1
|
Hernandez-Padilla L, Duran-Maldonado MX, Martinez-Alcantar L, Rodriguez-Zavala JS, Campos-Garcia J. The HGF/Met Receptor Mediates Cytotoxic Effect of Bacterial Cyclodipeptides in Human Cervical Cancer Cells. Curr Cancer Drug Targets 2025; 25:230-243. [PMID: 38629372 DOI: 10.2174/0115680096285034240323035013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2023] [Revised: 02/10/2024] [Accepted: 03/01/2024] [Indexed: 02/26/2025]
Abstract
BACKGROUND Human cervix adenocarcinoma (CC) caused by papillomavirus is the third most common cancer among female malignant tumors. Bioactive compounds such as cyclodipeptides (CDPs) possess cytotoxic effects in human cervical cancer HeLa cells mainly by blocking the PI3K/Akt/mTOR pathway and subsequently inducing gene expression by countless transcription regulators. However, the upstream elements of signaling pathways have not been well studied. METHODS To elucidate the cytotoxic and antiproliferative responses of the HeLa cell line to CDPs by a transcriptomic analysis previously carried out, we identified by immunochemical analyses, differential expression of genes related to the hepatocyte growth factor/mesenchymal-epithelial transition factor (HGF/MET) receptors. Furthermore, molecular docking was carried out to evaluate the interactions of CDPs with the EGF and MET substrate binding sites. RESULTS Immunochemical and molecular docking analyses suggest that the HGF/MET receptor participation in CDPs cytotoxic effect was independent of the protein expression levels. However, protein modulation of downstream Met-targets occurred due to the inhibition of phosphorylation of the HGF/MET receptor. Results suggest that the antiproliferative and cytotoxicity of CDPs in HeLa cells involve the HGF/MET receptor upstream of PI3K/Akt/mTOR pathway; assays with the human breast cancer MCF-7 and MDA-MB-231cell lines supported the finding. CONCLUSION Data provide new insights into the molecular mechanisms involved in CDPs cytotoxicity and antiproliferative effects, suggesting that the signal transduction mechanism may be related to the inhibition of the phosphorylation of the EGF/MET receptor at the level of substrate binding site by an inhibition mechanism similar to that of Gefitinib and Foretinib anti-neoplastic drugs.
Collapse
Affiliation(s)
- Laura Hernandez-Padilla
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| | - Mayra X Duran-Maldonado
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| | - Lorena Martinez-Alcantar
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| | | | - Jesus Campos-Garcia
- Laboratorio de Biotecnología Microbiana, Instituto de Investigaciones Químico Biológicas, Universidad Michoacana de San Nicolás de Hidalgo, Morelia, Mich, México
| |
Collapse
|
2
|
Yan H, Liu W, Xiang R, Li X, Hou S, Xu L, Wang L, Zhao D, Liu X, Wang G, Chi Y, Yang J. Ribosomal modification protein rimK-like family member A activates betaine-homocysteine S-methyltransferase 1 to ameliorate hepatic steatosis. Signal Transduct Target Ther 2024; 9:214. [PMID: 39117631 PMCID: PMC11310345 DOI: 10.1038/s41392-024-01914-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 06/14/2024] [Accepted: 07/04/2024] [Indexed: 08/10/2024] Open
Abstract
Nonalcoholic fatty liver disease (NAFLD) is a serious threat to public health, but its underlying mechanism remains poorly understood. In screening important genes using Gene Importance Calculator (GIC) we developed previously, ribosomal modification protein rimK-like family member A (RIMKLA) was predicted as one essential gene but its functions remained largely unknown. The current study determined the roles of RIMKLA in regulating glucose and lipid metabolism. RIMKLA expression was reduced in livers of human and mouse with NAFLD. Hepatic RIMKLA overexpression ameliorated steatosis and hyperglycemia in obese mice. Hepatocyte-specific RIMKLA knockout aggravated high-fat diet (HFD)-induced dysregulated glucose/lipid metabolism in mice. Mechanistically, RIMKLA is a new protein kinase that phosphorylates betaine-homocysteine S-methyltransferase 1 (BHMT1) at threonine 45 (Thr45) site. Upon phosphorylation at Thr45 and activation, BHMT1 eliminated homocysteine (Hcy) to inhibit the activity of transcription factor activator protein 1 (AP1) and its induction on fatty acid synthase (FASn) and cluster of differentiation 36 (CD36) gene transcriptions, concurrently repressing lipid synthesis and uptake in hepatocytes. Thr45 to alanine (T45A) mutation inactivated BHMT1 to abolish RIMKLA's repression on Hcy level, AP1 activity, FASn/CD36 expressions, and lipid deposition. BHMT1 overexpression rescued the dysregulated lipid metabolism in RIMKLA-deficient hepatocytes. In summary, RIMKLA is a novel protein kinase that phosphorylates BHMT1 at Thr45 to repress lipid synthesis and uptake. Under obese condition, inhibition of RIMKLA impairs BHMT1 activity to promote hepatic lipid deposition.
Collapse
Affiliation(s)
- Han Yan
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
- Department of Endocrinology, The Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, 310058, China
| | - Wenjun Liu
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Rui Xiang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Xin Li
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Song Hou
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China
| | - Luzheng Xu
- Medical and Health Analysis Center, Peking University, Beijing, 100191, China
| | - Lin Wang
- Department of Hepatobiliary Surgery, Xi-Jing Hospital, Fourth Military Medical University, Xi'an, 710032, China
| | - Dong Zhao
- Department of Endocrinology, Beijing Luhe Hospital, Capital Medical University, Beijing, 101100, China
| | - Xingkai Liu
- Department of Hepatobiliary and Pancreatic Surgery, General Surgery Centre, First Hospital of Jilin University, Changchun, 130061, China.
| | - Guoqing Wang
- Key Laboratory of Pathobiology Ministry of Education, College of Basic Medical Sciences, Jilin University, Changchun, 130012, China.
| | - Yujing Chi
- Department of Central Laboratory and Institute of Clinical Molecular Biology, Department of Gastroenterology, Peking University People's Hospital, Beijing, 100044, China.
| | - Jichun Yang
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, State Key Laboratory of Vascular Homeostasis and Remodeling, Center for Non-coding RNA Medicine, Peking University Health Science Center, Beijing, 100191, China.
- Department of Cardiology, Peking University Third Hospital, Beijing, 100191, China.
| |
Collapse
|
3
|
Timasheva Y, Balkhiyarova Z, Avzaletdinova D, Morugova T, Korytina GF, Nouwen A, Prokopenko I, Kochetova O. Mendelian Randomization Analysis Identifies Inverse Causal Relationship between External Eating and Metabolic Phenotypes. Nutrients 2024; 16:1166. [PMID: 38674857 PMCID: PMC11054043 DOI: 10.3390/nu16081166] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 04/10/2024] [Accepted: 04/11/2024] [Indexed: 04/28/2024] Open
Abstract
Disordered eating contributes to weight gain, obesity, and type 2 diabetes (T2D), but the precise mechanisms underlying the development of different eating patterns and connecting them to specific metabolic phenotypes remain unclear. We aimed to identify genetic variants linked to eating behaviour and investigate its causal relationships with metabolic traits using Mendelian randomization (MR). We tested associations between 30 genetic variants and eating patterns in individuals with T2D from the Volga-Ural region and investigated causal relationships between variants associated with eating patterns and various metabolic and anthropometric traits using data from the Volga-Ural population and large international consortia. We detected associations between HTR1D and CDKAL1 and external eating; between HTR2A and emotional eating; between HTR2A, NPY2R, HTR1F, HTR3A, HTR2C, CXCR2, and T2D. Further analyses in a separate group revealed significant associations between metabolic syndrome (MetS) and the loci in CRP, ADCY3, GHRL, CDKAL1, BDNF, CHRM4, CHRM1, HTR3A, and AKT1 genes. MR results demonstrated an inverse causal relationship between external eating and glycated haemoglobin levels in the Volga-Ural sample. External eating influenced anthropometric traits such as body mass index, height, hip circumference, waist circumference, and weight in GWAS cohorts. Our findings suggest that eating patterns impact both anthropometric and metabolic traits.
Collapse
Affiliation(s)
- Yanina Timasheva
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, Ufa 450054, Russia; (G.F.K.); (O.K.)
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, Ufa 450008, Russia;
| | - Zhanna Balkhiyarova
- Section of Statistical Multi-Omics, Department of Clinical & Experimental Medicine, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (Z.B.); (I.P.)
- Department of Endocrinology, Bashkir State Medical University, Ufa 450008, Russia;
| | - Diana Avzaletdinova
- Department of Medical Genetics and Fundamental Medicine, Bashkir State Medical University, Ufa 450008, Russia;
- Department of Endocrinology, Bashkir State Medical University, Ufa 450008, Russia;
| | - Tatyana Morugova
- Department of Endocrinology, Bashkir State Medical University, Ufa 450008, Russia;
| | - Gulnaz F. Korytina
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, Ufa 450054, Russia; (G.F.K.); (O.K.)
- Department of Biology, Bashkir State Medical University, Ufa 450008, Russia
| | - Arie Nouwen
- Department of Psychology, Middlesex University, London NW4 4BT, UK;
| | - Inga Prokopenko
- Section of Statistical Multi-Omics, Department of Clinical & Experimental Medicine, School of Biosciences & Medicine, University of Surrey, Guildford GU2 7XH, UK; (Z.B.); (I.P.)
| | - Olga Kochetova
- Institute of Biochemistry and Genetics, Ufa Federal Research Centre of Russian Academy of Sciences, Ufa 450054, Russia; (G.F.K.); (O.K.)
- Department of Biology, Bashkir State Medical University, Ufa 450008, Russia
| |
Collapse
|
4
|
Chang L, Zheng Y, Li S, Niu X, Huang S, Long Q, Ran X, Wang J. Identification of genomic characteristics and selective signals in Guizhou black goat. BMC Genomics 2024; 25:164. [PMID: 38336605 PMCID: PMC10854126 DOI: 10.1186/s12864-023-09954-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/29/2023] [Indexed: 02/12/2024] Open
Abstract
BACKGROUND Guizhou black goat is one of the indigenous black goat breeds in the southwest region of Guizhou, China, which is an ordinary goat for mutton production. They are characterized by moderate body size, black coat, favorite meat quality with tender meat and lower odor, and tolerance for cold and crude feed. However, little is known about the genetic characteristics or variations underlying their important economic traits. RESULTS Here, we resequenced the whole genome of Guizhou black goat from 30 unrelated individuals breeding in the five core farms. A total of 9,835,610 SNPs were detected, and 2,178,818 SNPs were identified specifically in this breed. The population structure analysis revealed that Guizhou black goat shared a common ancestry with Shaanbei white cashmere goat (0.146), Yunshang black goat (0.103), Iran indigenous goat (0.054), and Moroccan goat (0.002). However, Guizhou black goat showed relatively higher genetic diversity and a lower level of linkage disequilibrium than the other seven goat breeds by the analysis of the nucleotide diversity, linkage disequilibrium decay, and runs of homozygosity. Based on FST and θπ values, we identified 645, 813, and 804 selected regions between Guizhou black goat and Yunshang black goat, Iran indigenous goat, and cashmere goats. Combined with the results of XP-EHH, there were 286, 322, and 359 candidate genes, respectively. Functional annotation analysis revealed that these genes are potentially responsible for the immune response (e.g., CD28, CD274, IL1A, TLR2, and SLC25A31), humility-cold resistance (e.g., HBEGF, SOSTDC1, ARNT, COL4A1/2, and EP300), meat quality traits (e.g., CHUK, GAB2, PLAAT3, and EP300), growth (e.g., GAB2, DPYD, and CSF1), fertility (e.g., METTL15 and MEI1), and visual function (e.g., PANK2 and NMNAT2) in Guizhou black goat. CONCLUSION Our results indicated that Guizhou black goat had a high level of genomic diversity and a low level of linkage disequilibrium in the whole genome. Selection signatures were detected in the genomic regions that were mainly related to growth and development, meat quality, reproduction, disease resistance, and humidity-cold resistance in Guizhou black goat. These results would provide a basis for further resource protection and breeding improvement of this very local breed.
Collapse
Affiliation(s)
- Lingle Chang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Yundi Zheng
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Sheng Li
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Xi Niu
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Shihui Huang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China
| | - Qingmeng Long
- Guizhou Testing Center for Livestock and Poultry Germplasm, Guiyang, 550018, Guizhou, China
| | - Xueqin Ran
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| | - Jiafu Wang
- Institute of Agro-Bioengineering/Key Laboratory of Plant Resource Conservative and Germplasm Innovation in Mountainous Region and Key Laboratory of Animal Genetics, Breeding and Reproduction in the Plateau Mountainous Region (Ministry of Education), College of Life Sciences and College of Animal Science, Guizhou University, Guiyang, 550025, Guizhou, China.
| |
Collapse
|
5
|
Gil TY, Park J, Park YJ, Kim HJ, Cominguez DC, An HJ. Drynaria rhizome water extract alleviates high‑fat diet‑induced obesity in mice. Mol Med Rep 2024; 29:30. [PMID: 38131179 PMCID: PMC10784730 DOI: 10.3892/mmr.2023.13153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 11/23/2023] [Indexed: 12/23/2023] Open
Abstract
Drynaria rhizome is a herbal medicine used for strengthening bones and treating bone diseases in East Asia. Although obesity is considered to benefit bone formation, it has been revealed that visceral fat accumulation can promote osteoporosis. Given the complex relationship between bone metabolism and obesity, bone‑strengthening medicines should be evaluated while considering the effects of obesity. The present study investigated the effects of Drynaria rhizome extract (DRE) on high‑fat diet (HFD)‑induced obese mice. DRE was supplemented with the HFD. Body weight, food intake, the expression levels of lipogenesis transcription factors, including sterol regulatory element binding protein (SREBP)‑1, peroxisome proliferator‑activated receptor (PPAR)‑γ and adenosine monophosphate‑activated protein kinase (AMPK)‑α, and AMPK activation were evaluated. Mice fed DRE and a HFD exhibited reduced body weight without differences in food intake compared with those in the HFD group. Furthermore, DRE; upregulated AMPK‑α of epididymal one; down‑regulated SREBP‑1 and PPAR‑γ, as determined using western blotting and quantitative polymerase chain reaction, respectively. Decreased lipid accumulation were observed in both fat pad and liver of HFD‑fed mice, which were suppressed by DRE treatment. These results demonstrated the potential of DRE as a dietary natural product for strengthening bones and managing obesity.
Collapse
Affiliation(s)
- Tae-Young Gil
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Junkyu Park
- Department of Science in Korean Medicine, College of Korean Medicine, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Yea-Jin Park
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Republic of Korea
| | - Hyo-Jung Kim
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Divina C. Cominguez
- Department of Rehabilitative Medicine of Korean Medicine and Neuropsychiatry, College of Korean Medicine, Sangji University, Wonju, Gangwon 26339, Republic of Korea
| | - Hyo-Jin An
- Department of Oriental Pharmaceutical Science, College of Pharmacy, Kyung Hee University, Seoul 02447, Republic of Korea
- Department of Integrated Drug Development and Natural Products, Graduate School, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
6
|
Chen CM, Meng XQ, Zhu H, Liu T, Liu Y, Zhou LJ, Zhu GD, Chen XB, Guo XG, Duan SZ. Brown adipocyte mineralocorticoid receptor deficiency impairs metabolic regulation in diet-induced obese mice. J Lipid Res 2023; 64:100449. [PMID: 37734559 PMCID: PMC10622702 DOI: 10.1016/j.jlr.2023.100449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2022] [Revised: 09/01/2023] [Accepted: 09/10/2023] [Indexed: 09/23/2023] Open
Abstract
Activation of brown adipose tissue (BAT) contributes to energy dissipation and metabolic health. Although mineralocorticoid receptor (MR) antagonists have been demonstrated to improve metabolism under obesity, the underlying mechanisms remain incompletely understood. We aimed to evaluate the role of BAT MR in metabolic regulation. After 8 weeks of high-fat diet (HFD) feeding, BAT MR KO (BMRKO) mice manifested significantly increased bodyweight, fat mass, serum fasting glucose, and impaired glucose homeostasis compared with littermate control (LC) mice, although insulin resistance and fasting serum insulin were not significantly changed. Metabolic cage experiments showed no change in O2 consumption, CO2 production, or energy expenditure in obese BMRKO mice. RNA sequencing analysis revealed downregulation of genes related to fatty acid metabolism in BAT of BMRKO-HFD mice compared with LC-HFD mice. Moreover, H&E and immunohistochemical staining demonstrated that BMRKO exacerbated HFD-induced macrophage infiltration and proinflammatory genes in epididymal white adipose tissue (eWAT). BMRKO-HFD mice also manifested significantly increased liver weights and hepatic lipid accumulation, an increasing trend of genes related to lipogenesis and lipid uptake, and significantly decreased genes related to lipolytic and fatty acid oxidation in the liver. Finally, the level of insulin-induced AKT phosphorylation was substantially blunted in eWAT but not liver or skeletal muscle of BMRKO-HFD mice compared with LC-HFD mice. These data suggest that BAT MR is required to maintain metabolic homeostasis, likely through its regulation of fatty acid metabolism in BAT and impacts on eWAT and liver.
Collapse
Affiliation(s)
- Chu-Mao Chen
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Hongqiao International Institute of Medicine, Shanghai Tongren Hospital/Faculty of Basic Medicine, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiao-Qian Meng
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Hong Zhu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Ting Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Yuan Liu
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Lu-Jun Zhou
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China
| | - Guo-Dong Zhu
- Department of Oncology, Guangzhou Geriatric Hospital, Guangzhou, China
| | - Xiao-Bei Chen
- Department of Infectious Diseases, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Xu-Guang Guo
- Department of Clinical Laboratory Medicine, Guangdong Provincial Key Laboratory of Major Obstetric Diseases, Guangdong Provincial Clinical Research Center for Obstetrics and Gynecology, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China; Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Department of Clinical Medicine, The Third Clinical School of Guangzhou Medical University, Guangzhou, China; Guangzhou Key Laboratory for Clinical Rapid Diagnosis and Early Warning of Infectious Diseases, King Med School of Laboratory Medicine, Guangzhou Medical University, Guangzhou, China; Department of Teaching Management, The Third Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.
| | - Sheng-Zhong Duan
- Laboratory of Oral Microbiota and Systemic Diseases, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China; National Center for Stomatology, National Clinical Research Center for Oral Diseases, Shanghai Key Laboratory of Stomatology, Shanghai, China; Shanghai Key Laboratory of Hypertension, Shanghai Institute of Hypertension, Shanghai, China.
| |
Collapse
|
7
|
Uomoto S, Takesue K, Shimizu S, Maeda N, Oshima K, Hara E, Kobayashi M, Takahashi Y, Shibutani M, Yoshida T. Phenobarbital, a hepatic metabolic enzyme inducer, inhibits preneoplastic hepatic lesions with expression of selective autophagy receptor p62 and ER-phagy receptor FAM134B in high-fat diet-fed rats through the inhibition of ER stress. Food Chem Toxicol 2023; 173:113607. [PMID: 36657701 DOI: 10.1016/j.fct.2023.113607] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 12/27/2022] [Accepted: 01/09/2023] [Indexed: 01/17/2023]
Abstract
We investigated the role of endoplasmic reticulum (ER)-phagy in NAFLD-related hepatocarcinogenesis in high-fat diet (HFD)-fed and/or phenobarbital (PB)-treated rats by clustering the expression levels of the selective autophagy receptor p62 and the ER-phagy-specific receptor FAM134B in preneoplastic hepatic lesions. We obtained four clusters with variable expression levels of p62 and FAM134B in preneoplastic lesions, and a variable population of clusters in each group. PB administration increased the clusters with high expression levels of p62 while HFD feeding increased the clusters with high expression levels of both p62 and FAM134B. The areas of preneoplastic lesions of these clusters were significantly increased than those of other clusters with low expression levels of p62 and FAM134B. The combination of HFD feeding with PB counteracted the effects of each other, and the cluster composition was similar to that in the control group. The results were associated with decreased gene expression of ER stress, inflammatory cytokine, autophagy, and increased expression of antioxidant enzyme. The present study demonstrated that clustering analysis is useful for understanding the role of autophagy in each preneoplastic lesion, and that HFD feeding increased preneoplastic lesions through the inhibition of ER-phagy, which was cancelled with PB administration through the induction of ER-phagy.
Collapse
Affiliation(s)
- Suzuka Uomoto
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Keisuke Takesue
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Saori Shimizu
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Natsuno Maeda
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Kanami Oshima
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Emika Hara
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Mio Kobayashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Yasunori Takahashi
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan; Cooperative Division of Veterinary Sciences, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Makoto Shibutani
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan
| | - Toshinori Yoshida
- Laboratory of Veterinary Pathology, Cooperative Department of Veterinary Medicine, Tokyo University of Agriculture and Technology, 3-5-8 Saiwai-cho, Fuchu-shi, Tokyo, 183-8509, Japan.
| |
Collapse
|
8
|
Signaling pathways in obesity: mechanisms and therapeutic interventions. Signal Transduct Target Ther 2022; 7:298. [PMID: 36031641 PMCID: PMC9420733 DOI: 10.1038/s41392-022-01149-x] [Citation(s) in RCA: 137] [Impact Index Per Article: 45.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 12/19/2022] Open
Abstract
Obesity is a complex, chronic disease and global public health challenge. Characterized by excessive fat accumulation in the body, obesity sharply increases the risk of several diseases, such as type 2 diabetes, cardiovascular disease, and nonalcoholic fatty liver disease, and is linked to lower life expectancy. Although lifestyle intervention (diet and exercise) has remarkable effects on weight management, achieving long-term success at weight loss is extremely challenging, and the prevalence of obesity continues to rise worldwide. Over the past decades, the pathophysiology of obesity has been extensively investigated, and an increasing number of signal transduction pathways have been implicated in obesity, making it possible to fight obesity in a more effective and precise way. In this review, we summarize recent advances in the pathogenesis of obesity from both experimental and clinical studies, focusing on signaling pathways and their roles in the regulation of food intake, glucose homeostasis, adipogenesis, thermogenesis, and chronic inflammation. We also discuss the current anti-obesity drugs, as well as weight loss compounds in clinical trials, that target these signals. The evolving knowledge of signaling transduction may shed light on the future direction of obesity research, as we move into a new era of precision medicine.
Collapse
|
9
|
Mo H, Yang S, Chen AM. Inhibition of GAB2 expression has a protective effect on osteoarthritis:An in vitro and in vivo study. Biochem Biophys Res Commun 2022; 626:229-235. [PMID: 36007472 DOI: 10.1016/j.bbrc.2022.08.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Accepted: 08/03/2022] [Indexed: 11/02/2022]
Abstract
Osteoarthritis is a chronic age-related degenerative disease associated with varying degrees of pain and joint mobility disorders. Grb2-associated-Binding protein-2 (GAB2) is an intermediate molecule that plays a role downstream in a variety of signaling pathways, such as inflammatory signaling pathways. The role of GAB2 in the pathogenesis of OA has not been fully studied. In this study, we found that GAB2 expression was elevated in chondrocytes after constructing in vivo and in vitro models of OA. Inhibition of GAB2 by siRNA decreased the expression of MMP3, MMP13, iNOS, COX2, p62, and increased the expression of COL2, SOX9, ATG7, Beclin-1 and LC3II/LC3I. Furthermore, inhibition of GAB2 expression inhibited interleukin-1β (IL-1β) -induced mitogen-activated protein kinase (MAPK) and nuclear factor κB (NF-κB) signaling. In vivo studies, we found that reduced GAB2 expression effectively delayed cartilage destruction in a mouse model of OA induced by destabilisation of the medial meniscus (DMM). In conclusion, our study demonstrates that GAB2 is a potential therapeutic target for OA.
Collapse
Affiliation(s)
- Haokun Mo
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Siying Yang
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - An-Min Chen
- Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China.
| |
Collapse
|
10
|
Wu N, Yuan F, Yue S, Jiang F, Ren D, Liu L, Bi Y, Guo Z, Ji L, Han K, Yang X, Feng M, Su K, Yang F, Wu X, Lu Q, Li X, Wang R, Liu B, Le S, Shi Y, He G. Effect of exercise and diet intervention in NAFLD and NASH via GAB2 methylation. Cell Biosci 2021; 11:189. [PMID: 34736535 PMCID: PMC8569968 DOI: 10.1186/s13578-021-00701-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/25/2021] [Indexed: 02/08/2023] Open
Abstract
BACKGROUND Nonalcoholic fatty liver disease (NAFLD) is a disorder that extends from simple hepatic steatosis to nonalcoholic steatohepatitis (NASH), which is effectively alleviated by lifestyle intervention. Nevertheless, DNA methylation mechanism underling the effect of environmental factors on NAFLD and NASH is still obscure. The aim of this study was to investigate the effect of exercise and diet intervention in NAFLD and NASH via DNA methylation of GAB2. METHODS Methylation of genomic DNA in human NAFLD was quantified using Infinium Methylation EPIC BeadChip assay after exercise (Ex), low carbohydrate diet (LCD) and exercise plus low carbohydrate diet (ELCD) intervention. The output Idat files were processed using ChAMP package. False discovery rate on genome-wide analysis of DNA methylation (q < 0.05), and cytosine-guanine dinucleotides (CpGs) which are located in promoters were used for subsequent analysis (|Δβ|≥ 0.1). K-means clustering was used to cluster differentially methylated genes according to 3D genome information from Human embryonic stem cell. To quantify DNA methylation and mRNA expression of GRB2 associated binding protein 2 (GAB2) in NASH mice after Ex, low fat diet (LFD) and exercise plus low fat diet (ELFD), MassARRAY EpiTYPER and quantitative reverse transcription polymerase chain reaction were used. RESULTS Both LCD and ELCD intervention on human NAFLD can induce same DNA methylation alterations at critical genes in blood, e.g., GAB2, which was also validated in liver and adipose of NASH mice after LFD and ELFD intervention. Moreover, methylation of CpG units (i.e., CpG_10.11.12) inversely correlated with mRNA expression GAB2 in adipose tissue of NASH mice after ELFD intervention. CONCLUSIONS We highlighted the susceptibility of DNA methylation in GAB2 to ELFD intervention, through which exercise and diet can protect against the progression of NAFLD and NASH on the genome level, and demonstrated that the DNA methylation variation in blood could mirror epigenetic signatures in target tissues of important biological function, i.e., liver and adipose tissue. Trial registration International Standard Randomized Controlled Trial Number Register (ISRCTN 42622771).
Collapse
Affiliation(s)
- Na Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fan Yuan
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Siran Yue
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Fengyan Jiang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Decheng Ren
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Liangjie Liu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Yan Bi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Zhenming Guo
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Lei Ji
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ke Han
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xiao Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Mofan Feng
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Kai Su
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Fengping Yang
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xi Wu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Qing Lu
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Xingwang Li
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China.,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China
| | - Ruirui Wang
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Baocheng Liu
- Shanghai Innovation Center of Traditional Chinese Medicine Health Service, Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shenglong Le
- Exercise Translational Medicine Center, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China.
| | - Yi Shi
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| | - Guang He
- Bio-X Institutes, Key Laboratory for the Genetics of Developmental and Neuropsychiatric Disorders, Shanghai Jiao Tong University, 1954 Huashan Road, Shanghai, 200030, China. .,Shanghai Key Laboratory of Psychotic Disorders, and Brain Science and Technology Research Center, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
11
|
Niu Y, Xue Q, Fu Y. Natural Glycan Derived Biomaterials for Inflammation Targeted Drug Delivery. Macromol Biosci 2021; 21:e2100162. [PMID: 34145960 DOI: 10.1002/mabi.202100162] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2021] [Revised: 06/02/2021] [Indexed: 01/02/2023]
Abstract
Inflammation is closely related to a variety of fatal or chronic diseases. Hence, targeting inflammation provides an alternative approach to improve the therapeutic outcome of diseases such as solid tumors, neurological diseases, and metabolic diseases. Polysaccharides are natural components with immune regulation, anti-virus, anti-cancer, anti-inflammation, and anti-oxidation activities. Herein, this review highlights recent progress in the polysaccharide-based drug delivery systems for achieving inflammation targeting and its related disease treatment. Moreover, the chemical modification and the construction of polysaccharide materials for drug delivery are discussed in detail.
Collapse
Affiliation(s)
- Yining Niu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Qixuan Xue
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| | - Yao Fu
- Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu, 610041, China
| |
Collapse
|