1
|
Yang C, Wang Z, Qian L, Fu J, Sun H. Deciphering the molecular landscape: evolutionary progression from gynecomastia to aggressive male breast cancer. Cell Oncol (Dordr) 2024; 47:1831-1843. [PMID: 38888848 DOI: 10.1007/s13402-024-00964-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/29/2024] [Indexed: 06/20/2024] Open
Abstract
BACKGROUND Gynecomastia denotes the benign proliferation of glandular breast tissue and stands as a recognized risk factor for male breast cancer. Nonetheless, the underlying carcinogenic mechanisms orchestrating the progression from gynecomastia to cancer remain poorly understood. METHODS This study employed single-cell RNA sequencing (scRNA-seq) to meticulously dissect the cellular landscape of gynecomastia and unravel potential associations with male breast cancer at a single-cell resolution. Pseudotime and evolutionary analyses were executed to delineate the distinct features characterizing gynecomastia and male breast cancer. The TCGA database, along with cell-cell communication analysis and immunohistochemistry staining, was harnessed to validate differential gene expression, specifically focusing on CD13. RESULT From the copy number variation profiles and evolutionary tree, we inferred shared mutation characteristics (18p+ and 18q+) underpinning both conditions. The developmental trajectory unveiled an intriguing overlap between gynecomastia and malignant epithelial cells. Moreover, the differential gene CD13 emerged as a common denominator in both gynecomastia and male breast cancer when compared with normal mammary tissue. Cell-cell interaction analysis and communication dynamics within the tumor microenvironment spotlighted distinctions between CD13+ and CD13- subsets, with the former exhibiting elevated expression of FGFR1-FGF7. CONCLUSIONS Our investigation provides novel insights into the evolutionary progression from gynecomastia to male breast cancer, shedding light on the pivotal role of CD13 in driving this transition. The identification of CD13 as a potential therapeutic target suggests the feasibility of CD13-targeted interventions, specifically tailored for male breast cancer treatment.
Collapse
Affiliation(s)
- Chuang Yang
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| | - Zhonglin Wang
- The Second People's Hospital of Lianyungang, Lianyungang, 222006, China
| | - Lijun Qian
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Jingyue Fu
- The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China
| | - Handong Sun
- Department of Breast, Women's Hospital of Nanjing Medical University, Nanjing Women and Children's Healthcare Hospital, Nanjing, 210004, China.
- Jiangsu Breast Disease Center, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, China.
| |
Collapse
|
2
|
Sun Y, Pan J, Li Y, Hu Y, Ma J, Chen F, Zhang Y, Jiang Z, Zhang J. Restoring BARX2 in OSCC reverses partial EMT and suppresses metastasis through miR-186-5p/miR-378a-3p-dependent SERPINE2 inhibition. Oncogene 2024; 43:1941-1954. [PMID: 38719950 DOI: 10.1038/s41388-024-03053-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/23/2024] [Accepted: 04/24/2024] [Indexed: 06/16/2024]
Abstract
Tumor cells undergoing partial epithelial-mesenchymal transition (pEMT) are pivotal in local invasion and lymphatic metastasis of oral squamous cell carcinoma (OSCC), yet the mechanisms behind pEMT reversal remain poorly understood. In this study, the loss of BARX2 expression was revealed during the process of oral epithelial carcinogenesis and identified to activate the pEMT program, facilitate metastasis, and be associated with poor prognosis. Restoring BARX2 expression in OSCC cell lines effectively reversed tumor pEMT, evident in E/N-Cadherin switching, reduced cell invasion, proliferation, and stemness, and inhibited murine lung metastasis. BARX2 re-expression negatively correlated with several pEMT markers, notably SERPINE2, which was enriched in the invasive OSCC front, enhancing stemness and promoting metastasis, particularly in cervical lymph nodes. Furthermore, rescuing SERPINE2 impaired the inhibitory effect of BARX2 on the pEMT programs and reconstructed ECM through re-expression of MMP1. Mechanistically, we identified that BARX2 inhibited SERPINE2 through activating miR-186-5p and miR-378a-3p. These miRNAs, upregulated by BARX2, post-transcriptionally degraded SERPINE2 mRNA via targeting specific sequences. Blocking miR-186-5p and miR-378a-3p effectively abolished the negative regulatory effect of BARX2 on SERPINE2. Overall, our findings highlight BARX2 as a partial EMT-reverser in OSCC, providing fresh therapeutic prospects for restoring BARX2 signaling to inhibit invasion and metastasis.
Collapse
Affiliation(s)
- Yanan Sun
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Junchen Pan
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Yiwei Li
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Yaying Hu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Jiyuan Ma
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Fu Chen
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Yuying Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Ziyan Jiang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China
- School of Stomatology, Wuhan University, Wuhan, China
| | - Jiali Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
- School of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
3
|
Song S, Li X, Xue X, Dong W, Li C. Progress in the Study of the Role and Mechanism of HTRA1 in Diseases Related to Vascular Abnormalities. Int J Gen Med 2024; 17:1479-1491. [PMID: 38650587 PMCID: PMC11034561 DOI: 10.2147/ijgm.s456912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Accepted: 04/10/2024] [Indexed: 04/25/2024] Open
Abstract
High temperature requirement A1 (HTRA1) is a member of the serine protease family, comprising four structural domains: IGFBP domain, Kazal domain, protease domain and PDZ domain. HTRA1 encodes a serine protease, a secreted protein that is widely expressed in the vasculature. HTRA1 regulates a wide range of physiological processes through its proteolytic activity, and is also involved in a variety of vascular abnormalities-related diseases. This article reviews the role of HTRA1 in the development of vascular abnormalities-related hereditary cerebral small vessel disease (CSVD), age-related macular degeneration (AMD), tumors and other diseases. Through relevant research advances to understand the role of HTRA1 in regulating signaling pathways or refolding, translocation, degradation of extracellular matrix (ECM) proteins, thus directly or indirectly regulating angiogenesis, vascular remodeling, and playing an important role in vascular homeostasis, further understanding the mechanism of HTRA1's role in vascular abnormality-related diseases is important for HTRA1 to be used as a therapeutic target in related diseases.
Collapse
Affiliation(s)
- Shina Song
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Xiaofeng Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Xuting Xue
- Shanxi Key Laboratory of Otorhinolaryngology Head and Neck Cancer, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| | - Wenping Dong
- Department of Geriatrics, General Hospital of TISCO, Taiyuan, People’s Republic of China
| | - Changxin Li
- Department of Neurology, The First Hospital of Shanxi Medical University, Taiyuan, People’s Republic of China
| |
Collapse
|
4
|
Pera EM, Nilsson-De Moura J, Pomeshchik Y, Roybon L, Milas I. Inhibition of the serine protease HtrA1 by SerpinE2 suggests an extracellular proteolytic pathway in the control of neural crest migration. eLife 2024; 12:RP91864. [PMID: 38634469 PMCID: PMC11026092 DOI: 10.7554/elife.91864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024] Open
Abstract
We previously showed that SerpinE2 and the serine protease HtrA1 modulate fibroblast growth factor (FGF) signaling in germ layer specification and head-to-tail development of Xenopus embryos. Here, we present an extracellular proteolytic mechanism involving this serpin-protease system in the developing neural crest (NC). Knockdown of SerpinE2 by injected antisense morpholino oligonucleotides did not affect the specification of NC progenitors but instead inhibited the migration of NC cells, causing defects in dorsal fin, melanocyte, and craniofacial cartilage formation. Similarly, overexpression of the HtrA1 protease impaired NC cell migration and the formation of NC-derived structures. The phenotype of SerpinE2 knockdown was overcome by concomitant downregulation of HtrA1, indicating that SerpinE2 stimulates NC migration by inhibiting endogenous HtrA1 activity. SerpinE2 binds to HtrA1, and the HtrA1 protease triggers degradation of the cell surface proteoglycan Syndecan-4 (Sdc4). Microinjection of Sdc4 mRNA partially rescued NC migration defects induced by both HtrA1 upregulation and SerpinE2 downregulation. These epistatic experiments suggest a proteolytic pathway by a double inhibition mechanism. SerpinE2 ┤HtrA1 protease ┤Syndecan-4 → NC cell migration.
Collapse
Affiliation(s)
- Edgar M Pera
- Vertebrate Developmental Biology Laboratory, Department of Laboratory Medicine, Lund Stem Cell Center, University of LundLundSweden
| | - Josefine Nilsson-De Moura
- Vertebrate Developmental Biology Laboratory, Department of Laboratory Medicine, Lund Stem Cell Center, University of LundLundSweden
| | - Yuriy Pomeshchik
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund Stem Cell Center, Strategic Research Area MultiPark, Lund UniversityLundSweden
| | - Laurent Roybon
- iPSC Laboratory for CNS Disease Modeling, Department of Experimental Medical Science, Lund Stem Cell Center, Strategic Research Area MultiPark, Lund UniversityLundSweden
| | - Ivana Milas
- Vertebrate Developmental Biology Laboratory, Department of Laboratory Medicine, Lund Stem Cell Center, University of LundLundSweden
| |
Collapse
|
5
|
Mao J, Tao Y, Wang K, Sun H, Zhang M, Jin L, Pan Y. Identification of hub genes within the CCL18 signaling pathway in hepatocellular carcinoma through bioinformatics analysis. Front Oncol 2024; 14:1371990. [PMID: 38511143 PMCID: PMC10952098 DOI: 10.3389/fonc.2024.1371990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 02/19/2024] [Indexed: 03/22/2024] Open
Abstract
Introduction Hepatocellular carcinoma (HCC) is an aggressive malignancy, and CCL18, a marker of M2 macrophage activation, is often associated with tumor immune suppression. However, the role of CCL18 and its signaling pathway in HCC is still limited. Our study focuses on investigating the prognostic impact of CCL18 and its signaling pathway in HCC patients and biological functions in vitro. Methods HCC-related RNA-seq data were obtained from TCGA, ICGC, and GEO. The 6 hub genes with the highest correlation to prognosis were identified using univariate Cox and LASSO regression analysis. Multivariate Cox regression analysis was performed to assess their independent prognostic potential and a nomogram was constructed. In vitro experiments, including CCK8, EdU, RT-qPCR, western blot, and transwell assays, were conducted to investigate the biological effects of exogenous CCL18 and 6 hub genes. A core network of highly expressed proteins in the high-risk group of tumors was constructed. Immune cell infiltration was evaluated using the ESTIMATE and CIBERSORT packages. Finally, potential treatments were explored using the OncoPredict package and CAMP database. Results We identified 6 survival-related genes (BMI1, CCR3, CDC25C, CFL1, LDHA, RAC1) within the CCL18 signaling pathway in HCC patients. A nomogram was constructed using the TCGA_LIHC cohort to predict patient survival probability. Exogenous CCL18, as well as overexpression of BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1, can promote proliferation, migration, invasion, stemness, and increased expression of PD-L1 protein in LM3 and MHCC-97H cell lines. In the high-risk group of patients from the TCGA_LIHC cohort, immune suppression was observed, with a strong correlation to 21 immune-related genes and suppressive immune cells. Conclusion Exogenous CCL18 promotes LM3 and MHCC-97H cells proliferation, migration, invasion, stemness, and immune evasion. The high expression of BMI1, CCR3, CDC25C, CFL1, LDHA, and RAC1 can serve as a biomarkers for immune evasion in HCC.
Collapse
Affiliation(s)
| | | | | | | | | | - Liang Jin
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| | - Yi Pan
- State Key Laboratory of Natural Medicines, Jiangsu Key Laboratory of Druggability of Biopharmaceuticals, School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Wu S, Yang Y, Zhang M, Khan AU, Dai J, Ouyang J. Serpin peptidase inhibitor, clade E, member 2 in physiology and pathology: recent advancements. Front Mol Biosci 2024; 11:1334931. [PMID: 38469181 PMCID: PMC10927012 DOI: 10.3389/fmolb.2024.1334931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/01/2024] [Indexed: 03/13/2024] Open
Abstract
Serine protease inhibitors (serpins) are the most numerous and widespread multifunctional protease inhibitor superfamily and are expressed by all eukaryotes. Serpin E2 (serpin peptidase inhibitor, clade E, member 2), a member of the serine protease inhibitor superfamily is a potent endogenous thrombin inhibitor, mainly found in the extracellular matrix and platelets, and expressed in numerous organs and secreted by many cell types. The multiple functions of serpin E2 are mainly mediated through regulating urokinase-type plasminogen activator (uPA, also known as PLAU), tissue-type plasminogen activator (tPA, also known as PLAT), and matrix metalloproteinase activity, and include hemostasis, cell adhesion, and promotion of tumor metastasis. The importance serpin E2 is clear from its involvement in numerous physiological and pathological processes. In this review, we summarize the structural characteristics of the Serpin E2 gene and protein, as well as its roles physiology and disease.
Collapse
Affiliation(s)
- Shutong Wu
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Xinjin Branch of Chengdu Municipal Public Security Bureau, Chengdu, China
| | - Yuchao Yang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
- Yue Bei People’s Hospital Postdoctoral Innovation Practice Base, Southern Medical University, Guangzhou, China
| | - Meiling Zhang
- Chengdu Municipal Public Security Bureau Wenjiang Branch, Chengdu, China
| | - Asmat Ullah Khan
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jingxing Dai
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Jun Ouyang
- Guangdong Provincial Key Laboratory of Digital Medicine and Biomechanics, Guangdong Engineering Research Center for Translation of Medical 3D Printing Application, National Virtual & Reality Experimental Education Center for Medical Morphology (Southern Medical University), National Key Discipline of Human Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| |
Collapse
|
7
|
Mukund K, Alva-Ornelas JA, Maddox AL, Murali D, Veraksa D, Saftics A, Tomsic J, Frankhouser D, Razo M, Jovanovic-Talisman T, Seewaldt VL, Subramaniam S. Molecular Atlas of HER2+ Breast Cancer Cells Treated with Endogenous Ligands: Temporal Insights into Mechanisms of Trastuzumab Resistance. Cancers (Basel) 2024; 16:553. [PMID: 38339304 PMCID: PMC10854992 DOI: 10.3390/cancers16030553] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 01/22/2024] [Accepted: 01/25/2024] [Indexed: 02/12/2024] Open
Abstract
Trastuzumab therapy in HER2+ breast cancer patients has mixed success owing to acquired resistance to therapy. A detailed understanding of downstream molecular cascades resulting from trastuzumab resistance is yet to emerge. In this study, we investigate the cellular mechanisms underlying acquired resistance using trastuzumab-sensitive and -resistant cancer cells (BT474 and BT474R) treated with endogenous ligands EGF and HRG across time. We probe early receptor organization through microscopy and signaling events through multiomics measurements and assess the bioenergetic state through mitochondrial measurements. Integrative analyses of our measurements reveal significant alterations in EGF-treated BT474 HER2 membrane dynamics and robust downstream activation of PI3K/AKT/mTORC1 signaling. EGF-treated BT474R shows a sustained interferon-independent activation of the IRF1/STAT1 cascade, potentially contributing to trastuzumab resistance. Both cell lines exhibit temporally divergent metabolic demands and HIF1A-mediated stress responses. BT474R demonstrates inherently increased mitochondrial activity. HRG treatment in BT474R leads to a pronounced reduction in AR expression, affecting downstream lipid metabolism with implications for treatment response. Our results provide novel insights into mechanistic changes underlying ligand treatment in BT474 and BT474R and emphasize the pivotal role of endogenous ligands. These results can serve as a framework for furthering the understanding of trastuzumab resistance, with therapeutic implications for women with acquired resistance.
Collapse
Affiliation(s)
- Kavitha Mukund
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| | - Jackelyn A. Alva-Ornelas
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Adam L. Maddox
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; (A.L.M.); (A.S.); (T.J.-T.)
| | - Divya Murali
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| | - Darya Veraksa
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| | - Andras Saftics
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; (A.L.M.); (A.S.); (T.J.-T.)
| | - Jerneja Tomsic
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - David Frankhouser
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Meagan Razo
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Tijana Jovanovic-Talisman
- Department of Cancer Biology and Molecular Medicine, Beckman Research Institute, City of Hope, 1500 East Duarte Road, Duarte, CA 91010, USA; (A.L.M.); (A.S.); (T.J.-T.)
| | - Victoria L. Seewaldt
- City of Hope Comprehensive Cancer Center, 1500 East Duarte Road, Duarte, CA 91010, USA; (J.A.A.-O.); (J.T.); (D.F.); (M.R.)
| | - Shankar Subramaniam
- Department of Bioengineering, UC San Diego, Gilman Drive, La Jolla, CA 92093, USA; (K.M.); (D.M.); (D.V.)
| |
Collapse
|
8
|
Jin Y, Wang C, Zhang B, Sun Y, Ji J, Cai Q, Jiang J, Zhang Z, Zhao L, Yu B, Zhang J. Blocking EGR1/TGF-β1 and CD44s/STAT3 Crosstalk Inhibits Peritoneal Metastasis of Gastric Cancer. Int J Biol Sci 2024; 20:1314-1331. [PMID: 38385088 PMCID: PMC10878142 DOI: 10.7150/ijbs.90598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Accepted: 01/19/2024] [Indexed: 02/23/2024] Open
Abstract
Peritoneal metastasis (PM) continues to limit the clinical efficacy of gastric cancer (GC). Early growth response 1 (EGR1) plays an important role in tumor cell proliferation, angiogenesis and invasion. However, the role of EGR1 derived from the tumor microenvironment in reshaping the phenotypes of GC cells and its specific molecular mechanisms in increasing the potential for PM are still unclear. In this study, we reported that EGR1 was significantly up-regulated in mesothelial cells from GC peritoneal metastases, leading to enhanced epithelial-mesenchymal transformation (EMT) and stemness phenotypes of GC cells under co-culture conditions. These phenotypes were achieved through the transcription and secretion of TGF-β1 by EGR1 in mesothelial cells, which could regulate the expression and internalization of CD44s. After being internalized into the cytoplasm, CD44s interacted with STAT3 to promote STAT3 phosphorylation and activation, and induced EMT and stemness gene transcription, thus positively regulating the metastasis of GC cells. Moreover, TGF-β1 secretion in the PM microenvironment was significantly increased compared with the matched primary tumor. The blocking effect of SHR-1701 on TGF-β1 was verified by inhibiting peritoneal metastases in xenografts. Collectively, the interplay of EGR1/TGF-β1/CD44s/STAT3 signaling between mesothelial cells and GC cells induces EMT and stemness phenotypes, offering potential as a therapeutic target for PM of GC.
Collapse
Affiliation(s)
- Yangbing Jin
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chao Wang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Benyan Zhang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Ying Sun
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Ji
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Qu Cai
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jinling Jiang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Zhihao Zhang
- Clinical Research and Development, Jiangsu Hengrui Pharmaceuticals Co. Ltd, Shanghai, 201203, China
| | - Liqin Zhao
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Beiqin Yu
- Department of General Surgery, Shanghai Key Laboratory of Gastric Neoplasms, Shanghai Institute of Digestive Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jun Zhang
- Department of Oncology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Department of Oncology, Wuxi Branch of Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No 197 Zhixian Road, Xinwu District, Wuxi, 214028, China
| |
Collapse
|
9
|
Chuang HW, Lin LH, Ji DD, Fu TY, Lee HS, Yang YF, Tseng HC, Hsia KT. Serpin peptidase inhibitor, clade E, member 2 is associated with malignant progression and clinical prognosis in oral squamous cell carcinoma. J Dent Sci 2024; 19:70-78. [PMID: 38303830 PMCID: PMC10829680 DOI: 10.1016/j.jds.2023.05.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Revised: 05/19/2023] [Indexed: 02/03/2024] Open
Abstract
Background/purpose The serpin peptidase inhibitor, clade E, member 2 (SERPINE2), is upregulated in breast cancer, prostate cancer, and urothelial carcinoma; however, limited information exists regarding its expression in oral cancer. Therefore, this study aimed to analyze the association between SERPINE2 expression and oral squamous cell carcinoma (OSCC) outcomes. Materials and methods SERPINE2 mRNA and protein expression in patients with head and neck squamous cell carcinoma and OSCC were investigated using online databases and tissue-array analysis. Its relationship with clinicopathological characteristics, OSCC prognosis and its biological function in OSCC cells were explored. Results Analysis using online databases revealed higher SERPINE2 expression in tumor tissues and its role as a prognostic factor. High SERPINE2 protein levels were significantly correlated with adverse pathological parameters, including advanced clinical stage and tumor status (P < 0.001), lymph nodes (P = 0.014), and distant metastases (P = 0.013). High SERPINE2 expression was associated with worse overall survival (P < 0.001) and was identified as an independent prognostic factor for OSCC. In vitro studies revealed that SERPINE2 knockdown significantly reduced cell proliferation, migration, and invasion in OSCC cell lines. Conclusion This study suggests that SERPINE2 may serve as a prognostic biomarker and potential therapeutic target for oral cancer.
Collapse
Affiliation(s)
- Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Li-Han Lin
- Department of Medical Research, MacKay Memorial Hospital, Taipei, Taiwan
| | - Dar-Der Ji
- Department of Tropical Medicine, School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ting-Ying Fu
- Department of Pathology, Yuan's General Hospital, Kaohsiung, Taiwan
| | - Herng-Sheng Lee
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Hsing-Cheng Tseng
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan
| | - Kan-Tai Hsia
- Institute of Oral Biology, College of Dentistry, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
10
|
Zhao D, Li W, Wang Y, Zhang G, Bai X, Yu H. HTRA1 expression is associated with immune-cell infiltration and survival in breast cancer. Transl Cancer Res 2023; 12:3503-3521. [PMID: 38197075 PMCID: PMC10774071 DOI: 10.21037/tcr-23-773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2023] [Accepted: 10/18/2023] [Indexed: 01/11/2024]
Abstract
Background High temperature requirement A1 (HTRA1), a member of the HTRA family, is a serine peptidase involved in many crucial bioprocesses such as proliferation, mitochondrial homeostasis, apoptosis, and protein quality control. It also plays an important role in the development of various tumors. However, the potential role and mechanisms of action of HTRA1 in breast cancer (BRCA) remain unclear. We conducted a bioinformatics-based study to investigate HTRA1 expression in BRCA alongside its associations with immune-cell infiltrates and survival outcomes. Methods The expression of HTRA1 in BRCA samples was analyzed using RNAseq datasets from The Cancer Genome Atlas and Gene Expression Omnibus. R software was employed to assess the relationship between HTRA1 expression and clinicopathological characteristics, tumor-infiltrating immune cells, and immunity-associated biomarkers in BRCA. MethSurv and cBioPortal database were utilized to evaluate DNA methylation and genovariation within the HTRA1 DNA. Receiver operating characteristic curves, Kaplan-Meier analysis, and Cox regression were performed to estimate the impact of HTRA1 on diagnosis, prognosis, and response to chemotherapy in BRCA. Results HTRA1 expression was significantly downregulated in BRCA tissues compared to adjacent normal breast tissue controls. Differentially expressed genes associated with HTRA1 expression primarily enriched in cell proliferation pathways. Furthermore, altered HTRA1 expression significantly correlated with patient age, tumor histological type, T stage, progesterone receptor/estrogen receptor status, and PAM50 subtype of BRCA. Both positive and negative associations were observed between HTRA1 levels and the abundance of different types of immune cells, as well as immune biomarkers, including resting mast cells, follicular helper T cells, PD-L1, p53, and Ki67. Low HTRA1 expression was related with pathological complete response in luminal B BRCA patients undergoing chemotherapy. Additionally, lower HTRA1 expression in BRCA was associated with inferior overall survival and relapse-free survival. Conclusions HTRA1 expression is associated with immune-cell infiltration, response to chemotherapy, and survival outcomes in BRCA. HTRA1 has the potential to serve as a promising biomarker and therapeutic target moving forward.
Collapse
Affiliation(s)
- Dawei Zhao
- Department of Breast Cancer, Jilin Cancer Hospital, Changchun, China
| | - Wanfeng Li
- Department of Breast Cancer, Jilin Cancer Hospital, Changchun, China
| | - Yan Wang
- Department of Breast Cancer, Jilin Cancer Hospital, Changchun, China
| | - Gengyue Zhang
- Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, China
| | - Xinhua Bai
- Department of Pathology, Jilin Cancer Hospital, Changchun, China
| | - Hong Yu
- Jilin Province Institute of Cancer Prevention and Treatment, Jilin Cancer Hospital, Changchun, China
| |
Collapse
|
11
|
Wang C, Zhao X, Zhao L, Wang Y, Jia Y, Zhang X, Ma W. PKCζ phosphorylates VASP to mediate chemotaxis in breast cancer cells. Exp Cell Res 2023; 433:113823. [PMID: 37890607 DOI: 10.1016/j.yexcr.2023.113823] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2023] [Revised: 09/17/2023] [Accepted: 10/15/2023] [Indexed: 10/29/2023]
Abstract
Breast carcinoma (BC) is one of the most common malignant cancers in females, and metastasis remains the leading cause of death in these patients. Chemotaxis plays an important role in cancer cell metastasis and the mechanism of breast cancer chemotaxis has become a central issue in contemporary research. PKCζ, a member of the atypical PKC family, has been reported to be an essential component of the EGF-stimulated chemotactic signaling pathway. However, the molecular mechanism through which PKCζ regulates chemotaxis remains unclear. Here, we used a proteomic approach to identify PKCζ-interacting proteins in breast cancer cells and identified VASP as a potential binding partner. Intriguingly, stimulation with EGF enhanced this interaction and induced the translocalization of PKCζ and VASP to the cell membrane. Further experiments showed that PKCζ catalyzes the phosphorylation of VASP at Ser157, which is critical for the biological function of VASP in regulating chemotaxis and actin polymerization in breast cancer cells. Furthermore, in PKCζ knockdown BC cells, the enrichment of VASP at the leading edge was reduced, and its interaction with profilin1 was attenuated, thereby reducing the chemotaxis and overall motility of breast cancer cells after EGF treatment. In functional assays, PKCζ promoted chemotaxis and motility of BC cells through VASP. Our findings demonstrate that PKCζ, a new kinase of VASP, plays an important role in promoting breast cancer metastasis and provides a theoretical basis for expanding new approaches to tumor biotherapy.
Collapse
Affiliation(s)
- Chunqing Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China
| | - Xiaoqing Zhao
- Department of Clinical Laboratory Medicine, The Second Hospital, Cheeloo College of Medicine, Shandong University, 250012 Jinan, Shandong China
| | - Liqing Zhao
- Department of Pediatrics, Zaozhuang Municipal Hospital, Zaozhuang, Shandong 277000, China
| | - Yunqiu Wang
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China
| | - Yan Jia
- Department of Pathogen Biology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin 300070, China.
| | - Xiaofang Zhang
- Department of Clinical Laboratory Medicine, Tianjin Medical University General Hospital, Tianjin, China.
| | - Wanshan Ma
- Department of Clinical Laboratory Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Shandong Medicine and Health Key Laboratory of Laboratory Medicine China.
| |
Collapse
|
12
|
Zhang D, Sun R, Di C, Li L, Zhao F, Han Y, Zhang W. Microdissection of cancer-associated fibroblast infiltration subtypes unveils the secreted SERPINE2 contributing to immunosuppressive microenvironment and immuotherapeutic resistance in gastric cancer: A large-scale study integrating bulk and single-cell transcriptome profiling. Comput Biol Med 2023; 166:107406. [PMID: 37729702 DOI: 10.1016/j.compbiomed.2023.107406] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2023] [Revised: 07/23/2023] [Accepted: 08/26/2023] [Indexed: 09/22/2023]
Abstract
In the era of immunotherapy, the suboptimal response rate and the development of acquired resistance among the initial beneficiaries continue to present significant challenges across multiple malignancies, including gastric cancer (GC). Considering that the interactions of tumor stroma, especially the cancer-associated fibroblasts (CAFs), with immune and tumor cells, play indispensable roles in tumor progression, tumor microenvironment remodeling and therapeutic responsiveness, in-depth exploration on the roles of CAFs and pivotal mediators of their functions may provide novel clues to increase the effectiveness of current immunotherapeutic drugs and further achieve synergistic antitumor response. Herein, through the consensus clustering of canonical biomarkers, three GC subclasses with different abundance of CAFs were virtually microdissected in four integrated bulk cohorts encompassing 2148 GC patients from 11 independent datasets. An extensive immunogenomic analysis revealed that tumors with high CAFs infiltration were characterized with unfavorable outcomes, aggressive phenotypes, decreased tumor immunogenicity, high risk of immune evasion and thus immunotherapeutic resistance. By leveraging large-scale single-cell transcriptomic profiling, a series of CAF-secreted proteins were identified, among which the SERPINE2 was confirmed to be restrictively enriched in stromal fibroblasts of GC tissues and contribute to promoting a protumor milieu and fostering an immunosuppressive microenvironment via bioinformatics computations and tissue microarray analysis. Moreover, pan-cancer investigations generalized the immunological roles of SERPINE2, especially in pan-gastrointestinal malignancies, with multiple real-world immunotherapy cohorts further confirming its implications on predicting immunotherapeutic efficacy. In conclusion, these findings suggest that the CAF-derived SERPINE2 is a promising immune-oncology target with therapeutic implications to further synergize the immunotherapeutic combinations.
Collapse
Affiliation(s)
- Dong Zhang
- Department of Breast and Thyroid Surgery, General Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China; Department of Breast and Thyroid Surgery, General Surgery, Shandong Provincial Hospital Affiliated to Shandong University, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, 250021, China; Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China.
| | - Rui Sun
- Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China; Department of Obstetrics and Gynecology, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China
| | - Chenyu Di
- Department of Breast Surgery, General Surgery, Qilu Hospital of Shandong University, Jinan, Shandong, 250012, China; Department of Clinical Medicine, The First Clinical College, Shandong University, Jinan, Shandong, 250012, China
| | - Lin Li
- Department of Anesthesiology and Perioperative Medicine, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250000, China
| | - Faming Zhao
- Key Laboratory of Environmental Health, Ministry of Education & Ministry of Environmental Protection, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Yu Han
- Department of Pathology, Shengli Oilfield Central Hospital, Dongying, Shandong, 257000, China
| | - Wenjie Zhang
- Department of General Surgery, The First Affiliated Hospital of Shandong First Medical University, Jinan, Shandong, 250011, China; Department of General Surgery, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, Shandong, 250011, China.
| |
Collapse
|
13
|
Tsai CC, Yang YCSH, Chen YF, Huang LY, Yang YN, Lee SY, Wang WL, Lee HL, Whang-Peng J, Lin HY, Wang K. Integrins and Actions of Androgen in Breast Cancer. Cells 2023; 12:2126. [PMID: 37681860 PMCID: PMC10486718 DOI: 10.3390/cells12172126] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 08/16/2023] [Accepted: 08/19/2023] [Indexed: 09/09/2023] Open
Abstract
Androgen has been shown to regulate male physiological activities and cancer proliferation. It is used to antagonize estrogen-induced proliferative effects in breast cancer cells. However, evidence indicates that androgen can stimulate cancer cell growth in estrogen receptor (ER)-positive and ER-negative breast cancer cells via different types of receptors and different mechanisms. Androgen-induced cancer growth and metastasis link with different types of integrins. Integrin αvβ3 is predominantly expressed and activated in cancer cells and rapidly dividing endothelial cells. Programmed death-ligand 1 (PD-L1) also plays a vital role in cancer growth. The part of integrins in action with androgen in cancer cells is not fully mechanically understood. To clarify the interactions between androgen and integrin αvβ3, we carried out molecular modeling to explain the potential interactions of androgen with integrin αvβ3. The androgen-regulated mechanisms on PD-L1 and its effects were also addressed.
Collapse
Affiliation(s)
- Chung-Che Tsai
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Chen S. H. Yang
- Joint Biobank, Office of Human Research, Taipei Medical University, Taipei 11031, Taiwan;
| | - Yi-Fong Chen
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
| | - Lin-Yi Huang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (L.-Y.H.); (Y.-N.Y.)
| | - Yung-Ning Yang
- Department of Pediatrics, E-DA Hospital, I-Shou University, Kaohsiung 82445, Taiwan; (L.-Y.H.); (Y.-N.Y.)
- School of Medicine, I-Shou University, Kaohsiung 82445, Taiwan
| | - Sheng-Yang Lee
- Dentistry, Wan-Fang Medical Center, Taipei Medical University, Taipei 11031, Taiwan;
- School of Dentistry, College of Oral Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Wen-Long Wang
- Department of Life Science, Fu Jen Catholic University, New Taipei City 242, Taiwan;
| | - Hsin-Lun Lee
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan;
- Department of Radiation Oncology, Taipei Medical University Hospital, Taipei 110, Taiwan
- The Ph.D. Program for Translational Medicine, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei 11031, Taiwan
| | | | - Hung-Yun Lin
- Graduate Institute of Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei 11031, Taiwan; (C.-C.T.); (Y.-F.C.)
- Cancer Center, Wan Fang Hospital, Taipei Medical University, Taipei 11031, Taiwan;
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Traditional Herbal Medicine Research Center of Taipei Medical University Hospital, Taipei Medical University, Taipei 11031, Taiwan
- Pharmaceutical Research Institute, Albany College of Pharmacy and Health Sciences, Albany, NY 12208, USA
| | - Kuan Wang
- Graduate Institute of Nanomedicine and Medical Engineering, College of Medical Engineering, Taipei Medical University, Taipei 11031, Taiwan
| |
Collapse
|
14
|
Zhang Y, Cheng F, Ma J, Shi G, Deng H. Development of cancer-associated fibroblast-related gene signature for predicting the survival and immunotherapy response in lung adenocarcinoma. Aging (Albany NY) 2023; 15:204774. [PMID: 37280069 PMCID: PMC10292873 DOI: 10.18632/aging.204774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Accepted: 05/16/2023] [Indexed: 06/08/2023]
Abstract
The present study aims to construct a predictive model for prognosis and immunotherapy response in lung adenocarcinoma (LUAD). Transcriptome data were extracted from the Cancer Genome Atlas (TCGA), GSE41271, and IMvigor210. The weighted gene correlation network analysis was utilized to identify the hub modules related to immune/stromal cells. Then, univariate, LASSO, and multivariate Cox regression analyses were employed to develop a predictive signature based on genes of the hub module. Moreover, the association between the predictive signature and immunotherapy response was also investigated. As a result, seven genes (FGF10, SERINE2, LSAMP, STXBP5, PDE5A, GLI2, FRMD6) were screened to develop the cancer associated fibroblasts (CAFs)-related risk signature (CAFRS). LUAD patients with high-risk score underwent shortened Overall survival (OS). A strong correlation was found between CAFRS and immune infiltrations/functions. The gene set variation analysis showed that G2/M checkpoint, epithelial-mesenchymal transition, hypoxia, glycolysis, and PI3K-Akt-mTOR pathways were greatly enriched in the high-risk subgroup. Moreover, patients with higher risk score were less likely to respond to immunotherapy. A nomogram based on CAFRS and Stage presented a stronger predictive performance for OS than the single indicator. In conclusion, the CAFRS exhibited a potent predictive value for OS and immunotherapy response in LUAD.
Collapse
Affiliation(s)
- Yong Zhang
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Fuyi Cheng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Jinhu Ma
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Gang Shi
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| | - Hongxin Deng
- Department of Biotherapy, Cancer Center and State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu 610041, Sichuan, China
| |
Collapse
|
15
|
Zhou B, Mo Z, Lai G, Chen X, Li R, Wu R, Zhu J, Zheng F. Targeting tumor exosomal circular RNA cSERPINE2 suppresses breast cancer progression by modulating MALT1-NF-𝜅B-IL-6 axis of tumor-associated macrophages. J Exp Clin Cancer Res 2023; 42:48. [PMID: 36797769 PMCID: PMC9936722 DOI: 10.1186/s13046-023-02620-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Accepted: 02/09/2023] [Indexed: 02/18/2023] Open
Abstract
BACKGROUND Circular RNAs (circRNAs) have important regulatory functions in cancer, but the role of circRNAs in the tumor microenvironment (TME) remains unclear. Moreover, we also explore the effects of si-circRNAs loaded in nanoparticles as therapeutic agent for anti-tumor in vivo. METHODS We conducted bioinformatics analysis, qRT-PCR, EdU assays, Transwell assays, co-culture system and multiple orthotopic xenograft models to investigate the expression and function of circRNAs. Additionally, PLGA-based nanoparticles loaded with si-circRNAs were used to evaluate the potential of nanotherapeutic strategy in anti-tumor response. RESULTS We identified oncogene SERPINE2 derived circRNA, named as cSERPINE2, which was notably elevated in breast cancer and was closely related to poor clinical outcome. Functionally, tumor exosomal cSERPINE2 was shuttled to tumor associated macrophages (TAMs) and enhanced the secretion of Interleukin-6 (IL-6), leading to increased proliferation and invasion of breast cancer cells. Furthermore, IL-6 in turn increased the EIF4A3 and CCL2 levels within tumor cells in a positive feedback mechanism, further enhancing tumor cSERPINE2 biogenesis and promoting the recruitment of TAMs. More importantly, we developed a PLGA-based nanoparticle loaded with si-cSERPINE2, which effectively attenuated breast cancer progression in vivo. CONCLUSIONS Our study illustrates a novel mechanism that tumor exosomal cSERPINE2 mediates a positive feedback loop between tumor cells and TAMs to promote cancer progression, which may serve as a promising nanotherapeutic strategy for the treatment of breast cancer.
Collapse
Affiliation(s)
- Boxuan Zhou
- grid.452437.3Department of Breast Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China ,grid.412536.70000 0004 1791 7851Medical Research Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120 China
| | - Zhaohong Mo
- grid.412558.f0000 0004 1762 1794Department of Hepatobiliary Surgery, the Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, 510630 China
| | - Guie Lai
- grid.452437.3Department of Breast Surgery, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China
| | - Xiaohong Chen
- grid.452437.3Department of Laboratory, the First Affiliated Hospital of Gannan Medical University, Ganzhou, 341000 China
| | - Ruixi Li
- grid.12981.330000 0001 2360 039XDepartment of Hepatobiliary and Pancreatic Surgery, The Eighth Affiliated Hospital, Sun Yat-Sen University, Shenzhen, 518033 China
| | - Runxin Wu
- grid.12981.330000 0001 2360 039XZhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510080 China
| | - Jia Zhu
- Department of Breast Surgery, the First Affiliated Hospital of Nanchang University, Nanchang, 330000, China.
| | - Fang Zheng
- Medical Research Center and Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
16
|
Black JD, Affandi T, Black AR, Reyland ME. PKCα and PKCδ: Friends and Rivals. J Biol Chem 2022; 298:102194. [PMID: 35760100 PMCID: PMC9352922 DOI: 10.1016/j.jbc.2022.102194] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Revised: 06/13/2022] [Accepted: 06/21/2022] [Indexed: 01/06/2023] Open
Abstract
PKC comprises a large family of serine/threonine kinases that share a requirement for allosteric activation by lipids. While PKC isoforms have significant homology, functional divergence is evident among subfamilies and between individual PKC isoforms within a subfamily. Here, we highlight these differences by comparing the regulation and function of representative PKC isoforms from the conventional (PKCα) and novel (PKCδ) subfamilies. We discuss how unique structural features of PKCα and PKCδ underlie differences in activation and highlight the similar, divergent, and even opposing biological functions of these kinases. We also consider how PKCα and PKCδ can contribute to pathophysiological conditions and discuss challenges to targeting these kinases therapeutically.
Collapse
Affiliation(s)
- Jennifer D Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE.
| | - Trisiani Affandi
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus
| | - Adrian R Black
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE
| | - Mary E Reyland
- Department of Craniofacial Biology, School of Dental Medicine, University of Colorado Anschutz Medical Campus.
| |
Collapse
|
17
|
Bhattacharya A, Fushimi A, Yamashita N, Hagiwara M, Morimoto Y, Rajabi H, Long MD, Abdulla M, Ahmad R, Street K, Liu S, Liu T, Kufe D. MUC1-C Dictates JUN and BAF-Mediated Chromatin Remodeling at Enhancer Signatures in Cancer Stem Cells. Mol Cancer Res 2022; 20:556-567. [PMID: 35022313 PMCID: PMC8983489 DOI: 10.1158/1541-7786.mcr-21-0672] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 11/15/2021] [Accepted: 01/03/2022] [Indexed: 11/16/2022]
Abstract
The oncogenic MUC1-C protein promotes dedifferentiation of castrate-resistant prostate cancer (CRPC) and triple-negative breast cancer (TNBC) cells. Chromatin remodeling is critical for the cancer stem cell (CSC) state; however, there is no definitive evidence that MUC1-C regulates chromatin accessibility and thereby expression of stemness-associated genes. We demonstrate that MUC1-C drives global changes in chromatin architecture in the dedifferentiation of CRPC and TNBC cells. Our results show that MUC1-C induces differentially accessible regions (DAR) across their genomes, which are significantly associated with differentially expressed genes (DEG). Motif and cistrome analysis further demonstrated MUC1-C-induced DARs align with genes regulated by the JUN/AP-1 family of transcription factors. MUC1-C activates the BAF chromatin remodeling complex, which is recruited by JUN in enhancer selection. In studies of the NOTCH1 gene, which is required for CRPC and TNBC cell self-renewal, we demonstrate that MUC1-C is necessary for (i) occupancy of JUN and ARID1A/BAF, (ii) increases in H3K27ac and H3K4me3 signals, and (iii) opening of chromatin accessibility on a proximal enhancer-like signature. Studies of the EGR1 and LY6E stemness-associated genes further demonstrate that MUC1-C-induced JUN/ARID1A complexes regulate chromatin accessibility on proximal and distal enhancer-like signatures. These findings uncover a role for MUC1-C in chromatin remodeling that is mediated at least in part by JUN/AP-1 and ARID1A/BAF in association with driving the CSC state. IMPLICATIONS These findings show that MUC1-C, which is necessary for the CRPC and TNBC CSC state, activates a novel pathway involving JUN/AP-1 and ARID1A/BAF that regulates chromatin accessibility of stemness-associated gene enhancers.
Collapse
Affiliation(s)
| | - Atsushi Fushimi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Nami Yamashita
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Masayuki Hagiwara
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Yoshihiro Morimoto
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Hasan Rajabi
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - Mark D Long
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Maha Abdulla
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Rehan Ahmad
- Colorectal Research Chair, Department of Surgery, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Kelly Street
- Department of Data Science, Dana-Farber Cancer Institute, Department of Biostatistics, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Song Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Tao Liu
- Department of Biostatistics and Bioinformatics, Roswell Park Comprehensive Cancer Center, Buffalo, New York
| | - Donald Kufe
- Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
18
|
Gao J, Zhu L, Zhuang H, Lin B. Human Epididymis Protein 4 and Lewis y Enhance Chemotherapeutic Resistance in Epithelial Ovarian Cancer Through the p38 MAPK Pathway. Adv Ther 2022; 39:360-378. [PMID: 34739698 DOI: 10.1007/s12325-021-01941-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/30/2021] [Indexed: 11/29/2022]
Abstract
INTRODUCTION Ovarian cancer has a high mortality rate due to difficulties in early detection and chemotherapy resistance. Human epididymal protein 4 (HE4) has been adopted as a novel serum biomarker for early ovarian cancer diagnosis, and the presence of Lewis y antigen modifications on HE4 in ovarian cancer cell lines has been detected in previous studies. The aim of this study was to analyze the expression of HE4 and Lewis y antigen in human ovarian cancer in order to find a correlation between them, as well as with the clinical pathological parameters of patients with ovarian cancer. METHODS Immunohistochemistry was used to detect the respective expression of these compounds in two patient groups (chemotherapy-resistant and chemotherapy-sensitive) containing a total of 95 patients. Then, a bioinformatic approach was adopted and online large sample databases (TCGA, CCLE, and GTEx; Metascape, Cytoscape) were used to explore the potential mechanisms of action of these compounds. RESULTS The results of this study demonstrate that high HE4 and Lewis y expression could be used as markers for chemotherapy resistance and poor prognosis in patients with ovarian cancer. These two expression events were widely correlated in various cancer tissues and are thought to act by activating the p38 mitogen-activated protein kinases (MAPK) pathway and inducing Vascular Endothelial Growth Factor A (VEGFA), Prostaglandin-Endoperoxide Synthase 2 (PTGS2), Early Growth Response 1 (EGR1), and Hypoxia-Inducible Factor 1-Alpha (HIFI1A), thereby promoting malignant biological behavior and resistance in ovarian cancer. CONCLUSIONS These findings not only reveal the possible mechanism by which HE4 and Lewis y antigen affect ovarian cancer but also identify a four-gene signature that could be very useful in ovarian cancer detection and/or the development of new targeted therapies.
Collapse
Affiliation(s)
- Jian Gao
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, Liaoning, China
| | - Liancheng Zhu
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, Liaoning, China
| | - Huiyu Zhuang
- Department of Obstetrics and Gynecology, Beijing Chaoyang Hospital Affiliated To Capital Medical University, Beijing, 100043, China
| | - Bei Lin
- Department of Obstetrics and Gynecology, Shengjing Hospital of China Medical University, Shenyang, 110004, Liaoning, China.
- Key Laboratory of Maternal-Fetal Medicine of Liaoning Province, Key Laboratory of Obstetrics and Gynecology of Higher Education of Liaoning Province, Benxi, Liaoning, China.
| |
Collapse
|
19
|
Chuang HW, Hsia KT, Liao JB, Yeh CC, Kuo WT, Yang YF. SERPINE2 Overexpression Is Associated with Poor Prognosis of Urothelial Carcinoma. Diagnostics (Basel) 2021; 11:diagnostics11101928. [PMID: 34679626 PMCID: PMC8535068 DOI: 10.3390/diagnostics11101928] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 10/07/2021] [Accepted: 10/15/2021] [Indexed: 01/17/2023] Open
Abstract
Recent studies have reported that SERPINE2 contributes to the development of various cancers. However, its association with urothelial carcinoma (UC) remains unclear. In this study, data on urinary bladder UC (UBUC) cases from The Cancer Genome Atlas (TCGA) database were used to investigate the prognostic value of SERPINE2 mRNA expression. Then, SERPINE2 expression was analyzed with tissue microarrays constructed from 117 upper tract UC (UTUC) and 84 UBUC tissue specimens using immunohistochemical staining. Results were compared to clinicopathologic data by multivariate analysis. In the TCGA database, high SERPINE2 mRNA expression indicated a poor prognosis in patients with UBUC. Furthermore, Mann-Whitney U test showed that high SERPINE2 immunoexpression was significantly associated with adverse pathologic parameters including invasion, high grade, coexistence of UC in situ, and advanced pT stage (all p < 0.05, except for a marginal association with high-grade UBUC, p = 0.066). Kaplan-Meier analysis revealed that high SERPINE2 expression was associated with worse overall survival (OS; UTUC, p = 0.003; UBUC, p = 0.014) and disease-free survival (UTUC, p = 0.031; UBUC, p = 0.033). Moreover, multivariate analysis identified high SERPINE2 expression as an independent prognostic factor for OS (UTUC, p = 0.002; UBUC, p = 0.024). Taken together, our findings demonstrated that increased SERPINE2 expression is associated with adverse pathologic features and may serve as a prognostic biomarker for UC.
Collapse
Affiliation(s)
- Hao-Wen Chuang
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (H.-W.C.); (J.-B.L.); (C.-C.Y.)
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Kan-Tai Hsia
- Institute of Oral Biology, School of Dentistry, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan;
| | - Jia-Bin Liao
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (H.-W.C.); (J.-B.L.); (C.-C.Y.)
| | - Chih-Ching Yeh
- Department of Pathology and Laboratory Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan; (H.-W.C.); (J.-B.L.); (C.-C.Y.)
- Department of Nursing, Shu-Zen Junior College of Medicine and Management, Kaohsiung 82144, Taiwan
| | - Wei-Ting Kuo
- Division of Urology, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Institute of Clinical Medicine, National Yang Ming Chiao Tung University, Taipei 11221, Taiwan
- Correspondence: (W.-T.K.); (Y.-F.Y.)
| | - Yi-Fang Yang
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung 813414, Taiwan
- Correspondence: (W.-T.K.); (Y.-F.Y.)
| |
Collapse
|
20
|
Chen M, Yang S, Wu Y, Zhao Z, Zhai X, Dong D. High temperature requirement A1 in cancer: biomarker and therapeutic target. Cancer Cell Int 2021; 21:513. [PMID: 34563186 PMCID: PMC8466973 DOI: 10.1186/s12935-021-02203-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Accepted: 09/06/2021] [Indexed: 12/16/2022] Open
Abstract
As the life expectancy of the population increases worldwide, cancer is becoming a substantial public health problem. Considering its recurrence and mortality rates, most cancer cases are difficult to cure. In recent decades, a large number of studies have been carried out on different cancer types; unfortunately, tumor incidence and mortality have not been effectively improved. At present, early diagnostic biomarkers and accurate therapeutic strategies for cancer are lacking. High temperature requirement A1 (HtrA1) is a trypsin-fold serine protease that is also a chymotrypsin-like protease family member originally discovered in bacteria and later discovered in mammalian systems. HtrA1 gene expression is decreased in diverse cancers, and it may play a role as a tumor suppressor for promoting the death of tumor cells. This work aimed to examine the role of HtrA1 as a cell type-specific diagnostic biomarker or as an internal and external regulatory factor of diverse cancers. The findings of this study will facilitate the development of HtrA1 as a therapeutic target.
Collapse
Affiliation(s)
- Mingming Chen
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Shilei Yang
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China
| | - Yu Wu
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Zirui Zhao
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.,Department of Clinical Pharmacology, College of Pharmacy, Dalian Medical University, Dalian, China
| | - Xiaohan Zhai
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| | - Deshi Dong
- Department of Pharmacy, The First Affiliated Hospital of Dalian Medical University, 222, Zhongshan Road, Xigang District, 116011, Dalian, China.
| |
Collapse
|
21
|
Tang X, Zhou T, Shen J, Luo M, Yuan H, Pan D, Li F. The expression and potential mechanism of EGFR and EZH2 in breast cancer. Gland Surg 2021; 10:2535-2545. [PMID: 34527565 DOI: 10.21037/gs-21-505] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2021] [Accepted: 08/17/2021] [Indexed: 12/24/2022]
Abstract
Background The purpose of our research was to investigate the expression of epidermal growth factor receptor (EGFR) and zeste gene enhancer homolog 2 (EZH2) in breast cancer, and to explore their potential common pathways. Methods Western blot and quantitative real-time polymerase chain reaction (qRT-PCR) were used to detect the protein and corresponding mRNA expression of EGFR and EZH2 in breast cancer tissues and benign tissues. Then, the relationship between EGFR and EZH2 along with the corresponding clinicopathological parameters were also analyzed. Bioinformatics tools were applied to explore the possible common pathways. Results The results showed that both EGFR and EZH2 protein and mRNA were highly expressed in breast cancer tissues, and there was a positive correlation between EGFR and EZH2. Moreover, we found that increased mRNA expression was correlated with lymph node metastasis and clinical stage (P<0.05). Furthermore, the enrichment results of co-expressed genes indicated that EGFR and EZH2 may work together in the FOXO signaling pathway, affecting the growth and metastasis of breast cancer cells. Conclusions The high expression of both EGFR and EZH2 mRNA in breast cancer was related to lymph node metastasis and clinical staging. The FOXO signaling pathway may be their common signaling pathway that affects tumor cell invasion and metastasis.
Collapse
Affiliation(s)
- Xiaoqi Tang
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Taosheng Zhou
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiayue Shen
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Ming Luo
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huiming Yuan
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Denghua Pan
- Department of Ultrasonography, Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Fu Li
- Department of Gastrointestinal and Gland Surgery, First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
22
|
Molecular Changes Induced in Melanoma by Cell Culturing in 3D Alginate Hydrogels. Cancers (Basel) 2021; 13:cancers13164111. [PMID: 34439267 PMCID: PMC8394053 DOI: 10.3390/cancers13164111] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Revised: 08/08/2021] [Accepted: 08/12/2021] [Indexed: 12/28/2022] Open
Abstract
Simple Summary The research field of 3D cell cultivation in hydrogels is continuously growing. To be able to analyze the reaction of melanoma cells to 3D cultivation in alginate hydrogel on a molecular level, whole transcriptome sequencing was performed. Intriguingly, we could not only unravel differences between the gene regulation in 2D and 3D cultures but could also correlate the culture switch to the physiological process of tumor plasticity based on the observed patterns. Thereby, the role of EGR1 in controlling tumor plasticity and progression in melanoma was revealed. We conclude that the combination of cell culture models using biomaterials and whole transcriptome analysis leads to a deeper molecular understanding of cancer cells, herewith defining new therapeutic targets. Abstract Alginate hydrogels have been used as a biomaterial for 3D culturing for several years. Here, gene expression patterns in melanoma cells cultivated in 3D alginate are compared to 2D cultures. It is well-known that 2D cell culture is not resembling the complex in vivo situation well. However, the use of very intricate 3D models does not allow performing high-throughput screening and analysis is highly complex. 3D cell culture strategies in hydrogels will better mimic the in vivo situation while they maintain feasibility for large-scale analysis. As alginate is an easy-to-use material and due to its favorable properties, it is commonly applied as a bioink component in the growing field of cell encapsulation and biofabrication. Yet, only a little information about the transcriptome in 3D cultures in hydrogels like alginate is available. In this study, changes in the transcriptome based on RNA-Seq data by cultivating melanoma cells in 3D alginate are analyzed and reveal marked changes compared to cells cultured on usual 2D tissue culture plastic. Deregulated genes represent valuable cues to signaling pathways and molecules affected by the culture method. Using this as a model system for tumor cell plasticity and heterogeneity, EGR1 is determined to play an important role in melanoma progression.
Collapse
|
23
|
Hao L, Huang F, Yu X, Xu B, Liu Y, Zhang Y, Zhu Y. The Role of Early Growth Response Family Members 1-4 in Prognostic Value of Breast Cancer. Front Genet 2021; 12:680132. [PMID: 34178038 PMCID: PMC8220134 DOI: 10.3389/fgene.2021.680132] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Accepted: 04/26/2021] [Indexed: 12/20/2022] Open
Abstract
Early growth response family members (EGRs), EGR1–4, have increasingly attracted attention in multiple cancers. However, the exact expression patterns and prognostic values of EGRs in the progress of breast cancer (BRCA) remain largely unknown. The mRNA expression and prognostic characteristics of EGRs were examined by the Cancer Genome Atlas (TCGA), Oncomine, and Kaplan-Meier plotter. Enrichment analyses were conducted based on protein-protein interaction (PPI) network. The Tumor Immune Estimation Resource (TIMER) database and MethSurv were further explored. The protein expression of EGR1 in BRCA was measured by western blotting and immunohistochemistry. The migration of mammary epithelial cells was determined by Boyden chamber assay. The transcriptional levels of EGR1/2/3 displayed significantly low expression in BRCA compared with that in normal tissues, while EGR4 was shown adverse expression pattern. Survival analysis revealed upregulated EGR1–4 were remarkably associated with favorable relapse-free survival (RFS). A close correlation with specific tumor-infiltrating immune cells (TIICs) and several CpG sites of EGRs were exhibited. Immunohistochemistry assays showed that the protein expression of EGR1 was remarkably downregulated in BRCA compared with that in paracancerous tissues. The migration of MCF10A mammary epithelial cells was increased after the silence of EGR1 by siRNA transfection. This study provides a novel insight to the role of EGRs in the prognostic value of BRCA.
Collapse
Affiliation(s)
- Leiyu Hao
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Fengru Huang
- Research Division of Clinical Pharmacology, First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xinqian Yu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Bujie Xu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Liu
- Department of Physiology, Nanjing Medical University, Nanjing, China
| | - Yan Zhang
- Department of Gynecology and Obstetrics, Wuxi Maternal and Child Health Hospital Affiliated to Nanjing Medical University, Wuxi, China
| | - Yichao Zhu
- Department of Physiology, Nanjing Medical University, Nanjing, China.,State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, China
| |
Collapse
|
24
|
Zhao J, Li H, Yuan M. EGR1 promotes stemness and predicts a poor outcome of uterine cervical cancer by inducing SOX9 expression. Genes Genomics 2021; 43:459-470. [PMID: 33687657 DOI: 10.1007/s13258-021-01064-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Accepted: 02/10/2021] [Indexed: 01/10/2023]
Abstract
BACKGROUND Early growth response-1 (EGR1) is a transcription factor involved in the progression of several cancer types. However, the expression and clinical significance of EGR1 in uterine cervical cancer (CC) have not been elucidated. OBJECTIVE To investigate the expression, clinical significance and prognostic value of EGR1 in CC. METHODS The expression of EGR1 was detected in 13 CCs and paired adjacent tissues with qRT-PCR and in 144 CC tissues with immunohistochemistry (IHC). The IHC scores were used to divide the patients into subsets with low and high EGR1 expression. The correlations between the EGR1 expression and clinicopathological factors were analyzed with the chi-square test, and the prognostic significance of EGR1 expression was evaluated with univariate and multivariate analyses. The functions of EGR1 in the proliferation, invasion and stemness of CC cells were investigated, and the molecular mechanism was assessed by in vitro experiments. RESULTS High expression of EGR1 was significantly associated with low survival rates of CC. EGR1 is an independent prognostic biomarker of CC, and its high expression predicted a poor outcome. EGR1 facilitated stemness and thus promoted proliferation and invasion of CC cells. SOX9 played an essential role in the EGR1-induced progression of CC cells. CONCLUSIONS EGR1 is an independent prognostic biomarker of CC. High EGR1 expression promoted proliferation, invasion and stemness by increasing SOX9 expression in CC cells. Our results suggested that the EGR1-SOX9 axis may be a potential drug target and that blocking the EGR1-SOX9 axis may be a possible approach to treating CC.
Collapse
Affiliation(s)
- Juanhong Zhao
- Department of Gynecology, Affiliated Hospital of Shandong Medical College, Linyi, Shandong, China
| | - Haixia Li
- Department of Gynecology, Women and Children's Health Care Hospital of Linyi, Linyi, Shandong, China
| | - Miao Yuan
- Department of Obstetrics and Gynecology, The First Affiliated Hospital of Shandong First Medical University, 16766 Jingshi Road, Jinan, 250014, Shandong, China. .,Department of Obstetrics and Gynecology, Shandong Provincial Qianfoshan Hospital, Shandong University, Jinan, China.
| |
Collapse
|
25
|
Zhang Z, Shi Z, Zhang S, Lu Q, Wei H, Wu X, Han L. Upregulated hsa_circ_0000129 expression promotes proliferation and migration of breast cancer cells. Oncol Lett 2021; 21:239. [PMID: 33664803 PMCID: PMC7882879 DOI: 10.3892/ol.2021.12500] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2019] [Accepted: 10/20/2020] [Indexed: 12/22/2022] Open
Abstract
Circular RNAs (circRNAs) are considered potential biomarkers in the pathogenesis and detection of several types of cancer. The present study aimed to investigate the role of hsa_circ_0000129 in the pathogenesis and molecular mechanism underlying breast cancer. A total of 68 pairs of breast cancer and corresponding paracancerous tissue samples, three different breast cancer cell lines (MCF-7, MDA-MB-231 and MDA-MB-468) and a normal human breast cell line (MCF-10A) were used to investigate the expression of hsa_circ_0000129. The effect of hsa_circ_0000129 on cell proliferation, migration and colony formation was assessed in MCF-7 and MDA-MB-468 cells, along with the expression of enhancer of zeste homolog 2 (EZH2). The results demonstrated that hsa_circ_0000129 expression was significantly higher in breast cancer tissues compared with normal tissues. In addition, high hsa_circ_0000129 expression was significantly associated with lymph node metastasis and a higher tumor-node-metastasis stage. Comparisons between the breast cancer cell lines (MCF-7, MDA-MB-231 and MDA-MB-468) and MCF-10A cells indicated similar results. MCF-7 cells overexpressed with hsa_circ_0000129 significantly increased cell proliferation, migration and colony formation compared with the negative control group, the effects of which were reversed following hsa_circ_0000129 knockdown in MDA-MB-468 cells. Furthermore, EZH2 expression was positively associated with hsa_circ_0000129 expression. Taken together, the results of the present study suggest that hsa_circ_0000129 may represent a promising prognostic biomarker for breast cancer. In addition, the role of hsa_circ_0000129 in breast cancer cell lines indicates a mechanism for tumorigenesis, as well as a potent target for the treatment of malignant progression.
Collapse
Affiliation(s)
- Zhenghua Zhang
- Department of Oncology, Jing'an District Centre Hospital of Shanghai, Huashan Hospital, Fudan University, Jing'an Branch, Shanghai 200040, P.R. China
| | - Zhan Shi
- Department of Clinical Oncology, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| | - Su Zhang
- Department of Traditional Chinese Medicine Jing'an District Centre Hospital of Shanghai, Huashan Hospital, Fudan University, Jing'an Branch, Shanghai 200040, P.R. China
| | - Qiong Lu
- Department of Oncology, Jing'an District Centre Hospital of Shanghai, Huashan Hospital, Fudan University, Jing'an Branch, Shanghai 200040, P.R. China
| | - Haimin Wei
- Department of Oncology, Jing'an District Centre Hospital of Shanghai, Huashan Hospital, Fudan University, Jing'an Branch, Shanghai 200040, P.R. China
| | - Xueyong Wu
- Department of Oncology, Jing'an District Centre Hospital of Shanghai, Huashan Hospital, Fudan University, Jing'an Branch, Shanghai 200040, P.R. China
| | - Li Han
- Department of Traditional Chinese Medicine, Huadong Hospital, Fudan University, Shanghai 200040, P.R. China
| |
Collapse
|
26
|
Ashrafizadeh M, Rafiei H, Mohammadinejad R, Farkhondeh T, Samarghandian S. Anti-tumor activity of resveratrol against gastric cancer: a review of recent advances with an emphasis on molecular pathways. Cancer Cell Int 2021; 21:66. [PMID: 33478512 PMCID: PMC7818776 DOI: 10.1186/s12935-021-01773-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/11/2021] [Indexed: 12/24/2022] Open
Abstract
Gastric cancer (GC) is one of the most common cancers with high malignancy. In spite of the great development in diagnostic tools and application of anti-tumor drugs, we have not witnessed a significant increase in the survival time of patients with GC. Multiple studies have revealed that Wnt, Nrf2, MAPK, and PI3K/Akt signaling pathways are involved in GC invasion. Besides, long non-coding RNAs and microRNAs function as upstream mediators in GC malignancy. GC cells have acquired resistance to currently applied anti-tumor drugs. Besides, combination therapy is associated with higher anti-tumor activity. Resveratrol (Res) is a non-flavonoid polyphenol with high anti-tumor activity used in treatment of various cancers. A number of studies have demonstrated the potential of Res in regulation of molecular pathways involved in cancer malignancy. At the present review, we show that Res targets a variety of signaling pathways to induce apoptotic cell death and simultaneously, to inhibit the migration and metastasis of GC cells.
Collapse
Affiliation(s)
- Milad Ashrafizadeh
- Faculty of Engineering and Natural Sciences, Sabanci University, Orta Mahalle, Üniversite Caddesi No. 27, Orhanlı, Tuzla, Istanbul, 34956, Turkey
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Tuzla, Istanbul, 34956, Turkey
| | - Hossein Rafiei
- Department of Biology, Faculty of Sciences, Shiraz Branch, Islamic Azad University, Shiraz, Iran
| | - Reza Mohammadinejad
- Pharmaceutics Research Center, Institute of Neuropharmacology, Kerman University of Medical Sciences, Kerman, Iran
| | - Tahereh Farkhondeh
- Medical Toxicology and Drug Abuse Research Center (MTDRC), Birjand University of Medical Sciences, Birjand, Iran
- Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Saeed Samarghandian
- Noncommunicable Diseases Research Center, Neyshabur University of Medical Sciences, Neyshabur, 9318614139, Iran.
| |
Collapse
|
27
|
High expression level of serpin peptidase inhibitor clade E member 2 is associated with poor prognosis in lung adenocarcinoma. Respir Res 2020; 21:331. [PMID: 33317533 PMCID: PMC7737331 DOI: 10.1186/s12931-020-01597-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 12/06/2020] [Indexed: 12/27/2022] Open
Abstract
Background Recent studies have revealed that serpin peptidase inhibitor clade E member 2 (SERPINE2) is associated with tumorigenesis. However, SERPINE2 expression and its role in lung adenocarcinomas are still unknown. Methods The expression levels of SERPINE2 in 74 consecutively resected lung adenocarcinomas were analyzed by using immunostaining. Inhibition of SERPINE2 expression by small interfering RNA (siRNA) was detected by quantitative PCR. Cell number assays and cell apoptosis assays were performed to clarify the cell-autonomous function of SERPINE2 in A549 and PC9 lung cancer cells. Results The overall survival of patients with high SERPINE2 expression was significantly worse than that of patients with low SERPINE2 expression (P = 0.0172). Multivariate analysis revealed that SERPINE2 expression was an independent factor associated with poor prognosis (P = 0.03237). The interference of SERPINE2 decreased cell number and increased apoptosis in A549 and PC9 cells Conclusion These results suggest that SERPINE2 can be used as a novel prognostic marker of lung adenocarcinoma.
Collapse
|
28
|
Fan X, Zhou J, Bi X, Liang J, Lu S, Yan X, Luo L, Yin Z. L-theanine suppresses the metastasis of prostate cancer by downregulating MMP9 and Snail. J Nutr Biochem 2020; 89:108556. [PMID: 33249185 DOI: 10.1016/j.jnutbio.2020.108556] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 08/26/2020] [Accepted: 11/21/2020] [Indexed: 12/18/2022]
Abstract
Prostate cancer (PCa) is a very prevalent male-specific malignancy; most PCa patients eventually die as a result of metastasis. L-theanine (C7H14N2O3), a nonprotein amino acid derivative from green tea leaves, has been demonstrated to act as an anticarcinogen through proapoptotic and antiproliferative effects. However, the antimetastatic effect of L-theanine in tumor cells and its underlying mechanism are still unclear. Here, we found that L-theanine could suppress invasion, migration, and increase cell-cell adhesion of prostate cancer cells in vitro and in vivo. We also found that L-theanine could inhibit the epithelial-mesenchymal transition process in PCa. Our study revealed that L-theanine could downregulate MMP9, N-cadherin, Vimentin, Snail, and upregulate E-cadherin. Furthermore, L-theanine suppressed the transcription of MMP9 and Snail by significantly inhibiting the ERK/NF-κB signaling pathway and the binding activity of p65 to the promoter regions of MMP9 and Snail. All of these findings suggest that L-theanine has therapeutic potential for metastatic PCa and may be considered a promising candidate for antimetastatic therapy of prostate cancer.
Collapse
Affiliation(s)
- Xirui Fan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Jinyi Zhou
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xiaowen Bi
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Juanjuan Liang
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Shuai Lu
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Xintong Yan
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China
| | - Lan Luo
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing, Jiangsu, People's Republic of China.
| | - Zhimin Yin
- Jiangsu Province Key Laboratory for Molecular and Medical Biotechnology, College of Life Science, Nanjing Normal University, Nanjing, Jiangsu, People's Republic of China.
| |
Collapse
|
29
|
Jin Y, Heo KS. p90RSK Activation Promotes Epithelial-Mesenchymal Transition in Cisplatin-Treated Triple-Negative Breast Cancer Cells. ACTA ACUST UNITED AC 2019. [DOI: 10.4167/jbv.2019.49.4.221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Affiliation(s)
- Yujin Jin
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| | - Kyung-Sun Heo
- College of Pharmacy and Institute of Drug Research and Development, Chungnam National University, Daejeon, South Korea
| |
Collapse
|