1
|
Wang X, Shi W, Li M, Xin Y, Jiang X. RSL3 sensitizes glioma cells to ionizing radiation by suppressing TGM2-dependent DNA damage repair and epithelial-mesenchymal transition. Redox Biol 2024; 78:103438. [PMID: 39580966 PMCID: PMC11625373 DOI: 10.1016/j.redox.2024.103438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 11/15/2024] [Accepted: 11/17/2024] [Indexed: 11/26/2024] Open
Abstract
RAS-selective lethal small molecule 3 (RSL3) is a small-molecule compound that triggers ferroptosis by inactivating glutathione peroxidase 4. However, its effect on the radioresistance of glioma cells and the underlying mechanisms remains unclear. In this study, we found that RSL3 sensitized glioma cells to ionizing radiation (IR) and enhanced IR-induced DNA double-strand breaks (DSBs). Inhibition of ferroptosis pathways partly prevented the clonogenic death caused by the IR/RSL3 combination but did not alleviate the DNA DSBs, indicating that RSL3 promotes IR-induced DNA DSBs via a non-ferroptotic mechanism. We demonstrated that transglutaminase 2 (TGM2) plays a vital role in the radiosensitization effect of RSL3 on glioma cells. Treatment with RSL3 downregulated TGM2 in a dose-dependent manner. Overexpression of TGM2 not only alleviated DNA DSBs but also inhibited clonogenic death caused by the IR/RSL3 combination. Mechanistically, RSL3 triggered oxidative stress in glioma cells, which promoted the S-gluthathionylation of TGM2 via upregulation of glutathione S-transferase P1(GSTP1), culminating in the proteasomal degradation of TGM2. This process resulted in the suppression of DNA repair mechanisms by impeding the nuclear accumulation of TGM2 and disrupting the interaction between TGM2 and topoisomerase IIα after irradiation. We also found that RSL3 inhibited glioma cell epithelial-mesenchymal transition (EMT) in both IR-treated and non-IR-treated cells. Overexpression of TGM2 prevented, while knockdown of TGM2 aggravated the EMT inhibition caused by RSL3, indicating that RSL3 also sensitized glioma cells to IR by inhibiting EMT via a TGM2-dependent mechanism. Furthermore, in mice bearing human U87 tumor xenografts, RSL3 administration synergized with IR to inhibit tumor growth, accompanied by TGM2 inhibition, DNA DSBs, and EMT inhibition in tumor tissues. Taken together, we demonstrated that RSL3 sensitizes glioma cells to IR by suppressing TGM2-mediated DNA repair and EMT.
Collapse
Affiliation(s)
- Xuanzhong Wang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| | - Mengxin Li
- Department of Breast Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, 130021, China.
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China.
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University and College of Basic Medical Science, Jilin University, Changchun, China; Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, 130021, China; NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, 130021, China.
| |
Collapse
|
2
|
Ghani U, Ghori FK, Qamar MU, Khan H, Azad B, Habib S, Justin S, Khan IN, Shah TA, Shazly GA, Bourhia M, Perveen F, Javed A. SLNP-based CDK4- targeted nanotherapy against glioblastoma. Front Oncol 2024; 14:1455816. [PMID: 39650055 PMCID: PMC11621005 DOI: 10.3389/fonc.2024.1455816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Accepted: 10/14/2024] [Indexed: 12/11/2024] Open
Abstract
Introduction Glioblastoma is a grade IV solid brain tumor and has a 15-month survival rate even after treatment. Glioblastoma development is heavily influenced by retinoblastoma protein (pRB) pathway changes. The blood-brain barrier, drug resistance, and severe toxicity of Temozolamide are key obstacles in treating glioblastoma. Innovative treatments targeting the pRB pathway with efficient delivery vehicles are required to treat glioblastoma. Methods For this purpose, a library of 691 plant extracts previously tested in vitro for anti-cancerous, anti inflammatory, and anti-proliferative characteristics was created after thorough literature investigations. Compounds were docked against pRB pathway protein ligands using molecular operating environment and chimera. Their nuclear structure and drug-like properties were predicted through Lipinski rule and density functional theory analysis. Physio-chemical characterizations of naked and drug-encapsulated SLNPs assessed size, stability, entrapment efficiency, and drug release rate. Anti-cancer potential of drug and drug- loaded SLNPs was evaluated using U87, U251, and HEK cell lines. Formulations were tested for cancer cell metastatic potential using cell migration assays. Results Silymarin (Sil) was identified as the most potent compound against CDK4, which was then encapsulated in stearic acid solid lipid nanoparticles (SLNP-Sil). Sil showed decreased cell viability 72 h after treatment against both U87 and U251 cell lines but had negligible cytotoxic effect on HEK-293. IC50 value of Sil was 155.14 µM for U87 and 195.93 µM for U251. Sil and SLNP-Sil effectively inhibited U87 and U251 cell migration 24 h after treatment. Discussion Our results indicated that Sil and SLNP-Sil are promising therapeutic approaches against glioblastoma and merit in vivo experimental verification using orthotropic xenograft mouse models against glioblastoma.
Collapse
Affiliation(s)
- Uzma Ghani
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Fareeha Khalid Ghori
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Muhammad Usman Qamar
- Institute of Microbiology, Faculty of Life Sciences, Government College University Faisalabad, Faisalabad, Pakistan
- Division of Infectious Disease and Department of Medicine, University of Geneva, Geneva, Switzerland
| | - Hina Khan
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Basit Azad
- Materials And Modeling Lab, School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Sabahat Habib
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Saira Justin
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Ishaq N. Khan
- Cancer Cell Culture and Precision Oncomedicine Lab, Institute of Basic Medical Sciences (IBMS), Khyber Medical University, Peshawar, Pakistan
- Department of Pharmaceutical Sciences, Taxes A&M Health Science Center, Joe H. Reynolds Medical Sciences Build, College Station, TX, United States
| | - Tawaf Ali Shah
- College of Agriculture Engineering and Food Sciences, Shandong University of Technology, Zibo, China
| | - Gamal A. Shazly
- Department of Pharmaceutics, College of Pharmacy, King Saud University, Riyadh, Saudi Arabia
| | - Mohammed Bourhia
- Department of Chemistry and Biochemistry, Faculty of Medicine and Pharmacy, Ibn Zohr University, Laayoune, Morocco
| | - Fouzia Perveen
- Materials And Modeling Lab, School of Interdisciplinary Engineering and Sciences, National University of Sciences and Technology, Islamabad, Pakistan
| | - Aneela Javed
- Molecular Immunology Laboratory, Department of Healthcare Biotechnology, Atta-ur-Rahman School of Applied Biosciences, National University of Sciences and Technology, Islamabad, Pakistan
| |
Collapse
|
3
|
Andani FM, Talebi-Garakani E, Ashabi G, Ganbarirad M, Hashemnia M, Sharifi M, Ghasemi M. Exercise-activated hepatic autophagy combined with silymarin is associated with suppression of apoptosis in rats subjected to dexamethasone induced- fatty liver damage. Mol Biol Rep 2024; 51:928. [PMID: 39172304 DOI: 10.1007/s11033-024-09844-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2024] [Accepted: 08/06/2024] [Indexed: 08/23/2024]
Abstract
AIM There is a need for effective treatments for non-alcoholic fatty liver disease (NAFLD) that are economically inexpensive, and have few side effects. The present study aimed to investigate exercise training and silymarin on hepatocyte death factors in rats with liver damage. METHODS Forty-nine male Wistar rats were assigned to seven groups: sedentary control, fatty liver control (DEX), fatty liver + high-intensity interval training (HIIT), fatty liver + HIIT + silymarin (HIIT + SILY), fatty liver + continuous training (CT), fatty liver + CT + silymarin (CT + SILY), and fatty liver + silymarin (SILY). A subcutaneous injection of dexamethasone for 7 days was used to induce fatty liver in rats. Masson's trichrome and hematoxylin-eosin staining were done to evaluate hepatic injury. The hepatocyte apoptosis was determined by TUNEL assay. Real-Time PCR was conducted to evaluate the gene expressions of caspase-9, adenosine monophosphate-activated protein kinase (AMPKα1), mitofusin 2 (Mfn2), and damage-regulated autophagy modulator (DRAM). Liver tissue changes and serum levels of liver enzymes were also evaluated. RESULTS Liver apoptosis was decreased in the CT, HIIT, HIIT + SILY and CT + SILY groups compared to the DEX group. Both continuous and high-intensity training models produced beneficial alterations in liver morphology and hepatic injuries that were significant in exercise training + silymarin group. This impact was accompanied by increased AMPKα1 and DRAM gene expression and decreased caspase-9 and Mfn2 gene expression. Liver enzyme levels were high in the DEX group and treatment with silymarin significantly reduced it. CONCLUSION Silymarin supplementation combined with interval or continuous training substantially improves DEX-induced hepatic steatosis and hepatocyte injury mostly through suppressing liver apoptosis and upregulating autophagy, which may provide a novel perspective for NAFLD treatment.
Collapse
Affiliation(s)
- Fatemeh Mokhtari Andani
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Elahe Talebi-Garakani
- Department of Exercise Physiology, Faculty of Sports Sciences, University of Mazandaran, Mazandaran, Iran
| | - Ghorbangol Ashabi
- Department of Physiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Mahtab Ganbarirad
- Gerash Cellular and Molecular Research Center, Gerash University of Medical Sciences, Gerash, Iran
| | - Mohammad Hashemnia
- Department of Pathobiology, Faculty of Veterinary Medicine, Razi University, Kermanshah, Iran
| | - Mohammadreza Sharifi
- Department of Genetics and Molecular Biology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Maedeh Ghasemi
- Department of Physiology, School of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran.
| |
Collapse
|
4
|
Trejo-Solís C, Castillo-Rodríguez RA, Serrano-García N, Silva-Adaya D, Vargas-Cruz S, Chávez-Cortéz EG, Gallardo-Pérez JC, Zavala-Vega S, Cruz-Salgado A, Magaña-Maldonado R. Metabolic Roles of HIF1, c-Myc, and p53 in Glioma Cells. Metabolites 2024; 14:249. [PMID: 38786726 PMCID: PMC11122955 DOI: 10.3390/metabo14050249] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2024] [Revised: 04/18/2024] [Accepted: 04/20/2024] [Indexed: 05/25/2024] Open
Abstract
The metabolic reprogramming that promotes tumorigenesis in glioblastoma is induced by dynamic alterations in the hypoxic tumor microenvironment, as well as in transcriptional and signaling networks, which result in changes in global genetic expression. The signaling pathways PI3K/AKT/mTOR and RAS/RAF/MEK/ERK stimulate cell metabolism, either directly or indirectly, by modulating the transcriptional factors p53, HIF1, and c-Myc. The overexpression of HIF1 and c-Myc, master regulators of cellular metabolism, is a key contributor to the synthesis of bioenergetic molecules that mediate glioma cell transformation, proliferation, survival, migration, and invasion by modifying the transcription levels of key gene groups involved in metabolism. Meanwhile, the tumor-suppressing protein p53, which negatively regulates HIF1 and c-Myc, is often lost in glioblastoma. Alterations in this triad of transcriptional factors induce a metabolic shift in glioma cells that allows them to adapt and survive changes such as mutations, hypoxia, acidosis, the presence of reactive oxygen species, and nutrient deprivation, by modulating the activity and expression of signaling molecules, enzymes, metabolites, transporters, and regulators involved in glycolysis and glutamine metabolism, the pentose phosphate cycle, the tricarboxylic acid cycle, and oxidative phosphorylation, as well as the synthesis and degradation of fatty acids and nucleic acids. This review summarizes our current knowledge on the role of HIF1, c-Myc, and p53 in the genic regulatory network for metabolism in glioma cells, as well as potential therapeutic inhibitors of these factors.
Collapse
Affiliation(s)
- Cristina Trejo-Solís
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | | | - Norma Serrano-García
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Daniela Silva-Adaya
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
- Centro de Investigación Sobre el Envejecimiento, Centro de Investigación y de Estudios Avanzados (CIE-CINVESTAV), Ciudad de Mexico 14330, Mexico
| | - Salvador Vargas-Cruz
- Departamento de Cirugía, Hospital Ángeles del Pedregal, Camino a Sta. Teresa, Ciudad de Mexico 10700, Mexico;
| | | | - Juan Carlos Gallardo-Pérez
- Departamento de Fisiopatología Cardio-Renal, Departamento de Bioquímica, Instituto Nacional de Cardiología, Ciudad de Mexico 14080, Mexico;
| | - Sergio Zavala-Vega
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| | - Arturo Cruz-Salgado
- Centro de Investigación Sobre Enfermedades Infecciosas, Instituto Nacional de Salud Pública, Cuernavaca 62100, Mexico;
| | - Roxana Magaña-Maldonado
- Laboratorio Experimental de Enfermedades Neurodegenerativas, Departamento de Neurofisiología, Laboratorio Clínico y Banco de Sangre y Laboratorio de Reprogramación Celular, Instituto Nacional de Neurología y Neurocirugía, Ciudad de Mexico 14269, Mexico; (N.S.-G.); (D.S.-A.); (S.Z.-V.)
| |
Collapse
|
5
|
Friedman CA, Saha A, Hackman GL, Lu X, Lodi A, Tiziani S, DiGiovanni J. Novel two-tiered screening approach identifies synergistic combinations of natural compounds for prostate cancer prevention and treatment. Mol Carcinog 2024; 63:589-600. [PMID: 38197430 PMCID: PMC10939931 DOI: 10.1002/mc.23674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 12/13/2023] [Indexed: 01/11/2024]
Abstract
Prostate cancer (PCa) is the second most common cancer type among American men and it is estimated that in 2023, 34,700 men will die from PCa. Since it can take a considerable amount of time for the disease to progress to clinically evident cancer, there is ample opportunity for effective chemopreventive strategies to be applied for the successful management of PCa progression. In the current study, we have developed a two-tiered metabolomics-based screen to identify synergistic combinations of phytochemicals for PCa chemoprevention. This involves an initial screen for ATP depletion in PCa cells followed by a targeted screen for blocking glutamine uptake in the same cells. One of the phytochemical combinations (enoxolone [ENO] + silibinin [SIL]), identified via this screen, was examined for effects on PCa cell survival, oncogenic signaling and tumor growth in vivo. This combination was found to synergistically reduce cell survival, colony formation and cell cycle progression of PCa cell lines to a greater extent than either agent alone. The combination of ENO and SIL also synergistically reduced tumor growth when administered ad libitum through the diet in a HMVP2 allograft PCa tumor model. Treatment with the combination also significantly reduced STAT3 and mTORC1 signaling pathways in mouse and human PCa cells while significantly reducing levels of critical cell cycle regulatory proteins, contributing to the synergistic inhibition of tumor growth observed. Collectively, the current results demonstrate a novel approach to identifying synergistic combinations of phytochemicals for chemoprevention of PCa and possibly other cancers.
Collapse
Affiliation(s)
- Chelsea A. Friedman
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712
| | - Achinto Saha
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712
| | - G. Lavender Hackman
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Xiyuan Lu
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
| | - Alessia Lodi
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - Stefano Tiziani
- Department of Nutritional Sciences, The University of Texas at Austin, Austin, TX 78712, USA
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
| | - John DiGiovanni
- Division of Pharmacology and Toxicology, College of Pharmacy, The University of Texas at Austin, Austin, TX 78712
- Dell Pediatric Research Institute, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Oncology, Dell Medical School, Livestrong Cancer Institutes, The University of Texas at Austin, Austin, TX, 78723, USA
- Department of Pediatrics, Dell Medical School, The University of Texas at Austin, Austin, TX, 78723, USA
- Center for Molecular Carcinogenesis and Toxicology, The University of Texas at Austin, Austin, TX 78712
| |
Collapse
|
6
|
Chen N, Wan X, Cheng S, Tang G, Xia D, Xu Y, Shen Y. Defective autophagic flux aggravates cadmium-induced Sertoli cell apoptosis. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2024; 273:116095. [PMID: 38367604 DOI: 10.1016/j.ecoenv.2024.116095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Revised: 01/26/2024] [Accepted: 02/08/2024] [Indexed: 02/19/2024]
Abstract
The male reproductive dysfunction accounts for 50% of infertile couples in the world. Cadmium (Cd) is one of the most harmful heavy metals to both the environment and inhabitants. Accumulating data suggest that Cd could cause male infertility. Sertoli cell (SC) is a somatic cell of testis and a key regulator of spermatogenesis by providing physical and nutritional support for developing sperm. Many studies showed that Cd induced dysfunction of SCs was directly related to male reproductive damage. However, the mechanism of SCs injury caused by Cd remains to be clarified. We found that Cd treatment caused a significant increase of apoptosis in SCs cells, accompanied by a marked increase in the production of ROS. These results were associated with the formation of mitochondria-containing autophagosomes and increased expression of LC3-II in vitro. Interestingly, our results showed that Cd did not promote but inhibited the fusion of mitochondria-containing autophagosomes with lysosomes by reducing the function of lysosomes. Together, this study provides insight into the negative effects of Cd, which interferes with autophagic flux and induces the apoptosis of SCs.
Collapse
Affiliation(s)
- Na Chen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Xiaoyan Wan
- Department of Obstetrics and Gynecology, Guangzhou Women and Children's Medical Center, Guangzhou Medical University, Guangzhou 510620, PR China
| | - Shun Cheng
- College of Zhixing, Hubei University, Wuhan 430011, PR China
| | - Guiju Tang
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Dan Xia
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China
| | - Yanling Xu
- Department of Hematology, Shanghai Jiaotong University School of Medicine Affiliated Ruijin Hospital Wuxi Hospital, Wuxi, Jiangsu 214000, PR China.
| | - Yi Shen
- Department of Obstetrics and Gynecology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, PR China.
| |
Collapse
|
7
|
Li Z, Ma J, Tian M, Xia P, Lv X, Hou R, Jiang Y, Xu X, Jia Z, Wang J, Li Z. Synthesis, biological activity evaluation and mechanism of action of novel bis-isatin derivatives as potential anti-liver cancer agents. Bioorg Med Chem Lett 2024; 99:129613. [PMID: 38224754 DOI: 10.1016/j.bmcl.2024.129613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Revised: 12/27/2023] [Accepted: 01/06/2024] [Indexed: 01/17/2024]
Abstract
A series of bis-isatin conjugates with lysine linker were synthesized with the aim of probing their antiproliferative potential. All the newly synthesized derivatives (0-100 μM) were first screened against liver cancer cell lines(Huh1, H22, Huh7, Hepa1-6, HepG2, Huh6 and 97H) using CCK-8 assay. Results indicated that the derivative 4d exhibited the most potent activity against Huh1 (IC50 = 17.13 µM) and Huh7(IC50 = 8.265 µM). In vivo anti-tumor study showed that compound 4d effectively inhibited tumor growth in Huh1-induced xenograft mouse model; the anti-tumor effect of compound 4d (15 mg/kg) was comparable with sorafenib (20 mg/kg). H&E staining analysis and routine blood test and blood serum biochemistry examination was performed to confirm the safety of compound 4d in xenograft models. The mechanism of action of 4d on tumor growth inhibition was further investigated by RNA-Seq analysis, which indicates a positive regulation of autophagy signaling pathway, which was further confirmed with key biomarker expression of autophagy after 4d treatment. Our results suggest that the bis-isatin conjugate compound 4d is a promising tumor inhibitory agent for some liver cancer.
Collapse
Affiliation(s)
- Zhifen Li
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Jingbo Ma
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Ming Tian
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, PR China
| | - Peng Xia
- Department of Hepatobiliary & Pancreatic Surgery, Zhongnan Hospital of Wuhan University, Wuhan, Hubei 430072, PR China
| | - Xiannian Lv
- Department of Geriatrics, Fifth People's Hospital of Datong City, Shanxi Province 2669 Wenxing Road North, Pingcheng District, Datong City 037006, Shanxi, PR China
| | - Rui Hou
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China; Harry Perkins Institute of Medical Research, QEII Medical Centre and Centre for Medical Research, The University of Western Australia, Nedlands, WA 6009, Australia
| | - Yuke Jiang
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Xiaolong Xu
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China
| | - Zhifang Jia
- School of Chemistry and Chemical Engineering, Shanxi Datong University, Xing Yun Street, Pingcheng District, Datong, Shanxi Province 037009, PR China
| | - Jigang Wang
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China; State Key Laboratory for Quality Ensurance and Sustainable Use of Dao-di Herbs, Artemisinin Research Center, Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing 100700, PR China.
| | - Zhijie Li
- Shenzhen Clinical Research Centre for Geriatrics, Shenzhen People's Hospital (The Second Clinical Medical College, Jinan University, The First Affiliated Hospital, Southern University of Science and Technology) Shenzhen, Guangdong 518020, PR China.
| |
Collapse
|
8
|
Xiao B, Jiang Y, Yuan S, Cai L, Xu T, Jia L. Silibinin, a potential fasting mimetic, inhibits hepatocellular carcinoma by triggering extrinsic apoptosis. MedComm (Beijing) 2024; 5:e457. [PMID: 38222315 PMCID: PMC10784426 DOI: 10.1002/mco2.457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/21/2023] [Accepted: 11/22/2023] [Indexed: 01/16/2024] Open
Abstract
Fasting, without inducing malnutrition, has been shown to have various beneficial effects, including the inhibition of tumor initiation and progression. However, prolonged fasting poses challenges for many cancer patients, particularly those in intermediate and terminal stages. Thus, there is an urgent need for the development of fasting mimetics which harness the protective effects of fasting but more suitable for patients. In this study, we first highlighted the pivotal role of silibinin in AMP-activated protein kinase (AMPK) pathway and may serve, as a potential fasting mimetic via screening hepatoprotective drugs. Further metabolic analysis showed that silibinin inhibited the adenosine triphosphate (ATP) levels, glucose uptake and diminished glycolysis process, which further confirmed that silibinin served as a fasting mimetic. In addition, fasting synergized with silibinin, or used independently, to suppress the growth of hepatocellular carcinoma (HCC) in vivo. Mechanistically, silibinin upregulated death receptor 5 (DR5) through AMPK activation, and thus promoting extrinsic apoptosis and inhibiting HCC growth both in vitro and in vivo. Inhibition of AMPK using small interfering RNA (siRNA) or compound C, an AMPK inhibitor, significantly attenuated the upregulation of DR5 and the apoptotic response induced by silibinin. These findings suggest that silibinin holds promise as a fasting mimetic and may serve as an adjuvant drug for HCC treatment.
Collapse
Affiliation(s)
- Biying Xiao
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Yanyu Jiang
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Shuying Yuan
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Lili Cai
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| | - Tong Xu
- Departmnent of OncologyAffiliated Hospital of Jiangnan UniversityWuxiChina
| | - Lijun Jia
- Cancer InstituteLonghua HospitalShanghai University of Traditional Chinese MedicineShanghaiChina
| |
Collapse
|
9
|
Verma P, Joshi H, Singh T, Sharma B, Sharma U, Ramniwas S, Rana R, Gupta M, Kaur G, Tuli HS. Temozolomide and flavonoids against glioma: from absorption and metabolism to exosomal delivery. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:41-57. [PMID: 37566307 DOI: 10.1007/s00210-023-02660-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 08/01/2023] [Indexed: 08/12/2023]
Abstract
Patients with glioblastoma multiforme and anaplastic astrocytoma are treated with temozolomide. Although it has been demonstrated that temozolomide increases GBM patient survival, it has also been connected to negative immune-related adverse effects. Numerous research investigations have shown that flavonoids have strong antioxidant and chemo-preventive effects. Consequently, it might lessen chemotherapeutic medicines' side effects while also increasing therapeutic effectiveness. The need for creating innovative, secure, and efficient drug carriers for cancer therapy has increased over time. Recent research indicates that exosomes have enormous potential to serve as carriers and cutting-edge drug delivery systems to the target cell. In recent years, researchers have been paying considerable attention to exosomes because of their favorable biodistribution, biocompatibility, and low immunogenicity. In the present review, the mechanistic information of the anti-glioblastoma effects of temozolomide and flavonoids coupled with their exosomal delivery to the targeted cell has been discussed. In addition, we discuss the safety aspects of temozolomide and flavonoids against glioma. The in-depth information of temozolomide and flavonoids action via exosomal delivery can unravel novel strategies to target Glioma.
Collapse
Affiliation(s)
- Priyanka Verma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Hemant Joshi
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, 110067, India
| | - Tejveer Singh
- Translational Oncology Laboratory, Department of Zoology, Hansraj College, Delhi University, New Delhi, 110007, India
| | - Bunty Sharma
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India
| | - Ujjawal Sharma
- Department of Human Genetics and Molecular Medicine, Central University of Punjab, Bhatinda, 151001, India
| | - Seema Ramniwas
- University Centre for Research and Development, University Institute of Pharmaceutical Sciences, Chandigarh University, Gharuan, Mohali, 140413, India
| | - Rashmi Rana
- Department of Research, Sir Ganga Ram Hospital, New Delhi, 122016, India.
| | - Madhu Gupta
- Department of Pharmaceutics, School of Pharmaceutical Sciences, Delhi Pharmaceutical Sciences and Research University, New Delhi, 110017, India
| | - Ginpreet Kaur
- Department of Pharmacology, Shobhaben Pratapbhai Patel School of Pharmacy and Technology Management, SVKM'S NMIMS, Vile Parle-West, Mumbai, 400056, India
| | - Hardeep Singh Tuli
- Department of Bio-Sciences and Technology, Maharishi Markandeshwar Engineering College, Maharishi Markandeshwar (Deemed to Be University), Mullana, Ambala, 133207, India.
| |
Collapse
|
10
|
Yang YC, Zhu Y, Sun SJ, Zhao CJ, Bai Y, Wang J, Ma LT. ROS regulation in gliomas: implications for treatment strategies. Front Immunol 2023; 14:1259797. [PMID: 38130720 PMCID: PMC10733468 DOI: 10.3389/fimmu.2023.1259797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Accepted: 10/30/2023] [Indexed: 12/23/2023] Open
Abstract
Gliomas are one of the most common primary malignant tumours of the central nervous system (CNS), of which glioblastomas (GBMs) are the most common and destructive type. The glioma tumour microenvironment (TME) has unique characteristics, such as hypoxia, the blood-brain barrier (BBB), reactive oxygen species (ROS) and tumour neovascularization. Therefore, the traditional treatment effect is limited. As cellular oxidative metabolites, ROS not only promote the occurrence and development of gliomas but also affect immune cells in the immune microenvironment. In contrast, either too high or too low ROS levels are detrimental to the survival of glioma cells, which indicates the threshold of ROS. Therefore, an in-depth understanding of the mechanisms of ROS production and scavenging, the threshold of ROS, and the role of ROS in the glioma TME can provide new methods and strategies for glioma treatment. Current methods to increase ROS include photodynamic therapy (PDT), sonodynamic therapy (SDT), and chemodynamic therapy (CDT), etc., and methods to eliminate ROS include the ingestion of antioxidants. Increasing/scavenging ROS is potentially applicable treatment, and further studies will help to provide more effective strategies for glioma treatment.
Collapse
Affiliation(s)
- Yu-Chen Yang
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yu Zhu
- College of Health, Dongguan Polytechnic, Dongguan, China
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, China
| | - Si-Jia Sun
- Department of Postgraduate Work, Xi’an Medical University, Xi’an, China
| | - Can-Jun Zhao
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| | - Yang Bai
- Department of Neurosurgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Jin Wang
- Department of Radiation Protection Medicine, Faculty of Preventive Medicine, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Shaanxi Key Laboratory of Free Radical and Medicine, Xi’an, China
| | - Li-Tian Ma
- Department of Traditional Chinese Medicine, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine Tumor Diagnosis and Treatment in Shaanxi Province, Xi’an, China
- Department of Gastroenterology, Tangdu Hospital, Air Force Medical University (Fourth Military Medical University), Xi’an, China
| |
Collapse
|
11
|
Liang SP, Wang XZ, Piao MH, Chen X, Wang ZC, Li C, Wang YB, Lu S, He C, Wang YL, Chi GF, Ge PF. Activated SIRT1 contributes to DPT-induced glioma cell parthanatos by upregulation of NOX2 and NAT10. Acta Pharmacol Sin 2023; 44:2125-2138. [PMID: 37277492 PMCID: PMC10545831 DOI: 10.1038/s41401-023-01109-3] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2023] [Accepted: 05/09/2023] [Indexed: 06/07/2023] Open
Abstract
Parthanatos is a type of programmed cell death dependent on hyper-activation of poly (ADP-ribose) polymerase 1 (PARP-1). SIRT1 is a highly conserved nuclear deacetylase and often acts as an inhibitor of parthanatos by deacetylation of PARP1. Our previous study showed that deoxypodophyllotoxin (DPT), a natural compound isolated from the traditional herb Anthriscus sylvestris, triggered glioma cell death via parthanatos. In this study, we investigated the role of SIRT1 in DPT-induced human glioma cell parthanatos. We showed that DPT (450 nmol/L) activated both PARP1 and SIRT1, and induced parthanatos in U87 and U251 glioma cells. Activation of SIRT1 with SRT2183 (10 μmol/L) enhanced, while inhibition of SIRT1 with EX527 (200 μmol/L) or knockdown of SIRT1 attenuated DPT-induced PARP1 activation and glioma cell death. We demonstrated that DPT (450 nmol/L) significantly decreased intracellular NAD+ levels in U87 and U251 cells. Further decrease of NAD+ levels with FK866 (100 μmol/L) aggravated, but supplement of NAD+ (0.5, 2 mmol/L) attenuated DPT-induced PARP1 activation. We found that NAD+ depletion enhanced PARP1 activation via two ways: one was aggravating ROS-dependent DNA DSBs by upregulation of NADPH oxidase 2 (NOX2); the other was reinforcing PARP1 acetylation via increase of N-acetyltransferase 10 (NAT10) expression. We found that SIRT1 activity was improved when being phosphorylated by JNK at Ser27, the activated SIRT1 in reverse aggravated JNK activation via upregulating ROS-related ASK1 signaling, thus forming a positive feedback between JNK and SIRT1. Taken together, SIRT1 activated by JNK contributed to DPT-induced human glioma cell parthanatos via initiation of NAD+ depletion-dependent upregulation of NOX2 and NAT10.
Collapse
Affiliation(s)
- Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Mei-Hua Piao
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu-Bo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
| | - Yan-Li Wang
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
- Department of Obstetrics and Gynecology, First Hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
12
|
Wang XZ, Liang SP, Chen X, Wang ZC, Li C, Feng CS, Lu S, He C, Wang YB, Chi GF, Ge PF. TAX1BP1 contributes to deoxypodophyllotoxin-induced glioma cell parthanatos via inducing nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I. Acta Pharmacol Sin 2023; 44:1906-1919. [PMID: 37186123 PMCID: PMC10462642 DOI: 10.1038/s41401-023-01091-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Accepted: 04/07/2023] [Indexed: 05/17/2023] Open
Abstract
Parthanatos is a type of programmed cell death initiated by over-activated poly (ADP-ribose) polymerase 1 (PARP1). Nuclear translocation of apoptosis inducing factor (AIF) is a prominent feature of parthanatos. But it remains unclear how activated nuclear PARP1 induces mitochondrial AIF translocation into nuclei. Evidence has shown that deoxypodophyllotoxin (DPT) induces parthanatos in glioma cells via induction of excessive ROS. In this study we explored the downstream signal of activated PARP1 to induce nuclear translocation of AIF in DPT-triggered glioma cell parthanatos. We showed that treatment with DPT (450 nM) induced PARP1 over-activation and Tax1 binding protein 1 (TAX1BP1) distribution to mitochondria in human U87, U251 and U118 glioma cells. PARP1 activation promoted TAX1BP1 distribution to mitochondria by depleting nicotinamide adenine dinucleotide (NAD+). Knockdown of TAX1BP1 with siRNA not only inhibited TAX1BP1 accumulation in mitochondria, but also alleviated nuclear translocation of AIF and glioma cell death. We demonstrated that TAX1BP1 enhanced the activity of respiratory chain complex I not only by upregulating the expression of ND1, ND2, NDUFS2 and NDUFS4, but also promoting their assemblies into complex I. The activated respiratory complex I generated more superoxide to cause mitochondrial depolarization and nuclear translocation of AIF, while the increased mitochondrial superoxide reversely reinforced PARP1 activation by inducing ROS-dependent DNA double strand breaks. In mice bearing human U87 tumor xenograft, administration of DPT (10 mg· kg-1 ·d-1, i.p., for 8 days) markedly inhibited the tumor growth accompanied by NAD+ depletion, TAX1BP1 distribution to mitochondria, AIF distribution to nuclei as well as DNA DSBs and PARP1 activation in tumor tissues. Taken together, these data suggest that TAX1BP1 acts as a downstream signal of activated PARP1 to trigger nuclear translocation of AIF by activation of mitochondrial respiratory chain complex I.
Collapse
Affiliation(s)
- Xuan-Zhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shi-Peng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhen-Chuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chun-Sheng Feng
- Department of Anesthesiology, First Hospital of Jilin University, Changchun, 130021, China
| | - Shan Lu
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chuan He
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Yu-Bo Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Guang-Fan Chi
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, 130021, China
| | - Peng-Fei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China.
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
13
|
Li W, Xu X. Advances in mitophagy and mitochondrial apoptosis pathway-related drugs in glioblastoma treatment. Front Pharmacol 2023; 14:1211719. [PMID: 37456742 PMCID: PMC10347406 DOI: 10.3389/fphar.2023.1211719] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Accepted: 06/23/2023] [Indexed: 07/18/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant tumor of the central nervous system (CNS). It is a leading cause of death among patients with intracranial malignant tumors. GBM exhibits intra- and inter-tumor heterogeneity, leading to drug resistance and eventual tumor recurrence. Conventional treatments for GBM include maximum surgical resection of glioma tissue, temozolomide administration, and radiotherapy, but these methods do not effectively halt cancer progression. Therefore, development of novel methods for the treatment of GBM and identification of new therapeutic targets are urgently required. In recent years, studies have shown that drugs related to mitophagy and mitochondrial apoptosis pathways can promote the death of glioblastoma cells by inducing mitochondrial damage, impairing adenosine triphosphate (ATP) synthesis, and depleting large amounts of ATP. Some studies have also shown that modern nano-drug delivery technology targeting mitochondria can achieve better drug release and deeper tissue penetration, suggesting that mitochondria could be a new target for intervention and therapy. The combination of drugs targeting mitochondrial apoptosis and autophagy pathways with nanotechnology is a promising novel approach for treating GBM.This article reviews the current status of drug therapy for GBM, drugs targeting mitophagy and mitochondrial apoptosis pathways, the potential of mitochondria as a new target for GBM treatment, the latest developments pertaining to GBM treatment, and promising directions for future research.
Collapse
|
14
|
Du YX, Mamun AA, Lyu AP, Zhang HJ. Natural Compounds Targeting the Autophagy Pathway in the Treatment of Colorectal Cancer. Int J Mol Sci 2023; 24:7310. [PMID: 37108476 PMCID: PMC10138367 DOI: 10.3390/ijms24087310] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 04/03/2023] [Accepted: 04/12/2023] [Indexed: 04/29/2023] Open
Abstract
Autophagy is a highly conserved intracellular degradation pathway by which misfolded proteins or damaged organelles are delivered in a double-membrane vacuolar vesicle and finally degraded by lysosomes. The risk of colorectal cancer (CRC) is high, and there is growing evidence that autophagy plays a critical role in regulating the initiation and metastasis of CRC; however, whether autophagy promotes or suppresses tumor progression is still controversial. Many natural compounds have been reported to exert anticancer effects or enhance current clinical therapies by modulating autophagy. Here, we discuss recent advancements in the molecular mechanisms of autophagy in regulating CRC. We also highlight the research on natural compounds that are particularly promising autophagy modulators for CRC treatment with clinical evidence. Overall, this review illustrates the importance of autophagy in CRC and provides perspectives for these natural autophagy regulators as new therapeutic candidates for CRC drug development.
Collapse
Affiliation(s)
| | | | - Ai-Ping Lyu
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| | - Hong-Jie Zhang
- School of Chinese Medicine, Hong Kong Baptist University, 7 Baptist University Road, Kowloon Tong, Kowloon, Hong Kong SAR, China; (Y.-X.D.); (A.A.M.)
| |
Collapse
|
15
|
Zhang S, Zhang X, Wang X, Li C, He C, Luo T, Ge P. Maltol inhibits oxygen glucose deprivation‑induced chromatinolysis in SH‑SY5Y cells by maintaining pyruvate level. Mol Med Rep 2023; 27:75. [PMID: 36799163 PMCID: PMC9950851 DOI: 10.3892/mmr.2023.12962] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 01/25/2023] [Indexed: 02/17/2023] Open
Abstract
Maltol, a chemical isolated from ginseng root, has shown treatment effects on several pathological processes including osteoarthritis, diabetic peripheral neuropathy and liver fibrosis. Nevertheless, its effect on ischemia‑induced neuron death remains elusive. In the present study, the treatment effect of maltol on ischemia‑induced neuron damage was investigated by using oxygen and glucose deprivation (OGD) model in SH‑SY5Y cells. In vitro studies revealed that maltol protected SH‑SY5Y cells against OGD‑induced chromatinolysis by inhibiting two reactive oxygen species (ROS)‑regulated pathways. One was DNA double‑strand breaks and the other was nuclear translocation of apoptosis inducing factor. Mechanistically, maltol not only inhibited OGD‑induced depletion of glutathione and cysteine by maintaining cystine/glutamate antiporter (xCT) level, but also abrogated OGD‑induced catalase downregulation. Meanwhile, maltol also alleviated OGD‑induced inactivation of mTOR by attenuating OGD‑induced depletion of adenosine triphosphate and pyruvate and downregulation of pyruvate kinase M2, indicating that maltol inhibited the glycolysis dysfunction caused by OGD. Considering that activated mammalian target of the rapamycin (mTOR) could lead to enhanced xCT expression and decreased catalase degradation by autophagy, these findings indicated that maltol attenuated OGD‑induced ROS via inhibition of mTOR inactivation by maintaining pyruvate level. Taken together, it was demonstrated that maltol prevented OGD‑induced chromatinolysis in SH‑SY5Y cells via inhibiting pyruvate depletion.
Collapse
Affiliation(s)
- Shuyan Zhang
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Xinyue Zhang
- Department of Public Health, New York University, New York, NY 10016, USA
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Chuan He
- Department of Neurotrauma, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Department of Neurology, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Research Center of Neuroscience, First Hospital of Jilin University, Changchun, Jilin 130021, P.R. China,Correspondence to: Professor Pengfei Ge, Department of Neurosurgery, First Hospital of Jilin University, 1 Xinmin Avenue, Changchun, Jilin 130021, P.R. China, E-mail:
| |
Collapse
|
16
|
Cheng B, Wang Y, Ayanlaja AA, Zhu J, Kambey PA, Qiu Z, Zhang C, Hu W. Glutathione S-Transferases S1, Z1 and A1 Serve as Prognostic Factors in Glioblastoma and Promote Drug Resistance through Antioxidant Pathways. Cells 2022; 11:3232. [PMID: 36291099 PMCID: PMC9600210 DOI: 10.3390/cells11203232] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Revised: 09/29/2022] [Accepted: 10/10/2022] [Indexed: 11/17/2022] Open
Abstract
The glutathione S-transferase (GST) family of detoxification enzymes can regulate the malignant progression and drug resistance of various tumors. Hematopoietic prostaglandin D synthase (HPGDS, also referred to as GSTS1), GSTZ1, and GSTA1 are abnormally expressed in multiple cancers, but their roles in tumorigenesis and development remain unclear. In this study, we used bioinformatics tools to analyze the connections of HPGDS, GSTZ1, and GSTA1 to a variety of tumors in genetic databases. Then, we performed biochemical assays in GBM cell lines to investigate the involvement of HPGDS in proliferation and drug resistance. We found that HPGDS, GSTZ1, and GSTA1 are abnormally expressed in a variety of tumors and are associated with prognoses. The expression level of HPGDS was significantly positively correlated with the grade of glioma, and high levels of HPGDS predicted a poor prognosis. Inhibiting HPGDS significantly downregulated GBM proliferation and reduced resistance to temozolomide by disrupting the cellular redox balance and inhibiting the activation of JNK signaling. In conclusion, this study suggested that HPGDS, GSTZ1, and GSTA1 are related to the progression of multiple tumors, and HPGDS is expected to be a prognostic factor in GBM.
Collapse
Affiliation(s)
- Bo Cheng
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
- The Key Lab of Psychiatry, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221000, China
| | - Yu Wang
- Department of Geriatric Psychiatry, The Affiliated Brain Hospital of Nanjing Medical University, Guangzhou Road 264, Nanjing 220029, China
| | - Abiola Abdulrahman Ayanlaja
- Department of Neurology, Johns Hopkins University School of Medicine, 201 N Broadway, Baltimore, MD 21287, USA
| | - Jing Zhu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
| | - Piniel Alphayo Kambey
- Department of Neurobiology and Cell Biology, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221000, China
| | - Ziqiang Qiu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
| | - Caiyi Zhang
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
- The Key Lab of Psychiatry, Xuzhou Medical University, Tongshan Road 209, Xuzhou 221000, China
| | - Wei Hu
- Department of Psychiatry, The Affiliated Xuzhou Eastern Hospital of Xuzhou Medical University, Tongshan Road 379, Xuzhou 221000, China
| |
Collapse
|
17
|
Field JT, Gordon JW. BNIP3 and Nix: Atypical regulators of cell fate. BIOCHIMICA ET BIOPHYSICA ACTA. MOLECULAR CELL RESEARCH 2022; 1869:119325. [PMID: 35863652 DOI: 10.1016/j.bbamcr.2022.119325] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 06/17/2022] [Accepted: 07/05/2022] [Indexed: 11/27/2022]
Abstract
Since their discovery nearly 25 years ago, the BCL-2 family members BNIP3 and BNIP3L (aka Nix) have been labelled 'atypical'. Originally, this was because BNIP3 and Nix have divergent BH3 domains compared to other BCL-2 proteins. In addition, this atypical BH3 domain is dispensable for inducing cell death, which is also unusual for a 'death gene'. Instead, BNIP3 and Nix utilize a transmembrane domain, which allows for dimerization and insertion into and through organelle membranes to elicit cell death. Much has been learned regarding the biological function of these two atypical death genes, including their role in metabolic stress, where BNIP3 is responsive to hypoxia, while Nix responds variably to hypoxia and is also down-stream of PKC signaling and lipotoxic stress. Interestingly, both BNIP3 and Nix respond to signals related to cell atrophy. In addition, our current view of regulated cell death has expanded to include forms of necrosis such as necroptosis, pyroptosis, ferroptosis, and permeability transition-mediated cell death where BNIP3 and Nix have been shown to play context- and cell-type specific roles. Perhaps the most intriguing discoveries in recent years are the results demonstrating roles for BNIP3 and Nix outside of the purview of death genes, such as regulation of proliferation, differentiation/maturation, mitochondrial dynamics, macro- and selective-autophagy. We provide a historical and unbiased overview of these 'death genes', including new information related to alternative splicing and post-translational modification. In addition, we propose to redefine these two atypical members of the BCL-2 family as versatile regulators of cell fate.
Collapse
Affiliation(s)
- Jared T Field
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada
| | - Joseph W Gordon
- Department of Human Anatomy and Cell Science, Rady Faculty of Health Science, University of Manitoba, Canada; College of Nursing, Rady Faculty of Health Science, University of Manitoba, Canada; The Diabetes Research Envisioned and Accomplished in Manitoba (DREAM) Theme of the Children's Hospital Research Institute of Manitoba, Winnipeg, Canada.
| |
Collapse
|
18
|
Liu T, Jin Q, Ren F, Yang L, Mao H, Ma F, Wang Y, Li P, Zhan Y. Potential therapeutic effects of natural compounds targeting autophagy to alleviate podocyte injury in glomerular diseases. Biomed Pharmacother 2022; 155:113670. [PMID: 36116248 DOI: 10.1016/j.biopha.2022.113670] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/02/2022] Open
Abstract
Podocyte injury is a common cause of proteinuric kidney diseases. Uncontrollable progressive podocyte loss accelerates glomerulosclerosis and increases the risk of end-stage renal disease. To date, owing to the complex pathological mechanism, effective therapies for podocyte injury have been limited. Accumulating evidence supports the indispensable role of autophagy in the maintenance of podocyte homeostasis. A variety of natural compounds and their derivatives have been found to regulate autophagy through multiple targets, including promotes nuclear transfer of transcription factor EB and lysosomal repair. Here, we reviewed the recent studies on the use of natural compounds and their derivatives as autophagy regulators and discussed their potential applications in ameliorating podocyte injury. Several known natural compounds with autophagy-regulatory properties, such as quercetin, silibinin, kaempferol, and artemisinin, and their medical uses were also discussed. This review will help in improving the understanding of the podocyte protective mechanism of natural compounds and promote their development for clinical use.
Collapse
Affiliation(s)
- Tongtong Liu
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Qi Jin
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Feihong Ren
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Liping Yang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Huimin Mao
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Fang Ma
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yuyang Wang
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Ping Li
- China-Japan Friendship Hospital, Institute of Medical Science, Beijing, China.
| | - Yongli Zhan
- Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China.
| |
Collapse
|
19
|
Shi J, Yang N, Han M, Qiu C. Emerging roles of ferroptosis in glioma. Front Oncol 2022; 12:993316. [PMID: 36072803 PMCID: PMC9441765 DOI: 10.3389/fonc.2022.993316] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Accepted: 07/28/2022] [Indexed: 11/27/2022] Open
Abstract
Glioma is the most common primary malignant tumor in the central nervous system, and directly affects the quality of life and cognitive function of patients. Ferroptosis, is a new form of regulated cell death characterized by iron-dependent lipid peroxidation. Ferroptosis is mainly due to redox imbalance and involves multiple intracellular biology processes, such as iron metabolism, lipid metabolism, and antioxidants synthesis. Induction of ferroptosis could be a new target for glioma treatment, and ferroptosis-related processes are associated with chemoresistance and radioresistance in glioma. In the present review, we provide the characteristics, key regulators and pathways of ferroptosis and the crosstalk between ferroptosis and other programmed cell death in glioma, we also proposed the application and prospect of ferroptosis in the treatment of glioma.
Collapse
Affiliation(s)
- Jiaqi Shi
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
| | - Ning Yang
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Department of Epidemiology and Health Statistics, School of Public Health, Shandong University, Jinan, China
| | - Mingzhi Han
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Jinan Microecological Biomedicine Shandong Laboratory and Shandong Key Laboratory of Brain Function Remodeling, Jinan, China
- Medical Integration and Practice Center, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Chen Qiu
- School of Medicine, Cheeloo College of Medicine, Shandong University, Jinan, China
- Department of Neurosurgery, Qilu Hospital, Cheeloo College of Medicine and Institute of Brain and Brain-Inspired Science, Shandong University, Jinan, China
- Department of Radiation Oncology, Qilu Hospital, Cheeloo College of Medicine, Shandong University, Jinan, China
- *Correspondence: Chen Qiu,
| |
Collapse
|
20
|
Liu S, Dong L, Shi W, Zheng Z, Liu Z, Meng L, Xin Y, Jiang X. Potential targets and treatments affect oxidative stress in gliomas: An overview of molecular mechanisms. Front Pharmacol 2022; 13:921070. [PMID: 35935861 PMCID: PMC9355528 DOI: 10.3389/fphar.2022.921070] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 07/04/2022] [Indexed: 11/30/2022] Open
Abstract
Oxidative stress refers to the imbalance between oxidation and antioxidant activity in the body. Oxygen is reduced by electrons as part of normal metabolism leading to the formation of various reactive oxygen species (ROS). ROS are the main cause of oxidative stress and can be assessed through direct detection. Oxidative stress is a double-edged phenomenon in that it has protective mechanisms that help to destroy bacteria and pathogens, however, increased ROS accumulation can lead to host cell apoptosis and damage. Glioma is one of the most common malignant tumors of the central nervous system and is characterized by changes in the redox state. Therapeutic regimens still encounter multiple obstacles and challenges. Glioma occurrence is related to increased free radical levels and decreased antioxidant defense responses. Oxidative stress is particularly important in the pathogenesis of gliomas, indicating that antioxidant therapy may be a means of treating tumors. This review evaluates oxidative stress and its effects on gliomas, describes the potential targets and therapeutic drugs in detail, and clarifies the effects of radiotherapy and chemotherapy on oxidative stress. These data may provide a reference for the development of precise therapeutic regimes of gliomas based on oxidative stress.
Collapse
Affiliation(s)
- Shiyu Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lihua Dong
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Weiyan Shi
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zhuangzhuang Zheng
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Zijing Liu
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Lingbin Meng
- Department of Hematology and Medical Oncology, Moffitt Cancer Center, Tampa, FL, United States
| | - Ying Xin
- Key Laboratory of Pathobiology, Ministry of Education, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| | - Xin Jiang
- Jilin Provincial Key Laboratory of Radiation Oncology and Therapy, The First Hospital of Jilin University, Changchun, China
- Department of Radiation Oncology, The First Hospital of Jilin University, Changchun, China
- NHC Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
- *Correspondence: Ying Xin, ; Xin Jiang,
| |
Collapse
|
21
|
Yuan F, Zhang S, Sun Q, Ye L, Xu Y, Xu Z, Deng G, Zhang S, Liu B, Chen Q. Hsa_circ_0072309 enhances autophagy and TMZ sensitivity in glioblastoma. CNS Neurosci Ther 2022; 28:897-912. [PMID: 35212145 PMCID: PMC9062556 DOI: 10.1111/cns.13821] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/28/2022] [Accepted: 02/08/2022] [Indexed: 01/02/2023] Open
Abstract
Aims Circular RNAs have been reported to play key roles in the progression of various cancers, including gliomas. The present study was designed to investigate the role of hsa_circ_0072309 in autophagy and temozolomide (TMZ) sensitivity in glioblastoma (GBM). Methods The effect of hsa_circ_0072309 on autophagy and TMZ sensitivity were examined by GFP‐RFP‐LC3, transmission electron microscopy(TEM), flow cytometry, Western blot, and immunofluorescence. The mechanism of hsa_circ_0072309 regulating p53 signaling pathway was analyzed using Western blot, IP, and rescue experiments. Results Low hsa_circ_0072309 expression predicts poor prognosis for glioma patients. The regulation of hsa_circ_0072309 on autophagy and TMZ sensitivity depends on the status of p53. Hsa_circ_0072309 promoted autophagy by p53 signaling pathway and enhanced sensitivity of glioblastoma to temozolomide (TMZ) in p53 wild‐type GBM, but not in p53 mutant GBM. Hsa_circ_0072309 inhibits p53 ubiquitination and increases the stability of p53 protein in the context of p53 wild‐type. MiR‐100 mediates hsa_circ_0072309 regulating p53. P53 inhibitor or autophagy inhibitor could reverse the effect of hsa_circ_0072309 on TMZ sensitivity in p53 wild‐type GBM. Conclusions This study revealed a function of hsa_circ_0072309 promoting autophagy by p53 signaling pathway and enhancing TMZ sensitivity. These findings demonstrated that hsa_circ_0072309 may be a potential and promising target in designing the treatment strategy for GBM.
Collapse
Affiliation(s)
- Fanen Yuan
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Si Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qian Sun
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Liguo Ye
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Yang Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhou Xu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Gang Deng
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Shenqi Zhang
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Baohui Liu
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qianxue Chen
- Department of Neurosurgery, Renmin Hospital of Wuhan University, Wuhan, China.,Central Laboratory, Renmin Hospital of Wuhan University, Wuhan, China
| |
Collapse
|
22
|
Bai Y, Chen J, Hu W, Wang L, Wu Y, Yu S. Silibinin Therapy Improves Cholangiocarcinoma Outcomes by Regulating ERK/Mitochondrial Pathway. Front Pharmacol 2022; 13:847905. [PMID: 35401195 PMCID: PMC8983842 DOI: 10.3389/fphar.2022.847905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 03/07/2022] [Indexed: 11/13/2022] Open
Abstract
Background: Silibinin is widely utilized drug in various cancer treatments, though its application in cholangiocarcinoma has not yet been explored. For the first time, we evaluated the anticancer potential and underlying molecular mechanism of silibinin in treatment of cholangiocarcinoma treatment. Methods: HuCCT-1 and CCLP-1 cells were chosen to be an in vitro study model and were exposed to various concentrations of silibinin for indicated times. Cell viability was evaluated by the cell counting kit-8 (CCK-8) assay and half maximal inhibitory (IC50) concentrations were calculated. Cell proliferation capacity was determined through the use of colony formation and 5-Ethynyl-2′- deoxyuridine (EdU) assays. Cell apoptosis and cycle arrest were assessed by Live/Dead staining assay and flow cytometry (FCM). The protein levels of extracellular regulated protein kinases (ERK)/mitochondrial apoptotic pathway were evaluated through western blotting (WB). Mitochondrial membrane potential changes were determined via 5,5′,6,6′-Tetrachloro-1,1′,3,3′-tetraethyl-imidacarbocyanine iodide (JC-1). A cholangiocarcinoma cell line xenograft model was used to assess the anti-tumor activity of silibinin in vivo. Results: Inhibition of the ERK protein by silibinin led to a significant decrease in mitochondrial membrane potential, which, in turn, caused Cytochrome C to be released from the mitochondria. The activation of downstream apoptotic pathways led to apoptosis of cholangiocarcinoma cells. In general, silibinin inhibited the growth of cholangiocarcinoma cell line xenograft tumors. Conclusions: Silibinin is able to inhibit cholangiocarcinoma through the ERK/mitochondrial apoptotic pathway, which makes silibinin a potential anti-tumor drug candidate for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Yang Bai
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Jiaqi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Weijian Hu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Lei Wang
- Department of Urology Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
| | - Yulian Wu
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| | - Shi’an Yu
- Department of Hepatobiliary and Pancreatic Surgery, Affiliated Jinhua Hospital, Zhejiang University School of Medicine, Jinhua, China
- *Correspondence: Shi’an Yu, ; Yulian Wu,
| |
Collapse
|
23
|
The Mechanism Study of Common Flavonoids on Antiglioma Based on Network Pharmacology and Molecular Docking. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:2198722. [PMID: 35140796 PMCID: PMC8820855 DOI: 10.1155/2022/2198722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 08/30/2021] [Accepted: 12/28/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Glioma is the most common primary intracranial tumor in adult patients. Among them, glioblastoma is a highly malignant one with a poor prognosis. Flavonoids are a class of phenolic compounds widely distributed in plants and have many biological functions, such as anti-inflammatory, antioxidant, antiaging, and anticancer. Nowadays, flavonoids have been applied to the therapy of glioma; however, the molecular mechanism underlying the therapeutic effects has not been fully elaborated. This study was carried out to explore the mechanism of selected active flavonoid compounds in treating glioma using network pharmacology and molecular docking approaches. METHODS Active ingredients and associated targets of flavonoids were acquired by using the Traditional Chinese Medicine Database and Analysis Platform (TCMSP) and Swiss TargetPrediction platform. Genes related to glioma were obtained from the GeneCards and DisGeNET databases. The intersection targets between flavonoid targets and glioma-related genes were used to construct protein-protein interaction (PPI) network via the STRING database, and the results were analyzed by Cytoscape software. Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses were performed and displayed by utilizing the Metascape portal and clusterProfiler R package. Molecular docking was carried out by iGEMDOCK and SwissDock, and the results were visually displayed by UCSF Chimera software. RESULTS Eighty-four active flavonoid compounds and 258 targets overlapped between flavonoid targets and glioma-related genes were achieved. PPI network revealed potential therapeutic targets, such as AKT1, EGFR, VEGFA, MAPK3, and CASP3, based on their node degree. GO and KEGG analyses showed that core targets were mainly enriched in the PI3K-Akt signaling pathway. Molecular docking simulation indicated that potential glioma-related targets-MAPK1 and HSP90AA1 were bounded more firmly with epigallocatechin-3-gallate (EGCG) than with quercetin. CONCLUSIONS The findings of this study indicated that selected active flavonoid compounds might play therapeutic roles in glioma mainly through the PI3K-Akt signaling pathway. Moreover, EGCG had the potential antiglioma activity by targeting MAPK1 and HSP90AA1.
Collapse
|
24
|
Hua C, Wang X, Liang S, Chen X, Li C, You G, Wang C, Luo T, Wang Z, Ge P. BNIP3 contributes to silibinin-induced DNA double strand breaks in glioma cells via inhibition of mTOR. Biochem Biophys Res Commun 2021; 589:1-8. [PMID: 34883284 DOI: 10.1016/j.bbrc.2021.11.110] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 11/30/2021] [Indexed: 12/19/2022]
Abstract
BNIP3 is found to eliminate cancer cells via causing mitochondrial damage and endoplasmic reticulum stress, but it remains elusive of its role in regulating DNA double strand breaks (DSBs). In this study, we find that silibinin triggers DNA DSBs, ROS accumulation and expressional upregulation of BNIP3 in glioma cells. Mitigation of ROS with antioxidant GSH significantly inhibits silibinin-induced DNA DSBs and glioma cell death. Then, we find knockdown of BNIP3 with SiRNA obviously prevents silibinin-induced DNA DSBs and ROS accumulation. Mechanistically, BNIP3 knockdown not only reverses silibinin-triggered depletion of cysteine and GSH via maintaining xCT level, but also abrogates catalase decrease. Notably, silibinin-induced dephosphorylation of mTOR is also prevented when BNIP3 is knocked down. Given that activated mTOR could promote xCT expression and inhibit autophagic degradation of catalase, our data suggest that BNIP3 contributes to silibinin-induced DNA DSBs via improving intracellular ROS by inhibition of mTOR.
Collapse
Affiliation(s)
- Cong Hua
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xuanzhong Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Shipeng Liang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Xi Chen
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Chen Li
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Guangqiang You
- Department of General Surgery, Second Hospital of Jilin University, Changchun, 130021, China
| | - Chongcheng Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Tianfei Luo
- Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China; Department of Neurology, First Hospital of Jilin University, Changchun, 130021, China
| | - Zhenchuan Wang
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China
| | - Pengfei Ge
- Department of Neurosurgery, First Hospital of Jilin University, Changchun, 130021, China; Research Center of Neuroscience, First Hospital of Jilin University, Changchun, 130021, China.
| |
Collapse
|
25
|
Brimson JM, Prasanth MI, Malar DS, Thitilertdecha P, Kabra A, Tencomnao T, Prasansuklab A. Plant Polyphenols for Aging Health: Implication from Their Autophagy Modulating Properties in Age-Associated Diseases. Pharmaceuticals (Basel) 2021; 14:ph14100982. [PMID: 34681206 PMCID: PMC8538309 DOI: 10.3390/ph14100982] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2021] [Revised: 09/13/2021] [Accepted: 09/19/2021] [Indexed: 02/06/2023] Open
Abstract
Polyphenols are a family of naturally occurring organic compounds, majorly present in fruits, vegetables, and cereals, characterised by multiple phenol units, including flavonoids, tannic acid, and ellagitannin. Some well-known polyphenols include resveratrol, quercetin, curcumin, epigallocatechin gallate, catechin, hesperetin, cyanidin, procyanidin, caffeic acid, and genistein. They can modulate different pathways inside the host, thereby inducing various health benefits. Autophagy is a conserved process that maintains cellular homeostasis by clearing the damaged cellular components and balancing cellular survival and overall health. Polyphenols could maintain autophagic equilibrium, thereby providing various health benefits in mediating neuroprotection and exhibiting anticancer and antidiabetic properties. They could limit brain damage by dismantling misfolded proteins and dysfunctional mitochondria, thereby activating autophagy and eliciting neuroprotection. An anticarcinogenic mechanism is stimulated by modulating canonical and non-canonical signalling pathways. Polyphenols could also decrease insulin resistance and inhibit loss of pancreatic islet β-cell mass and function from inducing antidiabetic activity. Polyphenols are usually included in the diet and may not cause significant side effects that could be effectively used to prevent and treat major diseases and ailments.
Collapse
Affiliation(s)
- James Michael Brimson
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Mani Iyer Prasanth
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Dicson Sheeja Malar
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
| | - Premrutai Thitilertdecha
- Siriraj Research Group in Immunobiology and Therapeutic Sciences, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok 10330, Thailand;
| | - Atul Kabra
- Department of Pharmacology, University Institute of Pharma Sciences, Chandigarh University, Sahibzad Ajit Singh Nagar 140413, Punjab, India;
| | - Tewin Tencomnao
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- Department of Clinical Chemistry, Faculty of Allied Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| | - Anchalee Prasansuklab
- Natural Products for Neuroprotection and Anti-Ageing Research Unit, Chulalongkorn University, Bangkok 10330, Thailand; (J.M.B.); (M.I.P.); (D.S.M.)
- College of Public Health Sciences, Chulalongkorn University, Bangkok 10330, Thailand
- Correspondence: (T.T.); (A.P.)
| |
Collapse
|
26
|
Medeiros M, Candido MF, Valera ET, Brassesco MS. The multifaceted NF-kB: are there still prospects of its inhibition for clinical intervention in pediatric central nervous system tumors? Cell Mol Life Sci 2021; 78:6161-6200. [PMID: 34333711 PMCID: PMC11072991 DOI: 10.1007/s00018-021-03906-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 07/20/2021] [Accepted: 07/23/2021] [Indexed: 12/16/2022]
Abstract
Despite advances in the understanding of the molecular mechanisms underlying the basic biology and pathogenesis of pediatric central nervous system (CNS) malignancies, patients still have an extremely unfavorable prognosis. Over the years, a plethora of natural and synthetic compounds has emerged for the pharmacologic intervention of the NF-kB pathway, one of the most frequently dysregulated signaling cascades in human cancer with key roles in cell growth, survival, and therapy resistance. Here, we provide a review about the state-of-the-art concerning the dysregulation of this hub transcription factor in the most prevalent pediatric CNS tumors: glioma, medulloblastoma, and ependymoma. Moreover, we compile the available literature on the anti-proliferative effects of varied NF-kB inhibitors acting alone or in combination with other therapies in vitro, in vivo, and clinical trials. As the wealth of basic research data continues to accumulate, recognizing NF-kB as a therapeutic target may provide important insights to treat these diseases, hopefully contributing to increase cure rates and lower side effects related to therapy.
Collapse
Affiliation(s)
- Mariana Medeiros
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Marina Ferreira Candido
- Department of Cell Biology, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Elvis Terci Valera
- Department of Pediatrics, Ribeirão Preto Medical School, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - María Sol Brassesco
- Department of Biology, Faculty of Philosophy, Sciences and Letters at Ribeirão Preto, FFCLRP-USP, University of São Paulo, Av. Bandeirantes, 3900, Bairro Monte Alegre, Ribeirão Preto, São Paulo, CEP 14040-901, Brazil.
| |
Collapse
|
27
|
Raj SD, Fann DY, Wong E, Kennedy BK. Natural products as geroprotectors: An autophagy perspective. Med Res Rev 2021; 41:3118-3155. [PMID: 33973253 DOI: 10.1002/med.21815] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 02/09/2021] [Accepted: 04/19/2021] [Indexed: 12/19/2022]
Abstract
Over the past decade, significant attention has been given to repurposing Food and Drug Administration approved drugs to treat age-related diseases. In contrast, less consideration has been given to natural bioactive compounds. Consequently, there have been limited attempts to translate these compounds. Autophagy is a fundamental biological pathway linked to aging, and numerous strategies to enhance autophagy have been shown to extend lifespan. Interestingly, there are a number of natural products that are reported to modulate autophagy, and here we describe a number of them that activate autophagy through diverse molecular and cellular mechanisms. Among these, Urolithin A, Spermidine, Resveratrol, Fatty Acids and Phospholipids, Trehalose and Lithium are featured in detail. Finally, we outline possible strategies to optimise and increase the translatability of natural products, with the overall aim of delaying the ageing process and improving human healthspan.
Collapse
Affiliation(s)
- Stephen D Raj
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - David Y Fann
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore
| | - Esther Wong
- Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Brian K Kennedy
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Healthy Longevity Translational Research Program, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Centre For Healthy Longevity, National University Health System, National University of Singapore, Singapore.,Department of Physiology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore.,Agency for Science, Technology and Research (A*STAR), Singapore Institute for Clinical Sciences, Singapore
| |
Collapse
|
28
|
Lo Dico A, Martelli C, Diceglie C, Ottobrini L. The Multifaceted Role of CMA in Glioma: Enemy or Ally? Int J Mol Sci 2021; 22:2217. [PMID: 33672324 PMCID: PMC7926390 DOI: 10.3390/ijms22042217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 02/18/2021] [Accepted: 02/20/2021] [Indexed: 12/14/2022] Open
Abstract
Chaperone-mediated autophagy (CMA) is a catabolic pathway fundamental for cell homeostasis, by which specific damaged or non-essential proteins are degraded. CMA activity has three main levels of regulation. The first regulatory level is based on the targetability of specific proteins possessing a KFERQ-like domain, which can be recognized by specific chaperones and delivered to the lysosomes. Target protein unfolding and translocation into the lysosomal lumen constitutes the second level of CMA regulation and is based on the modulation of Lamp2A multimerization. Finally, the activity of some accessory proteins represents the third regulatory level of CMA activity. CMA's role in oncology has not been fully clarified covering both pro-survival and pro-death roles in different contexts. Taking all this into account, it is possible to comprehend the actual complexity of both CMA regulation and the cellular consequences of its activity allowing it to be elected as a modulatory and not only catabolic machinery. In this review, the role covered by CMA in oncology is discussed with a focus on its relevance in glioma. Molecular correlates of CMA importance in glioma responsiveness to treatment are described to identify new early efficacy biomarkers and new therapeutic targets to overcome resistance.
Collapse
Affiliation(s)
- Alessia Lo Dico
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Cristina Martelli
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Cecilia Diceglie
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
| | - Luisa Ottobrini
- Department of Pathophysiology and Transplantation, University of Milan, Via F.Cervi 93, Segrate, 20090 Milan, Italy; (A.L.D.); (C.M.); (C.D.)
- Institute of Molecular Bioimaging and Physiology, National Research Council (IBFM-CNR), Via F.Cervi 93, Segrate, 20090 Milan, Italy
| |
Collapse
|
29
|
Ou A, Ott M, Fang D, Heimberger AB. The Role and Therapeutic Targeting of JAK/STAT Signaling in Glioblastoma. Cancers (Basel) 2021; 13:437. [PMID: 33498872 PMCID: PMC7865703 DOI: 10.3390/cancers13030437] [Citation(s) in RCA: 65] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022] Open
Abstract
Glioblastoma remains one of the deadliest and treatment-refractory human malignancies in large part due to its diffusely infiltrative nature, molecular heterogeneity, and capacity for immune escape. The Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathway contributes substantively to a wide variety of protumorigenic functions, including proliferation, anti-apoptosis, angiogenesis, stem cell maintenance, and immune suppression. We review the current state of knowledge regarding the biological role of JAK/STAT signaling in glioblastoma, therapeutic strategies, and future directions for the field.
Collapse
Affiliation(s)
- Alexander Ou
- Department of Neuro-Oncology, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA;
| | - Martina Ott
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Dexing Fang
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| | - Amy B. Heimberger
- Department of Neurosurgery, University of Texas M.D. Anderson Cancer Center, 1515 Holcombe Blvd., Houston, TX 77030, USA; (M.O.); (D.F.)
| |
Collapse
|
30
|
王 魁, 明 慧, 左 静, 田 海, 黄 灿. [A Review of the Redox Regulation of Tumor Metabolism]. SICHUAN DA XUE XUE BAO. YI XUE BAN = JOURNAL OF SICHUAN UNIVERSITY. MEDICAL SCIENCE EDITION 2021; 52:57-63. [PMID: 33474890 PMCID: PMC10408948 DOI: 10.12182/20210160204] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Indexed: 02/05/2023]
Abstract
Metabolic aberrance is one of the hallmarks of cancer. The metabolic patterns in cancer cells are well reprogrammed to provide building blocks and energy for their sustained growth. During tumor metabolic reprogramming, reactive oxygen species (ROS) are generated and the antioxidant systems are activated. High levels of ROS lead to oxidative damage and even cell death, whereas ROS at low levels act as second messenger to regulate many signaling pathways. Recently, with the revisiting of oxidative stress, it has been found that ROS can directly mediate the redox modifications of proteins, resulting in protein conformational and functional alterations. However, only a very small portion of metabolic enzymes, including glyceraldehyde-3-phosphate dehydrogenase (GAPDH) and PKM2, etc., has been reported to undergo redox modifications. Whether other metabolic enzymes are regulated by redox modifications and thus exhibit critical functions remain largely unknown. Moreover, the specific spatio-temporal targeting of redox modifications of metabolic enzymes, as well as overcoming the existed redox and metabolic adaptation, are key points to be solved. Here, we will review the reported redox modification patterns of metabolic enzymes, the involved regulatory mechanisms and their roles in tumorigenesis and tumor progress. In addition, we will discuss the future therapeutic strategies targeting redox modifications of metabolic enzymes for tumor treatment.
Collapse
Affiliation(s)
- 魁 王
- 四川大学华西医院 生物治疗国家重点实验室 生物治疗协同创新中心 (成都 610041)Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| | - 慧 明
- 四川大学华西医院 生物治疗国家重点实验室 生物治疗协同创新中心 (成都 610041)Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 静 左
- 四川大学华西医院 生物治疗国家重点实验室 生物治疗协同创新中心 (成都 610041)Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 海隆 田
- 四川大学华西医院 生物治疗国家重点实验室 生物治疗协同创新中心 (成都 610041)Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - 灿华 黄
- 四川大学华西医院 生物治疗国家重点实验室 生物治疗协同创新中心 (成都 610041)Collaborative Innovation Center for Biotherapy, State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- 四川大学华西基础医学与法医学院 (成都 610041)West China School of Basic Medical Sciences and Forensic Medicine, Sichuan University, Chengdu 610041, China
| |
Collapse
|