1
|
Morena da Silva F, Esser KA, Murach KA, Greene NP. Inflammation o'clock: interactions of circadian rhythms with inflammation-induced skeletal muscle atrophy. J Physiol 2024; 602:6587-6607. [PMID: 37563881 PMCID: PMC10858298 DOI: 10.1113/jp284808] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 07/24/2023] [Indexed: 08/12/2023] Open
Abstract
Circadian rhythms are ∼24 h cycles evident in behaviour, physiology and metabolism. The molecular mechanism directing circadian rhythms is the circadian clock, which is composed of an interactive network of transcription-translation feedback loops. The core clock genes include Bmal1, Clock, Rev-erbα/β, Per and Cry. In addition to keeping time, the core clock regulates a daily programme of gene expression that is important for overall cell homeostasis. The circadian clock mechanism is present in all cells, including skeletal muscle fibres, and disruption of the muscle clock is associated with changes in muscle phenotype and function. Skeletal muscle atrophy is largely associated with a lower quality of life, frailty and reduced lifespan. Physiological and genetic modification of the core clock mechanism yields immune dysfunction, alters inflammatory factor expression and secretion and is associated with skeletal muscle atrophy in multiple conditions, such as ageing and cancer cachexia. Here, we summarize the possible interplay between the circadian clock modulation of immune cells, systemic inflammatory status and skeletal muscle atrophy in chronic inflammatory conditions. Although there is a clear disruption of circadian clocks in various models of atrophy, the mechanism behind such alterations remains unknown. Understanding the modulatory potential of muscle and immune circadian clocks in inflammation and skeletal muscle health is essential for the development of therapeutic strategies to protect skeletal muscle mass and function of patients with chronic inflammation.
Collapse
Affiliation(s)
- Francielly Morena da Silva
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Karyn A Esser
- Department of Physiology and Ageing, College of Medicine, University of Florida, Gainesville, FL, USA
- Myology Institute, University of Florida, Gainesville, FL, USA
| | - Kevin A Murach
- Molecular Muscle Mass Regulation Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| | - Nicholas P Greene
- Cachexia Research Laboratory, Exercise Science Research Center, Department of Health, Human Performance and Recreation, University of Arkansas, Fayetteville, AR, USA
| |
Collapse
|
2
|
Goh KY, Lee WX, Choy SM, Priyadarshini GK, Chua K, Tan QH, Low SY, Chin HS, Wong CS, Huang SY, Fu NY, Nishiyama J, Harmston N, Tang HW. FOXO-regulated DEAF1 controls muscle regeneration through autophagy. Autophagy 2024; 20:2632-2654. [PMID: 38963021 PMCID: PMC11587838 DOI: 10.1080/15548627.2024.2374693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2023] [Revised: 06/18/2024] [Accepted: 06/26/2024] [Indexed: 07/05/2024] Open
Abstract
The commonality between various muscle diseases is the loss of muscle mass, function, and regeneration, which severely restricts mobility and impairs the quality of life. With muscle stem cells (MuSCs) playing a key role in facilitating muscle repair, targeting regulators of muscle regeneration has been shown to be a promising therapeutic approach to repair muscles. However, the underlying molecular mechanisms driving muscle regeneration are complex and poorly understood. Here, we identified a new regulator of muscle regeneration, Deaf1 (Deformed epidermal autoregulatory factor-1) - a transcriptional factor downstream of foxo signaling. We showed that Deaf1 is transcriptionally repressed by FOXOs and that DEAF1 targets to Pik3c3 and Atg16l1 promoter regions and suppresses their expression. Deaf1 depletion therefore induces macroautophagy/autophagy, which in turn blocks MuSC survival and differentiation. In contrast, Deaf1 overexpression inactivates autophagy in MuSCs, leading to increased protein aggregation and cell death. The fact that Deaf1 depletion and its overexpression both lead to defects in muscle regeneration highlights the importance of fine tuning DEAF1-regulated autophagy during muscle regeneration. We further showed that Deaf1 expression is altered in aging and cachectic MuSCs. Manipulation of Deaf1 expression can attenuate muscle atrophy and restore muscle regeneration in aged mice or mice with cachectic cancers. Together, our findings unveil an evolutionarily conserved role for DEAF1 in muscle regeneration, providing insights into the development of new therapeutic strategies against muscle atrophy.Abbreviations: DEAF1: Deformed epidermal autoregulatory factor-1; FOXO: Forkhead box O; MuSC: Muscle Stem Cell; PAX7: Paired box 7; PIK3C3: Phosphatidylinositol 3-kinase catalytic subunit type 3.
Collapse
Affiliation(s)
- Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | | | - Kenon Chua
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Department of Orthopaedic Surgery, Singapore General Hospital, Singapore, Singapore
- Programme in Musculoskeletal Sciences Academic Clinical Program, SingHealth/Duke-NUS, Singapore, Singapore
| | - Qian Hui Tan
- Division of Science, Yale-NUS College, Singapore, Singapore
| | - Shin Yi Low
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Hui San Chin
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Chee Seng Wong
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Shu-Yi Huang
- Department of Medical Research, National Taiwan University Hospital, Taipei City, Taiwan
| | - Nai Yang Fu
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
| | - Jun Nishiyama
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Medical School, Singapore, Singapore
| | - Nathan Harmston
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Science, Yale-NUS College, Singapore, Singapore
- Molecular Biosciences Division, Cardiff School of Biosciences, Cardiff University, Cardiff, UK
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, Singapore, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore, Singapore
| |
Collapse
|
3
|
García-Puga M, Gerenu G, Bargiela A, Espinosa-Espinosa J, Mosqueira-Martín L, Sagartzazu-Aizpurua M, Aizpurua JM, Vallejo-Illarramendi A, Artero R, López de Munain A, Matheu A. A Novel Class of FKBP12 Ligands Rescues Premature Aging Phenotypes Associated with Myotonic Dystrophy Type 1. Cells 2024; 13:1939. [PMID: 39682688 DOI: 10.3390/cells13231939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2024] [Revised: 11/16/2024] [Accepted: 11/20/2024] [Indexed: 12/18/2024] Open
Abstract
Background: Myotonic dystrophy type 1 (DM1) is an autosomal dominant disorder clinically characterized by progressive muscular weakness and multisystem degeneration, which correlates with the size of CTG expansion and MBLN decrease. These changes induce a calcium and redox homeostasis imbalance in several models that recapitulate the features of premature tissue aging. In this study, we characterized the impact of a new family of FKBP12 ligands (generically named MPs or MP compounds) designed to stabilize FKBP12 binding to the ryanodine receptors and normalize calcium dysregulation under oxidative stress. Methods: Human primary fibroblasts from DM1 patients and control donors, treated with MP compounds or not, were used for functional studies of cell viability, proliferation, and metabolism. The gene expression profile in treated cells was determined using RNA sequencing. The impact of MP compounds in vivo was evaluated in a Drosophila model of the disease using locomotor activity and longevity studies. Results: The treatment with different MP compounds reversed oxidative stress and impaired cell viability and proliferation, mitochondrial activity, and metabolic defects in DM1-derived primary fibroblasts. RNA sequencing analysis confirmed the restoration of molecular pathways related to calcium and redox homeostasis and additional pathways, including the cell cycle and metabolism. This analysis also revealed the rescue of alternative splicing events in DM1 fibroblasts treated with MP compounds. Importantly, treatment with MP compounds significantly extended the lifespan and improved the locomotor activity of a Drosophila model of the DM1 disease, and restored molecular defects characteristic of the disease in vivo. Conclusions: Our results revealed that MP compounds rescue multiple premature aging phenotypes described in DM1 models and decipher the benefits of this new family of compounds in the pre-clinical setting of DM1.
Collapse
Affiliation(s)
- Mikel García-Puga
- Cellular Oncology Group, Biogipuzkoa Health Research Institute, Paseo Dr. Beguiristain s/n, 20014 San Sebastian, Spain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Biodonostia Institute, 20014 San Sebastian, Spain
- CIBERNED, CIBER, Carlos III Institute, 28029 Madrid, Spain
- Department of Health Sciences, Public University of Navarre (UPNA), Health Sciences Campus, Avda. de Barañain s/n, 31008 Pamplona, Spain
| | - Gorka Gerenu
- Neuroscience Area, Biogipuzkoa Health Research Institute, Biodonostia Institute, 20014 San Sebastian, Spain
- CIBERNED, CIBER, Carlos III Institute, 28029 Madrid, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERER, CIBER, Carlos III Institute, 28029 Madrid, Spain
| | - Jorge Espinosa-Espinosa
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERER, CIBER, Carlos III Institute, 28029 Madrid, Spain
| | - Laura Mosqueira-Martín
- Neuroscience Area, Biogipuzkoa Health Research Institute, Biodonostia Institute, 20014 San Sebastian, Spain
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country, 20014 San Sebastian, Spain
| | - Maialen Sagartzazu-Aizpurua
- Joxe Mari Korta R&D Center, Department of Organic Chemistry I, University of the Basque Country, 20014 San Sebastian, Spain
| | - Jesús M Aizpurua
- Joxe Mari Korta R&D Center, Department of Organic Chemistry I, University of the Basque Country, 20014 San Sebastian, Spain
| | - Ainara Vallejo-Illarramendi
- Neuroscience Area, Biogipuzkoa Health Research Institute, Biodonostia Institute, 20014 San Sebastian, Spain
- CIBERNED, CIBER, Carlos III Institute, 28029 Madrid, Spain
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country, 20014 San Sebastian, Spain
| | - Rubén Artero
- Translational Genomics Group, University Institute for Biotechnology and Biomedicine (BIOTECMED), University of Valencia, 46100 Burjasot, Spain
- INCLIVA Biomedical Research Institute, 46010 Valencia, Spain
- CIBERER, CIBER, Carlos III Institute, 28029 Madrid, Spain
| | - Adolfo López de Munain
- Neuroscience Area, Biogipuzkoa Health Research Institute, Biodonostia Institute, 20014 San Sebastian, Spain
- CIBERNED, CIBER, Carlos III Institute, 28029 Madrid, Spain
- Group of Neuroscience, Departments of Pediatrics and Neuroscience, Faculty of Medicine and Nursing, University of the Basque Country, 20014 San Sebastian, Spain
- Neurology Department, Donostia University Hospital, Osakidetza, 20014 San Sebastian, Spain
- Department of Internal Medicine, Faculty of Health Sciences, University of Deusto, 48007 Bilbao, Spain
| | - Ander Matheu
- Cellular Oncology Group, Biogipuzkoa Health Research Institute, Paseo Dr. Beguiristain s/n, 20014 San Sebastian, Spain
- IKERBASQUE, Basque Foundation for Science, 48009 Bilbao, Spain
- CIBERFES, CIBER, Carlos III Institute, 28029 Madrid, Spain
| |
Collapse
|
4
|
Aoki Y, Yanaizu M, Ohki A, Nishimiya K, Kino Y. CUG repeat RNA-dependent proteasomal degradation of MBNL1 in a cellular model of myotonic dystrophy type 1. Biochem Biophys Res Commun 2024; 733:150729. [PMID: 39326259 DOI: 10.1016/j.bbrc.2024.150729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 09/19/2024] [Indexed: 09/28/2024]
Abstract
Myotonic dystrophy type 1 (DM1) is caused by the expansion of a non-coding CTG repeat in DMPK. CUG-repeat-containing transcripts sequester the splicing regulator MBNL1 into nuclear RNA foci, causing aberrant splicing of many genes. Although the mislocalization of MBNL1 represents a causal event in DM1 pathogenesis, the effect of CUG repeat RNA on the protein level of MBNL1 remains unclear. Using a DM1 model cell line, we found that CUG repeat RNA caused a significant decrease in the protein, but not mRNA levels, of MBNL1. As CUG repeats did not decrease MBNL1 translation, we investigated protein degradation pathways. Although autophagy-related reagents induced little change, proteasome inhibitors partially recovered MBNL1 protein expression levels under conditions of CUG repeat expression and induced a slight, but significant, reversal of splicing dysregulation. MBNL1 was detected in the polyubiquitinated protein fraction, but MBNL1 polyubiquitination was not detected. Moreover, inhibition of the ubiquitin-activating enzyme E1 did not increase MBNL1 levels, suggesting that MBNL1 is a substrate of polyubiquitin-independent proteasomal degradation. These results suggest that CUG-repeat-induced proteasomal degradation partially contributes to the functional decline of MBNL1.
Collapse
Affiliation(s)
- Yoshitaka Aoki
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Motoaki Yanaizu
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Ai Ohki
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Kai Nishimiya
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| | - Yoshihiro Kino
- Department of RNA Pathobiology and Therapeutics, Meiji Pharmaceutical University, 2-522-1, Noshio, Kiyose-shi, Tokyo, 204-8588, Japan.
| |
Collapse
|
5
|
Chu Y, Yuan X, Tao Y, Yang B, Luo J. Autophagy in Muscle Regeneration: Mechanisms, Targets, and Therapeutic Perspective. Int J Mol Sci 2024; 25:11901. [PMID: 39595972 PMCID: PMC11593790 DOI: 10.3390/ijms252211901] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2024] [Revised: 10/31/2024] [Accepted: 11/04/2024] [Indexed: 11/28/2024] Open
Abstract
Autophagy maintains the stability of eukaryotic cells by degrading unwanted components and recycling nutrients and plays a pivotal role in muscle regeneration by regulating the quiescence, activation, and differentiation of satellite cells. Effective muscle regeneration is vital for maintaining muscle health and homeostasis. However, under certain disease conditions, such as aging, muscle regeneration can fail due to dysfunctional satellite cells. Dysregulated autophagy may limit satellite cell self-renewal, hinder differentiation, and increase susceptibility to apoptosis, thereby impeding muscle regeneration. This review explores the critical role of autophagy in muscle regeneration, emphasizing its interplay with apoptosis and recent advances in autophagy research related to diseases characterized by impaired muscle regeneration. Additionally, we discuss new approaches involving autophagy regulation to promote macrophage polarization, enhancing muscle regeneration. We suggest that utilizing cell therapy and biomaterials to modulate autophagy could be a promising strategy for supporting muscle regeneration. We hope that this review will provide new insights into the treatment of muscle diseases and promote muscle regeneration.
Collapse
Affiliation(s)
- Yun Chu
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Xinrun Yuan
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| | - Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Bin Yang
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China; (Y.C.); (Y.T.); (B.Y.)
| | - Jinlong Luo
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China;
| |
Collapse
|
6
|
Cerro-Herreros E, Núñez-Manchón J, Naldaiz-Gastesi N, Carrascosa-Sàez M, García-Rey A, Losilla DP, González-Martínez I, Espinosa-Espinosa J, Moreno K, Poyatos-García J, Vilchez JJ, de Munain AL, Suelves M, Nogales-Gadea G, Llamusí B, Artero R. AntimiR treatment corrects myotonic dystrophy primary cell defects across several CTG repeat expansions with a dual mechanism of action. SCIENCE ADVANCES 2024; 10:eadn6525. [PMID: 39383229 PMCID: PMC11463307 DOI: 10.1126/sciadv.adn6525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/05/2024] [Indexed: 10/11/2024]
Abstract
This study evaluated therapeutic antimiRs in primary myoblasts from patients with myotonic dystrophy type 1 (DM1). DM1 results from unstable CTG repeat expansions in the DMPK gene, leading to variable clinical manifestations by depleting muscleblind-like splicing regulator protein MBNL1. AntimiRs targeting natural repressors miR-23b and miR-218 boost MBNL1 expression but must be optimized for a better pharmacological profile in humans. In untreated cells, miR-23b and miR-218 were up-regulated, which correlated with CTG repeat size, supporting that active MBNL1 protein repression synergizes with the sequestration by CUG expansions in DMPK. AntimiR treatment improved RNA toxicity readouts and corrected regulated exon inclusions and myoblast defects such as fusion index and myotube area across CTG expansions. Unexpectedly, the treatment also reduced DMPK transcripts and ribonuclear foci. A leading antimiR reversed 68% of dysregulated genes. This study highlights the potential of antimiRs to treat various DM1 forms across a range of repeat sizes and genetic backgrounds by mitigating MBNL1 sequestration and enhancing protein synthesis.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Judit Núñez-Manchón
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Neia Naldaiz-Gastesi
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain
- CIBERNED, Carlos III Institute, Spanish Ministry of Science and Innovation, Madrid, Spain
| | - Marc Carrascosa-Sàez
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Andrea García-Rey
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Diego Piqueras Losilla
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Irene González-Martínez
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| | - Jorge Espinosa-Espinosa
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
- Experimental and Applied Biomedicine Research Group, Health Sciences Faculty, Universidad Particular Internacional SEK (UISEK), Quito 170302, Ecuador
| | - Kevin Moreno
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Javier Poyatos-García
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain
| | - Juan J. Vilchez
- Neuromuscular and Ataxias Research Group, Health Research Institute Hospital La Fe (IIS La Fe), Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), U763, CB06/05/0091, Madrid, Spain
- Neuromuscular Referral Center, European Reference Network on Rare Neuromuscular Diseases (ERN EURO-NMD), Universitary and Polytechnic La Fe Hospital, Valencia, Spain
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Neurosciences Area, Biodonostia Health Research Institute, 20014 Donostia/San Sebastián, Spain
- CIBERNED, Carlos III Institute, Spanish Ministry of Science and Innovation, Madrid, Spain
- Department of Neurology, Donostialdea Integrated Health Organization, Osakidetza Basque Health Service, 20014 Donostia/San Sebastián, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country UPV-EHU, 20014 Donostia/San Sebastián, Spain
| | - Mònica Suelves
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Gisela Nogales-Gadea
- Group of REsearch Neuromuscular of BAdalona (GRENBA), Institut d’Investigació en Ciències de la Salut Germans Trias i Pujol (IGTP), Campus Can Ruti, Universitat Autònoma de Barcelona, 08916 Badalona, Spain
| | - Beatriz Llamusí
- ARTHEx Biotech, Parque Científico de la Universidad de Valencia. Calle del Catedrático Agustín Escardino Benlloch, 9, 46980 Paterna, Valencia, Spain
| | - Rubén Artero
- Human Translational Genomics Group. University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, 46100 Burjassot, Valencia, Spain
- INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Centre for Biomedical Network Research on Rare Diseases (CIBERER), CB23/07/00005, Carlos III Health Institute, 28029 Madrid, Spain
| |
Collapse
|
7
|
Wang Y, He Z, Mei T, Yang X, Gu Z, Zhang Z, Li Y. Sports-Related Genomic Predictors Are Associated with Athlete Status in Chinese Sprint/Power Athletes. Genes (Basel) 2024; 15:1251. [PMID: 39457375 PMCID: PMC11507486 DOI: 10.3390/genes15101251] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 09/18/2024] [Accepted: 09/24/2024] [Indexed: 10/28/2024] Open
Abstract
Objectives: The aim of this study was to assess the relationship between variant loci significantly associated with sports-related traits in the GWAS Catalog database and sprint/power athlete status, as well as to explore the polygenic profile of elite athletes. Methods: Next-generation sequencing and microarray technology were used to genotype samples from 211 elite athletes who had achieved success in national or international competitions in power-based sports and from 522 non-athletes, who were healthy university students with no history of professional sports training. Variant loci collected from databases were extracted after imputation. Subsequently, 80% of the samples were randomly selected as the training set, and the remaining 20% as the validation set. Results: Association analysis of variant loci was conducted in the training set, and individual Total Genotype Score (TGS) were calculated using genotype dosage and lnOR, followed by the establishment of a logistic model, with predictive performance evaluated in the validation set. Association analysis was performed on 2075 variant loci, and after removing linked loci (r2 > 0.2), 118 Tag SNPs (p ≤ 0.05) were identified. A logistic model built using 30 Tag SNPs (p ≤ 0.01) showed better performance in the validation set (AUC = 0.707). Conclusions: Our study identified 30 new genetic molecular markers and demonstrated that elite sprint/power athlete status is polygenic.
Collapse
Affiliation(s)
- Yaqi Wang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China; (Y.W.)
| | - Zihong He
- Exercise Biology Research Center, China Institute of Sport Science, Beijing 100084, China
| | - Tao Mei
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Xiaolin Yang
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
| | - Zhuangzhuang Gu
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China; (Y.W.)
- Institute of Physical Education, Henan Normal University, Xinxiang 453007, China
| | - Zhihao Zhang
- Department of Exercise Biochemistry, Exercise Science School, Beijing Sport University, Beijing 100084, China; (Y.W.)
| | - Yanchun Li
- China Institute of Sport and Health Science, Beijing Sport University, Beijing 100084, China
- Beijing Key Laboratory of Sports Performance and Skill Assessment, Beijing 100084, China
- Key Laboratory for Performance Training & Recovery of General Administration of Sport, Beijing 100084, China
| |
Collapse
|
8
|
da Silva HNM, Fernandes EM, Pereira VA, Mizobuti DS, Covatti C, da Rocha GL, Minatel E. LEDT and Idebenone treatment modulate autophagy and improve regenerative capacity in the dystrophic muscle through an AMPK-pathway. PLoS One 2024; 19:e0300006. [PMID: 38498472 PMCID: PMC10947673 DOI: 10.1371/journal.pone.0300006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Accepted: 02/19/2024] [Indexed: 03/20/2024] Open
Abstract
PURPOSE Considering the difficulties and challenges in Duchenne muscular dystrophy (DMD) treatment, such as the adverse effects of glucocorticoids, which are the main medical prescription used by dystrophic patients, new treatment concepts for dystrophic therapy are very necessary. Thus, in this study, we explore the effects of photobiomodulation (PBM; a non-invasive therapy) and Idebenone (IDE) treatment (a potent antioxidant), applied alone or in association, in dystrophic muscle cells and the quadriceps muscle, with special focus on autophagy and regenerative pathways. METHODS For the in vitro studies, the dystrophic primary muscle cells received 0.5J LEDT and 0.06μM IDE; and for the in vivo studies, the dystrophic quadriceps muscle received 3J LEDT and the mdx mice were treated with 200mg/kg IDE. RESULTS LEDT and IDE treatment modulate autophagy by increasing autophagy markers (SQSTM1/p62, Beclin and Parkin) and signaling pathways (AMPK and TGF-β). Concomitantly, the treatments prevented muscle degeneration by reducing the number of IgG-positive fibers and the fibers with a central nucleus; decreasing the fibrotic area; up-regulating the myogenin and MCH-slow levels; and down-regulating the MyoD and MHC-fast levels. CONCLUSION These results suggest that LEDT and IDE treatments enhance autophagy and prevented muscle degeneration in the dystrophic muscle of the experimental model. These findings illustrate the potential efficacy of LEDT and IDE treatment as an alternative therapy focused on muscle recovery in the dystrophic patient.
Collapse
Affiliation(s)
| | - Evelyn Mendes Fernandes
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Valéria Andrade Pereira
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Daniela Sayuri Mizobuti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Caroline Covatti
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Guilherme Luiz da Rocha
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| | - Elaine Minatel
- Department of Structural and Functional Biology, Institute of Biology, University of Campinas, Campinas, Brazil
| |
Collapse
|
9
|
Zou X, Liu Q, Guan Q, Zhao M, Zhu X, Pan Y, Liu L, Gao Z. Muscle Fiber Characteristics and Transcriptome Analysis in Slow- and Fast-Growing Megalobrama amblycephala. Genes (Basel) 2024; 15:179. [PMID: 38397169 PMCID: PMC10888202 DOI: 10.3390/genes15020179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/25/2024] Open
Abstract
Growth is an important trait in aquaculture that is influenced by various factors, among which genetic regulation plays a crucial role. Megalobrama amblycephala, one of the most important freshwater species in China, exhibits wide variations in body mass among individuals of the same age within the same pool. But the molecular mechanisms underlying wide variation in body mass remain unclear. Here, we performed muscle histological and transcriptome analysis of muscle tissues from Fast-Growing (FG) and Slow-Growing (SG) M. amblycephala at the age of 4 months old (4 mo) and 10 months old (10 mo) to elucidate its muscle development and growth mechanism. The muscle histological analysis showed smaller diameter and higher total number of muscle fibers in FG compared to SG at 4 mo, while larger diameter and total number of muscle fibers were detected in FG at 10 mo. The transcriptome analysis of muscle tissue detected 1171 differentially expressed genes (DEGs) between FG and SG at 4 mo, and 718 DEGs between FG and SG at 10 mo. Furthermore, 44 DEGs were consistently up-regulated in FG at both 4 mo and 10 mo. Up-regulated DEGs in FG at 4 mo were mainly enriched in the pathways related to cell proliferation, while down-regulated DEGs were significantly enriched in cell fusion and muscle contraction. Up-regulated DEGs in FG at 10 mo were mainly enriched in the pathways related to cell proliferation and protein synthesis. Therefore, these results provide novel insights into the molecular mechanism of M. amblycephala muscle growth at different stages, and will be of great guiding significance to promote the fast growth of M. amblycephala.
Collapse
Affiliation(s)
- Xue Zou
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qi Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Qianqian Guan
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Ming Zhao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Xin Zhu
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Yaxiong Pan
- Department of Bioengineering and Environmental Science, Changsha University, Changsha 410003, China; (X.Z.)
| | - Lusha Liu
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
| | - Zexia Gao
- Key Lab of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Key Lab of Freshwater Animal Breeding, Ministry of Agriculture, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; (X.Z.); (Q.L.); (Q.G.); (M.Z.); (Z.G.)
- Hubei Hongshan Laboratory, Wuhan 430070, China
- Engineering Technology Research Center for Fish Breeding and Culture in Hubei Province, Wuhan 430070, China
| |
Collapse
|
10
|
González-Martínez I, Cerro-Herreros E, Moreno N, García-Rey A, Espinosa-Espinosa J, Carrascosa-Sàez M, Piqueras-Losilla D, Arzumanov A, Seoane-Miraz D, Jad Y, Raz R, Wood MJ, Varela MA, Llamusí B, Artero R. Peptide-conjugated antimiRs improve myotonic dystrophy type 1 phenotypes by promoting endogenous MBNL1 expression. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 34:102024. [PMID: 37744174 PMCID: PMC10514136 DOI: 10.1016/j.omtn.2023.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 09/01/2023] [Indexed: 09/26/2023]
Abstract
Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by a CTG repeat expansion in the DMPK gene that generates toxic RNA with a myriad of downstream alterations in RNA metabolism. A key consequence is the sequestration of alternative splicing regulatory proteins MBNL1/2 by expanded transcripts in the affected tissues. MBNL1/2 depletion interferes with a developmental alternative splicing switch that causes the expression of fetal isoforms in adults. Boosting the endogenous expression of MBNL proteins by inhibiting the natural translational repressors miR-23b and miR-218 has previously been shown to be a promising therapeutic approach. We designed antimiRs against both miRNAs with a phosphorodiamidate morpholino oligonucleotide (PMO) chemistry conjugated to cell-penetrating peptides (CPPs) to improve delivery to affected tissues. In DM1 cells, CPP-PMOs significantly increased MBNL1 levels. In some candidates, this was achieved using concentrations less than two orders of magnitude below the median toxic concentration, with up to 5.38-fold better therapeutic window than previous antagomiRs. In HSALR mice, intravenous injections of CPP-PMOs improve molecular, histopathological, and functional phenotypes, without signs of toxicity. Our findings place CPP-PMOs as promising antimiR candidates to overcome the treatment delivery challenge in DM1 therapy.
Collapse
Affiliation(s)
- Irene González-Martínez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Estefanía Cerro-Herreros
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Nerea Moreno
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Andrea García-Rey
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
- Group of Emerging and Neglected Diseases, Ecoepidemiology and Biodiversity, Health Sciences Faculty, Universidad Internacional SEK, Quito 170521, Ecuador
| | - Marc Carrascosa-Sàez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Diego Piqueras-Losilla
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
| | - Andrey Arzumanov
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - David Seoane-Miraz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Yahya Jad
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Richard Raz
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Matthew J. Wood
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Miguel A. Varela
- Department of Paediatrics, Institute of Developmental and Regenerative Medicine (IDRM), University of Oxford, Roosevelt Dr, Oxford OX3 7TY, UK
- MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Beatriz Llamusí
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Valencia, Spain
- Translational Genomics Group, INCLIVA Biomedical Research Institute, Avenue Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| |
Collapse
|
11
|
Xie G, Jin H, Mikhail H, Pavel V, Yang G, Ji B, Lu B, Li Y. Autophagy in sarcopenia: Possible mechanisms and novel therapies. Biomed Pharmacother 2023; 165:115147. [PMID: 37473679 DOI: 10.1016/j.biopha.2023.115147] [Citation(s) in RCA: 14] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/23/2023] [Accepted: 07/07/2023] [Indexed: 07/22/2023] Open
Abstract
With global population aging, age-related diseases, especially sarcopenia, have attracted much attention in recent years. Characterized by low muscle strength, low muscle quantity or quality and low physical performance, sarcopenia is one of the major factors associated with an increased risk of falls and disability. Much effort has been made to understand the cellular biological and physiological mechanisms underlying sarcopenia. Autophagy is an important cellular self-protection mechanism that relies on lysosomes to degrade misfolded proteins and damaged organelles. Research designed to obtain new insight into human diseases from the autophagic aspect has been carried out and has made new progress, which encourages relevant studies on the relationship between autophagy and sarcopenia. Autophagy plays a protective role in sarcopenia by modulating the regenerative capability of satellite cells, relieving oxidative stress and suppressing the inflammatory response. This review aims to reveal the specific interaction between sarcopenia and autophagy and explore possible therapies in hopes of encouraging more specific research in need and unlocking novel promising therapies to ameliorate sarcopenia.
Collapse
Affiliation(s)
- Guangyang Xie
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; Xiangya School of Medicine, Central South University, Changsha 410008, Hunan, China
| | - Hongfu Jin
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Herasimenka Mikhail
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Volotovski Pavel
- Republican Scientific and Practical Center of Traumatology and Orthopedics, Minsk 220024, Belarus
| | - Guang Yang
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bingzhou Ji
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China
| | - Bangbao Lu
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| | - Yusheng Li
- Department of Orthopedics, Xiangya Hospital of Central South University, Changsha 410008, Hunan, China; National Clinical Research Center for Geriatric Disorders, Xiangya Hospital, Central South University, Changsha 410008, Hunan, China.
| |
Collapse
|
12
|
Pluripotent Stem Cells in Disease Modeling and Drug Discovery for Myotonic Dystrophy Type 1. Cells 2023; 12:cells12040571. [PMID: 36831237 PMCID: PMC9954118 DOI: 10.3390/cells12040571] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Revised: 02/04/2023] [Accepted: 02/07/2023] [Indexed: 02/12/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a progressive multisystemic disease caused by the expansion of a CTG repeat tract within the 3' untranslated region (3' UTR) of the dystrophia myotonica protein kinase gene (DMPK). Although DM1 is considered to be the most frequent myopathy of genetic origin in adults, DM1 patients exhibit a vast diversity of symptoms, affecting many different organs. Up until now, different in vitro models from patients' derived cells have largely contributed to the current understanding of DM1. Most of those studies have focused on muscle physiopathology. However, regarding the multisystemic aspect of DM1, there is still a crucial need for relevant cellular models to cover the whole complexity of the disease and open up options for new therapeutic approaches. This review discusses how human pluripotent stem cell-based models significantly contributed to DM1 mechanism decoding, and how they provided new therapeutic strategies that led to actual phase III clinical trials.
Collapse
|
13
|
Costa A, Cruz AC, Martins F, Rebelo S. Protein Phosphorylation Alterations in Myotonic Dystrophy Type 1: A Systematic Review. Int J Mol Sci 2023; 24:ijms24043091. [PMID: 36834509 PMCID: PMC9965115 DOI: 10.3390/ijms24043091] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 01/21/2023] [Accepted: 02/01/2023] [Indexed: 02/09/2023] Open
Abstract
Among the most common muscular dystrophies in adults is Myotonic Dystrophy type 1 (DM1), an autosomal dominant disorder characterized by myotonia, muscle wasting and weakness, and multisystemic dysfunctions. This disorder is caused by an abnormal expansion of the CTG triplet at the DMPK gene that, when transcribed to expanded mRNA, can lead to RNA toxic gain of function, alternative splicing impairments, and dysfunction of different signaling pathways, many regulated by protein phosphorylation. In order to deeply characterize the protein phosphorylation alterations in DM1, a systematic review was conducted through PubMed and Web of Science databases. From a total of 962 articles screened, 41 were included for qualitative analysis, where we retrieved information about total and phosphorylated levels of protein kinases, protein phosphatases, and phosphoproteins in DM1 human samples and animal and cell models. Twenty-nine kinases, 3 phosphatases, and 17 phosphoproteins were reported altered in DM1. Signaling pathways that regulate cell functions such as glucose metabolism, cell cycle, myogenesis, and apoptosis were impaired, as seen by significant alterations to pathways such as AKT/mTOR, MEK/ERK, PKC/CUGBP1, AMPK, and others in DM1 samples. This explains the complexity of DM1 and its different manifestations and symptoms, such as increased insulin resistance and cancer risk. Further studies can be done to complement and explore in detail specific pathways and how their regulation is altered in DM1, to find what key phosphorylation alterations are responsible for these manifestations, and ultimately to find therapeutic targets for future treatments.
Collapse
|
14
|
Han X, Goh KY, Lee WX, Choy SM, Tang HW. The Importance of mTORC1-Autophagy Axis for Skeletal Muscle Diseases. Int J Mol Sci 2022; 24:297. [PMID: 36613741 PMCID: PMC9820406 DOI: 10.3390/ijms24010297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/15/2022] [Accepted: 12/20/2022] [Indexed: 12/28/2022] Open
Abstract
The mechanistic target of rapamycin (mTOR) complex 1, mTORC1, integrates nutrient and growth factor signals with cellular responses and plays critical roles in regulating cell growth, proliferation, and lifespan. mTORC1 signaling has been reported as a central regulator of autophagy by modulating almost all aspects of the autophagic process, including initiation, expansion, and termination. An increasing number of studies suggest that mTORC1 and autophagy are critical for the physiological function of skeletal muscle and are involved in diverse muscle diseases. Here, we review recent insights into the essential roles of mTORC1 and autophagy in skeletal muscles and their implications in human muscle diseases. Multiple inhibitors targeting mTORC1 or autophagy have already been clinically approved, while others are under development. These chemical modulators that target the mTORC1/autophagy pathways represent promising potentials to cure muscle diseases.
Collapse
Affiliation(s)
- Xujun Han
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Kah Yong Goh
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Wen Xing Lee
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Sze Mun Choy
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
| | - Hong-Wen Tang
- Program in Cancer and Stem Cell Biology, Duke-NUS Medical School, 8 College Road, Singapore 169857, Singapore
- Division of Cellular & Molecular Research, Humphrey Oei Institute of Cancer Research, National Cancer Centre Singapore, Singapore 169610, Singapore
| |
Collapse
|
15
|
Li H, Zhang L, Zhang L, Han R. Autophagy in striated muscle diseases. Front Cardiovasc Med 2022; 9:1000067. [PMID: 36312227 PMCID: PMC9606591 DOI: 10.3389/fcvm.2022.1000067] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Accepted: 09/27/2022] [Indexed: 11/13/2022] Open
Abstract
Impaired biomolecules and cellular organelles are gradually built up during the development and aging of organisms, and this deteriorating process is expedited under stress conditions. As a major lysosome-mediated catabolic process, autophagy has evolved to eradicate these damaged cellular components and recycle nutrients to restore cellular homeostasis and fitness. The autophagic activities are altered under various disease conditions such as ischemia-reperfusion cardiac injury, sarcopenia, and genetic myopathies, which impact multiple cellular processes related to cellular growth and survival in cardiac and skeletal muscles. Thus, autophagy has been the focus for therapeutic development to treat these muscle diseases. To develop the specific and effective interventions targeting autophagy, it is essential to understand the molecular mechanisms by which autophagy is altered in heart and skeletal muscle disorders. Herein, we summarize how autophagy alterations are linked to cardiac and skeletal muscle defects and how these alterations occur. We further discuss potential pharmacological and genetic interventions to regulate autophagy activities and their applications in cardiac and skeletal muscle diseases.
Collapse
Affiliation(s)
- Haiwen Li
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, United States,*Correspondence: Haiwen Li,
| | - Lingqiang Zhang
- State Key Laboratory of Proteomics, National Center of Protein Sciences (Beijing), Beijing Institute of Lifeomics, Beijing, China
| | - Lei Zhang
- Department of Anatomy and Neurobiology, Shanghai Yangzhi Rehabilitation Hospital, Shanghai Sunshine Rehabilitation Center, School of Medicine, Tongji University, Shanghai, China
| | - Renzhi Han
- Department of Surgery, Davis Heart and Lung Research Institute, Biomedical Sciences Graduate Program, Biophysics Graduate Program, The Ohio State University Wexner Medical Center, Columbus, OH, United States,Renzhi Han,
| |
Collapse
|
16
|
Delay of EGF-Stimulated EGFR Degradation in Myotonic Dystrophy Type 1 (DM1). Cells 2022; 11:cells11193018. [PMID: 36230978 PMCID: PMC9562898 DOI: 10.3390/cells11193018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/02/2022] [Accepted: 09/22/2022] [Indexed: 11/18/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant disease caused by a CTG repeat expansion in the 3′ untranslated region of the dystrophia myotonica protein kinase gene. AKT dephosphorylation and autophagy are associated with DM1. Autophagy has been widely studied in DM1, although the endocytic pathway has not. AKT has a critical role in endocytosis, and its phosphorylation is mediated by the activation of tyrosine kinase receptors, such as epidermal growth factor receptor (EGFR). EGF-activated EGFR triggers the internalization and degradation of ligand–receptor complexes that serve as a PI3K/AKT signaling platform. Here, we used primary fibroblasts from healthy subjects and DM1 patients. DM1-derived fibroblasts showed increased autophagy flux, with enlarged endosomes and lysosomes. Thereafter, cells were stimulated with a high concentration of EGF to promote EGFR internalization and degradation. Interestingly, EGF binding to EGFR was reduced in DM1 cells and EGFR internalization was also slowed during the early steps of endocytosis. However, EGF-activated EGFR enhanced AKT and ERK1/2 phosphorylation levels in the DM1-derived fibroblasts. Therefore, there was a delay in EGF-stimulated EGFR endocytosis in DM1 cells; this alteration might be due to the decrease in the binding of EGF to EGFR, and not to a decrease in AKT phosphorylation.
Collapse
|
17
|
Peripheral Blood DNA Methylation Profiles Do Not Predict Endoscopic Post-Operative Recurrence in Crohn's Disease Patients. Int J Mol Sci 2022; 23:ijms231810467. [PMID: 36142381 PMCID: PMC9503775 DOI: 10.3390/ijms231810467] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Revised: 08/30/2022] [Accepted: 09/04/2022] [Indexed: 11/30/2022] Open
Abstract
Prediction of endoscopic post-operative recurrence (POR) in Crohn’s disease (CD) patients following ileocolonic resection (ICR) using clinical risk factors alone has thus far been inadequate. While peripheral blood leukocyte (PBL) DNA methylation has shown promise as a tool for predicting recurrence in cancer, no data in CD patients exists. Therefore, this study explored the association and predictive value of PBL DNA methylation in CD patients following ICR. From a cohort of 117 CD patients undergoing ICR, epigenome-wide PBL methylation profiles from 25 carefully selected patients presenting either clear endoscopic remission (n = 12) or severe recurrence (n = 13) were assessed using the Illumina MethylationEPIC (850K) array. No statistically significant differentially methylated positions (DMPs) or regions (DMRs) associated with endoscopic POR were identified (FDR p ≤ 0.05), further evidenced by the low accuracy (0.625) following elastic net classification analysis. Nonetheless, interrogating the most significant differences in methylation suggested POR-associated hypermethylation in the MBNL1, RAB29 and LEPR genes, respectively, which are involved in intestinal fibrosis, inflammation and wound healing. Notably, we observed a higher estimated proportion of monocytes in endoscopic POR compared to remission. Altogether, we observed limited differences in the genome-wide DNA methylome among CD patients with and without endoscopic POR. We therefore conclude that PBL DNA methylation is not a feasible predictive tool in post-operative CD.
Collapse
|
18
|
mTORC1 Mediates the Processes of Lysine Regulating Satellite Cells Proliferation, Apoptosis, and Autophagy. Metabolites 2022; 12:metabo12090788. [PMID: 36144192 PMCID: PMC9505949 DOI: 10.3390/metabo12090788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Revised: 08/20/2022] [Accepted: 08/24/2022] [Indexed: 11/16/2022] Open
Abstract
Lysine (Lys) is essential for skeletal muscle growth and protein synthesis in mammals. However, the regulatory network underlying Lys-regulated skeletal muscle development is unknown. To determine whether any cross-talk occurs among mammalian targets of rapamycin complex 1 (mTORC1) and Lys in the regulation of muscle satellite cells (SCs) proliferation, we applied the treatment rapamycin (a mTORC1 inhibitor) and MHY1485 (a mTORC1 activator) on Lys-added or -deficient SCs. The results show Lys deprivation significantly decreases SCs viability, protein synthesis, and cell cycling, increases autophagy and apoptosis, and inhibits the mTORC1 signaling pathway. Restoration of Lys content significantly attenuates this effect. mTORC1 signaling pathway activation during Lys deprivation or mTORC1 signaling pathway inhibition during Lys addition attenuates the effect of Lys deprivation or addition on SCs viability, protein synthesis, cell cycling, autophagy, and apoptosis. In conclusion, Lys could improve SCs proliferation, and inhibit SCs apoptosis and autophagy, via the mTORC1 signaling pathway.
Collapse
|
19
|
García-Puga M, Saenz-Antoñanzas A, Matheu A, López de Munain A. Targeting Myotonic Dystrophy Type 1 with Metformin. Int J Mol Sci 2022; 23:ijms23052901. [PMID: 35270043 PMCID: PMC8910924 DOI: 10.3390/ijms23052901] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 02/01/2023] Open
Abstract
Myotonic dystrophy type 1 (DM1) is a multisystemic disorder of genetic origin. Progressive muscular weakness, atrophy and myotonia are its most prominent neuromuscular features, while additional clinical manifestations in multiple organs are also common. Overall, DM1 features resemble accelerated aging. There is currently no cure or specific treatment for myotonic dystrophy patients. However, in recent years a great effort has been made to identify potential new therapeutic strategies for DM1 patients. Metformin is a biguanide antidiabetic drug, with potential to delay aging at cellular and organismal levels. In DM1, different studies revealed that metformin rescues multiple phenotypes of the disease. This review provides an overview of recent findings describing metformin as a novel therapy to combat DM1 and their link with aging.
Collapse
Affiliation(s)
- Mikel García-Puga
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
| | - Ander Saenz-Antoñanzas
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
| | - Ander Matheu
- Cellular Oncology Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Basque Foundation for Science (IKERBASQUE), 48009 Bilbao, Spain
- Centro de Investigación Biomédica en Red Fragilidad y Envejecimiento Saludable (CIBERfes), Carlos III Institute, 28029 Madrid, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| | - Adolfo López de Munain
- Neuromuscular Diseases Group, Biodonostia Health Research Institute, 20014 San Sebastian, Spain;
- Network Center for Biomedical Research in Neurodegenerative Diseases (CIBERNED-CIBER), Carlos III Institute, 28031 Madrid, Spain
- Neurology Department, Donostia University Hospital, OSAKIDETZA, 20014 San Sebastian, Spain
- Department of Neurosciences, Faculty of Medicine and Nursery, University of the Basque Country, 20014 San Sebastian, Spain
- Correspondence: (A.M.); (A.L.d.M.); Tel.: +34-943-006-073 (A.M.); +34-943-006-294 (A.L.d.M.)
| |
Collapse
|
20
|
Implications of Poly(A) Tail Processing in Repeat Expansion Diseases. Cells 2022; 11:cells11040677. [PMID: 35203324 PMCID: PMC8870147 DOI: 10.3390/cells11040677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 02/11/2022] [Accepted: 02/13/2022] [Indexed: 11/21/2022] Open
Abstract
Repeat expansion diseases are a group of more than 40 disorders that affect mainly the nervous and/or muscular system and include myotonic dystrophies, Huntington’s disease, and fragile X syndrome. The mutation-driven expanded repeat tract occurs in specific genes and is composed of tri- to dodeca-nucleotide-long units. Mutant mRNA is a pathogenic factor or important contributor to the disease and has great potential as a therapeutic target. Although repeat expansion diseases are quite well known, there are limited studies concerning polyadenylation events for implicated transcripts that could have profound effects on transcript stability, localization, and translation efficiency. In this review, we briefly present polyadenylation and alternative polyadenylation (APA) mechanisms and discuss their role in the pathogenesis of selected diseases. We also discuss several methods for poly(A) tail measurement (both transcript-specific and transcriptome-wide analyses) and APA site identification—the further development and use of which may contribute to a better understanding of the correlation between APA events and repeat expansion diseases. Finally, we point out some future perspectives on the research into repeat expansion diseases, as well as APA studies.
Collapse
|
21
|
Disrupting the Molecular Pathway in Myotonic Dystrophy. Int J Mol Sci 2021; 22:ijms222413225. [PMID: 34948025 PMCID: PMC8708683 DOI: 10.3390/ijms222413225] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/03/2021] [Accepted: 12/06/2021] [Indexed: 01/26/2023] Open
Abstract
Myotonic dystrophy is the most common muscular dystrophy in adults. It consists of two forms: type 1 (DM1) and type 2 (DM2). DM1 is associated with a trinucleotide repeat expansion mutation, which is transcribed but not translated into protein. The mutant RNA remains in the nucleus, which leads to a series of downstream abnormalities. DM1 is widely considered to be an RNA-based disorder. Thus, we consider three areas of the RNA pathway that may offer targeting opportunities to disrupt the production, stability, and degradation of the mutant RNA.
Collapse
|
22
|
Cerro-Herreros E, González-Martínez I, Moreno N, Espinosa-Espinosa J, Fernández-Costa JM, Colom-Rodrigo A, Overby SJ, Seoane-Miraz D, Poyatos-García J, Vilchez JJ, López de Munain A, Varela MA, Wood MJ, Pérez-Alonso M, Llamusí B, Artero R. Preclinical characterization of antagomiR-218 as a potential treatment for myotonic dystrophy. MOLECULAR THERAPY. NUCLEIC ACIDS 2021; 26:174-191. [PMID: 34513303 PMCID: PMC8413838 DOI: 10.1016/j.omtn.2021.07.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Accepted: 07/17/2021] [Indexed: 12/13/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is a rare neuromuscular disease caused by expansion of unstable CTG repeats in a non-coding region of the DMPK gene. CUG expansions in mutant DMPK transcripts sequester MBNL1 proteins in ribonuclear foci. Depletion of this protein is a primary contributor to disease symptoms such as muscle weakness and atrophy and myotonia, yet upregulation of endogenous MBNL1 levels may compensate for this sequestration. Having previously demonstrated that antisense oligonucleotides against miR-218 boost MBNL1 expression and rescue phenotypes in disease models, here we provide preclinical characterization of an antagomiR-218 molecule using the HSALR mouse model and patient-derived myotubes. In HSALR, antagomiR-218 reached 40–60 pM 2 weeks after injection, rescued molecular and functional phenotypes in a dose- and time-dependent manner, and showed a good toxicity profile after a single subcutaneous administration. In muscle tissue, antagomiR rescued the normal subcellular distribution of Mbnl1 and did not alter the proportion of myonuclei containing CUG foci. In patient-derived cells, antagomiR-218 improved defective fusion and differentiation and rescued up to 34% of the gene expression alterations found in the transcriptome of patient cells. Importantly, miR-218 was found to be upregulated in DM1 muscle biopsies, pinpointing this microRNA (miRNA) as a relevant therapeutic target.
Collapse
Affiliation(s)
- Estefanía Cerro-Herreros
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Irene González-Martínez
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Nerea Moreno
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Jorge Espinosa-Espinosa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Juan M Fernández-Costa
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Anna Colom-Rodrigo
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Sarah J Overby
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - David Seoane-Miraz
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Javier Poyatos-García
- The IISLAFE Health Research Institute, Avenida Fernando Abril Martorell, 106 Torre A 7 planta, 46026 Valencia, Spain.,Neuromuscular Reference Centre ERN EURO-NMD and Neuromuscular Pathology and Ataxia Research Group, Hospital La Fe Health Research Institute, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Juan J Vilchez
- The IISLAFE Health Research Institute, Avenida Fernando Abril Martorell, 106 Torre A 7 planta, 46026 Valencia, Spain.,Neuromuscular Reference Centre ERN EURO-NMD and Neuromuscular Pathology and Ataxia Research Group, Hospital La Fe Health Research Institute, Valencia, Spain.,Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Instituto de Salud Carlos III, Madrid, Spain
| | - Adolfo López de Munain
- Biodonostia Health Research Institute, P° Dr. Beguiristain s/n, 20014 Donostia-San Sebastián, Spain.,Hospital Universitario Donostia-Osakidetza-Departamento de Neurociencias-Universidad del Pais Vasco-CIBERNED
| | - Miguel A Varela
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Matthew J Wood
- Department of Paediatrics, University of Oxford, John Radcliffe Hospital, Headley Way, OX3 9DU, Oxford, UK.,MDUK Oxford Neuromuscular Centre, University of Oxford, Oxford, UK
| | - Manuel Pérez-Alonso
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Beatriz Llamusí
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| | - Rubén Artero
- University Research Institute for Biotechnology and Biomedicine (BIOTECMED), Universidad de Valencia, Dr. Moliner, 50, 46100 Burjasot, Valencia, Spain.,Incliva Biomedical Research Institute, Avenida Menéndez Pelayo 4 acc, 46010 Valencia, Spain
| |
Collapse
|
23
|
Liu J, Guo ZN, Yan XL, Yang Y, Huang S. Brain Pathogenesis and Potential Therapeutic Strategies in Myotonic Dystrophy Type 1. Front Aging Neurosci 2021; 13:755392. [PMID: 34867280 PMCID: PMC8634727 DOI: 10.3389/fnagi.2021.755392] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 10/20/2021] [Indexed: 12/17/2022] Open
Abstract
Myotonic dystrophy type 1 (DM1) is the most common muscular dystrophy that affects multiple systems including the muscle and heart. The mutant CTG expansion at the 3'-UTR of the DMPK gene causes the expression of toxic RNA that aggregate as nuclear foci. The foci then interfere with RNA-binding proteins, affecting hundreds of mis-spliced effector genes, leading to aberrant alternative splicing and loss of effector gene product functions, ultimately resulting in systemic disorders. In recent years, increasing clinical, imaging, and pathological evidence have indicated that DM1, though to a lesser extent, could also be recognized as true brain diseases, with more and more researchers dedicating to develop novel therapeutic tools dealing with it. In this review, we summarize the current advances in the pathogenesis and pathology of central nervous system (CNS) deficits in DM1, intervention measures currently being investigated are also highlighted, aiming to promote novel and cutting-edge therapeutic investigations.
Collapse
Affiliation(s)
- Jie Liu
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Zhen-Ni Guo
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Xiu-Li Yan
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
| | - Yi Yang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| | - Shuo Huang
- Department of Neurology, Stroke Center & Clinical Trial and Research Center for Stroke, The First Hospital of Jilin University, Changchun, China
- China National Comprehensive Stroke Center, Changchun, China
- Jilin Provincial Key Laboratory of Cerebrovascular Disease, Changchun, China
| |
Collapse
|
24
|
Li Y, Liu YD, Zhou XY, Zhang J, Wu XM, Yang YZ, Chen YX, Zhang XF, Li X, Ma LZ, Wang Z, Chen SL. Let-7e modulates the proliferation and the autophagy of human granulosa cells by suppressing p21 signaling pathway in polycystic ovary syndrome without hyperandrogenism. Mol Cell Endocrinol 2021; 535:111392. [PMID: 34246727 DOI: 10.1016/j.mce.2021.111392] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Revised: 07/01/2021] [Accepted: 07/06/2021] [Indexed: 12/14/2022]
Abstract
Polycystic ovary syndrome (PCOS) is a common endocrine and metabolic disorder in reproductive-aged women, and its pathogenesis is still under debate. Recent studies suggest crucial roles for microRNAs (miRNAs) in PCOS development. The let-7 family miRNAs constitute the most abundant miRNAs in human granulosa cells (GCs), and plays an important role in follicular development. However, research on the let-7e implications of the non-hyperandrogenic (non-HA) phenotype remains unclear. This study aimed at determining the role of let-7e in the progression of PCOS. We performed quantitative real-time PCR to examine the levels of let-7e in fifty-two non-HA PCOS patients and fifty-two controls. A receiver operating characteristic (ROC) curve were used to reveal the diagnostic value of let-7e in non-HA PCOS. Using an immortalized human granulosa cell line, KGN, we investigated the influence of let-7e on cell proliferation and autophagy. Our data substantiated the expression of let-7e was significantly increased in non-HA PCOS group, and associated with an increased antral follicle count. The ROC curve indicated a major separation between non-HA PCOS group and the control group. Let-7e knockdown suppressed cell proliferation and enhanced cell autophagy by activating p21 pathway. Conversely, let-7e overexpression promoted cell proliferation and inhibited cell autophagy by suppressing p21 pathway. Our results indicate that increased let-7e levels in non-HA PCOS GCs may contribute to excessive follicular activation and growth, thereby involving in the pathogenesis of PCOS. Let-7e may thus be a potential therapeutic target in non-HA PCOS.
Collapse
Affiliation(s)
- Ying Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yu-Dong Liu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xing-Yu Zhou
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Jun Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiao-Min Wu
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Yi-Zhen Yang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Ying-Xue Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xiao-Fei Zhang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Xin Li
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Lin-Zi Ma
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Zhe Wang
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China
| | - Shi-Ling Chen
- Center for Reproductive Medicine, Department of Gynecology and Obstetrics, Nanfang Hospital, Southern Medical University, Guangzhou, 510515, People's Republic of China.
| |
Collapse
|
25
|
Wang HQ, Song KY, Feng JZ, Huang SY, Guo XM, Zhang L, Zhang G, Huo YC, Zhang RR, Ma Y, Hu QZ, Qin XY. Caffeine Inhibits Activation of the NLRP3 Inflammasome via Autophagy to Attenuate Microglia-Mediated Neuroinflammation in Experimental Autoimmune Encephalomyelitis. J Mol Neurosci 2021; 72:97-112. [PMID: 34478049 DOI: 10.1007/s12031-021-01894-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 07/19/2021] [Indexed: 12/19/2022]
Abstract
The activation of microglia is an important cause of central nervous system (CNS) inflammatory cell infiltration and inflammatory demyelination in experimental autoimmune encephalomyelitis (EAE). Furthermore, the proinflammatory response induced by the NLR family pyrin domain containing 3 (NLRP3) inflammasome can be amplified in microglia after NLRP3 inflammasome activation. Autophagy is closely related to the inflammatory response. Caffeine exerts anti-inflammatory and autophagy-stimulating effects, but the specific mechanism remains unclear. This study examined the mechanism underlying the anti-inflammatory effect of caffeine on EAE. In this study, C57BL/6 mice were immunized to induce EAE and treated with caffeine to observe its effect on prognosis. The effects of caffeine on autophagy and inflammation were also analysed in mouse primary microglia (PM) and the BV2 cell line. The data demonstrated that caffeine reduced the clinical score, the infiltration of inflammatory cells, the demyelination level, and the activation of microglia in EAE mice. Furthermore, caffeine increased the LC3-II/LC3-I levels and decreased the NLRP3 and P62 levels in EAE mice, whereas the autophagy inhibitor 3-methylamine (3-MA) blocked these effects. In vitro, caffeine promoted autophagy by suppressing the mechanistic target of rapamycin (mTOR) pathway and inhibited activation of the NLRP3 inflammasome. However, autophagy-related gene 5 (ATG5)-specific siRNA abolished the anti-inflammatory effect of caffeine treatment in PM and BV2 cells. Taken together, these data suggest that caffeine exerts a newly discovered effect on EAE by reducing NLRP3 inflammasome activation via the induction of autophagy in microglia.
Collapse
Affiliation(s)
- Hui-Qi Wang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.,Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Kai-Yi Song
- Rehabilitation & Sports Medicine Research Institute of Zhejiang Province, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College, Hangzhou, 310014, China
| | - Jin-Zhou Feng
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Si-Yuan Huang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xiu-Ming Guo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Lei Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Gang Zhang
- Cerebravascular Disease Department. Number 98, The First People's Hospital of Zunyi, (The third affiliated hospital of Zunyi Medical University), Fenghuang Road, Zunyi, Guizhou Province, 563000, China
| | - Ying-Chao Huo
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Rong-Rong Zhang
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Yue Ma
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Qing-Zhe Hu
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China
| | - Xin-Yue Qin
- Department of Neurology, The First Affiliated Hospital of Chongqing Medical University, 1 Yixueyuan Road, Yuzhong District, Chongqing, 400016, China.
| |
Collapse
|
26
|
Yadava RS, Mandal M, Giese JM, Rigo F, Bennett CF, Mahadevan MS. Modeling muscle regeneration in RNA toxicity mice. Hum Mol Genet 2021; 30:1111-1130. [PMID: 33864373 PMCID: PMC8188403 DOI: 10.1093/hmg/ddab108] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/08/2021] [Accepted: 04/09/2021] [Indexed: 01/04/2023] Open
Abstract
RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3′UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3′UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.
Collapse
Affiliation(s)
- Ramesh S Yadava
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Mahua Mandal
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Jack M Giese
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| | - Frank Rigo
- Ionis Pharmaceuticals Inc., Carlsbad, CA 90210, USA
| | | | - Mani S Mahadevan
- Department of Pathology, University of Virginia, Charlottesville, VA 22908, USA
| |
Collapse
|
27
|
Mateus T, Martins F, Nunes A, Herdeiro MT, Rebelo S. Metabolic Alterations in Myotonic Dystrophy Type 1 and Their Correlation with Lipin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:ijerph18041794. [PMID: 33673200 PMCID: PMC7918590 DOI: 10.3390/ijerph18041794] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 12/14/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is an autosomal dominant hereditary and multisystemic disease, characterized by progressive distal muscle weakness and myotonia. Despite huge efforts, the pathophysiological mechanisms underlying DM1 remain elusive. In this review, the metabolic alterations observed in patients with DM1 and their connection with lipin proteins are discussed. We start by briefly describing the epidemiology, the physiopathological and systemic features of DM1. The molecular mechanisms proposed for DM1 are explored and summarized. An overview of metabolic syndrome, dyslipidemia, and the summary of metabolic alterations observed in patients with DM1 are presented. Patients with DM1 present clinical evidence of metabolic alterations, namely increased levels of triacylglycerol and low-density lipoprotein, increased insulin and glucose levels, increased abdominal obesity, and low levels of high-density lipoprotein. These metabolic alterations may be associated with lipins, which are phosphatidate phosphatase enzymes that regulates the triacylglycerol levels, phospholipids, lipid signaling pathways, and are transcriptional co-activators. Furthermore, lipins are also important for autophagy, inflammasome activation and lipoproteins synthesis. We demonstrate the association of lipin with the metabolic alterations in patients with DM1, which supports further clinical studies and a proper exploration of lipin proteins as therapeutic targets for metabolic syndrome, which is important for controlling many diseases including DM1.
Collapse
Affiliation(s)
| | | | | | | | - Sandra Rebelo
- Correspondence: ; Tel.: +351-924-406-306; Fax: +351-234-372-587
| |
Collapse
|
28
|
Perrotta C, Cattaneo MG, Molteni R, De Palma C. Autophagy in the Regulation of Tissue Differentiation and Homeostasis. Front Cell Dev Biol 2020; 8:602901. [PMID: 33363161 PMCID: PMC7758408 DOI: 10.3389/fcell.2020.602901] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2020] [Accepted: 11/20/2020] [Indexed: 12/14/2022] Open
Abstract
Autophagy is a constitutive pathway that allows the lysosomal degradation of damaged components. This conserved process is essential for metabolic plasticity and tissue homeostasis and is crucial for mammalian post-mitotic cells. Autophagy also controls stem cell fate and defective autophagy is involved in many pathophysiological processes. In this review, we focus on established and recent breakthroughs aimed at elucidating the impact of autophagy in differentiation and homeostasis maintenance of endothelium, muscle, immune system, and brain providing a suitable framework of the emerging results and highlighting the pivotal role of autophagic response in tissue functions, stem cell dynamics and differentiation rates.
Collapse
Affiliation(s)
- Cristiana Perrotta
- Department of Biomedical and Clinical Sciences "Luigi Sacco" (DIBIC), Università degli Studi di Milano, Milan, Italy
| | - Maria Grazia Cattaneo
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Raffaella Molteni
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| | - Clara De Palma
- Department of Medical Biotechnology and Translational Medicine (BIOMETRA), Università degli Studi di Milano, Milan, Italy
| |
Collapse
|
29
|
Ozimski LL, Sabater-Arcis M, Bargiela A, Artero R. The hallmarks of myotonic dystrophy type 1 muscle dysfunction. Biol Rev Camb Philos Soc 2020; 96:716-730. [PMID: 33269537 DOI: 10.1111/brv.12674] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 11/18/2020] [Accepted: 11/20/2020] [Indexed: 12/20/2022]
Abstract
Myotonic dystrophy type 1 (DM1) is the most prevalent form of muscular dystrophy in adults and yet there are currently no treatment options. Although this disease causes multisystemic symptoms, it is mainly characterised by myopathy or diseased muscles, which includes muscle weakness, atrophy, and myotonia, severely affecting the lives of patients worldwide. On a molecular level, DM1 is caused by an expansion of CTG repeats in the 3' untranslated region (3'UTR) of the DM1 Protein Kinase (DMPK) gene which become pathogenic when transcribed into RNA forming ribonuclear foci comprised of auto complementary CUG hairpin structures that can bind proteins. This leads to the sequestration of the muscleblind-like (MBNL) family of proteins, depleting them, and the abnormal stabilisation of CUGBP Elav-like family member 1 (CELF1), enhancing it. Traditionally, DM1 research has focused on this RNA toxicity and how it alters MBNL and CELF1 functions as key splicing regulators. However, other proteins are affected by the toxic DMPK RNA and there is strong evidence that supports various signalling cascades playing an important role in DM1 pathogenesis. Specifically, the impairment of protein kinase B (AKT) signalling in DM1 increases autophagy, apoptosis, and ubiquitin-proteasome activity, which may also be affected in DM1 by AMP-activated protein kinase (AMPK) downregulation. AKT also regulates CELF1 directly, by affecting its subcellular localisation, and indirectly as it inhibits glycogen synthase kinase 3 beta (GSK3β), which stabilises the repressive form of CELF1 in DM1. Another kinase that contributes to CELF1 mis-regulation, in this case by hyperphosphorylation, is protein kinase C (PKC). Additionally, it has been demonstrated that fibroblast growth factor-inducible 14 (Fn14) is induced in DM1 and is associated with downstream signalling through the nuclear factor κB (NFκB) pathways, associating inflammation with this disease. Furthermore, MBNL1 and CELF1 play a role in cytoplasmic processes involved in DM1 myopathy, altering proteostasis and sarcomere structure. Finally, there are many other elements that could contribute to the muscular phenotype in DM1 such as alterations to satellite cells, non-coding RNA metabolism, calcium dysregulation, and repeat-associated non-ATG (RAN) translation. This review aims to organise the currently dispersed knowledge on the different pathways affected in DM1 and discusses the unexplored connections that could potentially help in providing new therapeutic targets in DM1 research.
Collapse
Affiliation(s)
- Lauren L Ozimski
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain.,Arthex Biotech, Catedrático Escardino, 9, Paterna, Valencia, 46980, Spain
| | - Maria Sabater-Arcis
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ariadna Bargiela
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| | - Ruben Artero
- Translational Genomics Group, Incliva Health Research Institute, Avda. Menéndez Pelayo 4 acc., Valencia, 46010, Spain.,University Institute for Biotechnology and Biomedicine, Dr. Moliner 50, Burjasot, Valencia, 46100, Spain.,CIPF-INCLIVA Joint Unit, Valencia, 46012, Spain
| |
Collapse
|