Background The increasing incidence and mortality of colorectal cancer (CRC) urgently requires updated biomarkers. The ABC transporter family is a widespread family of membrane-bound proteins involved in the transportation of substrates associated with ATP hydrolysis, including metabolites, amino acids, peptides and proteins, sterols and lipids, organic and inorganic ions, sugars, metals, and drugs. They play an important role in the maintenance of homeostasis in the body. Purpose This study aims to search for new markers in the ABC transporter gene family for diagnostic and prognostic purposes through data mining of The Cancer Genome Atlas (TCGA) and GEO (Gene Expression Omnibus) datasets. Methods A total of 980 samples, including 684 CRC patients and 296 controls from five different datasets, were included for analysis. The construction of the PPI (protein-protein interaction) network and pathway analysis were performed in STRING database and DAVID (database for annotation, visualization, and integrated discovery), respectively. In addition, GSEA (gene set enrichment analysis) and WGCNA (weighted gene co-expression network analysis) were also used for functional analysis. Results After several rounds of screening and validation, only the ABCB5 gene was retained among the 49 genes. Conclusions The results demonstrated that ABCA5 expression is reduced in CRC and patients with high ABCA5 expression have better OS, which can provide guidance for better management and treatment of CRC in the future.
Collapse
|
24
|
Zhang P, Xu Y, Chen S, Wang Z, Zhao L, Chen C, Kang W, Han R, Qiu J, Wang Q, Gao H, Wu G, Xia Q. ARL4C Regulates the Progression of Clear Cell Renal Cell Carcinoma by Affecting the Wnt/ β-Catenin Signaling Pathway. JOURNAL OF ONCOLOGY 2022; 2022:2724515. [PMID: 35774359 PMCID: PMC9239764 DOI: 10.1155/2022/2724515] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/02/2022] [Accepted: 05/24/2022] [Indexed: 11/17/2022]
Abstract
PURPOSE To investigate the expression of the ADP-ribosylation factor (ARF)-like proteins (ARLs) and ARL4C in clear cell renal cell carcinoma (ccRCC) based on bioinformatics analysis and experimentally determine the effect and mechanism of ARL4C on cellular properties involved in ccRCC progression. METHODS After downloading the data of cancer patients from the TCGA database, we used various bioinformatics analysis websites and methods to analyze the expression and function of ARLs and ARL4C. The differential expression of ARL4C in clinical renal cancer tissues versus adjacent normal tissues was further verified using immunohistochemistry and real-time quantitative reverse-transcription (qRT-PCR). qRT-PCR was used to explore the expression of ARL4C mRNA in normal renal cells versus different ccRCC cell lines, and the protein expression of ARL4C was further verified using western blotting. CCK-8, colony formation, and EdU assays were used to determine the effect of ARL4C knockdown on ccRCC cell proliferation. We also used wound healing and Transwell assays to analyze the changes in ccRCC cell migration and invasion following ARL4C knockdown. Finally, we used western blotting to probe the molecular mode of action of ARL4C in ccRCC cells after exposure to Wnt signaling pathway agonists. RESULTS Biological function analysis showed that methylation of ARL4C and changes in immune cell infiltration and targeted drug sensitivity caused by altered ARL4C expression affected the prognosis of ccRCC. Further bioinformatics analysis suggested that the expression of ARL4C mRNA was increased in ccRCC, and this was associated with a poor prognosis in ccRCC patients. Increased expression of ARL4C was further verified using qRT-PCR and western blotting of human ccRCC tissue samples. Downregulation of ARL4C significantly inhibited the proliferation, migration, and invasion of ccRCC cells, and activation of the Wnt/β-catenin pathway promoted the expression of ARL4C. As an essential downstream effector of the Wnt signaling pathway, ARL4C increased the expression of cyclin D1 and c-myc, thereby increasing the ability of the cells to undergo epithelial-mesenchymal transition (EMT) and ccRCC progression. CONCLUSIONS As a critical factor in the Wnt/β-catenin pathway, ARL4C regulates EMT and progression in ccRCC.
Collapse
Affiliation(s)
- Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing 400042, China
| | - Shaoan Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Leizuo Zhao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
- Department of Urology, Dongying People's Hospital, Dongying 257000, China
| | - Chen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
- Department of Urology, Liaocheng People's Hospital Affiliated to Shandong University, Liaocheng 252000, China
| | - Weiting Kang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| | - Rongyu Han
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Jiechuan Qiu
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Qingliang Wang
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Han Gao
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian 116011, Liaoning, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan 250021, China
| |
Collapse
|
25
|
Zhang C, Zhu N, Li H, Gong Y, Gu J, Shi Y, Liao D, Wang W, Dai A, Qin L. New dawn for cancer cell death: Emerging role of lipid metabolism. Mol Metab 2022; 63:101529. [PMID: 35714911 PMCID: PMC9237930 DOI: 10.1016/j.molmet.2022.101529] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 05/30/2022] [Accepted: 06/11/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Resistance to cell death, a protective mechanism for removing damaged cells, is a "Hallmark of Cancer" that is essential for cancer progression. Increasing attention to cancer lipid metabolism has revealed a number of pathways that induce cancer cell death. SCOPE OF REVIEW We summarize emerging concepts regarding lipid metabolic reprogramming in cancer that is mainly involved in lipid uptake and trafficking, de novo synthesis and esterification, fatty acid synthesis and oxidation, lipogenesis, and lipolysis. During carcinogenesis and progression, continuous metabolic adaptations are co-opted by cancer cells, to maximize their fitness to the ever-changing environmental. Lipid metabolism and the epigenetic modifying enzymes interact in a bidirectional manner which involves regulating cancer cell death. Moreover, lipids in the tumor microenvironment play unique roles beyond metabolic requirements that promote cancer progression. Finally, we posit potential therapeutic strategies targeting lipid metabolism to improve treatment efficacy and survival of cancer patient. MAJOR CONCLUSIONS The profound comprehension of past findings, current trends, and future research directions on resistance to cancer cell death will facilitate the development of novel therapeutic strategies targeting the lipid metabolism.
Collapse
Affiliation(s)
- Chanjuan Zhang
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Neng Zhu
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, 410021, PR China
| | - Hongfang Li
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yongzhen Gong
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Jia Gu
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Yaning Shi
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Duanfang Liao
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China
| | - Wei Wang
- TCM and Ethnomedicine Innovation & Development International Laboratory, Innovative Materia Medica Research Institute, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Aiguo Dai
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| | - Li Qin
- Laboratory of Stem Cell Regulation with Chinese Medicine and Its Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China; Hunan Province Engineering Research Center of Bioactive Substance Discovery of Traditional Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan, 410208, PR China.
| |
Collapse
|
26
|
Chen C, Zhao W, Lu X, Ma Y, Zhang P, Wang Z, Cui Z, Xia Q. AUP1 regulates lipid metabolism and induces lipid accumulation to accelerate the progression of renal clear cell carcinoma. Cancer Sci 2022; 113:2600-2615. [PMID: 35633317 PMCID: PMC9357643 DOI: 10.1111/cas.15445] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/20/2022] [Accepted: 05/24/2022] [Indexed: 12/01/2022] Open
Abstract
Lipid metabolic reprogramming is a prominent feature of clear cell renal cell carcinoma (ccRCC). Lipid accumulation affects cellular energy homeostasis, biofilm synthesis, lipid signal transduction, and phenotypic transformation in ccRCC. Herein, a prognostic‐related model was constructed, and the prognostic utility of AUP1, a lipid droplet–regulating very low–density lipoprotein assembly factor, in ccRCC was determined through multiparameter analysis. AUP1 expression was significantly higher in clinical samples than in normal tissues and was closely associated with the clinical stage. The inhibition of AUP1 expression impaired the proliferation, migration, and invasion of ACHN and A498 ccRCC cells in vitro and in vivo. RNA‐seq analysis revealed that AUP1 inhibition can significantly reduce the contents of intracellular triglyceride and cholesterol and regulate cell growth by cell cycle arrest, promoting apoptosis and reversing epithelial‐mesenchymal transition. AUP1 regulated the synthesis of cholesterol esters and fatty acids (FAs) in ccRCC cells by targeting sterol O‐acyltransferase 1 and partially promoted the progression of ccRCC. AUP1 also induced lipid accumulation in ccRCC by promoting the de novo synthesis of FAs (inhibiting protein kinase AMP‐activated catalytic subunit alpha 2), inhibiting the rate‐limiting enzyme of FA β oxidation (carnitine palmitoyltransferase 1A), regulating the key enzyme of lipolysis (monoglyceride lipase, MGLL), and inhibiting the lipid transporter StAR‐related lipid transfer domain containing 5 (STARD5). However, it did not affect the intracellular cholesterol synthesis pathway. The differential expression and prognostic significance of MGLL and STARD5 in ccRCC should be further studied. AUP1 may serve as a new and effective potential target and prognostic marker for ccRCC.
Collapse
Affiliation(s)
- Chen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China, 250021.,Department of Urology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong, China, 252000
| | - Wei Zhao
- Department of Urology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong, China, 252000
| | - Xingxing Lu
- Cancer Research Institute, Xiangya School of Medicine, The Central South University, Changsha, Hunan, China, 410078
| | - Yunbo Ma
- Department of Urology, Liaocheng People's Hospital, Shandong University, Liaocheng, Shandong, China, 252000
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China, 250021
| | - Zicheng Wang
- Department of Urology, Shandong Provincial Hospital, Shandong First Medical University, Jinan, Shandong, China, 250021
| | - Zilian Cui
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China, 250021
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China, 250021
| |
Collapse
|
27
|
Heravi G, Yazdanpanah O, Podgorski I, Matherly LH, Liu W. Lipid metabolism reprogramming in renal cell carcinoma. Cancer Metastasis Rev 2022; 41:17-31. [PMID: 34741716 PMCID: PMC10045462 DOI: 10.1007/s10555-021-09996-w] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Accepted: 09/21/2021] [Indexed: 12/15/2022]
Abstract
Metabolic reprogramming is recognized as a hallmark of cancer. Lipids are the essential biomolecules required for membrane biosynthesis, energy storage, and cell signaling. Altered lipid metabolism allows tumor cells to survive in the nutrient-deprived environment. However, lipid metabolism remodeling in renal cell carcinoma (RCC) has not received the same attention as in other cancers. RCC, the most common type of kidney cancer, is associated with almost 15,000 death in the USA annually. Being refractory to conventional chemotherapy agents and limited available targeted therapy options has made the treatment of metastatic RCC very challenging. In this article, we review recent findings that support the importance of synthesis and metabolism of cholesterol, free fatty acids (FFAs), and polyunsaturated fatty acids (PUFAs) in the carcinogenesis and biology of RCC. Delineating the detailed mechanisms underlying lipid reprogramming can help to better understand the pathophysiology of RCC and to design novel therapeutic strategies targeting this malignancy.
Collapse
Affiliation(s)
- Gioia Heravi
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA
| | - Omid Yazdanpanah
- Department of Internal Medicine, Wayne State University School of Medicine, Detroit, MI, USA
| | - Izabela Podgorski
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Larry H Matherly
- Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA.,Karmanos Cancer Institute, Detroit, MI, USA
| | - Wanqing Liu
- Department of Pharmaceutical Sciences, Eugene Applebaum College of Pharmacy and Health Sciences, Wayne State University, Detroit, MI, USA. .,Department of Pharmacology, Wayne State University School of Medicine, Detroit, MI, USA. .,Department of Oncology, Wayne State University School of Medicine, Detroit, MI, USA. .,Karmanos Cancer Institute, Detroit, MI, USA.
| |
Collapse
|
28
|
Deng CF, Zhu N, Zhao TJ, Li HF, Gu J, Liao DF, Qin L. Involvement of LDL and ox-LDL in Cancer Development and Its Therapeutical Potential. Front Oncol 2022; 12:803473. [PMID: 35251975 PMCID: PMC8889620 DOI: 10.3389/fonc.2022.803473] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Accepted: 01/12/2022] [Indexed: 01/17/2023] Open
Abstract
Lipid metabolism disorder is related to an increased risk of tumorigenesis and is involved in the rapid growth of cancer cells as well as the formation of metastatic lesions. Epidemiological studies have demonstrated that low-density lipoprotein (LDL) and oxidized low-density lipoprotein (ox-LDL) are closely associated with breast cancer, colorectal cancer, pancreatic cancer, and other malignancies, suggesting that LDL and ox-LDL play important roles during the occurrence and development of cancers. LDL can deliver cholesterol into cancer cells after binding to LDL receptor (LDLR). Activation of PI3K/Akt/mTOR signaling pathway induces transcription of the sterol regulatory element-binding proteins (SREBPs), which subsequently promotes cholesterol uptake and synthesis to meet the demand of cancer cells. Ox-LDL binds to the lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and cluster of differentiation 36 (CD36) to induce mutations, resulting in inflammation, cell proliferation, and metastasis of cancer. Classic lipid-lowering drugs, statins, have been shown to reduce LDL levels in certain types of cancer. As LDL and ox-LDL play complicated roles in cancers, the potential therapeutic effect of targeting lipid metabolism in cancer therapy warrants more investigation.
Collapse
Affiliation(s)
- Chang-Feng Deng
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Neng Zhu
- Department of Urology, The First Hospital of Hunan University of Chinese Medicine, Changsha, China
| | - Tan-Jun Zhao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Hong-Fang Li
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Jia Gu
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Duan-Fang Liao
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
| | - Li Qin
- Division of Stem Cell Regulation and Application, School of Pharmacy, Hunan University of Chinese Medicine, Changsha, China
- Institutional Key Laboratory of Vascular Biology and Translational Medicine in Hunan Province, Hunan University of Chinese Medicine, Changsha, China
- *Correspondence: Li Qin,
| |
Collapse
|
29
|
Synthesis and structure activity relationship of the first class of LXR inverse agonists. Bioorg Chem 2021; 119:105540. [PMID: 34902646 DOI: 10.1016/j.bioorg.2021.105540] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Revised: 10/28/2021] [Accepted: 12/02/2021] [Indexed: 11/22/2022]
Abstract
Liver X Receptors (LXRs) are members of the nuclear receptor family, and they play significant role in lipid and cholesterol metabolism. Moreover, they are key regulators of several inflammatory pathways. Pharmacological modulation of LXRs holds great potential in treatment of metabolic diseases, neurodegenerative diseases, and cancer. We were the first group to identify LXR inverse agonists SR9238 (6) and SR9243 (7) and demonstrate their potential utility in treating liver diseases and cancer. Here, we present the results of structure-activity relationship (SAR) studies, based around SR9238 (6) and SR9243 (7). This study led to identification of 16, 17, 19, and 38, which were more potent inverse agonists than SR9238 (6) and SR9243 (7) and inhibited expression of the fatty acid synthase gene in DU145 cells. We previously demonstrated that inhibition of FASN is correlated to the anticancer activity of SR9243 (7) and this suggests that new inverse agonists have great potential as anticancer agents. We identified compounds with distinct selectivity toward both LXR isoforms, which can be excellent tools to study the pharmacology of both isoforms. We employed molecular dynamic (MD) simulations to better understand the molecular mechanism underlying inverse agonist activity and to guide our future design.
Collapse
|
30
|
Meng F, Xiao Y, Xie L, Liu Q, Qian K. Diagnostic and prognostic value of ABC transporter family member ABCG1 gene in clear cell renal cell carcinoma. Channels (Austin) 2021; 15:375-385. [PMID: 33825659 PMCID: PMC8032227 DOI: 10.1080/19336950.2021.1909301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 12/24/2022] Open
Abstract
As the most common histologic subtype of renal cancer, clear cell renal cell carcinoma (ccRCC) poses a serious threat to public health. However, there are no specific molecular-targeted drugs for ccRCC at present. Human ATP-binding cassette (ABC) transporter family plays an important role in homeostasis maintenance. This study aimed to evaluate the potential diagnostic value of ABC genes in ccRCC. A total of 952 samples of ccRCC patients (707) and controls (245) from three different datasets were included for analysis. Receiver operating characteristic analysis and t-test were used to analyze the differential expression of ABC genes in ccRCC patients and control samples at mRNA level during screening and validations. The Cancer Genome Atlas (TCGA-ccRCC) dataset was utilized to investigate the correlation between ABC genes expression and prognostic value in ccRCC. We then investigated the interactions between ABCG1 and proteins in the Comparative Toxicogenomics Database (CTD). Finally, we found that ATP-binding cassette transporter G member 1 (ABCG1) was over-expressed in ccRCC patients compared with healthy samples at mRNA level. Cox regression analysis and Kaplan-Meier analysis showed that ccRCC patients with high ABCG1 expression had better overall survival (OS) than those patients with low expression (hazard ratio (HR) = 0.662, p = 0.007). This study demonstrated that ABCG1 is a potential diagnostic and prognostic biomarker in ccRCC and discussed the molecular mechanisms underlying the relationship between ccRCC and ABCG1, which might provide guidance for better management and treatment of ccRCC in the future.
Collapse
MESH Headings
- Humans
- Carcinoma, Renal Cell/genetics
- Carcinoma, Renal Cell/metabolism
- Carcinoma, Renal Cell/pathology
- Carcinoma, Renal Cell/diagnosis
- Kidney Neoplasms/genetics
- Kidney Neoplasms/pathology
- Kidney Neoplasms/metabolism
- Kidney Neoplasms/diagnosis
- ATP Binding Cassette Transporter, Subfamily G, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily G, Member 1/metabolism
- Prognosis
- Male
- Female
- Middle Aged
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Gene Expression Regulation, Neoplastic
Collapse
Affiliation(s)
- Fucheng Meng
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yafei Xiao
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Longxiang Xie
- Department of Institute of Biomedical Informatics, Cell Signal Transduction Laboratory, Bioinformatics Center, Henan Provincial Engineering Center for Tumor Molecular Medicine, School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Qiao Liu
- Department of Pediatric Dentistry, Stomatological Hospital of Chongqing Medical University, Chongqing, China
| | - Keli Qian
- Department of Infection Control, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| |
Collapse
|
31
|
Fu Y, Zou T, Shen X, Nelson PJ, Li J, Wu C, Yang J, Zheng Y, Bruns C, Zhao Y, Qin L, Dong Q. Lipid metabolism in cancer progression and therapeutic strategies. MedComm (Beijing) 2021; 2:27-59. [PMID: 34766135 PMCID: PMC8491217 DOI: 10.1002/mco2.27] [Citation(s) in RCA: 138] [Impact Index Per Article: 46.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2020] [Revised: 07/17/2020] [Accepted: 07/23/2020] [Indexed: 12/24/2022] Open
Abstract
Dysregulated lipid metabolism represents an important metabolic alteration in cancer. Fatty acids, cholesterol, and phospholipid are the three most prevalent lipids that act as energy producers, signaling molecules, and source material for the biogenesis of cell membranes. The enhanced synthesis, storage, and uptake of lipids contribute to cancer progression. The rewiring of lipid metabolism in cancer has been linked to the activation of oncogenic signaling pathways and cross talk with the tumor microenvironment. The resulting activity favors the survival and proliferation of tumor cells in the harsh conditions within the tumor. Lipid metabolism also plays a vital role in tumor immunogenicity via effects on the function of the noncancer cells within the tumor microenvironment, especially immune‐associated cells. Targeting altered lipid metabolism pathways has shown potential as a promising anticancer therapy. Here, we review recent evidence implicating the contribution of lipid metabolic reprogramming in cancer to cancer progression, and discuss the molecular mechanisms underlying lipid metabolism rewiring in cancer, and potential therapeutic strategies directed toward lipid metabolism in cancer. This review sheds new light to fully understanding of the role of lipid metabolic reprogramming in the context of cancer and provides valuable clues on therapeutic strategies targeting lipid metabolism in cancer.
Collapse
Affiliation(s)
- Yan Fu
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Tiantian Zou
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Xiaotian Shen
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Peter J Nelson
- Medical Clinic and Policlinic IV Ludwig-Maximilian-University (LMU) Munich Germany
| | - Jiahui Li
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Chao Wu
- Department of General Surgery, Ruijin Hospital Shanghai Jiao Tong University School of Medicine Shanghai China
| | - Jimeng Yang
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Yan Zheng
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Christiane Bruns
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Yue Zhao
- General, Visceral and Cancer Surgery University Hospital of Cologne Cologne Germany
| | - Lunxiu Qin
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| | - Qiongzhu Dong
- Department of General Surgery, Huashan Hospital & Cancer Metastasis Institute & Institutes of Biomedical Sciences Fudan University Shanghai China
| |
Collapse
|
32
|
Qi X, Li Q, Che X, Wang Q, Wu G. The Uniqueness of Clear Cell Renal Cell Carcinoma: Summary of the Process and Abnormality of Glucose Metabolism and Lipid Metabolism in ccRCC. Front Oncol 2021; 11:727778. [PMID: 34604067 PMCID: PMC8479096 DOI: 10.3389/fonc.2021.727778] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 08/10/2021] [Indexed: 12/27/2022] Open
Abstract
Kidney cancer is a cancer with an increasing incidence in recent years. Clear cell renal cell carcinoma (ccRCC) accounts for up to 80% of all kidney cancers. The understanding of the pathogenesis, tumor progression, and metastasis of renal carcinoma is not yet perfect. Kidney cancer has some characteristics that distinguish it from other cancers, and the metabolic aspect is the most obvious. The specificity of glucose and lipid metabolism in kidney cancer cells has also led to its being studied as a metabolic disease. As the most common type of kidney cancer, ccRCC has many characteristics that represent the specificity of kidney cancer. There are features that we are very concerned about, including the presence of lipid droplets in cells and the obesity paradox. These two points are closely related to glucose metabolism and lipid metabolism. Therefore, we hope to explore whether metabolic changes affect the occurrence and development of kidney cancer by looking for evidence of changes on expression at the genomic and protein levels in glucose metabolism and lipid metabolism in ccRCC. We begin with the representative phenomenon of abnormal cancer metabolism: the Warburg effect, through the collection of popular metabolic pathways and related genes in the last decade, as well as some research hotspots, including the role of ferroptosis and glutamine in cancer, systematically elaborated the factors affecting the incidence and metastasis of kidney cancer. This review also identifies the similarities and differences between kidney cancer and other cancers in order to lay a theoretical foundation and provide a valid hypothesis for future research.
Collapse
Affiliation(s)
- Xiaochen Qi
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
33
|
Poly(ADP)-Ribosylation Inhibition: A Promising Approach for Clear Cell Renal Cell Carcinoma Therapy. Cancers (Basel) 2021; 13:cancers13194973. [PMID: 34638458 PMCID: PMC8507656 DOI: 10.3390/cancers13194973] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/28/2021] [Accepted: 09/28/2021] [Indexed: 01/11/2023] Open
Abstract
Poly(ADP-ribose) polymerase 1 (PARP-1) and glycohydrolase (PARG) enzymes regulate chromatin structure, transcription activation, and DNA repair by modulating poly(ADP-ribose) (pADPr) level. Interest in PARP-1 inhibitors has soared recently with the recognition of their antitumor efficacy. We have shown that the development of clear cell renal cell carcinoma (ccRCC) is associated with extreme accumulation of pADPr caused by the enhanced expression of PARP-1 and decreased PARG levels. The most severe misregulation of pADPr turnover is found in ccRCC specimens from metastatic lesions. Both, classical NAD-like and non-NAD-like PARP-1 inhibitors reduced viability and clonogenic potential of ccRCC cell lines and suppressed growth of ccRCC xenograft tumors. However, classical NAD-like PARP-1 inhibitors affected viability of normal kidney epithelial cells at high concentrations, while novel non-NAD-like PARP-1 inhibitors exhibited activity against malignant cells only. We have also utilized different approaches to reduce the pADPr level in ccRCC cells by stably overexpressing PARG and demonstrated the prominent antitumor effect of this "back-to-normal" intervention. We also generated ccRCC cell lines with stable overexpression of PARG under doxycycline induction. This genetic approach demonstrated significantly affected malignancy of ccRCC cells. Transcriptome analysis linked observed phenotype with changes in gene expression levels for lipid metabolism, interferon signaling, and angiogenesis pathways along with the changes in expression of key cancer-related genes.
Collapse
|
34
|
Wu G, Li J, Xu Y, Che X, Chen F, Wang Q. A New Survival Model Based on ADAMTSs for Prognostic Prediction in Clear Cell Renal Cell Carcinoma. JOURNAL OF ONCOLOGY 2021; 2021:2606213. [PMID: 34603444 PMCID: PMC8486512 DOI: 10.1155/2021/2606213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 09/02/2021] [Accepted: 09/03/2021] [Indexed: 12/15/2022]
Abstract
The main purpose of this study was to explore the genetic variation, gene expression, and clinical significance of ADAMTSs (a disintegrin and metalloprotease domains with thrombospondin motifs) across cancer types. Analysis of data from the TCGA (The Cancer Genome Atlas) database showed that the ADAMTSs have extensive CNV (copy number variation) and SNV (single nucleotide variation) across cancer types. Compared with normal tissues, the methylation of ADAMTSs in cancer tissues is also significantly different, which affects the expression of ADAMTS gene and the prognosis of cancer patients. Through gene expression analysis, we found that ADAMTS family has significant changes in gene expression across cancer types and is closely related to the prognosis of carcinoma, especially in ccRCC (clear cell renal cell carcinoma). LASSO regression analysis was used to establish a prognostic model based on the ADAMTSs to judge the prognosis of patients with ccRCC. Multiple Cox regression analysis suggested that age, grade, stage, and risk score of the prognostic model of ccRCC were independent prognostic factors in patients with renal clear cell carcinoma. These findings indicate that the ADAMTSs-based survival model can accurately predict the prognosis of patients with ccRCC and suggest that ADAMTSs are a potential prognostic biomarker and therapeutic target in ccRCC.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Jianyi Li
- Organ Transplant Center, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory on Organ Donation and Transplant Immunology, Guangzhou, China
| | - Yingkun Xu
- Department of Endocrine and Breast Surgery, The First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Xiangyu Che
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Feng Chen
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
35
|
El-Kenawi A, Dominguez-Viqueira W, Liu M, Awasthi S, Abraham-Miranda J, Keske A, Steiner KK, Noel L, Serna AN, Dhillon J, Gillies RJ, Yu X, Koomen JM, Yamoah K, Gatenby RA, Ruffell B. Macrophage-derived cholesterol contributes to therapeutic resistance in prostate cancer. Cancer Res 2021; 81:5477-5490. [PMID: 34301759 DOI: 10.1158/0008-5472.can-20-4028] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 06/16/2021] [Accepted: 07/21/2021] [Indexed: 11/16/2022]
Abstract
Castration-resistant prostate cancer (CRPC) is a lethal stage of disease in which androgen receptor (AR) signaling is persistent despite androgen deprivation therapy (ADT). Most studies have focused on investigating cell-autonomous alterations in CRPC, while the contributions of the tumor microenvironment are less well understood. Here we sought to determine the role of tumor-associated macrophages in CRPC, based upon their role in cancer progression and therapeutic resistance. In a syngeneic model that reflected the mutational landscape of CRPC, macrophage depletion resulted in a reduced transcriptional signature for steroid and bile acid synthesis, indicating potential perturbation of cholesterol metabolism. As cholesterol is the precursor of the five major types of steroid hormones, we hypothesized that macrophages were regulating androgen biosynthesis within the prostate tumor microenvironment. Macrophage depletion reduced androgen levels within prostate tumors and restricted androgen receptor (AR) nuclear localization in vitro and in vivo. Macrophages were also cholesterol-rich and were able to transfer cholesterol to tumor cells in vitro. AR nuclear translocation was inhibited by activation of Liver X Receptor (LXR)-β, the master regulator of cholesterol homeostasis. Consistent with these data, macrophage depletion extended survival during ADT and the presence of macrophages correlated with therapeutic resistance in patient-derived explants. Taken together, these findings support the therapeutic targeting of macrophages in CRPC.
Collapse
Affiliation(s)
- Asmaa El-Kenawi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | | | - Min Liu
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Shivanshu Awasthi
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Julieta Abraham-Miranda
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Aysenur Keske
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - KayLee K Steiner
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Leenil Noel
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Amparo N Serna
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Jasreman Dhillon
- Department of Pathology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert J Gillies
- Department of Cancer Physiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Xiaoqing Yu
- Department of Biostatistics and Bioinformatics, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - John M Koomen
- Proteomics and Metabolomics Core, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Molecular Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Kosj Yamoah
- Department of Cancer Epidemiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
- Department of Radiation Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Robert A Gatenby
- Department of Radiology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| | - Brian Ruffell
- Department of Immunology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida.
- Department of Breast Oncology, H. Lee Moffitt Cancer Center and Research Institute, Tampa, Florida
| |
Collapse
|
36
|
Liang Z, Chen Y, Gu T, She J, Dai F, Jiang H, Zhan Z, Li K, Liu Y, Zhou X, Tang L. LXR-Mediated Regulation of Marine-Derived Piericidins Aggravates High-Cholesterol Diet-Induced Cholesterol Metabolism Disorder in Mice. J Med Chem 2021; 64:9943-9959. [PMID: 34251816 DOI: 10.1021/acs.jmedchem.1c00175] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Reported as two antirenal cell carcinoma (RCC) drug candidates, marine-derived compounds piericidin A (PA) and glucopiericidin A (GPA) exhibit hepatotoxicity in renal carcinoma xenograft mice. Proteomics and transcriptomics reveal the hepatotoxicity related with cholesterol disposition since RCC is characterized by cholesterol accumulation. PA/GPA aggravate hepatotoxicity in high-cholesterol diet (HCD)-fed mice while exhibiting no toxicity in chow diet-fed mice. High cholesterol accumulation in liver is liver X receptor (LXR)-mediated cytochrome P450 family 7 subfamily a member 1 (CYP7A1) depression and low-density lipoprotein receptor (LDLR) activation. The farnesoid X nuclear receptor (FXR) is also depressed with a downregulated target gene OSTα. Different from PA directly combined with LXRα as an inhibitor, GPA exists as a prodrug in the liver and exerts toxic effects due to transformation into PA. Surface plasmon resonance (SPR) and docking results of 17 piericidins illustrate that glycosides exert no LXRα binding activity. A longer survival time of GPA-treated mice indicates that further exploration in anti-RCC drug research should focus on reducing glycosides transformed into PA and concentrating in the kidney tumor rather than the liver for lowering the risk of hepatotoxicity.
Collapse
Affiliation(s)
- Zhi Liang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Yulian Chen
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Tanwei Gu
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Jianglian She
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Fahong Dai
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Huanguo Jiang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Zhikun Zhan
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| | - Kunlong Li
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Yonghong Liu
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China
| | - Xuefeng Zhou
- CAS Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| | - Lan Tang
- NMPA Key Laboratory for Research and Evaluation of Drug Metabolism, Guangdong Provincial Key Laboratory of New Drug Screening, School of Pharmaceutical Sciences, Southern Medical University, Guangzhou 510515, China
| |
Collapse
|
37
|
Miller AL, Garcia PL, Fehling SC, Gamblin TL, Vance RB, Council LN, Chen D, Yang ES, van Waardenburg RCAM, Yoon KJ. The BET Inhibitor JQ1 Augments the Antitumor Efficacy of Gemcitabine in Preclinical Models of Pancreatic Cancer. Cancers (Basel) 2021; 13:cancers13143470. [PMID: 34298684 PMCID: PMC8303731 DOI: 10.3390/cancers13143470] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Revised: 07/02/2021] [Accepted: 07/07/2021] [Indexed: 02/07/2023] Open
Abstract
Gemcitabine is used to treat pancreatic cancer (PC), but is not curative. We sought to determine whether gemcitabine + a BET bromodomain inhibitor was superior to gemcitabine, and identify proteins that may contribute to the efficacy of this combination. This study was based on observations that cell cycle dysregulation and DNA damage augment the efficacy of gemcitabine. BET inhibitors arrest cells in G1 and allow increases in DNA damage, likely due to inhibition of expression of DNA repair proteins Ku80 and RAD51. BET inhibitors (JQ1 or I-BET762) + gemcitabine were synergistic in vitro, in Panc1, MiaPaCa2 and Su86 PC cell lines. JQ1 + gemcitabine was more effective in vivo than either drug alone in patient-derived xenograft models (P < 0.01). Increases in the apoptosis marker cleaved caspase 3 and DNA damage marker γH2AX paralleled antitumor efficacy. Notably, RNA-seq data showed that JQ1 + gemcitabine selectively inhibited HMGCS2 and APOC1 ~6-fold, compared to controls. These proteins contribute to cholesterol biosynthesis and lipid metabolism, and their overexpression supports tumor cell proliferation. IPA data indicated that JQ1 + gemcitabine selectively inhibited the LXR/RXR activation pathway, suggesting the hypothesis that this inhibition may contribute to the observed in vivo efficacy of JQ1 + gemcitabine.
Collapse
Affiliation(s)
- Aubrey L. Miller
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Patrick L. Garcia
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Samuel C. Fehling
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Tracy L. Gamblin
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Rebecca B. Vance
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Leona N. Council
- Department of Pathology, Division of Anatomic Pathology, University of Alabama at Birmingham, Birmingham, AL 35294, USA;
- The Birmingham Veterans Administration Medical Center, Birmingham, AL 35233, USA
| | - Dongquan Chen
- Department of Medicine, Division of Preventive Medicine, University of Alabama at Birmingham, Birmingham, AL 35205, USA;
| | - Eddy S. Yang
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
- Department of Radiation Oncology, University of Alabama at Birmingham, Birmingham, AL 35233, USA
- O’Neal Comprehensive Cancer Center, University of Alabama at Birmingham, Birmingham, AL 35233, USA
| | - Robert C. A. M. van Waardenburg
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
| | - Karina J. Yoon
- Department of Pharmacology and Toxicology, University of Alabama at Birmingham, Birmingham, AL 35294, USA; (A.L.M.); (P.L.G.); (S.C.F.); (T.L.G.); (R.B.V.); (E.S.Y.); (R.C.A.M.v.W.)
- Correspondence: ; Tel.: +1-205-934-6761
| |
Collapse
|
38
|
Giacomini I, Gianfanti F, Desbats MA, Orso G, Berretta M, Prayer-Galetti T, Ragazzi E, Cocetta V. Cholesterol Metabolic Reprogramming in Cancer and Its Pharmacological Modulation as Therapeutic Strategy. Front Oncol 2021; 11:682911. [PMID: 34109128 PMCID: PMC8181394 DOI: 10.3389/fonc.2021.682911] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2021] [Accepted: 05/06/2021] [Indexed: 12/14/2022] Open
Abstract
Cholesterol is a ubiquitous sterol with many biological functions, which are crucial for proper cellular signaling and physiology. Indeed, cholesterol is essential in maintaining membrane physical properties, while its metabolism is involved in bile acid production and steroid hormone biosynthesis. Additionally, isoprenoids metabolites of the mevalonate pathway support protein-prenylation and dolichol, ubiquinone and the heme a biosynthesis. Cancer cells rely on cholesterol to satisfy their increased nutrient demands and to support their uncontrolled growth, thus promoting tumor development and progression. Indeed, transformed cells reprogram cholesterol metabolism either by increasing its uptake and de novo biosynthesis, or deregulating the efflux. Alternatively, tumor can efficiently accumulate cholesterol into lipid droplets and deeply modify the activity of key cholesterol homeostasis regulators. In light of these considerations, altered pathways of cholesterol metabolism might represent intriguing pharmacological targets for the development of exploitable strategies in the context of cancer therapy. Thus, this work aims to discuss the emerging evidence of in vitro and in vivo studies, as well as clinical trials, on the role of cholesterol pathways in the treatment of cancer, starting from already available cholesterol-lowering drugs (statins or fibrates), and moving towards novel potential pharmacological inhibitors or selective target modulators.
Collapse
Affiliation(s)
- Isabella Giacomini
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Federico Gianfanti
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
- Veneto Institute of Molecular Medicine, VIMM, Padova, Italy
| | | | - Genny Orso
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Massimiliano Berretta
- Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy
| | - Tommaso Prayer-Galetti
- Department of Surgery, Oncology and Gastroenterology - Urology, University of Padova, Padova, Italy
| | - Eugenio Ragazzi
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| | - Veronica Cocetta
- Department of Pharmaceutical and Pharmacological Sciences, University of Padova, Padova, Italy
| |
Collapse
|
39
|
Huang J, Zhao X, Li X, Peng J, Yang W, Mi S. HMGCR inhibition stabilizes the glycolytic enzyme PKM2 to support the growth of renal cell carcinoma. PLoS Biol 2021; 19:e3001197. [PMID: 33905408 PMCID: PMC8104400 DOI: 10.1371/journal.pbio.3001197] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 05/07/2021] [Accepted: 03/19/2021] [Indexed: 02/06/2023] Open
Abstract
Renal cell carcinoma (RCC) is responsible for most cases of the kidney cancer. Previous research showed that low serum levels of cholesterol level positively correlate with poorer RCC-specific survival outcomes. However, the underlying mechanisms and functional significance of the role of cholesterol in the development of RCC remain obscure. 3-Hydroxy-3-methylglutaryl coenzyme A reductase (HMGCR) plays a pivotal role in RCC development as it is the key rate-limiting enzyme of the cholesterol biosynthetic pathway. In this study, we demonstrated that the inhibition of HMGCR could accelerate the development of RCC tumors by lactate accumulation and angiogenesis in animal models. We identified that the inhibition of HMGCR led to an increase in glycolysis via the regulated HSP90 expression levels, thus maintaining the levels of a glycolysis rate-limiting enzyme, pyruvate kinase M2 (PKM2). Based on these findings, we reversed the HMGCR inhibition-induced tumor growth acceleration in RCC xenograft mice by suppressing glycolysis. Furthermore, the coadministration of Shikonin, a potent PKM2 inhibitor, reverted the tumor development induced by the HMGCR signaling pathway.
Collapse
Affiliation(s)
- Jiajun Huang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiaoyu Zhao
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Xiang Li
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Jiwei Peng
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Weihao Yang
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| | - Shengli Mi
- Bio-manufacturing Engineering Laboratory, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, Guangdong, China
| |
Collapse
|
40
|
Zhang W, Luo M, Zhou Y, Hu J, Li C, Liu K, Liu M, Zhu Y, Chen H, Zhang H. Liver X receptor agonist GW3965 protects against sepsis by promoting myeloid derived suppressor cells apoptosis in mice. Life Sci 2021; 276:119434. [PMID: 33785343 DOI: 10.1016/j.lfs.2021.119434] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 03/19/2021] [Accepted: 03/23/2021] [Indexed: 12/29/2022]
Abstract
AIMS Immunosuppressive myeloid-derived suppressor cells (MDSCs) continuously expand and lead to poor outcome during sepsis. The activation of liver X receptor (LXR) can mitigate sepsis-induced liver and myocardial damage. This study aims to determine whether LXR plays a protective role in sepsis by regulating MDSCs. MAIN METHODS Cecal ligation and puncture(CLP)was used to induce sepsis in mice. The mice were then treated with LXR agonist GW3965 (3 mg/kg) or vehicle 1 h, 6 h, 12 h, 24 h, 48 h, 72 h postoperatively. The effect of LXR on the survival rate and multi-organ injury induced by sepsis was evaluated by survival analysis, histological staining, biochemical analysis and ELISAs. The percentages of MDSCs and T cells were detected using flow cytometry. The mRNA expressions of LXR and ATP-binding cassette transporter A1 (ABCA1) were measured using real-time quantitative PCR (RT-qPCR). ABCA1 protein level was determined using immunofluorescence staining. KEY FINDINGS LXR agonist GW3965 treatment improved the survival of septic mice, accompanied by reduced multi-organ injury and a decreased level of inflammatory cytokines. Furthermore, GW3965 treatment decreased MDSCs abundance in spleen by boosting the apoptosis of spleen MDSCs, therefore ameliorating their immunosuppressive activity. Meanwhile, bacteria clearance in tissues was enhanced after the GW3965 administration in septic mice. Mechanistically, GW3965 activated LXRβ and its downstream target ABCA1 to initiate the apoptosis of spleen MDSCs. SIGNIFICANCE These findings provide new insights into the relationship between LXR and MDSCs in sepsis, thus revealing a potentially effective approach to target the immunosuppression of sepsis.
Collapse
Affiliation(s)
- Wenqin Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China; Department of Pathology, Xiangya Changde Hospital, Changde, Hunan, China
| | - Minjie Luo
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yuexue Zhou
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Jie Hu
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Caiyan Li
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Ke Liu
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Meidong Liu
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Yaxi Zhu
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China
| | - Huan Chen
- Postdoctoral Research Station of Clinical Medicine and Department of Hematology, the Third Xiangya Hospital, Central South University, Changsha, Hunan Province, China.
| | - Huali Zhang
- Sepsis Translational Medicine Key Lab of Hunan Province, Central South University, Hunan, China; Department of Pathophysiology, Xiangya School of Medicine, Central South University, Hunan, China.
| |
Collapse
|
41
|
Wu P, Xu Y, Li J, Li X, Zhang P, Ruan N, Zhang C, Sun P, Wang Q, Wu G. Comparison of the Fatty Acid Metabolism Pathway in Pan-Renal Cell Carcinoma: Evidence from Bioinformatics. Anal Cell Pathol (Amst) 2021; 2021:8842105. [PMID: 33688464 PMCID: PMC7925032 DOI: 10.1155/2021/8842105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 02/01/2021] [Accepted: 02/05/2021] [Indexed: 12/13/2022] Open
Abstract
This study analyzed and compared the potential role of fatty acid metabolism pathways in three subtypes of renal cell carcinoma. Biological pathways that were abnormally up- and downregulated were identified through gene set variation analysis in the subtypes. Abnormal downregulation of the fatty acid metabolism pathway occurred in all three renal cell carcinoma subtypes. Alteration of the fatty acid metabolism pathway was vital in the development of pan-renal cell carcinoma. Bioinformatics methods were used to obtain a panoramic view of copy number variation, single-nucleotide variation, mRNA expression, and the survival landscape of fatty acid metabolism pathway-related genes in pan-renal cell carcinoma. Most importantly, we used genes related to the fatty acid metabolism pathway to establish a prognostic-related risk model in the three subtypes of renal cell carcinoma. The data will be valuable for future clinical treatment and scientific research.
Collapse
Affiliation(s)
- Ping Wu
- Department of Anesthesiology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Jiayi Li
- School of Business, Hanyang University, Seoul, Republic of Korea
| | - Xiaowei Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Peizhi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, China
| | - Cong Zhang
- Department of Pain Management, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Panpan Sun
- Department of Pain Management, The Second Hospital of Shandong University, Jinan, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, China
| |
Collapse
|
42
|
Matsushita Y, Nakagawa H, Koike K. Lipid Metabolism in Oncology: Why It Matters, How to Research, and How to Treat. Cancers (Basel) 2021; 13:474. [PMID: 33530546 PMCID: PMC7865757 DOI: 10.3390/cancers13030474] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/11/2022] Open
Abstract
Lipids in our body, which are mainly composed of fatty acids, triacylglycerides, sphingolipids, phospholipids, and cholesterol, play important roles at the cellular level. In addition to being energy sources and structural components of biological membranes, several types of lipids serve as signaling molecules or secondary messengers. Metabolic reprogramming has been recognized as a hallmark of cancer, but changes in lipid metabolism in cancer have received less attention compared to glucose or glutamine metabolism. However, recent innovations in mass spectrometry- and chromatography-based lipidomics technologies have increased our understanding of the role of lipids in cancer. Changes in lipid metabolism, so-called "lipid metabolic reprogramming", can affect cellular functions including the cell cycle, proliferation, growth, and differentiation, leading to carcinogenesis. Moreover, interactions between cancer cells and adjacent immune cells through altered lipid metabolism are known to support tumor growth and progression. Characterization of cancer-specific lipid metabolism can be used to identify novel metabolic targets for cancer treatment, and indeed, several clinical trials are currently underway. Thus, we discuss the latest findings on the roles of lipid metabolism in cancer biology and introduce current advances in lipidomics technologies, focusing on their applications in cancer research.
Collapse
Affiliation(s)
| | - Hayato Nakagawa
- Department of Gastroenterology, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8655, Japan; (Y.M.); (K.K.)
| | | |
Collapse
|
43
|
Zhang Y, Chen M, Liu M, Xu Y, Wu G. Glycolysis-Related Genes Serve as Potential Prognostic Biomarkers in Clear Cell Renal Cell Carcinoma. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6699808. [PMID: 33564363 PMCID: PMC7850857 DOI: 10.1155/2021/6699808] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Revised: 01/01/2021] [Accepted: 01/05/2021] [Indexed: 02/06/2023]
Abstract
Metabolic rearrangement is a marker of cancer that has been widely studied in recent years. One of the major metabolic characteristics of tumor cells is the high levels of glycolysis, even under aerobic conditions, a phenomenon that is called the "Warburg effect." We investigated the expression and copy number variation (CNV) frequency of all glycolysis-related genes in multiple cancer types and found many differentially expressed genes, particularly in clear cell renal cell carcinoma (ccRCC). Single nucleotide variants (SNVs) showed that the overall average mutation frequency for all genes was low. The purpose of this study was to establish a predictive model by studying glycolysis-related genes in ccRCC. We compared the expression of glycolysis-related genes in 539 ccRCC tissues and 72 normal renal tissues from The Cancer Genome Atlas dataset and identified 17 upregulated and 26 downregulated genes. Pathway analysis revealed that PSAT1 and SDHB could activate the cell cycle, RPIA could activate the DNA damage response, and HK3 could activate apoptosis and EMT signaling, while PDK2 could inhibit apoptosis. The results of the drug sensitivity analysis suggested that some of these differentially expressed genes were positively correlated with drug sensitivity. Thirteen genes were selected from the gene coexpression network and the LASSO regression analysis. The Kaplan-Meier overall survival curves showed that the expression of upregulated genes in ccRCC patients was associated with lower overall survival. We established a predictive model consisting of 13 genes (RPIA, G6PD, PSAT1, ENO2, HK3, IDH1, PDK4, PGM2, PGK1, FBP1, OGDH, SUCLA2, and SUCLG2). This predictive model correlated well with the development and progression of ccRCC. Thus, it is of great value in the diagnosis and prognostic evaluation of ccRCC and may aid the identification of potential prognostic biomarkers and drug targets.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
- Department of Clinical Laboratory, The First People's Hospital of Linhai, Taizhou, Zhejiang 317000, China
| | - Mingying Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Meihong Liu
- Department of Respiratory, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
44
|
DNA methylation profiling reveals new potential subtype-specific gene markers for early-stage renal cell carcinoma in caucasian population. QUANTITATIVE BIOLOGY 2021. [DOI: 10.15302/j-qb-021-0279] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Chen T, Xu J, Fu W. EGFR/FOXO3A/LXR-α Axis Promotes Prostate Cancer Proliferation and Metastasis and Dual-Targeting LXR-α/EGFR Shows Synthetic Lethality. Front Oncol 2020; 10:1688. [PMID: 33224867 PMCID: PMC7667376 DOI: 10.3389/fonc.2020.01688] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Accepted: 07/29/2020] [Indexed: 01/08/2023] Open
Abstract
Prostate cancer is the second leading cause of cancer-related death in men. Early prostate cancer has a high 5-year survival rate. However, the five-year survival rate is low in progressive prostate cancer, which manifests as bone metastasis. The EGF receptor overexpression increases during disease progression and in the development of castration-resistant disease, and may be a potential therapeutic target. Liver X receptors (LXRs) are ligand-dependent nuclear receptor transcription factors and consist of two subtypes, LXR-α and LXR-β, which can inhibit tumor growth in various cancer cells. We revealed that LXR-α, but not LXR-β, was reduced in prostate cancer tissues compared with adjacent normal tissues. LXRs' agonist GW3965 enhanced the inhibitory action of LXR-α on the proliferation and metastasis of prostate cancer cells. Furthermore, our results support the notion that LXR-α is regulated by the EGFR/AKT/FOXO3A pathway. As an EGFR inhibitor, Afatinib could weaken AKT activation and increase the expression level of FOXO3A in prostate cancer. In addition, we indicated that the combination of Afatinib and GW3965 simultaneously increased and activated LXR-α, which led to an increase of tumor suppressors, and eventually inhibited tumor progression. Therefore, the combination of EGFR inhibitor and LXRs agonist may become a potential treatment strategy for prostate cancer, especially metastatic prostate cancer.
Collapse
Affiliation(s)
- Tingting Chen
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Jie Xu
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| | - Weihua Fu
- Department of Urology, The Second Affiliated Hospital, Third Military Medical University (Army Medical University), Chongqing, China
| |
Collapse
|
46
|
Wu G, Xu Y, Ruan N, Li J, Lv Q, Zhang Q, Chen Y, Wang Q, Xia Q, Li Q. Genetic alteration and clinical significance of SUMOylation regulators in multiple cancer types. J Cancer 2020; 11:6823-6833. [PMID: 33123273 PMCID: PMC7592005 DOI: 10.7150/jca.49042] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2020] [Accepted: 09/11/2020] [Indexed: 12/30/2022] Open
Abstract
The purpose of this study was to investigate the genetic variation, gene expression differences, and clinical significance of SUMOylation regulators in pan-cancers. Based on previous studies, we gained a better understanding of the biological process of SUMOylation and the status of current research. In the present study, we employed a wide range of bioinformatics methods. We used genetic variation and mRNA expression data in the Cancer Genome Atlas (TCGA) to construct a panoramic view of the single nucleotide variants, copy number variants, and gene expression changes in SUMOylation regulators in various tumors. Subsequently, we used the String website and the Cytoscape tool to construct the PPI network between these regulators. We used the GSCALite website to determine the relationship between these regulators and cancer pathways and drug sensitivity. We constructed images of co-expression between these regulators using the R programming language. Using clinical data from TCGA, we performed hazard ratio analysis for these regulators in pan-cancer. Most importantly, we used these regulators to successfully establish risk signatures related to patient prognosis in multiple tumors. Finally, in KIRC, we conducted gene-set enrichment analysis (GSEA) of the five molecules in its risk signatures. We found that these five molecules are involved in multiple cancer pathways. In short, we have comprehensively interpreted the detailed biological process of SUMOylation at the genetic level for the first time, successfully constructed multiple risk signatures, and conducted GSEA in KIRC. We believe that these findings provide credible and valuable information that is relevant for future clinical diagnoses and scientific research.
Collapse
Affiliation(s)
- Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan, 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China
| | - Qingyang Lv
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430022, China
| | - Qi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Yougen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Qifei Wang
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China.,Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China
| | - Quanlin Li
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, 116011, China
| |
Collapse
|
47
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 01/25/2023] Open
Abstract
OBJECTIVE This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). METHODS For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. RESULTS We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. CONCLUSIONS To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
48
|
Xu Y, Li X, Han Y, Wang Z, Han C, Ruan N, Li J, Yu X, Xia Q, Wu G. A New Prognostic Risk Model Based on PPAR Pathway-Related Genes in Kidney Renal Clear Cell Carcinoma. PPAR Res 2020; 2020:6937475. [PMID: 33029112 PMCID: PMC7527891 DOI: 10.1155/2020/6937475;] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 08/29/2020] [Accepted: 09/01/2020] [Indexed: 10/11/2024] Open
Abstract
Objective This study is aimed at using genes related to the peroxisome proliferator-activated receptor (PPAR) pathway to establish a prognostic risk model in kidney renal clear cell carcinoma (KIRC). Methods For this study, we first found the PPAR pathway-related genes on the gene set enrichment analysis (GSEA) website and found the KIRC mRNA expression data and clinical data through TCGA database. Subsequently, we used R language and multiple R language expansion packages to analyze the expression, hazard ratio analysis, and coexpression analysis of PPAR pathway-related genes in KIRC. Afterward, using the Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) website, we established the protein-protein interaction (PPI) network of genes related to the PPAR pathway. After that, we used LASSO regression curve analysis to establish a prognostic survival model in KIRC. Finally, based on the model, we conducted correlation analysis of the clinicopathological characteristics, univariate analysis, and multivariate analysis. Results We found that most of the genes related to the PPAR pathway had different degrees of expression differences in KIRC. Among them, the high expression of 27 genes is related to low survival rate of KIRC patients, and the high expression of 13 other genes is related to their high survival rate. Most importantly, we used 13 of these genes successfully to establish a risk model that could accurately predict patients' prognosis. There is a clear correlation between this model and metastasis, tumor, stage, grade, and fustat. Conclusions To the best of our knowledge, this is the first study to analyze the entire PPAR pathway in KIRC in detail and successfully establish a risk model for patient prognosis. We believe that our research can provide valuable data for future researchers and clinicians.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiunan Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Yuqing Han
- Department of Radiology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Zilong Wang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Chenglin Han
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Xiao Yu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| |
Collapse
|
49
|
Xu Y, Wu G, Ma X, Li J, Ruan N, Zhang Z, Cao Y, Chen Y, Zhang Q, Xia Q. Identification of CPT1A as a Prognostic Biomarker and Potential Therapeutic Target for Kidney Renal Clear Cell Carcinoma and Establishment of a Risk Signature of CPT1A-Related Genes. Int J Genomics 2020; 2020:9493256. [PMID: 33381539 PMCID: PMC7757118 DOI: 10.1155/2020/9493256] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/31/2020] [Indexed: 11/17/2022] Open
Abstract
This study is aimed at investigating the expression, clinical significance, and biological role of CPT1A in kidney renal clear cell carcinoma (KIRC). We used the TCGA database and clinical pathology of tissue specimens to study the expression of CPT1A in KIRC. The expression of CPT1A in the kidney cancer tissue was significantly lower than that in the normal tissue. Survival curves demonstrated that the expression was correlated with prognosis in patients. We used the plasmid transfection method to explore the biological role of CPT1A in renal cancer cells and performed CCK-8, wound healing, and Transwell invasion experiments. The results demonstrated that CPT1A can inhibit the proliferation, migration, and invasion of renal cancer cells. Subsequently, we employed a bioinformatics analysis to further elucidate the role of CPT1A. The PPI network diagram was plotted, along with the coexpression diagram, between CPT1A and ten associated genes. The heat map was plotted, and the hazard ratio analysis of these eleven genes in KIRC was performed. Furthermore, the CPT1A, LPL, CPT2, and EHHADH genes were used to establish a reliable prognostic risk signature in KIRC. GSEA analysis demonstrated that CPT1A modulates tumor development via a variety of biological pathways in KIRC. We believe that CPT1A most likely suppresses tumor progression by employing tumor "slimming" in KIRC. Collectively, the results indicate the potential of CPT1A as a novel prognostic indicator and potential therapeutic target in KIRC.
Collapse
Affiliation(s)
- Yingkun Xu
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Guangzhen Wu
- Department of Urology, The First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning 116011, China
| | - Xue Ma
- Department of Pediatrics, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Jianyi Li
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Ningke Ruan
- The Nursing College of Zhengzhou University, Zhengzhou, Henan 450001, China
| | - Zhiyu Zhang
- Department of Urology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, Yantai, Shandong 264000, China
| | - Yalei Cao
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
| | - Yougen Chen
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Qi Zhang
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| | - Qinghua Xia
- Department of Urology, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Jinan, Shandong 250021, China
- Department of Urology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong 250021, China
| |
Collapse
|
50
|
Pontini L, Marinozzi M. Shedding light on the roles of liver X receptors in cancer by using chemical probes. Br J Pharmacol 2020; 178:3261-3276. [PMID: 32673401 DOI: 10.1111/bph.15200] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 07/01/2020] [Accepted: 07/06/2020] [Indexed: 12/19/2022] Open
Abstract
Nuclear receptors, liver X receptor-α (LXRα; NR1H3) and liver X receptor-β (LXRβ; NR1H2), are considered master regulators of lipid homeostasis. During the last couple of decades, their pivotal roles in several physiological and pathological processes ranging from energy supply, immunity, cardiovascular, neurodegenerative disorders and cancer have been highlighted. In this review, the main results achieved during more recent years about our understanding of the LXR involvement in cancer has been mainly obtained using small-molecule chemical probes. Remarkably, all these probes, albeit having different structure and biological properties, have a well demonstrated anti-tumoral activity arising from LXR modulation, indicating a high potential of LXR targeting for the treatment of cancer. LINKED ARTICLES: This article is part of a themed issue on Oxysterols, Lifelong Health and Therapeutics. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v178.16/issuetoc.
Collapse
Affiliation(s)
- Lorenzo Pontini
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| | - Maura Marinozzi
- Department of Pharmaceutical Sciences, University of Perugia, Perugia, Italy
| |
Collapse
|