1
|
Huang CW, Lo SH. Tensins in Kidney Function and Diseases. Life (Basel) 2023; 13:1244. [PMID: 37374025 PMCID: PMC10305691 DOI: 10.3390/life13061244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/11/2023] [Accepted: 05/23/2023] [Indexed: 06/29/2023] Open
Abstract
Tensins are focal adhesion proteins that regulate various biological processes, such as mechanical sensing, cell adhesion, migration, invasion, and proliferation, through their multiple binding activities that transduce critical signals across the plasma membrane. When these molecular interactions and/or mediated signaling are disrupted, cellular activities and tissue functions are compromised, leading to disease development. Here, we focus on the significance of the tensin family in renal function and diseases. The expression pattern of each tensin in the kidney, their roles in chronic kidney diseases, renal cell carcinoma, and their potentials as prognostic markers and/or therapeutic targets are discussed in this review.
Collapse
Affiliation(s)
- Chien-Wei Huang
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
- Division of Nephrology, Department of Internal Medicine, Kaohsiung Veterans General Hospital, Kaohsiung 81362, Taiwan
- School of Medicine, National Yang Ming Chiao Tung University, Taipei 112304, Taiwan
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, School of Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
2
|
Chiu CL, Hong SY, Tan Y, Lee YRJ, Shih YP, Tepper CG, Lo SH. C-terminal tensin-like ( CTEN) knockin alleviates cystic kidney defects in Tensin-1 knockout mice. Genes Dis 2023; 10:643-646. [PMID: 37396551 PMCID: PMC10308109 DOI: 10.1016/j.gendis.2022.05.035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/08/2022] [Accepted: 05/30/2022] [Indexed: 11/26/2022] Open
Affiliation(s)
- Chun-Lung Chiu
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Shiao-Ya Hong
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Ying Tan
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Yuh-Ru Julie Lee
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| | - Yi-Ping Shih
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Clifford G. Tepper
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| | - Su Hao Lo
- Department of Plant Biology, University of California-Davis, Davis, CA 95616, USA
| |
Collapse
|
3
|
Li Z, Bao X, Liu X, Wang W, Yang J. Gene network analyses of larvae under different egg-protecting behaviors provide novel insights into immune response mechanisms of Amphioctopus fangsiao. FISH & SHELLFISH IMMUNOLOGY 2023; 136:108733. [PMID: 37028690 DOI: 10.1016/j.fsi.2023.108733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/28/2023] [Accepted: 04/03/2023] [Indexed: 06/19/2023]
Abstract
Amphioctopus fangsiao was a representative economic species in cephalopods, which was vulnerable to marine bacteria. Vibrio anguillarum was a highly infectious pathogen that have recently been found to infect A. fangsiao and inhibit its growth and development. There were significant differences in the immune response mechanisms between egg-protected and egg-unprotected larvae. To explore larval immunity under different egg-protecting behaviors, we infected A. fangsiao larvae with V. anguillarum for 24 h and analyzed the transcriptome data about egg-protected and egg-unprotected larvae infected with 0, 4, 12, and 24 h using weighted gene co-expression networks (WGCNA) and protein-protein interaction (PPI) networks. Network analyses revealed a series of immune response processes after infection, and identified six key modules and multiple immune-related hub genes. Meanwhile, we found that ZNF family, such as ZNF32, ZNF160, ZNF271, ZNF479, and ZNF493 might play significant roles in A. fangsiao immune response processes. We first creatively combined WGCNA and PPI network analysis to deeply explore the immune response mechanisms of A. fangsiao larvae with different egg-protecting behaviors. Our results provided further insights into the immunity of V. anguillarum infected invertebrates, and laid the foundation for exploring the immune differences among cephalopods with different egg protecting behaviors.
Collapse
Affiliation(s)
- Zan Li
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiaokai Bao
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Xiumei Liu
- College of Life Sciences, Yantai University, Yantai, 264005, China
| | - Weijun Wang
- School of Agriculture, Ludong University, Yantai, 264025, China
| | - Jianmin Yang
- School of Agriculture, Ludong University, Yantai, 264025, China.
| |
Collapse
|
4
|
Lee YRJ, Yamada S, Lo SH. Phase transition of tensin-1 during the focal adhesion disassembly and cell division. Proc Natl Acad Sci U S A 2023; 120:e2303037120. [PMID: 37011205 PMCID: PMC10104483 DOI: 10.1073/pnas.2303037120] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Accepted: 03/09/2023] [Indexed: 04/05/2023] Open
Abstract
Biomolecular condensates are nonmembranous structures that are mainly formed through liquid-liquid phase separation. Tensins are focal adhesion (FA) proteins linking the actin cytoskeleton to integrin receptors. Here, we report that GFP-tagged tensin-1 (TNS1) proteins phase-separate to form biomolecular condensates in cells. Live-cell imaging showed that new TNS1 condensates are budding from the disassembling ends of FAs, and the presence of these condensates is cell cycle dependent. TNS1 condensates dissolve immediately prior to mitosis and rapidly reappear while postmitotic daughter cells establish new FAs. TNS1 condensates contain selected FA proteins and signaling molecules such as pT308Akt but not pS473Akt, suggesting previously unknown roles of TNS1 condensates in disassembling FAs, as the storage of core FA components and the signaling intermediates.
Collapse
Affiliation(s)
- Yuh-Ru Julie Lee
- Department of Plant Biology, University of California, Davis, CA95616
| | - Soichiro Yamada
- Department of Biomedical Engineering, University of California, Davis, CA95616
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California, Davis, CA95817
| |
Collapse
|
5
|
Chiu CL, Li CG, Verschueren E, Wen RM, Zhang D, Gordon CA, Zhao H, Giaccia AJ, Brooks JD. NUSAP1 Binds ILF2 to Modulate R-Loop Accumulation and DNA Damage in Prostate Cancer. Int J Mol Sci 2023; 24:6258. [PMID: 37047232 PMCID: PMC10093842 DOI: 10.3390/ijms24076258] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/20/2023] [Accepted: 03/24/2023] [Indexed: 03/29/2023] Open
Abstract
Increased expression of NUSAP1 has been identified as a robust prognostic biomarker in prostate cancer and other malignancies. We have previously shown that NUSAP1 is positively regulated by E2F1 and promotes cancer invasion and metastasis. To further understand the biological function of NUSAP1, we used affinity purification and mass spectrometry proteomic analysis to identify NUSAP1 interactors. We identified 85 unique proteins in the NUSAP1 interactome, including ILF2, DHX9, and other RNA-binding proteins. Using proteomic approaches, we uncovered a function for NUSAP1 in maintaining R-loops and in DNA damage response through its interaction with ILF2. Co-immunoprecipitation and colocalization using confocal microscopy verified the interactions of NUSAP1 with ILF2 and DHX9, and RNA/DNA hybrids. We showed that the microtubule and charged helical domains of NUSAP1 were necessary for the protein-protein interactions. Depletion of ILF2 alone further increased camptothecin-induced R-loop accumulation and DNA damage, and NUSAP1 depletion abolished this effect. In human prostate adenocarcinoma, NUSAP1 and ILF2 mRNA expression levels are positively correlated, elevated, and associated with poor clinical outcomes. Our study identifies a novel role for NUSAP1 in regulating R-loop formation and accumulation in response to DNA damage through its interactions with ILF2 and hence provides a potential therapeutic target.
Collapse
Affiliation(s)
- Chun-Lung Chiu
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Caiyun G. Li
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Erik Verschueren
- ULUA Besloten Vennootschap, Arendstraat 29, 2018 Antwerpen, Belgium
| | - Ru M. Wen
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dalin Zhang
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Catherine A. Gordon
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Hongjuan Zhao
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Amato J. Giaccia
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Medical Research Council/Cancer Research United Kingdom Oxford Institute for Radiation Oncology and Gray Laboratory, University of Oxford, Oxford OX3 7DQ, UK
| | - James D. Brooks
- Department of Urology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Stanford Cancer Research Institute, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
6
|
Liao YC, Lo SH. Tensins - emerging insights into their domain functions, biological roles and disease relevance. J Cell Sci 2021; 134:jcs254029. [PMID: 33597154 PMCID: PMC10660079 DOI: 10.1242/jcs.254029] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Tensins are a family of focal adhesion proteins consisting of four members in mammals (TNS1, TNS2, TNS3 and TNS4). Their multiple domains and activities contribute to the molecular linkage between the extracellular matrix and cytoskeletal networks, as well as mediating signal transduction pathways, leading to a variety of physiological processes, including cell proliferation, attachment, migration and mechanical sensing in a cell. Tensins are required for maintaining normal tissue structures and functions, especially in the kidney and heart, as well as in muscle regeneration, in animals. This Review discusses our current understanding of the domain functions and biological roles of tensins in cells and mice, as well as highlighting their relevance to human diseases.
Collapse
Affiliation(s)
- Yi-Chun Liao
- Department of Biochemical Science and Technology, National Taiwan University, Taipei 10617, Taiwan
| | - Su Hao Lo
- Department of Biochemistry and Molecular Medicine, University of California-Davis, Sacramento, CA 95817, USA
| |
Collapse
|
7
|
Deng JK, Zhang X, Wu HL, Gan Y, Ye L, Zheng H, Zhu Z, Liu WJ, Liu HF. ROS-ERK Pathway as Dual Mediators of Cellular Injury and Autophagy-Associated Adaptive Response in Urinary Protein-Irritated Renal Tubular Epithelial Cells. J Diabetes Res 2021; 2021:6614848. [PMID: 33748286 PMCID: PMC7943278 DOI: 10.1155/2021/6614848] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Revised: 01/11/2021] [Accepted: 02/08/2021] [Indexed: 12/16/2022] Open
Abstract
ERK, an extracellular signal-regulated protein kinase, is involved in various biological responses, such as cell proliferation and differentiation, cell morphology maintenance, cytoskeletal construction, apoptosis, and canceration of cells. In this study, we focused on ERK pathway on cellular injury and autophagy-associated adaptive response in urinary protein-irritated renal tubular epithelial cells and explored the potential mechanisms underlying it. By using antioxidants N-acetylcysteine and catalase, we found that ERK pathway was activated by a reactive oxygen species- (ROS-) dependent mechanism after exposure to urinary proteins. What is more, ERK inhibitor U0126 could decrease the release of neutrophil gelatinase-associated lipocalin (NGAL), kidney injury molecule-1 (KIM-1), and the number of apoptotic cells induced by urinary proteins, indicating the damaging effects of ERK pathway in mediating cellular injury and apoptosis in HK-2 cells. Interestingly, we also found that the increased expression of microtubule-associated protein 1 light chain 3 (LC3)-II (a key marker of autophagy) and the decreased expression of p62 (autophagic substrate) induced by urinary proteins were reversed by U0126, suggesting autophagy was activated by ERK pathway. Furthermore, rapamycin reduced urinary protein-induced NGAL and KIM-1 secretion and cell growth inhibition, while chloroquine played the opposite effect, indicating that autophagy activation by ERK pathway was an adaptive response in the exposure to urinary proteins. Taken together, our results indicate that activated ROS-ERK pathway can induce cellular injury and in the meantime provide an autophagy-associated adaptive response in urinary protein-irritated renal tubular epithelial cells.
Collapse
Affiliation(s)
- Jian-kun Deng
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Xueqin Zhang
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hong-luan Wu
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Yu Gan
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Ling Ye
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| | - Huijuan Zheng
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Zebing Zhu
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Wei Jing Liu
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
- Renal Research Institution of Beijing University of Chinese Medicine, and Key Laboratory of Chinese Internal Medicine of Ministry of Education and Beijing, Dongzhimen Hospital Affiliated to Beijing University of Chinese Medicine, Beijing 100700, China
| | - Hua-feng Liu
- Institute of Nephrology, Zhanjiang Key Laboratory of Prevention and Management of Chronic Kidney Disease, Guangdong Medical University, Zhanjiang, Guangdong 524001, China
| |
Collapse
|
8
|
Dixon EE, Maxim DS, Halperin Kuhns VL, Lane-Harris AC, Outeda P, Ewald AJ, Watnick TJ, Welling PA, Woodward OM. GDNF drives rapid tubule morphogenesis in a novel 3D in vitro model for ADPKD. J Cell Sci 2020; 133:jcs249557. [PMID: 32513820 PMCID: PMC7375472 DOI: 10.1242/jcs.249557] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 05/29/2020] [Indexed: 01/03/2023] Open
Abstract
Cystogenesis is a morphological consequence of numerous genetic diseases of the epithelium. In the kidney, the pathogenic mechanisms underlying the program of altered cell and tubule morphology are obscured by secondary effects of cyst expansion. Here, we developed a new 3D tubuloid system to isolate the rapid changes in protein localization and gene expression that correlate with altered cell and tubule morphology during cyst initiation. Mouse renal tubule fragments were pulsed with a cell differentiation cocktail including glial-derived neurotrophic factor (GDNF) to yield collecting duct-like tubuloid structures with appropriate polarity, primary cilia, and gene expression. Using the 3D tubuloid model with an inducible Pkd2 knockout system allowed the tracking of morphological, protein, and genetic changes during cyst formation. Within hours of inactivation of Pkd2 and loss of polycystin-2, we observed significant progression in tubuloid to cyst morphology that correlated with 35 differentially expressed genes, many related to cell junctions, matrix interactions, and cell morphology previously implicated in cystogenesis.This article has an associated First Person interview with the first author of the paper.
Collapse
Affiliation(s)
- Eryn E Dixon
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Demetrios S Maxim
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | | | - Allison C Lane-Harris
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| | - Patricia Outeda
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Andrew J Ewald
- Johns Hopkins University School of Medicine, Department of Cell Biology, Baltimore, MD 21205, USA
| | - Terry J Watnick
- University of Maryland School of Medicine, Department of Medicine, Baltimore, MD 21201, USA
| | - Paul A Welling
- Johns Hopkins University School of Medicine, Departments of Medicine and Physiology, Baltimore, MD 21205, USA
| | - Owen M Woodward
- University of Maryland School of Medicine, Department of Physiology, Baltimore, MD 21201, USA
| |
Collapse
|