1
|
Wang X, Gu Z, Huang Y, Wang J, Tang S, Yang X, Wang J. MicroRNA-668 alleviates renal fibrosis through PPARα/PGC-1α pathway. Eur J Med Res 2024; 29:631. [PMID: 39732711 DOI: 10.1186/s40001-024-02248-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 12/21/2024] [Indexed: 12/30/2024] Open
Abstract
BACKGROUND The involvement of microRNA-668 (miR-668) in the onset and progression of renal fibrosis remains unclear. To this end, we aimed to explore the relevant mechanism of miR-668 in renal fibrosis. METHODS C57BL/6 J male mice were randomly divided into sham-operated, unilateral ureteral obstruction (UUO), and UUO-fenofibrate groups. Based on transfection and drug intervention, HK-2 cells were divided into blank control, TGF-β1, TGF-β1 + fenofibrate (PPARα agonist), mimics-NC, miR-668, mimics-NC + TGF-β1, miR-668 + TGF-β1, miR-668 + TGF-β1 + fenofibrate, miR-668 + TGF-β1 + GW6471 (PPARα inhibitor), mimics-NC + TGF-β1 + fenofibrate, and mimics-NC + TGF-β1 + GW6471 groups. The pathological changes in the renal tissues were observed by hematoxylin-eosin (HE) and Masson staining. The expression of PPARα, PGC-1α, miR-668, E-cadherin, Collagen III (Col III), and α-SMA in the renal tissues or HK-2 cells was detected by western blot, immunohistochemical analyses or real-time quantitative polymerase chain reaction. The regulatory effect of miR-668 on PPARα was verified by dual-luciferase reporter assay. RESULTS The expression of PPARα and PGC-1α decreased in UUO mice and TGF-β1-induced HK-2 cells, which was improved by fenofibrate. Compared to the non-transfected group, in TGF-β1-stimulated HK-2 cells, the expression of E-cadherin, PPARα and PGC-1α increased and the expression of Col III and α-SMA decreased in the miR-668-transfected group. The dual-luciferase reporter assay indicated the regulatory effect of hsa-mir-668-3p on PPARα. CONCLUSION MiR-668 can target PPARα and positively regulate the PPARα/PGC-1α pathway to alleviate renal fibrosis.
Collapse
Affiliation(s)
- Xinran Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Zhoupeng Gu
- The Public Hospital Management Office, Zhuzhou, China
| | - Yan Huang
- Department of Rheumatology and Immunology, The Xiangya Changde Hospital, Central South University, Changde, China
| | - Jingyan Wang
- Department of Microbiology, School of Basic Medical Science, Central South University, Changsha, China
| | - Shiqi Tang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Xinyu Yang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China
- The Critical Kidney Disease Research Center of Central South University, Changsha, China
| | - Jianwen Wang
- Department of Nephrology, The Third Xiangya Hospital, Central South University, Changsha, China.
- The Critical Kidney Disease Research Center of Central South University, Changsha, China.
| |
Collapse
|
2
|
Lu LL, Liu LZ, Li L, Hu YY, Xian XH, Li WB. Sodium butyrate improves cognitive dysfunction in high-fat diet/ streptozotocin-induced type 2 diabetic mice by ameliorating hippocampal mitochondrial damage through regulating AMPK/PGC-1α pathway. Neuropharmacology 2024; 261:110139. [PMID: 39233201 DOI: 10.1016/j.neuropharm.2024.110139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 08/17/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Cognitive dysfunction is an important comorbidity of type 2 diabetes mellitus (T2DM). Sodium butyrate (NaB) is a short-chain fatty acid and has an effect improving T2DM-associated cognitive dysfunction. Using a high-fat diet (HFD)/streptozotocin (STZ)-induced T2DM mouse model, the present study investigated the mechanism involved in the beneficial effect of butyrate on diabetic cognitive dysfunction, with a focus on ameliorating mitochondrial damage through regulating the adenosine monophosphate-activated protein kinase/peroxisome proliferator-activated receptor gamma coactivator 1α (AMPK/PGC-1α) pathway considering the important role of mitochondrial impairments in the occurrence of T2DM-associated cognitive dysfunction. We found, based on reconfirmation of the improvement of NaB on cognitive impairment, that NaB treatment improved damaged synaptic structural plasticity including the decrease in dendritic spine density and downregulation in the expression of postsynaptic density protein 95 and synaptophysin in the hippocampus in the model mice. NaB treatment also ameliorated mitochondrial ultrastructural damage, increased mitochondrial membrane potential and adenosine 5'-triphosphate content, and improved mitochondrial biogenesis and dynamics in the model mice. Furthermore, the expression of phosphorylated AMPK and PGC-1α was upregulated after NaB treatment in the model mice. In particular, the above beneficial effects of NaB were blocked by the inhibition of either AMPK or PGC-1α. In conclusion, NaB treatment improved cognitive impairment and damaged synaptic structural plasticity in the hippocampus by ameliorating damage to mitochondrial morphology and function through regulating the AMPK/PGC-1α pathway in HFD/STZ-induced T2DM mice.
Collapse
Affiliation(s)
- Li-Li Lu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China; Department of Pathology, The Third Hospital of Shijiazhuang, 15 Tiyu South Avenue, Shijiazhuang, 050011, PR China
| | - Li-Zhe Liu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Li Li
- Central Laboratory, The Second Hospital of Hebei Medical University, 215 Heping West Road, Shijiazhuang, 050000, PR China
| | - Yu-Yan Hu
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China
| | - Xiao-Hui Xian
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China.
| | - Wen-Bin Li
- Hebei Key Laboratory of Critical Disease Mechanism and Intervention, Department of Pathophysiology, Neuroscience Research Center, Hebei Medical University, 361 Zhongshan East Road, Shijiazhuang, 050017, PR China.
| |
Collapse
|
3
|
Yang Z, Wang J, Zhao T, Wang L, Liang T, Zheng Y. Mitochondrial structure and function: A new direction for the targeted treatment of chronic liver disease with Chinese herbal medicine. JOURNAL OF ETHNOPHARMACOLOGY 2024; 334:118461. [PMID: 38908494 DOI: 10.1016/j.jep.2024.118461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 06/10/2024] [Accepted: 06/13/2024] [Indexed: 06/24/2024]
Abstract
ETHNOPHARMACOLOGICAL RELEVANCE Excessive fat accumulation, biological clock dysregulation, viral infections, and sustained inflammatory responses can lead to liver inflammation, fibrosis, and cancer, thus promoting the development of chronic liver disease. A comprehensive understanding of the etiological factors leading to chronic liver disease and the intrinsic mechanisms influencing its onset and progression can aid in identifying potential targets for targeted therapy. Mitochondria, as key organelles that maintain the metabolic homeostasis of the liver, provide an important foundation for exploring therapeutic targets for chronic liver disease. Recent studies have shown that active ingredients in herbal medicines and their natural products can modulate chronic liver disease by influencing the structure and function of mitochondria. Therefore, studying how Chinese herbs target mitochondrial structure and function to treat chronic liver diseases is of great significance. AIM OF THE STUDY Investigating the prospects of herbal medicine the Lens of chronic liver disease based on mitochondrial structure and function. MATERIALS AND METHODS A computerized search of PubMed was conducted using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "botanicals, mitochondria and chronic liver disease".Data from the Web of Science and Science Direct databases were also included. The research findings regarding herbal medicines targeting mitochondrial structure and function for the treatment of chronic liver disease are summarized. RESULTS A computerized search of PubMed using the keywords "mitochondrial structure", "mitochondrial function", "mitochondria and chronic liver disease", "phytopharmaceuticals, mitochondria, and chronic liver disease", as well as the Web of Science and Science Direct databases was conducted to summarize information on studies of mitochondrial structure- and function-based Chinese herbal medicines for the treatment of chronic liver disease and to suggest that the effects of herbal medicines on mitochondrial division and fusion.The study suggested that there is much room for research on the influence of Chinese herbs on mitochondrial division and fusion. CONCLUSIONS Targeting mitochondrial structure and function is crucial for herbal medicine to combat chronic liver disease.
Collapse
Affiliation(s)
- Zhihui Yang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Jiahui Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tiejian Zhao
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Lei Wang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China
| | - Tianjian Liang
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| | - Yang Zheng
- Department of Medicine, Faculty of Chinese Medicine Science Guangxi University of Chinese Medicine, Nanning, Guangxi, 530222, China.
| |
Collapse
|
4
|
Arconzo M, Piccinin E, Pasculli E, Cariello M, Loiseau N, Bertrand-Michel J, Guillou H, Matrella ML, Villani G, Moschetta A. Hepatic-specific Pgc-1α ablation drives fibrosis in a MASH model. Liver Int 2024; 44:2738-2752. [PMID: 39046166 DOI: 10.1111/liv.16052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Revised: 07/01/2024] [Accepted: 07/10/2024] [Indexed: 07/25/2024]
Abstract
BACKGROUND & AIMS Metabolic dysfunction-associated steatohepatitis (MASH) is a growing cause of chronic liver disease, characterized by fat accumulation, inflammation and fibrosis, which development depends on mitochondrial dysfunction and oxidative stress. Highly expressed in the liver during fasting, peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) regulates mitochondrial and oxidative metabolism. Given the relevant role of mitochondrial function in MASH, we investigated the relationship between PGC-1α and steatohepatitis. METHODS We measured the hepatic expression of Pgc-1α in both MASH patients and wild-type mice fed a western diet (WD) inducing steatosis and fibrosis. We then generated a pure C57BL6/J strain loss of function mouse model in which Pgc-1α is selectively deleted in the liver and we fed these mice with a WD supplemented with sugar water that accurately mimics human MASH. RESULTS We observed that the hepatic expression of Pgc-1α is strongly reduced in MASH, in both humans and mice. Moreover, the hepatic ablation of Pgc-1α promotes a considerable reduction of the hepatic mitochondrial respiratory capacity, setting up a bioenergetic harmful environment for liver diseases. Indeed, the lack of Pgc-1α decreases mitochondrial function and increases inflammation, fibrosis and oxidative stress in the scenario of MASH. Intriguingly, this profibrotic phenotype is not linked with obesity, insulin resistance and lipid disbalance. CONCLUSIONS In a MASH model the hepatic ablation of Pgc-1α drives fibrosis independently from lipid and glucose metabolism. These results add a novel mechanistic piece to the puzzle of the specific and crucial role of mitochondrial function in MASH development.
Collapse
Affiliation(s)
- Maria Arconzo
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Elena Piccinin
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Emanuela Pasculli
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Marica Cariello
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
| | - Nicolas Loiseau
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | | | - Hervé Guillou
- Toxalim (Research Center in Food Toxicology), INRAE, ENVT, INP-PURPAN, UMR 1331, UPS, Université de Toulouse, Toulouse, France
| | - Maria L Matrella
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Gaetano Villani
- Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari "Aldo Moro", Bari, Italy
| | - Antonio Moschetta
- Department of Interdisciplinary Medicine (DIM), University of Bari "Aldo Moro", Bari, Italy
- INBB, National Institute for Biostructures and Biosystems, Rome, Italy
| |
Collapse
|
5
|
Miguel V, Alcalde-Estévez E, Sirera B, Rodríguez-Pascual F, Lamas S. Metabolism and bioenergetics in the pathophysiology of organ fibrosis. Free Radic Biol Med 2024; 222:85-105. [PMID: 38838921 DOI: 10.1016/j.freeradbiomed.2024.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 05/15/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Fibrosis is the tissue scarring characterized by excess deposition of extracellular matrix (ECM) proteins, mainly collagens. A fibrotic response can take place in any tissue of the body and is the result of an imbalanced reaction to inflammation and wound healing. Metabolism has emerged as a major driver of fibrotic diseases. While glycolytic shifts appear to be a key metabolic switch in activated stromal ECM-producing cells, several other cell types such as immune cells, whose functions are intricately connected to their metabolic characteristics, form a complex network of pro-fibrotic cellular crosstalk. This review purports to clarify shared and particular cellular responses and mechanisms across organs and etiologies. We discuss the impact of the cell-type specific metabolic reprogramming in fibrotic diseases in both experimental and human pathology settings, providing a rationale for new therapeutic interventions based on metabolism-targeted antifibrotic agents.
Collapse
Affiliation(s)
- Verónica Miguel
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain.
| | - Elena Alcalde-Estévez
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain; Department of Systems Biology, Facultad de Medicina y Ciencias de la Salud, Universidad de Alcalá, Alcalá de Henares, Spain
| | - Belén Sirera
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Fernando Rodríguez-Pascual
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain
| | - Santiago Lamas
- Program of Physiological and Pathological Processes, Centro de Biología Molecular "Severo Ochoa" (CBMSO) (CSIC-UAM), Madrid, Spain.
| |
Collapse
|
6
|
Jiang YC, Dou JY, Xuan MY, Gao C, Li ZX, Lian LH, Cui ZY, Nan JX, Wu YL. Raspberry Ketone Attenuates Hepatic Fibrogenesis and Inflammation via Regulating the Crosstalk of FXR and PGC-1α Signaling. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2024; 72:15740-15754. [PMID: 38970822 DOI: 10.1021/acs.jafc.4c03286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/08/2024]
Abstract
Hepatic fibrosis is a compensatory response to chronic liver injury and inflammation, and dietary intervention is recommended as one of the fundamental prevention strategies. Raspberry ketone (RK) is an aromatic compound first isolated from raspberry and widely used to prepare food flavors. The current study investigated the hepatoprotection and potential mechanism of RK against hepatic fibrosis. In vitro, hepatic stellate cell (HSC) activation was stimulated with TGF-β and cultured with RK, farnesoid X receptor (FXR), or peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α) agonist or inhibitor, respectively. In vivo, C57BL/6 mice were injected intraperitoneally with thioacetamide (TAA) at 100/200 mg/kg from the first to the fifth week. Mice were intragastrically administrated with RK or Cur once a day from the second to the fifth week. In activated HSCs, RK inhibited extracellular matrix (ECM) accumulation, inflammation, and epithelial-mesenchymal transition (EMT) process. RK both activated FXR/PGC-1α and regulated their crosstalk, which were verified by their inhibitors and agonists. Deficiency of FXR or PGC-1α also attenuated the effect of RK on the reverse of activated HSCs. RK also decreased serum ALT/AST levels, liver histopathological change, ECM accumulation, inflammation, and EMT in mice caused by TAA. Double activation of FXR/PGC-1α might be the key targets for RK against hepatic fibrosis. Above all, these discoveries supported the potential of RK as a novel candidate for the dietary intervention of hepatic fibrosis.
Collapse
Affiliation(s)
- Yu-Chen Jiang
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Jia-Yi Dou
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Mei-Yan Xuan
- School of Pharmaceutical Sciences, Josai University, Sakado, Saitama 350-0295, Japan
| | - Chong Gao
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhao-Xu Li
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Li-Hua Lian
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Zhen-Yu Cui
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
- Jilin Vocational and Technical College, Longjing, Jilin Province 133400, China
| | - Ji-Xing Nan
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| | - Yan-Ling Wu
- Key Laboratory for Traditional Chinese Korean Medicine Research (State Ethnic Affairs), College of Pharmacy, Yanbian University, Yanji, Jilin Province 133002, China
| |
Collapse
|
7
|
Yang K, Yang M, Shen Y, Kang L, Zhu X, Dong W, Lei X. Resveratrol Attenuates Hyperoxia Lung Injury in Neonatal Rats by Activating SIRT1/PGC-1α Signaling Pathway. Am J Perinatol 2024; 41:1039-1049. [PMID: 35240708 DOI: 10.1055/a-1787-3396] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
OBJECTIVES Our previous study showed that resveratrol (Res) attenuates apoptosis and mitochondrial dysfunction in alveolar epithelial cell injury induced by hyperoxia by activating the SIRT1/PGC-1α signaling pathway. In the present study, we investigated whether Res protects against hyperoxia-induced lung injury in neonatal rats by activating SIRT1/PGC-1α signaling pathway. METHODS Naturally delivered neonatal rats were randomly divided into six groups: normoxia + normal saline, normoxia + dimethyl sulfoxide (DMSO), normoxia + Res, hyperoxia + normal saline, hyperoxia + DMSO, and hyperoxia + Res. Lung tissue samples were collected on postnatal days 1, 7, and 14. Hematoxylin and eosin staining was used to evaluate lung development. Dual-immunofluorescence staining, real-time polymerase chain reaction, and western blotting were used to evaluate the levels of silencing information regulator 2-related enzyme 1 (SIRT1), peroxisome proliferator-activated receptor γ co-activator 1α (PGC-1α), nuclear respiratory factor 1 (Nrf1), Nrf2, transcription factor A (TFAM) and citrate synthase, the number of mitochondrial DNA (mtDNA) and mitochondria, the integrity of mtDNA, and the expression of TFAM in mitochondria. RESULTS We found that hyperoxia insulted lung development, whereas Res attenuated the hyperoxia lung injury. Res significantly upregulated the levels of SIRT1, PGC-1α, Nrf1, Nrf2, TFAM, and citrate synthase; promoted TFAM expression in the mitochondria; and increased the copy number of ND1 and the ratio of ND4/ND1. CONCLUSION Our data suggest that Res attenuates hyperoxia-induced lung injury in neonatal rats, and this was achieved, in part, by activating the SIRT1/PGC-1α signaling pathway to promote mitochondrial biogenesis. KEY POINTS · Hyperoxia insulted lung development in neonatal rats.. · Resveratrol promoted mitochondrial biogenesis to attenuate hyperoxia lung injury in neonatal rats.. · Resveratrol, at least in part, promoted mitochondrial biogenesis by activating the SIRT1/PGC-1α signaling pathway..
Collapse
Affiliation(s)
- Kun Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Menghan Yang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Yunchuan Shen
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Lan Kang
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xiaodan Zhu
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Wenbin Dong
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| | - Xiaoping Lei
- Division of Neonatology, Department of Pediatrics, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Department of Perinatology, The Affiliated Hospital of Southwest Medical University, Luzhou, China
- Sichuan Clinical Research Center for Birth Defects, Luzhou, China
| |
Collapse
|
8
|
He Q, Li P, Han L, Yang C, Jiang M, Wang Y, Han X, Cao Y, Liu X, Wu W. Revisiting airway epithelial dysfunction and mechanisms in chronic obstructive pulmonary disease: the role of mitochondrial damage. Am J Physiol Lung Cell Mol Physiol 2024; 326:L754-L769. [PMID: 38625125 DOI: 10.1152/ajplung.00362.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Revised: 03/20/2024] [Accepted: 04/10/2024] [Indexed: 04/17/2024] Open
Abstract
Chronic exposure to environmental hazards causes airway epithelial dysfunction, primarily impaired physical barriers, immune dysfunction, and repair or regeneration. Impairment of airway epithelial function subsequently leads to exaggerated airway inflammation and remodeling, the main features of chronic obstructive pulmonary disease (COPD). Mitochondrial damage has been identified as one of the mechanisms of airway abnormalities in COPD, which is closely related to airway inflammation and airflow limitation. In this review, we evaluate updated evidence for airway epithelial mitochondrial damage in COPD and focus on the role of mitochondrial damage in airway epithelial dysfunction. In addition, the possible mechanism of airway epithelial dysfunction mediated by mitochondrial damage is discussed in detail, and recent strategies related to airway epithelial-targeted mitochondrial therapy are summarized. Results have shown that dysregulation of mitochondrial quality and oxidative stress may lead to airway epithelial dysfunction in COPD. This may result from mitochondrial damage as a central organelle mediating abnormalities in cellular metabolism. Mitochondrial damage mediates procellular senescence effects due to mitochondrial reactive oxygen species, which effectively exacerbate different types of programmed cell death, participate in lipid metabolism abnormalities, and ultimately promote airway epithelial dysfunction and trigger COPD airway abnormalities. These can be prevented by targeting mitochondrial damage factors and mitochondrial transfer. Thus, because mitochondrial damage is involved in COPD progression as a central factor of homeostatic imbalance in airway epithelial cells, it may be a novel target for therapeutic intervention to restore airway epithelial integrity and function in COPD.
Collapse
Affiliation(s)
- Qinglan He
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Peijun Li
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Lihua Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Chen Yang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Meiling Jiang
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yingqi Wang
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Xiaoyu Han
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Yuanyuan Cao
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| | - Xiaodan Liu
- School of Rehabilitation Science, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Weibing Wu
- School of Exercise and Health, Shanghai University of Sport, Shanghai, China
| |
Collapse
|
9
|
Jia L, Yang Y, Sun F, Tao H, Lu C, Yang JJ. Mitochondrial quality control in liver fibrosis: Epigenetic hallmarks and therapeutic strategies. Cell Signal 2024; 115:111035. [PMID: 38182067 DOI: 10.1016/j.cellsig.2024.111035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 12/29/2023] [Accepted: 01/01/2024] [Indexed: 01/07/2024]
Abstract
BACKGROUND AND AIM Mitochondrial quality control (MQC) plays a significant role in the progression of liver fibrosis, with key processes such as mitochondrial fission, fusion, mitophagy and biogenesis maintaining mitochondrial homeostasis. To understand the molecular mechanisms underlying epigenetic regulation of mitochondrial quality control in liver fibrosis, with the aim of uncovering novel therapeutic targets for treating, mitigating, and potentially reversing liver fibrosis, in light of the most recent advances in this field. METHODS We searched PubMed, Web of Science, and Scopus for published manuscripts using terms "mitochondrial quality control" "mitochondrial fission" "mitochondrial fusion" "mitochondrial biogenesis" "mitophagy" "liver fibrosis" "epigenetic regulation" "DNA methylation" "RNA methylation" "histone modification" and "non-coding RNA". Manuscripts were collated, studied and carried forward for discussion where appropriate. RESULTS Mitochondrial fission, fusion, biogenesis, and mitophagy regulate the homeostasis of mitochondria, and the imbalance of mitochondrial homeostasis can induce liver fibrosis. Epigenetic regulation, including DNA methylation, RNA methylation, histone modifications, and non-coding RNAs, plays a significant role in regulating the processes of mitochondrial homeostasis. CONCLUSION Mitochondrial quality control and epigenetic mechanisms are intricately linked to the pathogenesis of liver fibrosis. Understanding these molecular interactions provides insight into potential therapeutic strategies. Further research is necessary to translate these findings into clinical applications, with a focus on developing epigenetic drugs to ameliorate liver fibrosis by modulating MQC and epigenetic pathways.
Collapse
Affiliation(s)
- Lin Jia
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of General Surgery, Suzhou Hospital, Affiliated Hospital of Medical School, Nanjing University, Suzhou 215153, China
| | - Feng Sun
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Chao Lu
- School of Pharmacy, Anhui Medical University, Hefei 230032, China; First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
10
|
Verma S, Ishteyaque S, Washimkar KR, Verma S, Nilakanth Mugale M. Mitochondrial-mediated nuclear remodeling and macrophage polarizations: A key switch from liver fibrosis to HCC progression. Exp Cell Res 2024; 434:113878. [PMID: 38086504 DOI: 10.1016/j.yexcr.2023.113878] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 10/24/2023] [Accepted: 12/03/2023] [Indexed: 12/17/2023]
Abstract
Liver fibrosis is a significant health burden worldwide and has emerged as the leading cause of Hepatocellular carcinoma (HCC) incidence. Mitochondria are the dynamic organelles that regulate the differentiation, survival, and polarization of macrophages. Nuclear-DNA-associated proteins, micro-RNAs, as well as macrophage polarization are essential for maintaining intracellular and extra-cellular homeostasis in the liver parenchyma. Dysregulated mitochondrial coding genes (ETS complexes I, II, III, IV, and V), non-coding RNAs (mitomiRs), and nuclear alteration lead to the production of reactive oxygen species (ROS) and inflammation which are implicated in the transition of liver fibrosis into HCC. Recent findings indicated the protecting effect of E74-like factor 3/peroxisome proliferator-activated receptor-γ (Elf-3/PPAR-γ). HDAR-y inhibits the deacetylation of PPAR-y and maintains the PPAR-y pathway. Elf-3 plays a tumor suppressive role through epithelial-mesenchymal transition-related gene and zinc finger E-box binding homeobox 2 (ZEB-2) domain. Additionally, the development of HCC includes the PI3K/Akt/mTOR and transforming Growth Factor β (TGF-β) pathway that promotes the Epithelial-mesenchymal transition (EMT) through Smad/Snail/Slug signaling cascade. In contrast, the TLR2/NOX2/autophagy axis promotes M2 polarization in HCC. Thus, a thorough understanding of the mitochondrial and nuclear reciprocal relationship related to macrophage polarization could provide new research opportunities concerning diseases with a significant impact on liver parenchyma towards developing liver fibrosis or liver cancer. Moreover, this knowledge can be used to develop new therapeutic strategies to treat liver diseases.
Collapse
Affiliation(s)
- Shobhit Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Sharmeen Ishteyaque
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Kaveri R Washimkar
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Smriti Verma
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Madhav Nilakanth Mugale
- Division of Toxicology and Experimental Medicine, CSIR-Central Drug Research Institute (CSIR-CDRI), Lucknow, 226031, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
11
|
Zhang L, Xie X, Tao J, Wang S, Hu M, Wang X, Yu Z, Xu L, Lin Y, Wu W, Cheng J, Wu L, Liu W, Gao R, Wang J. Mystery of bisphenol F-induced nonalcoholic fatty liver disease-like changes: Roles of Drp1-mediated abnormal mitochondrial fission in lipid droplet deposition. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 904:166831. [PMID: 37683851 DOI: 10.1016/j.scitotenv.2023.166831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/31/2023] [Accepted: 09/02/2023] [Indexed: 09/10/2023]
Abstract
As one of the major substitutes for bisphenol A (BPA), bisphenol F (BPF) has been widely used. Our previous study demonstrated that BPF exposure facilitates lipid droplet deposition in hepatic cells, contributing to nonalcoholic fatty liver disease (NAFLD)-like changes. However, the underlying mechanisms remain poorly understood. Here, with a metabolic cage system, we observed the perturbation of energy metabolism in mice treated with BPF. BPF obviously suppressed metabolic capacity, which manifested as decreased energy expenditure, low O2 consumption and CO2 levels in mice. Consistent with the in vivo results, a Seahorse XF Cell Mito Stress Test showed significant reductions in mitochondrial ATP production capacity, maximum respiratory capacity, and residual respiratory capacity after BPF treatment in an in vitro study. Electron microscopy revealed a striking increase in mitochondrial fission that was synchronous with excessive expression and activation of dynamin-related protein 1 (Drp1). Intriguingly, chemical inhibition of Drp1 by Mdivi-1 and/or silencing of Drp1 dramatically hampered mitochondrial fission and ameliorated BPF-induced lipid droplet deposition both in mouse liver and human hepatic cells. Mechanistically, mitochondrial dynamics imbalance played prominent roles in these processes, since suppression of Drp1 by chemical inhibition or knockdown substantially reversed BPF-induced mitochondrial fission and ameliorated the suppression of mitochondrial metabolism as well as excessive mitochondrial ROS, which was verified to be key to lipid droplet deposition. Collectively, the findings of the current study reveal previously unrecognized effects involving Drp1-mediated mitochondrial injury in BPF-induced lipid droplet deposition. Therefore, targeted intervention against mitochondrial dysfunction may be a promising therapeutic strategy for BPF-induced NAFLD-like changes.
Collapse
Affiliation(s)
- Linwei Zhang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xuexue Xie
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Jingxian Tao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sizhe Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Miaoyang Hu
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Xi Wang
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zheng Yu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Liuting Xu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yuxin Lin
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Weilan Wu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jie Cheng
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China
| | - Linlin Wu
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China; The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214000, China
| | - Wenwei Liu
- The Affiliated Wuxi Center for Disease Control and Prevention of Nanjing Medical University, Wuxi 214000, China
| | - Rong Gao
- Department of Hygienic Analysis and Detection, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing 211166, China.
| | - Jun Wang
- Department of Toxicology, the Key Laboratory of Modern Toxicology of Ministry of Education, School of Public Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing 211166, China; China International Cooperation Center for Environment and Human Health, Nanjing Medical University, 101 Longmian Avenue, Nanjing, Jiangsu 211166, China.
| |
Collapse
|
12
|
Yang T, Hu Y, Chen S, Li L, Cao X, Yuan J, Shu F, Jiang Z, Qian S, Zhu X, Wei C, Wei R, Yan M, Li C, Yin X, Lu Q. Correction to: YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol 2023; 39:2787-2792. [PMID: 37115478 DOI: 10.1007/s10565-023-09802-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Accepted: 03/09/2023] [Indexed: 04/29/2023]
Abstract
The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which has a close relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) plays an important role not only in regulating the fibrosis process but also in maintaining the mitochondrial function of pancreatic β-cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG up-regulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose-cultured HK-2 cells and 8-weeks-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF.
Collapse
Affiliation(s)
- Tingting Yang
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Yinlu Hu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Shangxiu Chen
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Lin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xinyun Cao
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Jiayu Yuan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Fanglin Shu
- Department of Pharmacy, The First People's Hospital of Hangzhou Lin'an District, Hangzhou, 311300, China
| | - Zhenzhou Jiang
- Jiangsu Center for Pharmacodynamics Research and Evaluation, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Sitong Qian
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xia Zhu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chujing Wei
- Jiangsu Center for Pharmacodynamics Research and Evaluation, New Drug Screening Center, China Pharmaceutical University, Nanjing, 210009, China
| | - Rui Wei
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Meng Yan
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Chenlin Li
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China
| | - Xiaoxing Yin
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| | - Qian Lu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, 221004, China.
- Department of Clinical Pharmacology, School of Pharmacy, Xuzhou Medical University, NO. 209. Tongshan Road, Xuzhou, 221004, Jiangsu, China.
| |
Collapse
|
13
|
Li C, Xu J, Abdurehim A, Sun Q, Xie J, Zhang Y. TRPA1: A promising target for pulmonary fibrosis? Eur J Pharmacol 2023; 959:176088. [PMID: 37777106 DOI: 10.1016/j.ejphar.2023.176088] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Revised: 09/20/2023] [Accepted: 09/26/2023] [Indexed: 10/02/2023]
Abstract
Pulmonary fibrosis is a disease characterized by progressive scar formation and the ultimate manifestation of numerous lung diseases. It is known as "cancer that is not cancer" and has attracted widespread attention. However, its formation process is very complex, and the mechanism of occurrence has not been fully elucidated. Current research has found that TRPA1 may be a promising target in the pathogenesis of pulmonary fibrosis. The TRPA1 channel was first successfully isolated in human lung fibroblasts, and it was found to have a relatively concentrated distribution in the lungs and respiratory tract. It is also involved in various acute and chronic inflammatory processes of lung diseases and may even play a core role in the progression and/or prevention of pulmonary fibrosis. Natural ligands targeting TRPA1 could offer a promising alternative treatment for pulmonary diseases. Therefore, this review delves into the current understanding of pulmonary fibrogenesis, analyzes TRPA1 biological properties and regulation of lung disease with a focus on pulmonary fibrosis, summarizes the TRPA1 molecular structure and its biological function, and summarizes TRPA1 natural ligand sources, anti-pulmonary fibrosis activity and potential mechanisms. The aim is to decipher the exact role of TRPA1 channels in the pathophysiology of pulmonary fibrosis and to consider their potential in the development of new therapeutic strategies.
Collapse
Affiliation(s)
- Chao Li
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Jiawen Xu
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Aliya Abdurehim
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Qing Sun
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Junbo Xie
- School of Chinese Materia Medica, Tianjin University of Traditional Chinese Medicine, Tianjin, 301617, China.
| | - Yanqing Zhang
- Biotechnology & Food Science College, Tianjin University of Commerce, Tianjin, 300134, China.
| |
Collapse
|
14
|
Sharma S, Le Guillou D, Chen JY. Cellular stress in the pathogenesis of nonalcoholic steatohepatitis and liver fibrosis. Nat Rev Gastroenterol Hepatol 2023; 20:662-678. [PMID: 37679454 DOI: 10.1038/s41575-023-00832-w] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 07/26/2023] [Indexed: 09/09/2023]
Abstract
The burden of chronic liver disease is rising substantially worldwide. Fibrosis, characterized by excessive deposition of extracellular matrix proteins, is the common pathway leading to cirrhosis, and limited treatment options are available. There is increasing evidence suggesting the role of cellular stress responses contributing to fibrogenesis. This Review provides an overview of studies that analyse the role of cellular stress in different cell types involved in fibrogenesis, including hepatocytes, hepatic stellate cells, liver sinusoidal endothelial cells and macrophages.
Collapse
Affiliation(s)
- Sachin Sharma
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Dounia Le Guillou
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA
| | - Jennifer Y Chen
- Department of Medicine, University of California, San Francisco, San Francisco, CA, USA.
- The Liver Center, University of California, San Francisco, San Francisco, CA, USA.
| |
Collapse
|
15
|
Zhang Y, Zhang L, Zhao Y, He J, Zhang Y, Zhang X. PGC-1α inhibits M2 macrophage polarization and alleviates liver fibrosis following hepatic ischemia reperfusion injury. Cell Death Discov 2023; 9:337. [PMID: 37679346 PMCID: PMC10484946 DOI: 10.1038/s41420-023-01636-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/17/2023] [Accepted: 08/29/2023] [Indexed: 09/09/2023] Open
Abstract
Oxidative stress can induce inflammation, promoting macrophage polarization and liver fibrosis following hepatic ischemia-reperfusion (I/R). Peroxisome proliferator-activated receptor-γ coactivator-1α (PGC-1α) has anti-oxidant and anti-inflammatory activity. However, how PGC-1α regulates macrophage polarization following hepatic I/R remains largely unknown. Male C57BL/6 wild-type mice were pre-treated with vehicle or trichostatin A (TSA) for 2 days and subjected to surgical induction of I/R. Liver injury and fibrosis in individual mice were examined longitudinally and the expression levels of IL-6, STAT3, M2-type macrophage markers, Collagen I and α-SMA in the liver of mice were analyzed by immunohistochemistry, RT-qPCR and Western blot. The potential interaction of PGC-1α with phosphorylated NF-kBp65 was determined by immunoprecipitation. The impacts of PGC-1α deficiency in hepatocytes on their IL-6 production and macrophage polarization were tested in a Transwell co-culture system. Moreover, the M2-type macrophage polarization and liver fibrosis were examined in hepatocyte-specific PGC-1α knockout mice and AAV8-mediated PGC-1α over-expressing mice following liver I/R. The down-regulated PGC-1α expression by I/R was negatively correlated with IL-6 levels in the liver of I/R mice and PGC-1α deficiency enhanced IL-6 expression, STAT3 activation and M2-type macrophage polarization in the I/R mice, which were abrogated by TSA treatment. In addition, PGC-1α directly interacted with phosphorylated NF-kBp65 in I/R livers. Hepatocyte-specific PGC-1α deficiency increased IL-6 production and promoted macrophage polarization toward M2 type when co-culture. More importantly, administration with AAV8-PGC-1α rescued the I/R-induced liver fibrosis by inhibiting the IL-6/JAK2/STAT3 signaling and M2-type macrophage polarization in the liver. These results suggest that PGC-1α may alleviate the I/R-induced liver fibrosis by attenuating the IL-6/JAK2/STAT3 signaling to limit M2-type macrophage polarization. PGC-1α may be a therapeutic target for the treatment of liver fibrosis.
Collapse
Affiliation(s)
- Yanting Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Linzhong Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
- Department of Gastroenterology, Air Force Medical Center, Beijing, China
| | - Yanmian Zhao
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Jing He
- Department of Internal Medicine, School Hospital, Communication University of China, Beijing, China
| | - Yanghao Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Xiuying Zhang
- Department of Histology and Embryology, School of Basic Medical Sciences, Capital Medical University, Beijing, China.
| |
Collapse
|
16
|
Chen W, Zhao H, Li Y. Mitochondrial dynamics in health and disease: mechanisms and potential targets. Signal Transduct Target Ther 2023; 8:333. [PMID: 37669960 PMCID: PMC10480456 DOI: 10.1038/s41392-023-01547-9] [Citation(s) in RCA: 210] [Impact Index Per Article: 105.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 05/29/2023] [Accepted: 06/24/2023] [Indexed: 09/07/2023] Open
Abstract
Mitochondria are organelles that are able to adjust and respond to different stressors and metabolic needs within a cell, showcasing their plasticity and dynamic nature. These abilities allow them to effectively coordinate various cellular functions. Mitochondrial dynamics refers to the changing process of fission, fusion, mitophagy and transport, which is crucial for optimal function in signal transduction and metabolism. An imbalance in mitochondrial dynamics can disrupt mitochondrial function, leading to abnormal cellular fate, and a range of diseases, including neurodegenerative disorders, metabolic diseases, cardiovascular diseases and cancers. Herein, we review the mechanism of mitochondrial dynamics, and its impacts on cellular function. We also delve into the changes that occur in mitochondrial dynamics during health and disease, and offer novel perspectives on how to target the modulation of mitochondrial dynamics.
Collapse
Affiliation(s)
- Wen Chen
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Huakan Zhao
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| | - Yongsheng Li
- Department of Medical Oncology, Chongqing University Cancer Hospital, Chongqing, 400030, China.
| |
Collapse
|
17
|
Sun X, Ping Y, Li X, Mao Y, Chen Y, Shi L, Hong X, Chen L, Chen S, Cao Z, Chen P, Song Z, Wismeijer D, Wu G, Ji Y, Huang S. Activation of PGC-1α-dependent mitochondrial biogenesis supports therapeutic effects of silibinin against type I diabetic periodontitis. J Clin Periodontol 2023; 50:964-979. [PMID: 36940707 DOI: 10.1111/jcpe.13811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/10/2023] [Accepted: 03/14/2023] [Indexed: 03/23/2023]
Abstract
AIM To investigate whether silibinin impacts diabetic periodontitis (DP) via mitochondrial regulation. MATERIALS AND METHODS In vivo, rats were divided into control, diabetes, DP and DP combined with silibinin groups. Diabetes and periodontitis were induced by streptozocin and silk ligation, respectively. Bone turnover was evaluated by microcomputed tomography, histology and immunohistochemistry. In vitro, human periodontal ligament cells (hPDLCs) were exposed to hydrogen peroxide (H2 O2 ) with or without silibinin. Osteogenic function was analysed by Alizarin Red and alkaline phosphatase staining. Mitochondrial function and biogenesis were investigated by mitochondrial imaging assays and quantitative polymerase chain reaction. Activator and lentivirus-mediated knockdown of peroxisome proliferator-activated receptor gamma-coactivator 1-alpha (PGC-1α), a critical regulator of mitochondria biogenesis, was used to explore the mitochondrial mechanisms. RESULTS Silibinin attenuated periodontal destruction and mitochondrial dysfunction and enhanced mitochondrial biogenesis and PGC-1α expression in rats with DP. Meanwhile, silibinin promoted cell proliferation, osteogenesis and mitochondrial biogenesis and increased the PGC-1α level in hPDLCs exposed to H2 O2 . Silibinin also protected PGC-1α from proteolysis in hPDLCs. Furthermore, both silibinin and activator of PGC-1α ameliorated cellular injury and mitochondrial abnormalities in hPDLCs, while knockdown of PGC-1α abolished the beneficial effect of silibinin. CONCLUSIONS Silibinin attenuated DP through the promotion of PGC-1α-dependent mitochondrial biogenesis.
Collapse
Affiliation(s)
- Xiaoyu Sun
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yifan Ping
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xumin Li
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Oral and Maxillofacial Surgery/Pathology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), de Boelelaan, 1108, The Netherlands
| | - Yixin Mao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Laboratory for Myology, Amsterdam Movement Sciences, Faculty of Behavioral and Movement Sciences, Vrije Universiteit Amsterdam (VUA), de Boelelaan, 1108, The Netherlands
| | - Yang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Lixi Shi
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Xinhua Hong
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Liang Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Shuhong Chen
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Periodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Zelin Cao
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| | - Pan Chen
- Chemical Biology Research Center, School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang, 325035, China
| | - Zhongchen Song
- Department of Periodontology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Stomatology, Shanghai Jiao Tong University, Shanghai, China
- National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Daniel Wismeijer
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Gang Wu
- Department of Prosthetic and Implantology, Amsterdam UMC and Academic Centre for Dentistry Amsterdam (ACTA), Vrije Universiteit Amsterdam (VUA), Amsterdam Movement Science, de Boelelaan, 1117, Amsterdam, The Netherlands
| | - Yinhui Ji
- Department of Stomatology, Dong Yang People's Hospital, Jinhua, China
| | - Shengbin Huang
- Institute of Stomatology, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
- Department of Prosthodontics, School and Hospital of Stomatology, Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
18
|
Zhang Z, Chen D, Du K, Huang Y, Li X, Li Q, Lv X. MOTS-c: A potential anti-pulmonary fibrosis factor derived by mitochondria. Mitochondrion 2023:S1567-7249(23)00052-1. [PMID: 37307934 DOI: 10.1016/j.mito.2023.06.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2022] [Revised: 05/16/2023] [Accepted: 06/02/2023] [Indexed: 06/14/2023]
Abstract
Pulmonary fibrosis (PF) is a serious lung disease characterized by diffuse alveolitis and disruption of alveolar structure, with a poor prognosis and unclear etiopathogenesis. While ageing, oxidative stress, metabolic disorders, and mitochondrial dysfunction have been proposed as potential contributors to the development of PF, effective treatments for this condition remain elusive. However, Mitochondrial open reading frame of the 12S rRNA-c (MOTS-c), a peptide encoded by the mitochondrial genome, has shown promising effects on glucose and lipid metabolism, cellular and mitochondrial homeostasis, as well as the reduction of systemic inflammatory responses, and is being investigated as a potential exercise mimetic. Additionally, dynamic expression changes of MOTS-c have been closely linked to ageing and ageing-related diseases, indicating its potential as an exercise mimetic. Therefore, the review aims to comprehensively analyze the available literature on the potential role of MOTS-c in improving PF development and to identify specific therapeutic targets for future treatment strategies.
Collapse
Affiliation(s)
- Zewei Zhang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Dongmei Chen
- Department of Laboratory Medicine, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian 350005, China
| | - Kaili Du
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Yaping Huang
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Xingzhe Li
- School of Medical Technology and Engineering, Fujian Medical University, Fuzhou, Fujian 350004, China
| | - Quwen Li
- Department of Fujian Zoonosis Research Key Laboratory, Fujian Center for Disease Control and Prevention, Fuzhou, Fujian 350001, China
| | - Xiaoting Lv
- Department of respiratory and critical care medicine, First Affiliated Hospital of Fujian Medical University, Fuzhou, 350005, China; Department of respiratory and critical care medicine, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China; Institute of Respiratory Disease, Fujian Medical University, Fuzhou, 350005, China.
| |
Collapse
|
19
|
Gong Y, Liu Z, Zhang Y, Zhang J, Zheng Y, Wu Z. AGER1 deficiency-triggered ferroptosis drives fibrosis progression in nonalcoholic steatohepatitis with type 2 diabetes mellitus. Cell Death Discov 2023; 9:178. [PMID: 37280194 DOI: 10.1038/s41420-023-01477-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Revised: 05/12/2023] [Accepted: 05/30/2023] [Indexed: 06/08/2023] Open
Abstract
Hyperglycemia is an independent risk factor for the rapid progression of nonalcoholic steatohepatitis (NASH) to liver fibrosis with an incompletely defined mechanism. Ferroptosis is a novel form of programmed cell death that has been identified as a pathogenic mechanism in various diseases. However, the role of ferroptosis in the development of liver fibrosis in NASH with type 2 diabetes mellitus (T2DM) is unclear. Here, we observed the histopathological features of the progression of NASH to liver fibrosis as well as hepatocyte epithelial-mesenchymal transition (EMT) in a mouse model of NASH with T2DM and high-glucose-cultured steatotic human normal liver (LO2) cells. The distinctive features of ferroptosis, including iron overload, decreased antioxidant capacity, the accumulation of reactive oxygen species, and elevated lipid peroxidation products, were confirmed in vivo and in vitro. Liver fibrosis and hepatocyte EMT were markedly alleviated after treatment with the ferroptosis inhibitor ferrostatin-1. Furthermore, a decrease in the gene and protein levels of AGE receptor 1 (AGER1) was detected in the transition from NASH to liver fibrosis. Overexpression of AGER1 dramatically reversed hepatocyte EMT in high-glucose-cultured steatotic LO2 cells, whereas the knockdown of AGER1 had the opposite effect. The mechanisms underlying the phenotype appear to be associated with the inhibitory effects of AGER1 on ferroptosis, which is dependent on the regulation of sirtuin 4. Finally, in vivo adeno-associated virus-mediated AGER1 overexpression effectively relieved liver fibrosis in a murine model. Collectively, these findings suggest that ferroptosis participates in the pathogenesis of liver fibrosis in NASH with T2DM by promoting hepatocyte EMT. AGER1 could reverse hepatocyte EMT to ameliorate liver fibrosis by inhibiting ferroptosis. The results also suggest that AGER1 may be a potential therapeutic target for the treatment of liver fibrosis in patients with NASH with T2DM. Chronic hyperglycemia is associated with increased advanced glycation end products, resulting in the downregulation of AGER1. AGER1 deficiency downregulates Sirt4, which disturbs key regulators of ferroptosis (TFR-1, FTH, GPX4, and SLC7A11). These lead to increased iron uptake, decreasing the antioxidative capacity and enhanced lipid ROS production, ultimately leading to ferroptosis, which further promotes hepatocyte epithelial-mesenchymal transition and fibrosis progression in NASH with T2DM.
Collapse
Affiliation(s)
- Yihui Gong
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Zijun Liu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yuanyuan Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Jun Zhang
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China
| | - Yin Zheng
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| | - Zhongming Wu
- NHC Key Laboratory of Hormones and Development, Chu Hsien-I Memorial Hospital and Tianjin Institute of Endocrinology, Tianjin Medical University, Tianjin, 300134, China.
- Tianjin Key Laboratory of Metabolic Diseases, Tianjin Medical University, Tianjin, 300134, China.
- Department of Endocrinology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, 250021, China.
- Shandong Institute of Endocrine and Metabolic Diseases, Jinan, Shandong, 250021, China.
| |
Collapse
|
20
|
Han S, Liu S, Jin NQ, Lv YS, Yang M, Ma S, Fu Y, Zhao SK, Liu MH. Mitochondrial energy metabolism is downregulated in repeated implantation failure patients related to alteration of PGC-1α acetylation level. Mol Reprod Dev 2023. [PMID: 37243981 DOI: 10.1002/mrd.23691] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Revised: 04/28/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
Herein we aimed at exploring mitochondrial energy metabolism status in patients with repeated implantation failure (RIF) and whether key regulatory factor PGC-1α of energy metabolism is involved in the decidualization of endometrial stromal cells. Mitochondrial oxidative phosphorylation level and ATP synthesis were compared in primary endometrial stromal cells from RIF and control group. At the same time, as one of key transcription regulators of mitochondrial energy metabolism, the expression level and acetylation level of PGC-1α were compared with two groups. Then, we downregulated the acetylation levels of PGC-1α, and the expression of decidual markers (PRL and IGFBP1) was observed further. Mitochondrial energy metabolism, showing by mitochondrial oxidative phosphorylation level and ATP synthesis, was decreased in the endometrial stromal cells of the RIF group (RIF-hEnSCs). Meanwhile, PGC-1α acetylation levels were significantly higher in RIF-hEnSCs. When we reduced the acetylation levels of PGC-1α in RIF-hEnSCs, the basal O2 consumption rate and maximal respiration were increased, and also the PRL and IGFBP1. Overall, our data indicated that the endometrial stromal cells of the RIF patients had low level of mitochondrial energy metabolism. Reducing acetylation level of key energy metabolism regulator PGC-1α can increase the decidualization level of RIF-hEnSCs. These findings may inspire new ideas about the treatment of RIF.
Collapse
Affiliation(s)
- Shuo Han
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Sai Liu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Nai-Qian Jin
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ya-Su Lv
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Mo Yang
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shuai Ma
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Yao Fu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Shan-Ke Zhao
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| | - Ming-Hui Liu
- Medical Center for Human Reproduction, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, People's Republic of China
| |
Collapse
|
21
|
Sanchez JI, Parra ER, Jiao J, Solis Soto LM, Ledesma DA, Saldarriaga OA, Stevenson HL, Beretta L. Cellular and Molecular Mechanisms of Liver Fibrosis in Patients with NAFLD. Cancers (Basel) 2023; 15:2871. [PMID: 37296834 PMCID: PMC10252068 DOI: 10.3390/cancers15112871] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2023] [Revised: 05/08/2023] [Accepted: 05/19/2023] [Indexed: 06/12/2023] Open
Abstract
The expression of immune- and cancer-related genes was measured in liver biopsies from 107 NAFLD patients. The strongest difference in overall gene expression was between liver fibrosis stages F3 and F4, with 162 cirrhosis-associated genes identified. Strong correlations with fibrosis progression from F1 to F4 were observed for 91 genes, including CCL21, CCL2, CXCL6, and CCL19. In addition, the expression of 21 genes was associated with fast progression to F3/F4 in an independent group of eight NAFLD patients. These included the four chemokines, SPP1, HAMP, CXCL2, and IL-8. A six-gene signature including SOX9, THY-1, and CD3D had the highest performance detecting the progressors among F1/F2 NAFLD patients. We also characterized immune cell changes using multiplex immunofluorescence platforms. Fibrotic areas were strongly enriched in CD3+ T cells compared to CD68+ macrophages. While the number of CD68+ macrophages increased with fibrosis severity, the increase in CD3+ T-cell density was more substantial and progressive from F1 to F4. The strongest correlation with fibrosis progression was observed for CD3+CD45R0+ memory T cells, while the most significant increase in density between F1/F2 and F3/F4 was for CD3+CD45RO+FOXP3+CD8- and CD3+CD45RO-FOXP3+CD8- regulatory T cells. A specific increase in the density of CD68+CD11b+ Kupffer cells with liver fibrosis progression was also observed.
Collapse
Affiliation(s)
- Jessica I. Sanchez
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Edwin R. Parra
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Jingjing Jiao
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Luisa M. Solis Soto
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Debora A. Ledesma
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Omar A. Saldarriaga
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Heather L. Stevenson
- Department of Pathology, The University of Texas Medical Branch, Galveston, TX 77555, USA
| | - Laura Beretta
- Department of Molecular and Cellular Oncology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
22
|
Wang L, Wei Q, Xu R, Chen Y, Li S, Bu Q, Zhao Y, Li H, Zhao Y, Jiang L, Chen Y, Dai Y, Zhao Y, Cen X. Cardiolipin and OPA1 Team up for Methamphetamine-Induced Locomotor Activity by Promoting Neuronal Mitochondrial Fusion in the Nucleus Accumbens of Mice. ACS Chem Neurosci 2023; 14:1585-1601. [PMID: 37043723 DOI: 10.1021/acschemneuro.2c00709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023] Open
Abstract
Mitochondria are highly dynamic organelles with coordinated cycles of fission and fusion occurring continuously to satisfy the energy demands in the complex architecture of neurons. How mitochondria contribute to addicted drug-induced adaptable mitochondrial networks and neuroplasticity remains largely unknown. Through liquid chromatography-mass spectrometry-based lipidomics, we first analyzed the alteration of the mitochondrial lipidome of three mouse brain areas in methamphetamine (METH)-induced locomotor activity and conditioned place preference. The results showed that METH remodeled the mitochondrial lipidome of the hippocampus, nucleus accumbens (NAc), and striatum in both models. Notably, mitochondrial hallmark lipid cardiolipin (CL) was specifically increased in the NAc in METH-induced hyperlocomotor activity, which was accompanied by an elongated giant mitochondrial morphology. Moreover, METH significantly boosted mitochondrial respiration and ATP generation as well as the copy number of mitochondrial genome DNA in the NAc. By screening the expressions of mitochondrial dynamin-related proteins, we found that repeated METH significantly upregulated the expression of long-form optic atrophy type 1 (L-OPA1) and enhanced the interaction of L-OPA1 with CL, which may promote mitochondrial fusion in the NAc. On the contrary, neuronal OPA1 depletion in the NAc not only recovered the dysregulated mitochondrial morphology and synaptic vesicle distribution induced by METH but also attenuated the psychomotor effect of METH. Collectively, upregulated CL and OPA1 cooperate to mediate METH-induced adaptation of neuronal mitochondrial dynamics in the NAc, which correlates with the psychomotor effect of METH. These findings propose a potential therapeutic approach for METH addiction by inhibiting neuronal mitochondrial fusion.
Collapse
Affiliation(s)
- Liang Wang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qingfan Wei
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Rui Xu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yaxing Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Shu Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Qian Bu
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Ying Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Hongchun Li
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yue Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Linhong Jiang
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yuanyuan Chen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yanping Dai
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Yinglan Zhao
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| | - Xiaobo Cen
- National Chengdu Center for Safety Evaluation of Drugs, State Key Laboratory of Biotherapy/Collaborative Innovation Center for Biotherapy, West China Hospital, West China Medical School, Sichuan University, #1 Keyuan Road, Gaopeng Street, High-tech Development Zone, Chengdu 610041, People's Republic of China
| |
Collapse
|
23
|
Huang H, Wei S, Wu X, Zhang M, Zhou B, Huang D, Dong W. Dihydrokaempferol attenuates CCl 4-induced hepatic fibrosis by inhibiting PARP-1 to affect multiple downstream pathways and cytokines. Toxicol Appl Pharmacol 2023; 464:116438. [PMID: 36841340 DOI: 10.1016/j.taap.2023.116438] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 02/27/2023]
Abstract
The pathophysiological mechanism of hepatic fibrosis (HF) is related to the excessive activation of the DNA repair enzyme poly ADP-ribose polymerase-1 (PARP-1). The drugs, targeting PARP-1, are scarce. Therefore, the lead compound, moderately inhibiting PARP-1, with anti-HF properties should be identified. This study screened dihydrokaempferol (DHK) from herbs based on preliminary studies to intervene in a CCl4-induced liver injury and HF model in mice. In vitro, the expression levels of PARP-1-regulated related proteins and phosphorylation were examined. The binding pattern of DHK and PARP-1 was analyzed using molecular docking and molecular dynamics platforms. The results showed that DHK could significantly attenuate CCl4-induced liver injury and HF in mice. Moreover, it could also attenuate the toxic effects of CCl4 on HepG2 and inhibit α-SMA and Collagen 1/3 synthesis of LX-2 cells in-vitro. Molecular docking revealed that DHK could competitively bind to the Glu-988 and His-862 residues of the upstream DNA repair enzyme PARP-1, moderately inhibiting its overactivation. This led to maintaining NAD+ levels and energy metabolism in hepatocytes and inhibiting the activation of PARP-1-regulated downstream signaling pathways (TGF-β1, etc.), related proteins (p-Smd2/3, etc.), and inflammatory mediators while acting indirectly. Thus, DHK could attenuate CCl4-induced liver injury and HF in mice in a different mechanism from those of the existing reported flavonoids. It was associated with inhibiting the expression of downstream pathways and related cytokines by competitively binding to PARP-1. This study might provide a basis and direction for the design and exploration of anti-HF lead compounds.
Collapse
Affiliation(s)
- Hancheng Huang
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei, China
| | - Shuchun Wei
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei, China
| | - Xiaohan Wu
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China; Key Laboratory of Hubei Province for Digestive System Disease, Wuhan, Hubei, China
| | - Mengke Zhang
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Benhong Zhou
- Department of Pharmacy, Renmin Hospital of Wuhan University, Wuhan, Hubei, China
| | - Debin Huang
- Department of Pharmacy, Hubei Minzu University, Enshi, Hubei, China
| | - Weiguo Dong
- Department of Gastroenterology, Renmin Hospital of Wuhan University, Wuhan, Hubei, China.
| |
Collapse
|
24
|
Wu J, Li J, Feng B, Bi Z, Zhu G, Zhang Y, Li X. Activation of AMPK-PGC-1α pathway ameliorates peritoneal dialysis related peritoneal fibrosis in mice by enhancing mitochondrial biogenesis. Ren Fail 2022; 44:1545-1557. [PMID: 36148521 PMCID: PMC9518249 DOI: 10.1080/0886022x.2022.2126789] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
BACKGROUND The pathogenesis of peritoneal dialysis (PD)-related peritoneal fibrosis (PF) is not clearly understood, and current treatment options are limited. METHODS In this study, the effect of PD-related PF on mitochondrial biogenesis was investigated, and the effect of activation of the adenosine monophosphate-activated protein kinase (AMPK)-PGC-1α (peroxisome proliferator-activated receptor γ coactivator-1α) pathway on PF was evaluated in mice. RESULTS In a mouse model of PD-related PF, AMPK-PGC-1α signaling (phospho-AMPK, PGC-1α, NRF-1, NRF-2 and TFAM expression) was downregulated, mitochondrial DNA (mtDNA) levels were reduced, and mitochondrial structure was damaged in the peritoneum. In addition, TdT-mediated dUTP nick-end labeling (TUNEL) staining showed typical apoptosis characteristics in peritoneal mesothelial cells (PMCs). Activation of the AMPK-PGC-1α pathway (PGC-1α overexpression or metformin, which is an agonist of AMPK) upregulated phospho-AMPK, PGC-1α, nuclear respiratory factors 1 (NRF-1) and 2 (NRF-2), and mitochondrial transcription factor A (TFAM) expression and mtDNA content, improved mitochondrial morphological manifestations, inhibited apoptosis of PMCs and alleviated PF. CONCLUSION Our study may suggest that activation of the AMPK-PGC-1α pathway ameliorates PD-related PF by enhancing mitochondrial biogenesis.
Collapse
Affiliation(s)
- Jun Wu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Jushuang Li
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Baohong Feng
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Zhimin Bi
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Geli Zhu
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Yanxia Zhang
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| | - Xiangyou Li
- Department of Nephrology, Tongren Hospital of Wuhan University (Wuhan Third Hospital), Wuhan University, Wuhan, P.R. China
| |
Collapse
|
25
|
You Y, Gao C, Wu J, Qu H, Xiao Y, Kang Z, Li J, Hong J. Enhanced Expression of ARK5 in Hepatic Stellate Cell and Hepatocyte Synergistically Promote Liver Fibrosis. Int J Mol Sci 2022; 23:ijms232113084. [PMID: 36361872 PMCID: PMC9655442 DOI: 10.3390/ijms232113084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 10/18/2022] [Accepted: 10/22/2022] [Indexed: 11/22/2022] Open
Abstract
AMPK-related protein kinase 5 (ARK5) is involved in a broad spectrum of physiological and cell events, and aberrant expression of ARK5 has been observed in a wide variety of solid tumors, including liver cancer. However, the role of ARK5 in liver fibrosis remains largely unexplored. We found that ARK5 expression was elevated in mouse fibrotic livers, and showed a positive correlation with the progression of liver fibrosis. ARK5 was highly expressed not only in activated hepatic stellate cells (HSCs), but also in hepatocytes. In HSCs, ARK5 prevents the degradation of transforming growth factor β type I receptor (TβRI) and mothers against decapentaplegic homolog 4 (Smad4) proteins by inhibiting the expression of Smad ubiquitin regulatory factor 2 (Smurf2), thus maintaining the continuous transduction of the transforming growth factor β (TGF-β) signaling pathway, which is essential for cell activation, proliferation and survival. In hepatocytes, ARK5 induces the occurrence of epithelial-mesenchymal transition (EMT), and also promotes the secretion of inflammatory factors. Inflammatory factors, in turn, further enhance the activation of HSCs and deepen the degree of liver fibrosis. Notably, we demonstrated in a mouse model that targeting ARK5 with the selective inhibitor HTH-01-015 attenuates CCl4-induced liver fibrosis in mice. Taken together, the results indicate that ARK5 is a critical driver of liver fibrosis, and promotes liver fibrosis by synergy between HSCs and hepatocytes.
Collapse
Affiliation(s)
- Yang You
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Chongqing Gao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Junru Wu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Hengdong Qu
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Yang Xiao
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Ziwei Kang
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
| | - Jinying Li
- Department of Gastroenterology, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
| | - Jian Hong
- Department of Pathophysiology, School of Medicine, Jinan University, Guangzhou 510630, China
- Department of Hepatological Surgery, The First Affiliated Hospital, Jinan University, Guangzhou 510630, China
- Correspondence: ; Tel.: +86-20-8522-0253
| |
Collapse
|
26
|
Legaki AI, Moustakas II, Sikorska M, Papadopoulos G, Velliou RI, Chatzigeorgiou A. Hepatocyte Mitochondrial Dynamics and Bioenergetics in Obesity-Related Non-Alcoholic Fatty Liver Disease. Curr Obes Rep 2022; 11:126-143. [PMID: 35501558 PMCID: PMC9399061 DOI: 10.1007/s13679-022-00473-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/26/2022] [Indexed: 02/07/2023]
Abstract
PURPOSE OF THE REVIEW Mitochondrial dysfunction has long been proposed to play a crucial role in the pathogenesis of a considerable number of disorders, such as neurodegeneration, cancer, cardiovascular, and metabolic disorders, including obesity-related insulin resistance and non-alcoholic fatty liver disease (NAFLD). Mitochondria are highly dynamic organelles that undergo functional and structural adaptations to meet the metabolic requirements of the cell. Alterations in nutrient availability or cellular energy needs can modify their formation through biogenesis and the opposite processes of fission and fusion, the fragmentation, and connection of mitochondrial network areas respectively. Herein, we review and discuss the current literature on the significance of mitochondrial adaptations in obesity and metabolic dysregulation, emphasizing on the role of hepatocyte mitochondrial flexibility in obesity and NAFLD. RECENT FINDINGS Accumulating evidence suggests the involvement of mitochondrial morphology and bioenergetics dysregulations to the emergence of NAFLD and its progress to non-alcoholic steatohepatitis (NASH). Most relevant data suggests that changes in liver mitochondrial dynamics and bioenergetics hold a key role in the pathogenesis of NAFLD. During obesity and NAFLD, oxidative stress occurs due to the excessive production of ROS, leading to mitochondrial dysfunction. As a result, mitochondria become incompetent and uncoupled from respiratory chain activities, further promoting hepatic fat accumulation, while leading to liver inflammation, insulin resistance, and disease's deterioration. Elucidation of the mechanisms leading to dysfunctional mitochondrial activity of the hepatocytes during NAFLD is of predominant importance for the development of novel therapeutic approaches towards the treatment of this metabolic disorder.
Collapse
Affiliation(s)
- Aigli-Ioanna Legaki
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Ioannis I. Moustakas
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Michalina Sikorska
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Grigorios Papadopoulos
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Rallia-Iliana Velliou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
| | - Antonios Chatzigeorgiou
- Department of Physiology, Medical School, National and Kapodistrian University of Athens, 75 Mikras Asias Str, 11527 Athens, Greece
- Institute for Clinical Chemistry and Laboratory Medicine, University Clinic Carl Gustav Carus, Technische Universität Dresden, Fetscherstrasse 74, 01307 Dresden, Germany
| |
Collapse
|
27
|
Simple to Complex: The Role of Actin and Microtubules in Mitochondrial Dynamics in Amoeba, Yeast, and Mammalian Cells. Int J Mol Sci 2022; 23:ijms23169402. [PMID: 36012665 PMCID: PMC9409391 DOI: 10.3390/ijms23169402] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/14/2022] [Accepted: 08/16/2022] [Indexed: 11/17/2022] Open
Abstract
Mitochondria are complex organelles that provide energy for the cell in the form of adenosine triphosphate (ATP) and have very specific structures. For most organisms, this is a reticular or tubular mitochondrial network, while others have singular oval-shaped organelles. Nonetheless, maintenance of this structure is dependent on the mitochondrial dynamics, fission, fusion, and motility. Recently, studies have shown that the cytoskeleton has a significant role in the regulation of mitochondrial dynamics. In this review, we focus on microtubules and actin filaments and look at what is currently known about the cytoskeleton’s role in mitochondrial dynamics in complex models like mammals and yeast, as well as what is known in the simple model system, Dictyostelium discoideum. Understanding how the cytoskeleton is involved in mitochondrial dynamics increases our understanding of mitochondrial disease, especially neurodegenerative diseases. Increases in fission, loss of fusion, and fragmented mitochondria are seen in several neurodegenerative diseases such as Parkinson’s, Alzheimer’s, and Huntington’s disease. There is no known cure for these diseases, but new therapeutic strategies using drugs to alter mitochondrial fusion and fission activity are being considered. The future of these therapeutic studies is dependent on an in-depth understanding of the mechanisms of mitochondrial dynamics. Understanding the cytoskeleton’s role in dynamics in multiple model organisms will further our understanding of these mechanisms and could potentially uncover new therapeutic targets for these neurodegenerative diseases.
Collapse
|
28
|
Zhou Y, Long D, Zhao Y, Li S, Liang Y, Wan L, Zhang J, Xue F, Feng L. Oxidative stress-mediated mitochondrial fission promotes hepatic stellate cell activation via stimulating oxidative phosphorylation. Cell Death Dis 2022; 13:689. [PMID: 35933403 PMCID: PMC9357036 DOI: 10.1038/s41419-022-05088-x] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Revised: 07/06/2022] [Accepted: 07/07/2022] [Indexed: 01/21/2023]
Abstract
Previous studies have demonstrated dysregulated mitochondrial dynamics in fibrotic livers and hepatocytes. Little is currently known about how mitochondrial dynamics are involved, nor is it clear how mitochondrial dynamics participate in hepatic stellate cell (HSC) activation. In the present study, we investigated the role of mitochondrial dynamics in HSC activation and the underlying mechanisms. We verified that mitochondrial fission was enhanced in human and mouse fibrotic livers and active HSCs. Moreover, increased mitochondrial fission driven by fis1 overexpression could promote HSC activation. Inhibiting mitochondrial fission using mitochondrial fission inhibitor-1 (Mdivi-1) could inhibit activation and induce apoptosis of active HSCs, indicating that increased mitochondrial fission is essential for HSC activation. Mdivi-1 treatment also induced apoptosis in active HSCs in vivo and thus ameliorated CCl4-induced liver fibrosis. We also found that oxidative phosphorylation (OxPhos) was increased in active HSCs, and OxPhos inhibitors inhibited activation and induced apoptosis in active HSCs. Moreover, increasing mitochondrial fission upregulated OxPhos, while inhibiting mitochondrial fission downregulated OxPhos, suggesting that mitochondrial fission stimulates OxPhos during HSC activation. Next, we found that inhibition of oxidative stress using mitoquinone mesylate (mitoQ) and Tempol inhibited mitochondrial fission and OxPhos and induced apoptosis in active HSCs, suggesting that oxidative stress contributes to excessive mitochondrial fission during HSC activation. In conclusion, our study revealed that oxidative stress contributes to enhanced mitochondrial fission, which triggers OxPhos during HSC activation. Importantly, inhibiting mitochondrial fission has huge prospects for alleviating liver fibrosis by eliminating active HSCs.
Collapse
Affiliation(s)
- Yanni Zhou
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Dan Long
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Ying Zhao
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Shengfu Li
- grid.13291.380000 0001 0807 1581Key Lab of Transplant Engineering and Immunology of the Ministry of Health, Laboratory of Transplant Immunology, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Yan Liang
- grid.13291.380000 0001 0807 1581Research Core Facility of West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Lin Wan
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Jingyao Zhang
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Fulai Xue
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| | - Li Feng
- grid.13291.380000 0001 0807 1581Regeneration Medicine Research Center, West China Hospital, Sichuan University, Chengdu, Sichuan 610041 P. R. China
| |
Collapse
|
29
|
Zhang XL, Zhang XY, Ge XQ, Liu MX. Mangiferin prevents hepatocyte epithelial-mesenchymal transition in liver fibrosis via targeting HSP27-mediated JAK2/STAT3 and TGF-β1/Smad pathway. Phytother Res 2022; 36:4167-4182. [PMID: 35778992 DOI: 10.1002/ptr.7549] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 06/08/2022] [Accepted: 06/17/2022] [Indexed: 12/11/2022]
Abstract
Hepatocytes has been confirmed to undergo EMT and can be converted into myofibroblasts during hepatic fibrogenesis. However, the mechanism of hepatocyte EMT regulation in hepatic fibrosis, particularly through HSP27 (human homologue of rodent HSP25), remains unclear. Mangiferin (MAN), a compound extracted from Mangifera indica L, has been reported to attenuate liver injury. This study aimed to investigate the mechanisms underlying HSP27 inhibition and the anti-fibrotic effect of MAN in liver fibrosis. Our results revealed that the expression of HSP27 was remarkably increased in the liver tissues of patients with liver cirrhosis and CCl4 -induced fibrotic rats. However, HSP27 shRNA treatment significantly alleviated fibrosis. Furthermore, MAN was found to inhibit CCl4 - and TGF-β1-induced liver fibrosis and reduced hepatocyte EMT. More importantly, MAN decreased HSP27 expression to suppress the JAK2/STAT3 pathway, and subsequently blocked TGF-β1/Smad signaling, which were consistent with its protection against CCl4 -induced EMT and liver fibrosis. Together, these results suggest that HSP27 may play a crucial role in hepatocyte EMT and liver fibrosis by activating JAK2/STAT3 signaling and TGF-β1/Smad pathway. The suppression of HSP27 expression by MAN may be a novel strategy for attenuating the hepatocyte EMT in liver fibrosis.
Collapse
Affiliation(s)
- Xiao-Ling Zhang
- College of Pharmacy, Nantong University, Nantong, PR China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| | - Xiao-Yan Zhang
- Department of Pharmacology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Xiao-Qun Ge
- Department of Pharmacology, Institute of Translational Medicine, Medical College, Yangzhou University, Yangzhou, PR China
| | - Ming-Xuan Liu
- College of Pharmacy, Nantong University, Nantong, PR China.,State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, PR China
| |
Collapse
|
30
|
Shan S, Liu Z, Wang S, Liu Z, Huang Z, Yang Y, Zhang C, Song F. Drp1-mediated mitochondrial fission promotes carbon tetrachloride-induced hepatic fibrogenesis in mice. Toxicol Res (Camb) 2022; 11:486-497. [PMID: 35782650 DOI: 10.1093/toxres/tfac027] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Background
Mitochondrial dynamics is essential for the maintenance of healthy mitochondrial network. Emerging evidence suggests that mitochondrial dysfunction is closely linked to the pathogenesis of hepatic fibrogenesis following chronic liver injury. However, the role of dynamin-related protein 1 (Drp1)-mediated mitochondrial fission in the context of liver fibrosis remains unclear.
Methods and Results
In this study, C57BL/6 mice were used to establish a model of liver fibrosis via oral gavage with CCl4 treatment for 8 weeks. Furthermore, mitochondrial fission intervention experiments were achieved by the mitochondrial division inhibitor 1 (Mdivi-1). The results demonstrated that chronic CCl4 exposure resulted in severe hepatic fibrogenesis and mitochondrial damage. By contrast, pharmacological inhibition of mitochondrial division by Mdivi-1 substantially reduced the changes of mitochondrial dynamics and finally prevented the deposition of extracellular matrix proteins. Mechanistically, excessive mitochondrial fission may activate hepatic stellate cells through RIPK1-MLKL-dependent hepatocyte death, which ultimately promotes liver fibrosis.
Conclusion
Our study imply that inhibiting Drp1-mediated mitochondrial fission attenuates CCl4-induced liver fibrosis and may serve as a therapeutic target for retarding progression of chronic liver disease.
Collapse
Affiliation(s)
- Shulin Shan
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhidan Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Shuai Wang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhaoxiong Liu
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Zhengcheng Huang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Yiyu Yang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Cuiqin Zhang
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| | - Fuyong Song
- Department of Toxicology and Nutrition, School of Public Health, Cheeloo College of Medicine, Shandong University, 44 West Wenhua Road, Jinan, Shandong 250012, PR China
| |
Collapse
|
31
|
Mitochondria homeostasis: Biology and involvement in hepatic steatosis to NASH. Acta Pharmacol Sin 2022; 43:1141-1155. [PMID: 35105958 PMCID: PMC9061859 DOI: 10.1038/s41401-022-00864-z] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/09/2022] [Indexed: 12/13/2022] Open
Abstract
Mitochondrial biology and behavior are central to the physiology of liver. Multiple mitochondrial quality control mechanisms remodel mitochondrial homeostasis under physiological and pathological conditions. Mitochondrial dysfunction and damage induced by overnutrition lead to oxidative stress, inflammation, liver cell death, and collagen production, which advance hepatic steatosis to nonalcoholic steatohepatitis (NASH). Accumulating evidence suggests that specific interventions that target mitochondrial homeostasis, including energy metabolism, antioxidant effects, and mitochondrial quality control, have emerged as promising strategies for NASH treatment. However, clinical translation of these findings is challenging due to the complex and unclear mechanisms of mitochondrial homeostasis in the pathophysiology of NASH.
Collapse
|
32
|
YY1 inactivated transcription co-regulator PGC-1α to promote mitochondrial dysfunction of early diabetic nephropathy-associated tubulointerstitial fibrosis. Cell Biol Toxicol 2022:10.1007/s10565-022-09711-7. [PMID: 35445903 DOI: 10.1007/s10565-022-09711-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 01/26/2022] [Indexed: 11/02/2022]
Abstract
The development of diabetic nephropathy (DN) could be promoted by the occurrence of tubulointerstitial fibrosis (TIF), which had a closely relationship with mitochondrial dysfunction of renal tubular epithelial cells (RTECs). As a key regulator of metabolic homeostasis, Yin Yang 1 (YY1) played an important role not only in regulating fibrosis process, but also in maintaining mitochondrial function of pancreatic β cells. However, it was not clear whether YY1 participated in maintaining mitochondrial function of RTECs in early DN-associated TIF. In this study, we dynamically detected mitochondrial functions and protein expression of YY1 in db/db mice and high glucose (HG)-cultured HK-2 cells. Our results showed that comparing with the occurrence of TIF, the emergence of mitochondrial dysfunction of RTECs was an earlier even, besides the up-regulated and nuclear translocated YY1. Correlation analysis showed YY1 expressions were negatively associated with PGC-1α in vitro and in vivo. Further mechanism research demonstrated the formation of mTOR-YY1 heterodimer induced by HG upregulated YY1, the nuclear translocation of which inactivated PGC-1α by binding to the PGC-1α promoter. Overexpression of YY1 induced mitochondrial dysfunctions in normal glucose cultured HK-2 cells and 8-week-old db/m mice. While, dysfunctional mitochondria induced by HG could be improved by knockdown of YY1. Finally, downregulation of YY1 could retard the progression of TIF by preventing mitochondrial functions, resulting in the improvement of epithelial-mesenchymal transition (EMT) in early DN. These findings suggested that YY1 was a novel regulator of mitochondrial function of RTECs and contributed to the occurrence of early DN-associated TIF .
Collapse
|
33
|
Yang L, Wu C, Li Y, Dong Y, Wu CYC, Lee RHC, Brann DW, Lin HW, Zhang Q. Long-term exercise pre-training attenuates Alzheimer's disease-related pathology in a transgenic rat model of Alzheimer's disease. GeroScience 2022; 44:1457-1477. [PMID: 35229257 DOI: 10.1007/s11357-022-00534-2] [Citation(s) in RCA: 44] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/17/2022] [Indexed: 12/13/2022] Open
Abstract
Alzheimer's disease (AD) is the most common form of dementia. Despite enormous efforts around the world, there remains no effective cure for AD. This study was performed to investigate the effects of long-term exercise pretreatment on the typical pathology of AD in a novel transgenic AD rat model. Male 2-month-old animals were divided into the following groups: wild-type (WT) rats, AD rats, and AD rats with treadmill exercise pretreatment (AD-Exe). After exercise pretreatment, the Barnes maze task, passive avoidance task, and cued fear conditioning test were performed to test learning and memory function. The elevated plus maze, open field test, sucrose preference test, and forced swim test were conducted to measure anxious-depressive-like behavior. Immunofluorescence staining, Golgi staining, transmission electron microscopy, Western blot analysis, F-Jade C staining, TUNEL staining, and related assay kits were conducted to measure Aβ plaques, tau hyperphosphorylation, neuronal damage, neuronal degeneration, dendritic spine density, synapses, synaptic vesicles, mitochondrial morphology, mitochondrial dynamic, oxidative stress, and neuroinflammation. Behavioral tests revealed that long-term exercise pretreatment significantly alleviated learning and memory dysfunction and anxious-depressive-like behaviors in AD animals. In addition, exercise pretreatment attenuated amyloid-β deposition and tau hyperphosphorylation and preserved spine density, synapses, and presynaptic vesicles. Exercise also inhibited neuronal damage, neuronal apoptosis, and neuronal degeneration. Additional studies revealed the imbalance of mitochondrial dynamics was significantly inhibited by exercise pretreatment accompanied by a remarkable suppression of oxidative stress and neuroinflammation. Our findings suggest that long-term exercise pretreatment alleviated behavioral deficits and typical pathologies of the AD rat model, supporting long-term exercise pretreatment as a potential approach to delay the progression of AD.
Collapse
Affiliation(s)
- Luodan Yang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Chongyun Wu
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yong Li
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Yan Dong
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Celeste Yin-Chieh Wu
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Reggie Hui-Chao Lee
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Darrell W Brann
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, 1120 15th Street, Augusta, GA, 30912, USA
| | - Hung Wen Lin
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA
| | - Quanguang Zhang
- Department of Neurology, Louisiana State University Health Sciences Center, 1501 Kings Highway, Shreveport, LA, 71103, USA.
| |
Collapse
|
34
|
Li X, Zhang Q, Wang Z, Zhuang Q, Zhao M. Immune and Metabolic Alterations in Liver Fibrosis: A Disruption of Oxygen Homeostasis? Front Mol Biosci 2022; 8:802251. [PMID: 35187072 PMCID: PMC8850363 DOI: 10.3389/fmolb.2021.802251] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 12/17/2021] [Indexed: 12/06/2022] Open
Abstract
According to the WHO, “cirrhosis of the liver” was the 11th leading cause of death globally in 2019. Many kinds of liver diseases can develop into liver cirrhosis, and liver fibrosis is the main pathological presentation of different aetiologies, including toxic damage, viral infection, and metabolic and genetic diseases. It is characterized by excessive synthesis and decreased decomposition of extracellular matrix (ECM). Hepatocyte cell death, hepatic stellate cell (HSC) activation, and inflammation are crucial incidences of liver fibrosis. The process of fibrosis is also closely related to metabolic and immune disorders, which are usually induced by the destruction of oxygen homeostasis, including mitochondrial dysfunction, oxidative stress, and hypoxia pathway activation. Mitochondria are important organelles in energy generation and metabolism. Hypoxia-inducible factors (HIFs) are key factors activated when hypoxia occurs. Both are considered essential factors of liver fibrosis. In this review, the authors highlight the impact of oxygen imbalance on metabolism and immunity in liver fibrosis as well as potential novel targets for antifibrotic therapies.
Collapse
Affiliation(s)
- Xinyu Li
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quyan Zhang
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Zeyu Wang
- Xiangya School of Medicine, Central South University, Changsha, China
| | - Quan Zhuang
- Transplantation Center, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Zhuang, ; Mingyi Zhao,
| | - Mingyi Zhao
- Department of Pediatrics, The Third Xiangya Hospital, Central South University, Changsha, China
- *Correspondence: Quan Zhuang, ; Mingyi Zhao,
| |
Collapse
|
35
|
Madan S, Uttekar B, Chowdhary S, Rikhy R. Mitochondria Lead the Way: Mitochondrial Dynamics and Function in Cellular Movements in Development and Disease. Front Cell Dev Biol 2022; 9:781933. [PMID: 35186947 PMCID: PMC8848284 DOI: 10.3389/fcell.2021.781933] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 12/16/2021] [Indexed: 01/09/2023] Open
Abstract
The dynamics, distribution and activity of subcellular organelles are integral to regulating cell shape changes during various physiological processes such as epithelial cell formation, cell migration and morphogenesis. Mitochondria are famously known as the powerhouse of the cell and play an important role in buffering calcium, releasing reactive oxygen species and key metabolites for various activities in a eukaryotic cell. Mitochondrial dynamics and morphology changes regulate these functions and their regulation is, in turn, crucial for various morphogenetic processes. In this review, we evaluate recent literature which highlights the role of mitochondrial morphology and activity during cell shape changes in epithelial cell formation, cell division, cell migration and tissue morphogenesis during organism development and in disease. In general, we find that mitochondrial shape is regulated for their distribution or translocation to the sites of active cell shape dynamics or morphogenesis. Often, key metabolites released locally and molecules buffered by mitochondria play crucial roles in regulating signaling pathways that motivate changes in cell shape, mitochondrial shape and mitochondrial activity. We conclude that mechanistic analysis of interactions between mitochondrial morphology, activity, signaling pathways and cell shape changes across the various cell and animal-based model systems holds the key to deciphering the common principles for this interaction.
Collapse
|
36
|
Abstract
Pulmonary fibrosis, a kind of terminal pathological changes in the lung, is caused by aberrant wound healing, deposition of extracellular matrix (ECM), and eventually replacement of lung parenchyma by ECM. Pulmonary fibrosis induced by acute lung injury and some diseases is reversible under treatment. While idiopathic pulmonary fibrosis is persistent and irreversible even after treatment. Currently, the pathogenesis of irreversible pulmonary fibrosis is not fully elucidated. The known factors associated with the development of irreversible fibrosis include apoptosis resistance of (myo)fibroblasts, dysfunction of pulmonary vessel, cell mitochondria and autophagy, aberrant epithelia hyperplasia and lipid metabolism disorder. In this review, other than a brief introduction of reversible pulmonary fibrosis, we focus on the underlying pathogenesis of irreversible pulmonary fibrosis from the above aspects as well as preclinical disease models, and also suggest directions for future studies.
Collapse
Affiliation(s)
- Qing Yang Yu
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiao Xiao Tang
- 1State Key Laboratory of Respiratory Disease, National Clinical Research Center for Respiratory Disease, National Center for Respiratory Medicine, Guangzhou Institute of Respiratory Health, The First Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,2Guangzhou Laboratory, Bio-island, Guangzhou, China
| |
Collapse
|
37
|
Therapeutic applications of mitochondrial transplantation. Biochimie 2022; 195:1-15. [DOI: 10.1016/j.biochi.2022.01.002] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2021] [Revised: 01/06/2022] [Accepted: 01/07/2022] [Indexed: 12/12/2022]
|
38
|
Panes JD, Wendt A, Ramirez-Molina O, Castro PA, Fuentealba J. Deciphering the role of PGC-1α in neurological disorders: from mitochondrial dysfunction to synaptic failure. Neural Regen Res 2022; 17:237-245. [PMID: 34269182 PMCID: PMC8463972 DOI: 10.4103/1673-5374.317957] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
The onset and mechanisms underlying neurodegenerative diseases remain uncertain. The main features of neurodegenerative diseases have been related with cellular and molecular events like neuronal loss, mitochondrial dysfunction and aberrant accumulation of misfolded proteins or peptides in specific areas of the brain. The most prevalent neurodegenerative diseases belonging to age-related pathologies are Alzheimer's disease, Huntington's disease, Parkinson's disease and amyotrophic lateral sclerosis. Interestingly, mitochondrial dysfunction has been observed to occur during the early onset of several neuropathological events associated to neurodegenerative diseases. The master regulator of mitochondrial quality control and energetic metabolism is the transcriptional coactivator peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). Additionally, it has been observed that PGC-1α appears to be a key factor in maintaining neuronal survival and synaptic transmission. In fact, PGC-1α downregulation in different brain areas (hippocampus, substantia nigra, cortex, striatum and spinal cord) that occurs in function of neurological damage including oxidative stress, neuronal loss, and motor disorders has been seen in several animal and cellular models of neurodegenerative diseases. Current evidence indicates that PGC-1α upregulation may serve as a potent therapeutic approach against development and progression of neuronal damage. Remarkably, increasing evidence shows that PGC-1α deficient mice have neurodegenerative diseases-like features, as well as neurological abnormalities. Finally, we discuss recent studies showing novel specific PGC-1α isoforms in the central nervous system that appear to exert a key role in the age of onset of neurodegenerative diseases and have a neuroprotective function in the central nervous system, thus opening a new molecular strategy for treatment of neurodegenerative diseases. The purpose of this review is to provide an up-to-date overview of the PGC-1α role in the physiopathology of neurodegenerative diseases, as well as establish the importance of PGC-1α function in synaptic transmission and neuronal survival.
Collapse
Affiliation(s)
- Jessica D Panes
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Aline Wendt
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Oscar Ramirez-Molina
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Patricio A Castro
- Departamento de Fisiología, Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| | - Jorge Fuentealba
- Laboratorio de Screening de Compuestos Neuroactivos (LSCN), Departamento de Fisiología; Centro de Investigaciones Avanzadas en Biomedicina (CIAB-UdeC), Facultad de Ciencias Biológicas, Universidad de Concepción, Concepción, Chile
| |
Collapse
|
39
|
Rao Y, Li C, Hu YT, Xu YH, Song BB, Guo SY, Jiang Z, Zhao DD, Chen SB, Tan JH, Huang SL, Li QJ, Wang XJ, Zhang YJ, Ye JM, Huang ZS. A novel HSF1 activator ameliorates nonalcoholic steatohepatitis by stimulating mitochondrial adaptive oxidation. Br J Pharmacol 2021; 179:1411-1432. [PMID: 34783017 DOI: 10.1111/bph.15727] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Revised: 10/09/2021] [Accepted: 10/12/2021] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND AND PURPOSE Nonalcoholic steatohepatitis (NASH) is the more severe form of metabolic associated fatty liver disease (MAFLD), and no pharmacologic treatment approved as yet. Identification of novel therapeutic targets and their agents are critical to overcome the current inadequacy of drug treatment for NASH. EXPERIMENTAL APPROACH The correlation between heat shock factor 1 (HSF1) levels and the development of NASH and the target genes of HSF1 in hepatocyte were revealed by chromatin-immunoprecipitation sequencing. The effects and mechanisms of SYSU-3d in alleviating NASH were examined in relevant cell models and mouse models (the Ob/Ob mice, high-fat and high-cholesterol diet, the methionine-choline deficient diet fed mice). The drug-like properties of SYSU-3d in vivo were evaluated. KEY RESULTS HSF1 is progressively reduced with mitochondrial dysfunction in NASH pathogenesis and activation of this transcription factor by its newly-identified activator SYSU-3d efficiently ameliorated all manifestations of NASH in mice. When activated, the phosphorylated HSF1 (Ser326) translocated to nucleus and bound to the promoter of peroxisome proliferator-activated receptor γ coactivator-1α (PGC-1α) to induce mitochondrial biogenesis, thus increasing mitochondrial adaptive oxidation and inhibiting oxidative stress. The deletion of HSF1 and PGC-1α or recovery of HSF1 in HSF1-deficiency cells revealed the HSF1/PGC-1α metabolic axis mainly responsible for the anti-NASH effects of SYSU-3d independent of adenosine 5'-monophosphate (AMP)-activated protein kinase (AMPK). CONCLUSION AND IMPLICATIONS Activation of HSF1 is a practicable therapeutic approach for NASH treatment via the HSF1/PGC-1α/mitochondrial axis, and SYSU-3d would take into consideration as a potential candidate for the treatment of NASH.
Collapse
Affiliation(s)
- Yong Rao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Chan Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yu-Tao Hu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Yao-Hao Xu
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Bing-Bing Song
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Yao Guo
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Zhi Jiang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Dan-Dan Zhao
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shuo-Bin Chen
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Jia-Heng Tan
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Shi-Liang Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Qing-Jiang Li
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| | - Xiao-Jun Wang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ying-Jun Zhang
- Sunshine Lake Pharma Co., Ltd, Dongguan, Guangdong, China
| | - Ji-Ming Ye
- School of Biotechnology and Health Sciences, Wuyi University, Jiangmen, Guangdong, China
| | - Zhi-Shu Huang
- School of Pharmaceutical Sciences, Guangdong Provincial Key Laboratory of New Drug Design and Evaluation, Sun Yat-Sen University, Guangzhou, Guangdong, China
| |
Collapse
|
40
|
Shu G, Yusuf A, Dai C, Sun H, Deng X. Piperine inhibits AML-12 hepatocyte EMT and LX-2 HSC activation and alleviates mouse liver fibrosis provoked by CCl 4: roles in the activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis. Food Funct 2021; 12:11686-11703. [PMID: 34730139 DOI: 10.1039/d1fo02657g] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Piperine (PIP) is an alkaloid derived from peppercorns. Herein, we assessed its effects on hepatocyte EMT and HSC activation in vitro and CCl4-elicited liver fibrosis in mice. Further experiments were performed to unveil the molecular mechanisms underlying the hepatoprotective activity of PIP. We found that PIP inhibited TGF-β1-provoked AML-12 hepatocyte EMT and LX-2 HSC activation. Mechanistically, in AML-12 and LX-2 cells, PIP evoked Nrf2 nuclear translocation and increased transcriptions of Nrf2-responsive antioxidative genes. These events decreased TGF-β1-induced production of ROS. Moreover, PIP increased the expression of Smad7, suppressed phosphorylation and nuclear translocation of Smad2/3, and decreased the transcriptions of Smad2/3-downstream genes. Knockdown of Nrf2 abrogated the protective activity of PIP against TGF-β1. Modulatory effects of PIP on the TGF-β1/Smad cascade were also crippled, which suggested that activation of Nrf2 played critical roles in the regulatory effects of PIP on TGF-β1/Smad signaling. Experiments in vivo unveiled that PIP ameliorated mouse liver fibrosis provoked by CCl4. PIP modulated the intrahepatic contents of the markers of EMT and HSC activation. In mouse livers, PIP activated Nrf2 signaling and reduced Smad2/3-dependent gene transcriptions. Our findings collectively suggested PIP as a new chemical entity with the capacity of alleviating liver fibrosis. The activation of the Nrf2 cascade and subsequent suppression of the TGF-β1/Smad axis are implicated in the hepatoprotective activity of PIP.
Collapse
Affiliation(s)
- Guangwen Shu
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Arslan Yusuf
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Chenxi Dai
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Hui Sun
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| | - Xukun Deng
- School of Pharmaceutical Sciences, South-Central University for Nationalities, Wuhan, Hubei, China.
| |
Collapse
|
41
|
Kumar S, Ashraf R, C K A. Mitochondrial dynamics regulators: implications for therapeutic intervention in cancer. Cell Biol Toxicol 2021; 38:377-406. [PMID: 34661828 DOI: 10.1007/s10565-021-09662-5] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 09/24/2021] [Indexed: 02/06/2023]
Abstract
Regardless of the recent advances in therapeutic developments, cancer is still among the primary causes of death globally, indicating the need for alternative therapeutic strategies. Mitochondria, a dynamic organelle, continuously undergo the fusion and fission processes to meet cell requirements. The balanced fission and fusion processes, referred to as mitochondrial dynamics, coordinate mitochondrial shape, size, number, energy metabolism, cell cycle, mitophagy, and apoptosis. An imbalance between these opposing events alters mitochondWangrial dynamics, affects the overall mitochondrial shape, and deregulates mitochondrial function. Emerging evidence indicates that alteration of mitochondrial dynamics contributes to various aspects of tumorigenesis and cancer progression. Therefore, targeting the mitochondrial dynamics regulator could be a potential therapeutic approach for cancer treatment. This review will address the role of imbalanced mitochondrial dynamics in mitochondrial dysfunction during cancer progression. We will outline the clinical significance of mitochondrial dynamics regulators in various cancer types with recent updates in cancer stemness and chemoresistance and its therapeutic potential and clinical utility as a predictive biomarker.
Collapse
Affiliation(s)
- Sanjay Kumar
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India.
| | - Rahail Ashraf
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| | - Aparna C K
- Division of Biology, Indian Institute of Science Education and Research (IISER) Tirupati, Karkambadi Road, Rami Reddy Nagar, Mangalam, Tirupati, Andhra Pradesh, 517507, India
| |
Collapse
|
42
|
Abstract
Mitochondria have been studied for decades from the standpoint of metabolism and ATP generation. However, in recent years mitochondrial dynamics and its influence on bioenergetics and cellular homeostasis is also being appreciated. Mitochondria undergo regular cycles of fusion and fission regulated by various cues including cellular energy requirements and pathophysiological stimuli, and the network of critical proteins and membrane lipids involved in mitochondrial dynamics is being revealed. Hepatocytes are highly metabolic cells which have abundant mitochondria suggesting a biologically relevant role for mitochondrial dynamics in hepatocyte injury and recovery. Here we review information on molecular mediators of mitochondrial dynamics and their alteration in drug-induced liver injury. Based on current information, it is evident that changes in mitochondrial fusion and fission are hallmarks of liver pathophysiology ranging from acetaminophen-induced or cholestatic liver injury to chronic liver diseases. These alterations in mitochondrial dynamics influence multiple related mitochondrial responses such as mitophagy and mitochondrial biogenesis, which are important adaptive responses facilitating liver recovery in several contexts, including drug-induced liver injury. The current focus on characterization of molecular mechanisms of mitochondrial dynamics is of immense relevance to liver pathophysiology and have the potential to provide significant insight into mechanisms of liver recovery and regeneration after injury.
Collapse
|
43
|
Li L, Qi R, Zhang L, Yu Y, Hou J, Gu Y, Song D, Wang X. Potential biomarkers and targets of mitochondrial dynamics. Clin Transl Med 2021; 11:e529. [PMID: 34459143 PMCID: PMC8351522 DOI: 10.1002/ctm2.529] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/24/2021] [Accepted: 07/26/2021] [Indexed: 12/19/2022] Open
Abstract
Mitochondrial dysfunction contributes to the imbalance of cellular homeostasis and the development of diseases, which is regulated by mitochondria-associated factors. The present review aims to explore the process of the mitochondrial quality control system as a new source of the potential diagnostic biomarkers and/or therapeutic targets for diseases, including mitophagy, mitochondrial dynamics, interactions between mitochondria and other organelles (lipid droplets, endoplasmic reticulum, endosomes, and lysosomes), as well as the regulation and posttranscriptional modifications of mitochondrial DNA/RNA (mtDNA/mtRNA). The direct and indirect influencing factors were especially illustrated in understanding the interactions among regulators of mitochondrial dynamics. In addition, mtDNA/mtRNAs and proteomic profiles of mitochondria in various lung diseases were also discussed as an example. Thus, alternations of mitochondria-associated regulators can be a new category of biomarkers and targets for disease diagnosis and therapy.
Collapse
Affiliation(s)
- Liyang Li
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Ruixue Qi
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| | - Linlin Zhang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yuexin Yu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Jiayun Hou
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Yutong Gu
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Dongli Song
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
| | - Xiangdong Wang
- Zhongshan Hospital, Department of Pulmonary and Critical Care Medicine, Shanghai Institute of Clinical BioinformaticsShanghai Engineering Research for AI Technology for Cardiopulmonary DiseasesShanghaiChina
- Jinshan Hospital Centre for Tumor Diagnosis and TherapyFudan University Shanghai Medical CollegeShanghaiChina
| |
Collapse
|
44
|
Suppression of PGC-1α Drives Metabolic Dysfunction in TGFβ2-Induced EMT of Retinal Pigment Epithelial Cells. Int J Mol Sci 2021; 22:ijms22094701. [PMID: 33946753 PMCID: PMC8124188 DOI: 10.3390/ijms22094701] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 04/24/2021] [Accepted: 04/26/2021] [Indexed: 02/07/2023] Open
Abstract
PGC-1α, a key orchestrator of mitochondrial metabolism, plays a crucial role in governing the energetically demanding needs of retinal pigment epithelial cells (RPE). We previously showed that silencing PGC-1α induced RPE to undergo an epithelial-mesenchymal-transition (EMT). Here, we show that induction of EMT in RPE using transforming growth factor-beta 2 (TGFβ2) suppressed PGC-1α expression. Correspondingly, TGFβ2 induced defects in mitochondrial network integrity with increased sphericity and fragmentation. TGFβ2 reduced expression of genes regulating mitochondrial dynamics, reduced citrate synthase activity and intracellular ATP content. High-resolution respirometry showed that TGFβ2 reduced mitochondrial OXPHOS levels consistent with reduced expression of NDUFB5. The reduced mitochondrial respiration was associated with a compensatory increase in glycolytic reserve, glucose uptake and gene expression of glycolytic enzymes (PFKFB3, PKM2, LDHA). Treatment with ZLN005, a selective small molecule activator of PGC-1α, blocked TGFβ2-induced upregulation of mesenchymal genes (αSMA, Snai1, CTGF, COL1A1) and TGFβ2-induced migration using the scratch wound assay. Our data show that EMT is accompanied by mitochondrial dysfunction and a metabolic shift towards reduced OXPHOS and increased glycolysis that may be driven by PGC-1α suppression. ZLN005 effectively blocks EMT in RPE and thus serves as a novel therapeutic avenue for treatment of subretinal fibrosis.
Collapse
|
45
|
Yang K, Dong W. SIRT1-Related Signaling Pathways and Their Association With Bronchopulmonary Dysplasia. Front Med (Lausanne) 2021; 8:595634. [PMID: 33693011 PMCID: PMC7937618 DOI: 10.3389/fmed.2021.595634] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2020] [Accepted: 02/03/2021] [Indexed: 12/28/2022] Open
Abstract
Bronchopulmonary dysplasia (BPD) is a chronic and debilitating disease that can exert serious and overwhelming effects on the physical and mental health of premature infants, predominantly due to intractable short- and long-term complications. Oxidative stress is one of the most predominant causes of BPD. Hyperoxia activates a cascade of hazardous events, including mitochondrial dysfunction, uncontrolled inflammation, reduced autophagy, increased apoptosis, and the induction of fibrosis. These events may involve, to varying degrees, alterations in SIRT1 and its associated targets. In the present review, we describe SIRT1-related signaling pathways and their association with BPD. Our intention is to provide new insights into the molecular mechanisms that regulate BPD and identify potential therapeutic targets for this debilitating condition.
Collapse
Affiliation(s)
- Kun Yang
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Wenbin Dong
- Department of Newborn Medicine, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| |
Collapse
|
46
|
Gao QY, Zhang HF, Tao J, Chen ZT, Liu CY, Liu WH, Wu MX, Yin WY, Gao GH, Xie Y, Yang Y, Liu PM, Wang JF, Chen YX. Mitochondrial Fission and Mitophagy Reciprocally Orchestrate Cardiac Fibroblasts Activation. Front Cell Dev Biol 2021; 8:629397. [PMID: 33585469 PMCID: PMC7874126 DOI: 10.3389/fcell.2020.629397] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2020] [Accepted: 12/10/2020] [Indexed: 12/22/2022] Open
Abstract
Although mitochondrial fission has been reported to increase proliferative capacity and collagen production, it can also contribute to mitochondrial impairment, which is detrimental to cell survival. The aim of the present study was to investigate the role of mitochondrial fission in cardiac fibroblasts (CF) activation and explore the mechanisms involved in the maintenance of mitochondrial health under this condition. For this, changes in the levels of mitochondrial fission/fusion-related proteins were assessed in transforming growth factor beta 1 (TGF-β1)-activated CF, whereas the role of mitochondrial fission during this process was also elucidated, as were the underlying mechanisms. The interaction between mitochondrial fission and mitophagy, the main defense mechanism against mitochondrial impairment, was also explored. The results showed that the mitochondria in TGF-β1-treated CF were noticeably more fragmented than those of controls. The expression of several mitochondrial fission-related proteins was markedly upregulated, and the levels of fusion-related proteins were also altered, but to a lesser extent. Inhibiting mitochondrial fission resulted in a marked attenuation of TGF-β1-induced CF activation. The TGF-β1-induced increase in glycolysis was greatly suppressed in the presence of a mitochondrial inhibitor, whereas a glycolysis-specific antagonist exerted little additional antifibrotic effects. TGF-β1 treatment increased cellular levels of reactive oxygen species (ROS) and triggered mitophagy, but this effect was reversed following the application of ROS scavengers. For the signals mediating mitophagy, the expression of Pink1, but not Bnip3l/Nix or Fundc1, exhibited the most significant changes, which could be counteracted by treatment with a mitochondrial fission inhibitor. Pink1 knockdown suppressed CF activation and mitochondrial fission, which was accompanied by increased CF apoptosis. In conclusion, mitochondrial fission resulted in increased glycolysis and played a crucial role in CF activation. Moreover, mitochondrial fission promoted reactive oxygen species (ROS) production, leading to mitophagy and the consequent degradation of the impaired mitochondria, thus promoting CF survival and maintaining their activation.
Collapse
Affiliation(s)
- Qing-Yuan Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Hai-Feng Zhang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jun Tao
- Department of Cardiovascular Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhi-Teng Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Chi-Yu Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Wen-Hao Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Mao-Xiong Wu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Wen-Yao Yin
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Guang-Hao Gao
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yong Xie
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Ying Yang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Pin-Ming Liu
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Jing-Feng Wang
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| | - Yang-Xin Chen
- Department of Cardiology, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China.,Laboratory of Cardiac Electrophysiology and Arrhythmia in Guangdong Province, Guangzhou, China
| |
Collapse
|
47
|
Mahmoud Moustafa E, Rashed ER, Rashed RR, Omar NN. Piceatannol promotes hepatic and renal AMPK/SIRT1/PGC-1α mitochondrial pathway in rats exposed to reserpine or gamma-radiation. Int J Immunopathol Pharmacol 2021; 35:20587384211016194. [PMID: 33985371 PMCID: PMC8127740 DOI: 10.1177/20587384211016194] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2021] [Accepted: 04/18/2021] [Indexed: 01/20/2023] Open
Abstract
Human exposure to radio-therapeutic doses of gamma rays can produce late effects, which negatively affect cancer patients' quality of life, work prospects, and general health. This study was performed to explore the role of Piceatannol (PIC) in the process of "mitochondrial biogenesis" signaling pathway as possible management of disturbances induced in stressed animal model(s) either by gamma-irradiation (IR) or administration of reserpine (RES); as a mitochondrial complex-I inhibitor. PIC (10 mg/kg BW/day; orally) were given to rats for 7 days, after exposure to an acute dose of γ-radiation (6 Gy), or after a single reserpine injection (1 g/kg BW; sc). Compared to reserpine or γ-radiation, PIC has attenuated hepatic and renal mitochondrial oxidative stress denoted by the significant reduction in the content of lipid peroxides and NO with significant induction of SOD, CAT, GSH-PX, and GR activities. PIC has also significantly alleviated the increase of the inflammatory markers, TNF-α and IL-6 and apoptotic markers, cytochrome c, and caspase-3. The decrease of oxidative stress, inflammation, and apoptotic responses were linked to a significant amelioration in mitochondrial biogenesis demonstrated by the increased expression and proteins' tissue contents of SIRT1/p38-AMPK, PGC-1α signaling pathway. The results are substantiated by the significant amelioration in mitochondrial function verified by the higher levels of ATP content, and complex I activity, besides the improvement of hepatic and renal functions. Additionally, histopathological examinations of hepatic and renal tissues showed that PIC has modulated tissue architecture after reserpine or gamma-radiation-induced tissue damage. Piceatannol improves mitochondrial functions by regulating the oxidant/antioxidant disequilibrium, the inflammatory and apoptotic responses, suggesting its possible use as adjuvant therapy in radio-therapeutic protocols to attenuate hepatic and renal injuries.
Collapse
Affiliation(s)
- Enas Mahmoud Moustafa
- Radiation Biology Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Engy Refaat Rashed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Rasha Refaat Rashed
- Drug Radiation Research Department, National Center for Radiation Research and Technology, Egyptian Atomic Energy Authority, Cairo, Egypt
| | - Nesreen Nabil Omar
- Biochemistry Department, Faculty of Pharmacy, Modern University for Technology and Information, Cairo, Egypt
| |
Collapse
|
48
|
Protective Effects of MitoTEMPO on Nonalcoholic Fatty Liver Disease via Regulating Myeloid-Derived Suppressor Cells and Inflammation in Mice. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9329427. [PMID: 32802885 PMCID: PMC7414374 DOI: 10.1155/2020/9329427] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/10/2020] [Revised: 07/02/2020] [Accepted: 07/08/2020] [Indexed: 12/21/2022]
Abstract
MitoTEMPO, a mitochondrial antioxidant, has protective effects on liver-related diseases. However, the role of MitoTEMPO on nonalcoholic fatty liver disease (NAFLD) and its possible mechanisms are largely unknown. Here, we investigated the effects of MitoTEMPO on NAFLD using high fat diet- (HFD-) induced obese mice as animal models. MitoTEMPO was intraperitoneally injected into HFD mice. Liver morphological changes were observed by H&E and Oil Red O staining, and the frequency of MDSCs in peripheral blood was analyzed by flow cytometry. Moreover, real-time quantitative PCR, western blot, and immunohistochemistry were conducted to detect the mRNA and protein expressions in the liver tissues. The results showed that the hepatic steatosis in liver tissues of HFD mice injected with MitoTEMPO was significantly ameliorated. Additionally, MitoTEMPO reduced the frequency of CD11b+Gr-1+ MDSCs in peripheral circulation and decreased Gr-1+ cell accumulation in the livers. Further studies demonstrated that MitoTEMPO administration suppressed the mRNA and protein expressions of MDSC-associated proinflammatory mediators, such as monocyte chemoattractant protein-1 (MCP-1), S100 calcium-binding protein A8 (S100A8), and S100 calcium-binding protein A9 (S100A9). Our results suggest that MitoTEMPO appears to be a potential chemical compound affecting certain immune cells and further ameliorates inflammation in obese-associated NAFLD.
Collapse
|
49
|
Zhao Y, Wang Z, Zhou J, Feng D, Li Y, Hu Y, Zhang F, Chen Z, Wang G, Ma X, Tian X, Yao J. LncRNA Mical2/miR-203a-3p sponge participates in epithelial-mesenchymal transition by targeting p66Shc in liver fibrosis. Toxicol Appl Pharmacol 2020; 403:115125. [PMID: 32659284 DOI: 10.1016/j.taap.2020.115125] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 06/18/2020] [Accepted: 06/20/2020] [Indexed: 12/13/2022]
Abstract
Epithelial-mesenchymal transition (EMT) is regulated by reactive oxygen species (ROS) in liver fibrosis. p66Shc is a redox enzyme, but its role of EMT is unclear in liver fibrosis. Long noncoding RNAs (lncRNAs) have been implicated as important regulators in numerous physiological and pathological processes and generally acting as a microRNA (miRNA) sponge to regulate gene expression. The aim of the current study was to evaluate the contribution of p66Shc to EMT in liver fibrosis and the regulation of p66Shc by lncRNA sponge. In vivo, p66Shc silencing prevented carbon tetrachloride (CCl4)-induced EMT as evidenced by the upregulation of E-cadherin, downregulation of Vimentin and N-cadherin, and inhibition of oxidative stress and extracellular matrix (ECM) components. Moreover, in vitro, TGF-β1 significantly enhanced ECM components, as well as the development of the EMT phenotype. These effects were abrogated by p66Shc downregulation and aggravated by p66Shc overexpression. Mechanistically, p66Shc contributed to EMT via mediating ROS, as evidenced by p66Shc downregulation inhibiting EMT under exogenous hydrogen peroxide (H2O2) stimulation. Furthermore, we found that molecule interacting with CasL2 (Mical2) lncRNA functioned as an endogenous miR-203a-3p sponge to regulate p66Shc expression. Both Mical2 silencing and miR-203a-3p agomiR treatment downregulated p66Shc expression, thus suppressing EMT in vivo and in vitro. Notably, the increased p66Shc and Mical2 levels and decreased miR-203a-3p levels in murine fibrosis were consistent with those in patients with liver fibrosis. In sum, our study reveals that p66Shc is critical for liver fibrosis and that Mical2, miR-203a-3p and p66Shc compose a novel regulatory pathway in liver fibrosis.
Collapse
Affiliation(s)
- Yan Zhao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Zhecheng Wang
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Junjun Zhou
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Dongcheng Feng
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yang Li
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Yan Hu
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Feng Zhang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Zhao Chen
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Guangzhi Wang
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China
| | - Xiaodong Ma
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China
| | - Xiaofeng Tian
- Department of General Surgery, Second Affiliated Hospital of Dalian Medical University, Dalian 116023, China.
| | - Jihong Yao
- Department of Pharmacology, Dalian Medical University, Dalian 116044, China.
| |
Collapse
|