1
|
Piqué-Gili M, Andreu-Oller C, Mesropian A, Esteban-Fabró R, Bárcena-Varela M, Ruiz de Galarreta M, Montironi C, Martinez-Quetglas I, Cappuyns S, Peix J, Keraite I, Gris-Oliver A, Fernández-Martínez E, Mauro E, Torres-Martin M, Abril-Fornaguera J, Lindblad KE, Lambrechts D, Dekervel J, Thung SN, Sia D, Lujambio A, Pinyol R, Llovet JM. Oncogenic role of PMEPA1 and its association with immune exhaustion and TGF-β activation in HCC. JHEP Rep 2024; 6:101212. [PMID: 39524206 PMCID: PMC11550205 DOI: 10.1016/j.jhepr.2024.101212] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 08/16/2024] [Accepted: 08/30/2024] [Indexed: 11/16/2024] Open
Abstract
Background & Aims Transforming growth factor β (TGF-β) plays an oncogenic role in advanced cancer by promoting cell proliferation, metastasis and immunosuppression. PMEPA1 (prostate transmembrane protein androgen induced 1) has been shown to promote TGF-β oncogenic effects in other tumour types. Thus, we aimed to explore the role of PMEPA1 in hepatocellular carcinoma (HCC). Methods We analysed 1,097 tumours from patients with HCC, including discovery (n = 228) and validation (n = 361) cohorts with genomic and clinicopathological data. PMEPA1 levels were assessed by qPCR (n = 228), gene expression data (n = 869) and at the single-cell level (n = 54). Genetically engineered mouse models overexpressing MYC+PMEPA1 compared to MYC were generated and molecular analyses were performed on the HCCs obtained. Results PMEPA1 was overexpressed in 18% of HCC samples (fold-change >2; n = 201/1,097), a feature associated with TGF-β signalling activation (p <0.05) and absence of gene body hypomethylation (p <0.01). HCCs showing both TGF-β signalling and high PMEPA1 levels (12% of cases) were linked to immune exhaustion, late TGF-β activation, aggressiveness and higher recurrence rates after resection, in contrast to HCCs with only TGF-β signalling (8%) or PMEPA1 overexpression (9%). Single-cell RNA sequencing analysis identified PMEPA1 expression in HCC and stromal cells. PMEPA1-expressing tumoural cells were predicted to interact with CD4+ regulatory T cells and CD4+ CXCL13+ and CD8+ exhausted T cells. In vivo, overexpression of MYC+PMEPA1 led to HCC development in ∼60% of mice and a decreased survival compared to mice overexpressing MYC alone (p = 0.014). MYC+PMEPA1 tumours were enriched in TGF-β signalling, paralleling our human data. Conclusions In human HCC, PMEPA1 upregulation is linked to TGF-β activation, immune exhaustion, and an aggressive phenotype. Overexpression of PMEPA1+MYC led to tumoural development in vivo, demonstrating the oncogenic role of PMEPA1 in HCC for the first time. Impact and implications PMEPA1 can enhance the tumour-promoting effects of TGF-β in cancer. In this study, we demonstrate that PMEPA1 is highly expressed in ∼18% of patients with hepatocellular carcinoma (HCC), a feature associated with poor prognosis, TGF-β activation and exhaustion of immune cells. Similarly, in mouse models, PMEPA1 overexpression promotes HCC development, which demonstrates its oncogenic role. The identification of PMEPA1 as oncogenic driver in HCC and its role in immune exhaustion and poor clinical outcomes enhances our understanding of HCC pathogenesis and opens new avenues for targeted therapeutic interventions.
Collapse
Affiliation(s)
- Marta Piqué-Gili
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Carmen Andreu-Oller
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Agavni Mesropian
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Roger Esteban-Fabró
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Marina Bárcena-Varela
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Marina Ruiz de Galarreta
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Carla Montironi
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Pathology Department & Molecular Biology CORE, Biomedical Diagnostic Center, Barcelona Hospital Clínic, University of Barcelona, Barcelona, Catalonia, Spain
| | - Iris Martinez-Quetglas
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Sarah Cappuyns
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
- Laboratory for Translational Genetics, Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Judit Peix
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Ieva Keraite
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Albert Gris-Oliver
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Elisa Fernández-Martínez
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Ezequiel Mauro
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Miguel Torres-Martin
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Jordi Abril-Fornaguera
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Katherine E. Lindblad
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Diether Lambrechts
- Laboratory for Translational Genetics, Department of Human Genetics, VIB and KU Leuven, Leuven, Belgium
- VIB Centre for Cancer Biology, Leuven, Belgium
| | - Jeroen Dekervel
- Digestive Oncology, Department of Gastroenterology, University Hospitals Leuven, Leuven, Belgium
- Laboratory of Clinical Digestive Oncology, Department of Oncology, KU Leuven, Leuven, Belgium
| | - Swan N. Thung
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Daniela Sia
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Amaia Lujambio
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
| | - Roser Pinyol
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
| | - Josep M. Llovet
- Liver Cancer Translational Research Group, Institut d'Investigacions Biomèdiques August Pi i Sunyer (IDIBAPS), Hospital Clínic, Universitat de Barcelona, Barcelona, Catalonia, Spain
- Mount Sinai Liver Cancer Program (Divisions of Liver Diseases, Department of Hematology/Oncology, Department of Medicine, Department of Pathology), Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, USA
- Institució Catalana de Recerca i Estudis Avançats, Barcelona, Catalonia, Spain
| |
Collapse
|
2
|
van den Akker GGH, Chabronova A, Housmans BAC, van der Vloet L, Surtel DAM, Cremers A, Marchand V, Motorin Y, Caron MMJ, Peffers MJ, Welting TJM. TGF-β2 Induces Ribosome Activity, Alters Ribosome Composition and Inhibits IRES-Mediated Translation in Chondrocytes. Int J Mol Sci 2024; 25:5031. [PMID: 38732249 PMCID: PMC11084827 DOI: 10.3390/ijms25095031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Revised: 04/29/2024] [Accepted: 05/01/2024] [Indexed: 05/13/2024] Open
Abstract
Alterations in cell fate are often attributed to (epigenetic) regulation of gene expression. An emerging paradigm focuses on specialized ribosomes within a cell. However, little evidence exists for the dynamic regulation of ribosome composition and function. Here, we stimulated a chondrocytic cell line with transforming growth factor beta (TGF-β2) and mapped changes in ribosome function, composition and ribosomal RNA (rRNA) epitranscriptomics. 35S Met/Cys incorporation was used to evaluate ribosome activity. Dual luciferase reporter assays were used to assess ribosomal modus. Ribosomal RNA expression and processing were determined by RT-qPCR, while RiboMethSeq and HydraPsiSeq were used to determine rRNA modification profiles. Label-free protein quantification of total cell lysates, isolated ribosomes and secreted proteins was done by LC-MS/MS. A three-day TGF-β2 stimulation induced total protein synthesis in SW1353 chondrocytic cells and human articular chondrocytes. Specifically, TGF-β2 induced cap-mediated protein synthesis, while IRES-mediated translation was not (P53 IRES) or little affected (CrPv IGR and HCV IRES). Three rRNA post-transcriptional modifications (PTMs) were affected by TGF-β2 stimulation (18S-Gm1447 downregulated, 18S-ψ1177 and 28S-ψ4598 upregulated). Proteomic analysis of isolated ribosomes revealed increased interaction with eIF2 and tRNA ligases and decreased association of eIF4A3 and heterogeneous nuclear ribonucleoprotein (HNRNP)s. In addition, thirteen core ribosomal proteins were more present in ribosomes from TGF-β2 stimulated cells, albeit with a modest fold change. A prolonged stimulation of chondrocytic cells with TGF-β2 induced ribosome activity and changed the mode of translation. These functional changes could be coupled to alterations in accessory proteins in the ribosomal proteome.
Collapse
Affiliation(s)
- Guus G. H. van den Akker
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Alzbeta Chabronova
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Bas A. C. Housmans
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Laura van der Vloet
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Don A. M. Surtel
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Andy Cremers
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Virginie Marchand
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
| | - Yuri Motorin
- UAR2008 IBSLor CNRS-INSERM, Université de Lorraine, BioPole, F54000 Nancy, France; (V.M.); (Y.M.)
- UMR7365 IMoPA, CNRS, Université de Lorraine, BioPole, F54000 Nancy, France
| | - Marjolein M. J. Caron
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
| | - Mandy J. Peffers
- Department of Musculoskeletal Ageing Science, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool L7 8TX, UK
| | - Tim J. M. Welting
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Research School CAPHRI, Faculty of Healthy Medicine and Life Sciences, Maastricht University, 6229 ER Maastricht, The Netherlands; (A.C.); (M.M.J.C.); (T.J.M.W.)
- Laboratory of Experimental Orthopedics, Department of Orthopedic Surgery, Maastricht University Medical Center +, 6229 HX Maastricht, The Netherlands
| |
Collapse
|
3
|
Liu G, Li M, Zeng Z, Fan Q, Ren X, Wang Z, Sun Y, He Y, Sun L, Deng Y, Liu S, Zhong C, Gao J. Tyrosine hydroxylase inhibits HCC progression by downregulating TGFβ/Smad signaling. Eur J Med Res 2024; 29:228. [PMID: 38610044 PMCID: PMC11015545 DOI: 10.1186/s40001-024-01703-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Accepted: 01/31/2024] [Indexed: 04/14/2024] Open
Abstract
The alteration of metabolic processes has been found to have significant impacts on the development of hepatocellular carcinoma (HCC). Nevertheless, the effects of dysfunction of tyrosine metabolism on the development of HCC remains to be discovered. This research demonstrated that tyrosine hydroxylase (TH), which responsible for the initial and limiting step in the bio-generation of the neuro-transmitters dopamine and adrenaline, et al. was shown to be reduced in HCC. Increased expression of TH was found facilitates the survival of HCC patients. In addition, decreased TH indicated larger tumor size, much more numbers of tumor, higher level of AFP, and the presence of cirrhosis. TH effectively impairs the growth and metastasis of HCC cells, a process dependent on the phosphorylation of serine residues (S19/S40). TH directly binds to Smad2 and hinders the cascade activation of TGFβ/Smad signaling with the treatment of TGFβ1. In summary, our study uncovered the non-metabolic functions of TH in the development of HCC and proposes that TH might be a promising biomarker for diagnosis as well as an innovative target for metastatic HCC.
Collapse
Affiliation(s)
- Guoqian Liu
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, Hunan, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Mengwei Li
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, Hunan, China
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Zimei Zeng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Qi Fan
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xinxin Ren
- Cancer Center, Department of Pathology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, 310014, Zhejiang, China
| | - Zhexin Wang
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yaoqi Sun
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yulin He
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lunquan Sun
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, Hunan, China
| | - Yuezhen Deng
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Shupeng Liu
- Department of Obstetrics and Gynecology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China.
- Institute of Gynecological Minimally Invasive Medicine, Tongji University School of Medicine, Shanghai, 200072, China.
| | - Chenxi Zhong
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jie Gao
- Key Laboratory of Molecular Radiation Oncology Hunan Province, Changsha, 410008, Hunan, China.
- Department of Thoracic Surgery, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
- Xiangya Cancer Center, Xiangya Hospital, Central South University, 87th of Xiangya Road, Changsha, 410008, China.
| |
Collapse
|
4
|
Yu H, Zhuang J, Zhou Z, Song Q, Lv J, Yang X, Yang H, Lu Q. METTL16 suppressed the proliferation and cisplatin-chemoresistance of bladder cancer by degrading PMEPA1 mRNA in a m6A manner through autophagy pathway. Int J Biol Sci 2024; 20:1471-1491. [PMID: 38385084 PMCID: PMC10878153 DOI: 10.7150/ijbs.86719] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2023] [Accepted: 01/24/2024] [Indexed: 02/23/2024] Open
Abstract
N6-methyladenosine (m6A) is important in the physiological processes of many species. Methyltransferase-like 16 (METTL16) is a novel discovered m6A methylase, regulating various tumors in an m6A-dependent manner. However, its function in bladder cancer (BLCA) remains largely unclear. In the present study, we found that low expression of METTL16 predicted poor survival in BLCA patients. METTL16 inhibited the proliferation and cisplatin-resistance function of bladder cancer cells in vitro and in vivo. In addition, METTL16 reduced the mRNA stability of prostate transmembrane protein androgen induced-1 (PMEPA1) via binding to its m6A site in the 3'-UTR, thereby inhibited the proliferation of bladder cancer cells and increased the sensitivity of cisplatin through PMEPA1-mediated autophagy pathway. Finally, we found that hypoxia-inducible factor 2α (HIF-2α) exerted its tumor-promoting effect by binding the METTL16 promoter region to repress its transcription. Taken together, High expression of METTL16 predicted better survival in BLCA. METTL16 significantly inhibited bladder cancer cell proliferation and sensitized bladder cancer cells to cisplatin via HIF-2α-METTL16-PMEPA1-autophagy axis in a m6A manner. These findings might provide fresh insights into BLCA therapy.
Collapse
Affiliation(s)
- Hao Yu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing 210029, China
| | - Juntao Zhuang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing 210029, China
| | - Zijian Zhou
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Qiang Song
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing 210029, China
| | - Jiancheng Lv
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing 210029, China
| | - Xiao Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Haiwei Yang
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Laboratory of Urology and Andrology, Jiangsu Clinical Medicine Research Institution, Nanjing 210029, China
| | - Qiang Lu
- Department of Urology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
5
|
Zhu Q, Wang Y, Liu Y, Yang X, Shuai Z. Prostate transmembrane androgen inducible protein 1 (PMEPA1): regulation and clinical implications. Front Oncol 2023; 13:1298660. [PMID: 38173834 PMCID: PMC10761476 DOI: 10.3389/fonc.2023.1298660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Accepted: 12/06/2023] [Indexed: 01/05/2024] Open
Abstract
Prostate transmembrane androgen inducible protein 1 (PMEPA1) can promote or inhibit prostate cancer cell growth based on the cancer cell response to the androgen receptor (AR). Further, it can be upregulated by transforming growth factor (TGF), which downregulates transforming growth factor-β (TGF-β) signaling by interfering with R-Smad phosphorylation to facilitate TGF-β receptor degradation. Studies have indicated the increased expression of PMEPA1 in some solid tumors and its functioning as a regulator of multiple signaling pathways. This review highlights the multiple potential signaling pathways associated with PMEPA1 and the role of the PMEPA1 gene in regulating prognosis, including transcriptional regulation and epithelial mesenchymal transition (EMT). Moreover, the relevant implications in and outside tumors, for example, as a biomarker and its potential functions in lysosomes have also been discussed.
Collapse
Affiliation(s)
- Qicui Zhu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yue Wang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Yaqian Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xiaoke Yang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zongwen Shuai
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Anhui Medical University, Hefei, China
- Inflammation and Immune Mediated Diseases Laboratory of Anhui, Hefei, China
| |
Collapse
|
6
|
Ahmad F, Ma L, Wei W, Liu Y, Hakim I, Daugherty A, Mujahid S, Radin AA, Chua MS, So S. Identification and validation of microtubule depolymerizing agent, CYT997, as a potential drug candidate for hepatocellular carcinoma. Liver Int 2023; 43:2794-2807. [PMID: 37833852 DOI: 10.1111/liv.15756] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 09/19/2023] [Accepted: 09/21/2023] [Indexed: 10/15/2023]
Abstract
BACKGROUND AND AIMS Hepatocellular carcinoma (HCC) is a typically fatal malignancy with limited treatment options and poor survival rates, despite recent FDA approvals of newer treatment options. We aim to address this unmet need by using a proprietary computational drug discovery platform that identifies drug candidates with the potential to advance rapidly and successfully through preclinical studies. METHODS We generated an in silico model of HCC biology to identify the top 10 small molecules with predicted efficacy. The most promising candidate, CYT997, was tested for its in vitro effects on cell viability and cell death, colony formation, cell cycle changes, and cell migration/invasion in HCC cells. We used an HCC patient-derived xenograft (PDX) mouse model to assess its in vivo efficacy. RESULTS CYT997 was significantly more cytotoxic against HCC cells than against primary human hepatocytes, and sensitized HCC cells to sorafenib. It arrested cell cycle at the G2/M phase with associated up-regulations of p21, p-MEK1/2, p-ERK, and down-regulation of cyclin B1. Cell apoptosis and senescence-like morphology were also observed. CYT997 inhibited HCC cell migration and invasion, and down-regulated the expressions of acetylated tubulins, β-tubulin, glypican-3 (GPC3), β-catenin, and c-Myc. In vivo, CYT997 (20 mg/kg, three times weekly by oral gavage) significantly inhibited PDX growth, while being non-toxic to mice. Immunohistochemistry confirmed the down-regulation of GPC3, c-Myc, and Ki-67, supporting its anti-proliferative effect. CONCLUSION CYT997 is a potentially efficacious and non-toxic drug candidate for HCC therapy. Its ability to down-regulate GPC3, β-catenin, and c-Myc highlights a novel mechanism of action.
Collapse
Affiliation(s)
- Faiz Ahmad
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Li Ma
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Wei Wei
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Yi Liu
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Isaac Hakim
- Aria Pharmaceuticals, Palo Alto, California, USA
| | | | - Sana Mujahid
- Aria Pharmaceuticals, Palo Alto, California, USA
| | | | - Mei-Sze Chua
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| | - Samuel So
- Asian Liver Center, Department of Surgery, School of Medicine, Stanford, California, USA
| |
Collapse
|
7
|
Zhang L, Su K, Liu Q, Li B, Wang Y, Cheng C, Li Y, Xu C, Chen J, Wu H, Zhu M, Mai X, Cao Y, Peng J, Yue Y, Ding Y, Yu D. Kidney-type glutaminase is a biomarker for the diagnosis and prognosis of hepatocellular carcinoma: a prospective study. BMC Cancer 2023; 23:1081. [PMID: 37946141 PMCID: PMC10633901 DOI: 10.1186/s12885-023-11601-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Accepted: 11/01/2023] [Indexed: 11/12/2023] Open
Abstract
PURPOSE The pathological diagnosis and prognosis prediction of hepatocellular carcinoma (HCC) is challenging due to the lack of specific biomarkers. This study aimed to validate the diagnostic and prognostic efficiency of Kidney-type glutaminase (GLS1) for HCC in prospective cohorts with a large sample size. METHODS A total of 1140 HCC patients were enrolled in our prospective clinical trials. Control cases included 114 nontumour tissues. The registered clinical trial (ChiCTR-DDT-14,005,102, chictr.org.cn) was referred to for the exact protocol. GLS1 immunohistochemistry was performed on the whole tumour section. The diagnostic and prognostic performances of GLS1 was evaluated by the receiver operating characteristic curve and Cox regression model. RESULTS The sensitivity, specificity, positive predictive value, negative predictive value, Youden index, and area under the curve of GLS1 for the diagnosis of HCC were 0.746, 0.842, 0.979, 0.249, 0.588, and 0.814, respectively, which could be increased to 0.846, 0.886, 0.987,0.366, 0.732, and 0.921 when combined with glypican 3 (GPC3) and alpha-fetoprotein (AFP), indicating better diagnostic performance. Further, we developed a nomogram with GPC3 and GLS1 for identifying HCC which showed good discrimination and calibration. GLS1 expression was also related with age, T stage, TNM stage, Edmondson-Steiner grade, microvascular invasion, Ki67, VEGFR2, GPC3, and AFP expression in HCC. GLS1 expression was negatively correlated with disease-free survival (P < 0.001) probability of patients with HCC. CONCLUSIONS It was validated that GLS1 was a sensitive and specific biomarker for pathological diagnosis of HCC and had prognostic value, thus having practical value for clinical application.
Collapse
Affiliation(s)
- Laizhu Zhang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ke Su
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Qi Liu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Binghua Li
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Ye Wang
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chunxiao Cheng
- Nanjing Drum Tower Hospital Clinical College of Nanjing University of Chinese Medicine, Nanjing, China
| | - Yunzheng Li
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Chun Xu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jun Chen
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Hongyan Wu
- Department of Pathology, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Mengxia Zhu
- Department of Radiology, Nanjing Drum Tower Clinical Medical School, the Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaoli Mai
- Department of Radiology, Nanjing Drum Tower Clinical Medical School, the Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yajuan Cao
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Jin Peng
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yang Yue
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Yitao Ding
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China
| | - Decai Yu
- Division of Hepatobiliary and Transplantation Surgery, Department of General Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
| |
Collapse
|
8
|
Elabd WK, Elbakry MMM, Hassany M, Baki AA, Seoudi DM, El Azeem EMA. Evaluation of miRNA-7, miRNA-10 and miRNA-21 as diagnostic non-invasive biomarkers of hepatocellular carcinoma. Clin Exp Hepatol 2023; 9:221-227. [PMID: 37790691 PMCID: PMC10544064 DOI: 10.5114/ceh.2023.130547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2023] [Accepted: 07/02/2023] [Indexed: 10/05/2023] Open
Abstract
Aim of the study Liver cancer (hepatocellular carcinoma - HCC) remains a serious health challenge; it is the fourth leading cause of death worldwide. Egypt ranks fifteenth worldwide and the third in Africa in terms of HCC burden. The present study aimed to assess some microRNAs (miRNAs) including miRNA-7, miRNA-10, and miRNA-21, serum markers such as cluster of differentiation-14 (CD-14) and transforming growth factor b1 (TGF-b1), and other biochemical parameters as non-invasive tools for HCC diagnosis. Material and methods The study included 100 participants divided into five groups: group I (20 normal subjects as a healthy group), group II (20 participants with chronic HCV infection but non-cirrhotic), group III (20 volunteers with chronic HCV infection and compensated cirrhosis), group IV (20 patients with chronic HCV infection and decompensated cirrhosis), and group V (20 participants with HCC). Levels of miR-7, miR-10, and miR-21 were evaluated using qRT-PCR. Serum ALT, AST, total bilirubin, total protein, albumin, PT, INR, and platelet count were determined. FIB-4 and APRI test levels were also calculated. CD-14 and TGF-β1 serum levels were estimated using enzyme-linked immunosorbent assay (ELISA) kits. Results The expression levels of miR-21 followed by miR-10 showed high sensitivity and specificity in predicting HCC. Serum CD-14 and TGF-b1 levels were significantly increased in all patient groups. Conclusions From the study, it is concluded that the expression level of miR-21 has the highest sensitivity and specificity, followed by miR-10, which has high sensitivity and low specificity as non-invasive markers for HCC detection, while miR-7 exhibits high sensitivity and reasonable specificity in fibrosis detection.
Collapse
Affiliation(s)
| | | | - Mohamed Hassany
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | - Amin Abdel Baki
- National Hepatology and Tropical Medicine Research Institute, Cairo, Egypt
| | | | | |
Collapse
|
9
|
Lominadze Z, Shaik MR, Choi D, Zaffar D, Mishra L, Shetty K. Hepatocellular Carcinoma Genetic Classification. Cancer J 2023; 29:249-258. [PMID: 37796642 PMCID: PMC10686192 DOI: 10.1097/ppo.0000000000000682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/07/2023]
Abstract
ABSTRACT Hepatocellular carcinoma (HCC) represents a significant global burden, with management complicated by its heterogeneity, varying presentation, and relative resistance to therapy. Recent advances in the understanding of the genetic, molecular, and immunological underpinnings of HCC have allowed a detailed classification of these tumors, with resultant implications for diagnosis, prognostication, and selection of appropriate treatments. Through the correlation of genomic features with histopathology and clinical outcomes, we are moving toward a comprehensive and unifying framework to guide our diagnostic and therapeutic approach to HCC.
Collapse
Affiliation(s)
- Zurabi Lominadze
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| | | | - Dabin Choi
- Department of Medicine, University of Maryland Medical Center
| | - Duha Zaffar
- Department of Medicine, University of Maryland Midtown Medical Center
| | - Lopa Mishra
- Feinstein Institutes for Medical Research and Cold Spring Harbor Laboratory; Divisions of Gastroenterology and Hepatology, Northwell Health
| | - Kirti Shetty
- Division of Gastroenterology and Hepatology, University of Maryland School of Medicine
| |
Collapse
|
10
|
Dhanasekaran R, Suzuki H, Lemaitre L, Kubota N, Hoshida Y. Molecular and immune landscape of hepatocellular carcinoma to guide therapeutic decision-making. Hepatology 2023:01515467-990000000-00480. [PMID: 37300379 PMCID: PMC10713867 DOI: 10.1097/hep.0000000000000513] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2023] [Accepted: 05/12/2023] [Indexed: 06/12/2023]
Abstract
Liver cancer, primarily HCC, exhibits highly heterogeneous histological and molecular aberrations across tumors and within individual tumor nodules. Such intertumor and intratumor heterogeneities may lead to diversity in the natural history of disease progression and various clinical disparities across the patients. Recently developed multimodality, single-cell, and spatial omics profiling technologies have enabled interrogation of the intertumor/intratumor heterogeneity in the cancer cells and the tumor immune microenvironment. These features may influence the natural history and efficacy of emerging therapies targeting novel molecular and immune pathways, some of which had been deemed undruggable. Thus, comprehensive characterization of the heterogeneities at various levels may facilitate the discovery of biomarkers that enable personalized and rational treatment decisions, and optimize treatment efficacy while minimizing the risk of adverse effects. Such companion biomarkers will also refine HCC treatment algorithms across disease stages for cost-effective patient management by optimizing the allocation of limited medical resources. Despite this promise, the complexity of the intertumor/intratumor heterogeneity and ever-expanding inventory of therapeutic agents and regimens have made clinical evaluation and translation of biomarkers increasingly challenging. To address this issue, novel clinical trial designs have been proposed and incorporated into recent studies. In this review, we discuss the latest findings in the molecular and immune landscape of HCC for their potential and utility as biomarkers, the framework of evaluation and clinical application of predictive/prognostic biomarkers, and ongoing biomarker-guided therapeutic clinical trials. These new developments may revolutionize patient care and substantially impact the still dismal HCC mortality.
Collapse
Affiliation(s)
| | - Hiroyuki Suzuki
- Division of Gastroenterology, Department of Medicine, Kurume University School of Medicine, Kurume, Fukuoka
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Stanford University, Stanford, California
| | - Naoto Kubota
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Yujin Hoshida
- Liver Tumor Translational Research Program, Simmons Comprehensive Cancer Center, Division of Digestive and Liver Diseases, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
11
|
Dhanasekaran R, Hansen AS, Park J, Lemaitre L, Lai I, Adeniji N, Kuruvilla S, Suresh A, Zhang J, Swamy V, Felsher DW. MYC Overexpression Drives Immune Evasion in Hepatocellular Carcinoma That Is Reversible through Restoration of Proinflammatory Macrophages. Cancer Res 2023; 83:626-640. [PMID: 36525476 PMCID: PMC9931653 DOI: 10.1158/0008-5472.can-22-0232] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 10/12/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022]
Abstract
Cancers evade immune surveillance, which can be reversed through immune-checkpoint therapy in a small subset of cases. Here, we report that the MYC oncogene suppresses innate immune surveillance and drives resistance to immunotherapy. In 33 different human cancers, MYC genomic amplification and overexpression increased immune-checkpoint expression, predicted nonresponsiveness to immune-checkpoint blockade, and was associated with both Th2-like immune profile and reduced CD8 T-cell infiltration. MYC transcriptionally suppressed innate immunity and MHCI-mediated antigen presentation, which in turn impeded T-cell response. Combined, but not individual, blockade of PDL1 and CTLA4 could reverse MYC-driven immune suppression by leading to the recruitment of proinflammatory antigen-presenting macrophages with increased CD40 and MHCII expression. Depletion of macrophages abrogated the antineoplastic effects of PDL1 and CTLA4 blockade in MYC-driven hepatocellular carcinoma (HCC). Hence, MYC is a predictor of immune-checkpoint responsiveness and a key driver of immune evasion through the suppression of proinflammatory macrophages. The immune evasion induced by MYC in HCC can be overcome by combined PDL1 and CTLA4 blockade. SIGNIFICANCE Macrophage-mediated immune evasion is a therapeutic vulnerability of MYC-driven cancers, which has implications for prioritizing MYC-driven hepatocellular carcinoma for combination immunotherapy.
Collapse
Affiliation(s)
- Renumathy Dhanasekaran
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Aida S. Hansen
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
- Department of Biomedicine, Aarhus University, Aarhus C 8000, Denmark
| | - Jangho Park
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Lea Lemaitre
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Ian Lai
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Nia Adeniji
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Sibu Kuruvilla
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Akanksha Suresh
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Josephine Zhang
- Division of Gastroenterology and Hepatology, Department of Medicine. Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Varsha Swamy
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Dean W. Felsher
- Division of Oncology, Departments of Medicine and Pathology, Stanford University School of Medicine, Stanford, CA 94305, USA
| |
Collapse
|
12
|
Sun Q, Schwabe RF. Hepatic Stellate Cell Depletion and Genetic Manipulation. Methods Mol Biol 2023; 2669:207-220. [PMID: 37247062 DOI: 10.1007/978-1-0716-3207-9_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Hepatic stellate cells (HSCs) exert key roles in the development of liver disease. Cell-specific genetic labeling, gene knockout and depletion are important for the understanding of the HSC in homeostasis and a wide range of diseases ranging from acute liver injury and liver regeneration to nonalcoholic liver disease and cancer. Here, we will review and compare different Cre-dependent and Cre-independent methods for genetic labeling, gene knockout, HSC tracing and depletion, and their applications to different disease models. We provide detailed protocols for each method including methods to confirm successful and efficient targeting of HSCs.
Collapse
Affiliation(s)
- Qiuyan Sun
- Department of Medicine, Columbia University, New York, NY, USA
| | | |
Collapse
|
13
|
Lan C, Huang X, Liao X, Zhou X, Peng K, Wei Y, Han C, Peng T, Wang J, Zhu G. PUS1 May Be a Potential Prognostic Biomarker and Therapeutic Target for Hepatocellular Carcinoma. Pharmgenomics Pers Med 2023; 16:337-355. [PMID: 37091827 PMCID: PMC10115212 DOI: 10.2147/pgpm.s405621] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Accepted: 03/31/2023] [Indexed: 04/25/2023] Open
Abstract
Objective The mechanisms of pseudouridine synthase (PUS) are not definite in hepatocellular carcinoma (HCC), the objective of this study is to investigate the effect of PUS genes in HCC. Materials and Methods Differentially expressed and prognostic gene of PUS enzymes was identified based on The Cancer Genome Atlas (TCGA), International Cancer Genome Consortium (ICGC) and Gene Expression Profiling Interactive Analysis (GEPIA) databases. For the identified gene, pseudouridine synthase 1 (PUS1), was used for further research. The clinicopathological feature of PUS1 was analyzed by Student's t-test. Prognostic significance was explored by Kaplan-Meier (KM) analysis and Cox proportional hazards regression model. Receiver operating characteristic (ROC) curve was applied to appraise diagnostic and prognostic value. The Database for Annotation, Visualization, and Integrated Discovery (DAVID) and Gene Set Enrichment Analysis (GSEA) were implemented to explore mechanism of PUS1. A Guangxi cohort was applied to verify differential expression. In vitro cell experiments were implemented to investigate the influence for proliferation, reactive oxygen species (ROS) level, migration, and invasion of HCC cells after a knockdown of PUS1. Results PUS1 was significantly overexpressed in HCC tissues, and patients with high PUS1 were related to unpromising clinicopathological features. Survival analysis revealed high PUS1 expression was associated with a poor overall survival (OS) and 1 year-recurrence free survival (RFS), was an independent risk factor. Meanwhile, ROC curve showed that PUS1 had a diagnostic and prognostic significance to HCC. Functional enrichment analysis implied that PUS1 may be involved in metabolic pathways, mitochondrial function, non-alcoholic fatty liver disease (NAFLD), and some important carcinogenic pathways. Cell assays revealed that knockdown of PUS1 significantly constrained the migration, proliferation, invasion and improved the ROS level of HCC cells. Conclusion PUS1 may be a prognostic biomarker and a underlying treatment target for HCC.
Collapse
Affiliation(s)
- Chenlu Lan
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xinlei Huang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xiwen Liao
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Xin Zhou
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Kai Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Yongguang Wei
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Chuangye Han
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Tao Peng
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
| | - Jianyao Wang
- Department of General Surgery, Shenzhen Children’s Hospital, Shenzhen, Guangdong Province, People’s Republic of China
- Jianyao Wang, Department of General Surgery, Shenzhen Children’s Hospital, Lianhua District, Shenzhen, 518026, Guangdong Province, People’s Republic of China, Email
| | - Guangzhi Zhu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region, People’s Republic of China
- Key Laboratory of High-Incidence-Tumor Prevention & Treatment (Guangxi Medical University), Ministry of Education, Nanning, 530021, People’s Republic of China
- Correspondence: Guangzhi Zhu, Department of Hepatobiliary Surgery, The First Affiliated Hospital of Guangxi Medical University, Nanning, 530021, Guangxi Zhuang Autonomous Region, People’s Republic of China, Tel +86-771-5356528, Fax +86-771-5350031, Email
| |
Collapse
|
14
|
Sarantis P, Trifylli EM, Koustas E, Papavassiliou KA, Karamouzis MV, Papavassiliou AG. Immune Microenvironment and Immunotherapeutic Management in Virus-Associated Digestive System Tumors. Int J Mol Sci 2022; 23:13612. [PMID: 36362398 PMCID: PMC9655697 DOI: 10.3390/ijms232113612] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/31/2022] [Accepted: 11/04/2022] [Indexed: 08/29/2023] Open
Abstract
The development of cancer is a multifactorial phenomenon, while it constitutes a major global health problem. Viruses are an important factor that is involved in tumorigenesis and is associated with 12.1% of all cancer cases. Major examples of oncogenic viruses which are closely associated with the digestive system are HBV, HCV, EBV, HPV, JCV, and CMV. EBV, HPV, JCV, and CMV directly cause oncogenesis by expressing oncogenic proteins that are encoded in their genome. In contrast, HBV and HCV are correlated indirectly with carcinogenesis by causing chronic inflammation in the infected organs. In addition, the tumor microenvironment contains various immune cells, endothelial cells, and fibroblasts, as well as several growth factors, cytokines, and other tumor-secreted molecules that play a key role in tumor growth, progression, and migration, while they are closely interrelated with the virus. The presence of T-regulatory and B-regulatory cells in the tumor microenvironment plays an important role in the anti-tumor immune reaction. The tumor immune microenvironments differ in each type of cancer and depend on viral infection. The alterations in the immune microenvironment caused by viruses are also reflected in the effectiveness of immunotherapy. The present review aims at shedding light on the association between viruses and digestive system malignancies, the characteristics of the tumor immune microenvironment that develop, and the possible treatments that can be administered.
Collapse
Affiliation(s)
- Panagiotis Sarantis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Eleni-Myrto Trifylli
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Evangelos Koustas
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
- First Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece
| | - Kostas A. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Michalis V. Karamouzis
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| | - Athanasios G. Papavassiliou
- Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece
| |
Collapse
|
15
|
Xu F, Lin R, Liu J, Chen Z, Zhuo H, Liu X. Intravenous Immunoglobulin Inhibits Liver Cancer Progression by Promoting p38MAPK-Associated Apoptosis. JOURNAL OF ONCOLOGY 2022; 2022:1300989. [PMID: 35874633 PMCID: PMC9303155 DOI: 10.1155/2022/1300989] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 06/24/2022] [Indexed: 02/05/2023]
Abstract
OBJECTIVE The aim of this study is to explore the effect of intravenous immunoglobulin (IVIG) on the development of rat hepatocellular carcinoma and its possible molecular mechanism. METHODS Sixty adult male Sprague-Dawley (SD) rats were randomly divided into three groups: control, diethylnitrosamine(DEN) + normal saline(NS), and DEN + IVIG groups, with 20 rats in each group. The rats in the DEN + NS group and DEN + IVIG group were given DEN 0.2 g/kg intraperitoneal injection once on day 1 and then 0.05% DEN aqueous solution in drinking water to establish a rat liver cancer model. Immunoglobulin (IgG) was injected intraperitoneally into the DEN + IVIG group twice a week at the dose of 100 mg/kg, and saline was administered intraperitoneally into the control group at a 50 mg/kg dosage. The body weight of each group of rats was recorded twice a week. All treatments were maintained continuously for 12 weeks. After the intervention, the liver function indexes of rats were measured by a fully automated biochemical analysis instrument. The liver histopathology was observed by hematoxylin-eosin(HE) staining. Immunohistochemistry was used to detect c-myc protein expression, and Western blotting was used to determine p38MAPK and p-p38MAPK protein expressions, as well as apoptosis-related proteins such as Bcl-2, Bax, and cleaved caspase-3. RESULTS Compared with the rats in the DEN + NS group, rats in the DEN + IVIG group showed substantially higher body mass (P < 0.05), higher survival rate (P < 0.05), and lower liver function indexes (P < 0.05). Few focal necrosis of cancer cells and few nuclear division were observed in the rats in the DEN + IVIG group. The rats in the DEN + NS group showed lamellar necrosis of cancer foci, destruction of normal liver lobular structure, and hepatocellular carcinoma cells. Immunohistochemical analysis results revealed that the expression of c-myc was reduced in the DEN + IVIG group (P < 0.05), and Western blotting confirmed that the Bcl-2 expression was decreased (P < 0.05), while Bax, p38 MAPK, p-p38 MAPK, and cleaved caspase-3 protein expressions were increased (P < 0.05). CONCLUSION IVIG prophylactic injection can delay tumor development and induce apoptosis in primary hepatocellular carcinoma in rats. The mechanism is connected to the activation of the p38MAPK signaling pathway by upregulating the level of cleaved caspase-3 and Bax proteins while downregulating the level of Bcl-2 and c-myc proteins.
Collapse
Affiliation(s)
- Fengjie Xu
- Shantou University Medical College, Shantou, China
| | - Runzhui Lin
- Shantou University Medical College, Shantou, China
| | - Jianrui Liu
- Shantou University Medical College, Shantou, China
| | - Zeming Chen
- Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| | - Hua Zhuo
- Shantou University Medical College, Shantou, China
| | - Xingmu Liu
- Second Affiliated Hospital of Shantou University Medical College, Shantou, China
| |
Collapse
|
16
|
Chen B, Mu C, Zhang Z, He X, Liu X. The Love-Hate Relationship Between TGF-β Signaling and the Immune System During Development and Tumorigenesis. Front Immunol 2022; 13:891268. [PMID: 35720407 PMCID: PMC9204485 DOI: 10.3389/fimmu.2022.891268] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 04/25/2022] [Indexed: 11/20/2022] Open
Abstract
Since TGF-β was recognized as an essential secreted cytokine in embryogenesis and adult tissue homeostasis a decade ago, our knowledge of the role of TGF-β in mammalian development and disease, particularly cancer, has constantly been updated. Mounting evidence has confirmed that TGF-β is the principal regulator of the immune system, as deprivation of TGF-β signaling completely abrogates adaptive immunity. However, enhancing TGF-β signaling constrains the immune response through multiple mechanisms, including boosting Treg cell differentiation and inducing CD8+ T-cell apoptosis in the disease context. The love-hate relationship between TGF-β signaling and the immune system makes it challenging to develop effective monotherapies targeting TGF-β, especially for cancer treatment. Nonetheless, recent work on combination therapies of TGF-β inhibition and immunotherapy have provide insights into the development of TGF-β-targeted therapies, with favorable outcomes in patients with advanced cancer. Hence, we summarize the entanglement between TGF-β and the immune system in the developmental and tumor contexts and recent progress on hijacking crucial TGF-β signaling pathways as an emerging area of cancer therapy.
Collapse
Affiliation(s)
- Baode Chen
- Department of Laboratory Medicine, Key Laboratory of Clinical In Vitro Diagnostic Techniques of Zhejiang Province, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Chenglin Mu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Zhiwei Zhang
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| | - Xuelin He
- Kidney Disease Center, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Xia Liu
- Institute for Intelligent Bio/Chem Manufacturing (iBCM), Zhejiang University (ZJU)-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, China
| |
Collapse
|
17
|
Abdelhamid AM, Saber S, Youssef ME, Gaafar AGA, Eissa H, Abd-Eldayem MA, Alqarni M, Batiha GES, Obaidullah AJ, Shahien MA, El-Ahwany E, Amin NA, Etman MA, Kaddah MMY, Abd El-Fattah EE. Empagliflozin adjunct with metformin for the inhibition of hepatocellular carcinoma progression: Emerging approach for new application. Biomed Pharmacother 2021; 145:112455. [PMID: 34844106 DOI: 10.1016/j.biopha.2021.112455] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/05/2021] [Accepted: 11/16/2021] [Indexed: 02/08/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is on the rise worldwide, and its incidence in diabetic patients is two to three times that of non-diabetics. Current therapeutic options fail to provide considerable survival benefits to patients with HCC. There is a strong possibility that the FDA-approved antidiabetic combination of empagliflozin and metformin could show complementary effects to control HCC progression. However, their multitarget effects have not yet been studied on HCC development. Therefore, the present study aims to evaluate the antitumorigenic activity of this combination in non-diabetic mice with diethylnitrosamine-induced HCC. Empagliflozin/metformin combination prolonged survival and improved histological features of mice livers. Additionally, Empagliflozin/metformin showed anti-inflammatory potential and relieved oxidative stress. On the one hand these effects are likely attributed to the ability of metformin to inactivate NF-κB in an AMPK-dependent mechanism and on the other hand to the ability of the empagliflozin to inhibit the MAPKs, p38 and ERK1/2. Empagliflozin also showed a less robust effect on AMPK than that of metformin. Moreover, empagliflozin enhanced the autophagy inducing activity of metformin. Furthermore, empagliflozin/metformin exhibited increased apoptotic potential. Consequently, empagliflozin augmented the antitumorigenic function of metformin by exerting better control of angiogenesis, and metastasis. To conclude, our findings suggest empagliflozin as an ideal adjunct to metformin for the inhibition of HCC progression. In addition, since the incidence of hypoglycemia is minimal due to insulin-independent mechanism of action of both treatments, empagliflozin/metformin could be a promising therapeutic modality for the management of diabetic patients with HCC; and even non diabetic ones.
Collapse
Affiliation(s)
- Amir Mohamed Abdelhamid
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Sameh Saber
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt.
| | - Mahmoud E Youssef
- Department of Pharmacology, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| | - Ahmed Gaafar Ahmed Gaafar
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Port Said University, Port Said, Egypt
| | - Hanan Eissa
- Department of Clinical Pharmacology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Marwa A Abd-Eldayem
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University, New Damietta, Egypt
| | - Mohammed Alqarni
- Department of Pharmaceutical Chemistry, College of Pharmacy, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour 22511, AlBeheira, Egypt
| | - Ahmad J Obaidullah
- Drug Exploration and Development Chair (DEDC), Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia; Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mohamed Awad Shahien
- Department of Clinical Pharmacology, Faculty of Medicine, Damietta University, Damietta, Egypt
| | - Eman El-Ahwany
- Department of Immunology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Noha A Amin
- Department of Hematology, Theodor Bilharz Research Institute, Giza, Egypt
| | - Mohamed Ali Etman
- Research and Development, Department of Drug Stability, Safe Pharma, Pharco Pharmaceuticals, Alexandria, Egypt
| | - Mohamed M Y Kaddah
- Pharmaceutical and Fermentation Industries Development Center, City of Scientific Research and Technological Applications, New Borg El-Arab 21934, Alexandria, Egypt
| | - Eslam E Abd El-Fattah
- Department of Biochemistry, Faculty of Pharmacy, Delta University for Science and Technology, Gamasa, Egypt
| |
Collapse
|
18
|
Monroe JD, Basheer F, Gibert Y. Xmrks the Spot: Fish Models for Investigating Epidermal Growth Factor Receptor Signaling in Cancer Research. Cells 2021; 10:1132. [PMID: 34067095 PMCID: PMC8150686 DOI: 10.3390/cells10051132] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 04/29/2021] [Accepted: 05/03/2021] [Indexed: 12/29/2022] Open
Abstract
Studies conducted in several fish species, e.g., Xiphophorus hellerii (green swordtail) and Xiphophorus maculatus (southern platyfish) crosses, Oryzias latipes (medaka), and Danio rerio (zebrafish), have identified an oncogenic role for the receptor tyrosine kinase, Xmrk, a gene product closely related to the human epidermal growth factor receptor (EGFR), which is associated with a wide variety of pathological conditions, including cancer. Comparative analyses of Xmrk and EGFR signal transduction in melanoma have shown that both utilize STAT5 signaling to regulate apoptosis and cell proliferation, PI3K to modulate apoptosis, FAK to control migration, and the Ras/Raf/MEK/MAPK pathway to regulate cell survival, proliferation, and differentiation. Further, Xmrk and EGFR may also modulate similar chemokine, extracellular matrix, oxidative stress, and microRNA signaling pathways in melanoma. In hepatocellular carcinoma (HCC), Xmrk and EGFR signaling utilize STAT5 to regulate cell proliferation, and Xmrk may signal through PI3K and FasR to modulate apoptosis. At the same time, both activate the Ras/Raf/MEK/MAPK pathway to regulate cell proliferation and E-cadherin signaling. Xmrk models of melanoma have shown that inhibitors of PI3K and MEK have an anti-cancer effect, and in HCC, that the steroidal drug, adrenosterone, can prevent metastasis and recover E-cadherin expression, suggesting that fish Xmrk models can exploit similarities with EGFR signal transduction to identify and study new chemotherapeutic drugs.
Collapse
Affiliation(s)
- Jerry D. Monroe
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| | - Faiza Basheer
- School of Medicine, Deakin University, Locked Bag 20000, Geelong, VIC 3220, Australia;
| | - Yann Gibert
- Department of Cell and Molecular Biology, Cancer Center and Research Institute, University of Mississippi Medical Center, 2500 North State Street, Jackson, MS 39216, USA;
| |
Collapse
|