1
|
Chen M, Zhu H, Li J, Luo D, Zhang J, Liu W, Wang J. Research progress on the relationship between AURKA and tumorigenesis: the neglected nuclear function of AURKA. Ann Med 2024; 56:2282184. [PMID: 38738386 PMCID: PMC11095293 DOI: 10.1080/07853890.2023.2282184] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Accepted: 10/31/2023] [Indexed: 05/14/2024] Open
Abstract
AURKA is a threonine or serine kinase that needs to be activated by TPX2, Bora and other factors. AURKA is located on chromosome 20 and is amplified or overexpressed in many human cancers, such as breast cancer. AURKA regulates some basic cellular processes, and this regulation is realized via the phosphorylation of downstream substrates. AURKA can function in either the cytoplasm or the nucleus. It can promote the transcription and expression of oncogenes together with other transcription factors in the nucleus, including FoxM1, C-Myc, and NF-κB. In addition, it also sustains carcinogenic signaling, such as N-Myc and Wnt signaling. This article will focus on the role of AURKA in the nucleus and its carcinogenic characteristics that are independent of its kinase activity to provide a theoretical explanation for mechanisms of resistance to kinase inhibitors and a reference for future research on targeted inhibitors.
Collapse
Affiliation(s)
- Menghua Chen
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Huijun Zhu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jian Li
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Danjing Luo
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jiaming Zhang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Wenqi Liu
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Jue Wang
- Department of Radiation Oncology, The Second Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Xu M, Hong JJ, Zhang X, Sun M, Liu X, Kang J, Stack H, Fang W, Lei H, Lacoste X, Okada R, Jung R, Nguyen R, Shern JF, Thiele CJ, Liu Z. Targeting SWI/SNF ATPases reduces neuroblastoma cell plasticity. EMBO J 2024; 43:4522-4541. [PMID: 39174852 PMCID: PMC11480351 DOI: 10.1038/s44318-024-00206-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 07/01/2024] [Accepted: 07/17/2024] [Indexed: 08/24/2024] Open
Abstract
Tumor cell heterogeneity defines therapy responsiveness in neuroblastoma (NB), a cancer derived from neural crest cells. NB consists of two primary subtypes: adrenergic and mesenchymal. Adrenergic traits predominate in NB tumors, while mesenchymal features becomes enriched post-chemotherapy or after relapse. The interconversion between these subtypes contributes to NB lineage plasticity, but the underlying mechanisms driving this phenotypic switching remain unclear. Here, we demonstrate that SWI/SNF chromatin remodeling complex ATPases are essential in establishing an mesenchymal gene-permissive chromatin state in adrenergic-type NB, facilitating lineage plasticity. Targeting SWI/SNF ATPases with SMARCA2/4 dual degraders effectively inhibits NB cell proliferation, invasion, and notably, cellular plasticity, thereby preventing chemotherapy resistance. Mechanistically, depletion of SWI/SNF ATPases compacts cis-regulatory elements, diminishes enhancer activity, and displaces core transcription factors (MYCN, HAND2, PHOX2B, and GATA3) from DNA, thereby suppressing transcriptional programs associated with plasticity. These findings underscore the pivotal role of SWI/SNF ATPases in driving intrinsic plasticity and therapy resistance in neuroblastoma, highlighting an epigenetic target for combinational treatments in this cancer.
Collapse
Affiliation(s)
- Man Xu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jason J Hong
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xiyuan Zhang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Ming Sun
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xingyu Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jeeyoun Kang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Hannah Stack
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Wendy Fang
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Haiyan Lei
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Xavier Lacoste
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Reona Okada
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Raina Jung
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Rosa Nguyen
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Jack F Shern
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA
| | - Carol J Thiele
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| | - Zhihui Liu
- Pediatric Oncology Branch, Center for Cancer Research, National Cancer Institute, Bethesda, MD, USA.
| |
Collapse
|
3
|
Shao Y, Zuo X. PTPRC Inhibits Ferroptosis of Osteosarcoma Cells via Blocking TFEB/FTH1 Signaling. Mol Biotechnol 2024; 66:2985-2994. [PMID: 37851191 DOI: 10.1007/s12033-023-00914-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 09/19/2023] [Indexed: 10/19/2023]
Abstract
Protein tyrosine phosphatase receptor type C (PTPRC) is reported to function as an oncogenic role in various cancer. However, the studies on the roles of PTPRC in osteosarcoma (OS) are limited. This study aimed to explore the potentials of PTPRC in OS. mRNA levels were detected by reverse transcription-quantitative polymerase chain reaction (RT-qPCR). Protein expression was detected by western blot. Lysosome biogenesis was determined using immunofluorescence. The binding sites of transcription factor EB (TFEB) on the promoter of ferritin heavy chain 1 (FTH1) were predicted by the online dataset JASPAR and confirmed by luciferase and chromatin immunoprecipitation (ChIP) assays. Cell death was determined using propidium iodide (PI) and TdT-mediated dUTP nick-end labeling (TUNEL) staining. The results showed that PTPRC was significantly overexpressed in OS tissues and cells. PTPRC knockdown promoted the phosphorylation and nuclear translocation of TFEB. Moreover, PTPRC knockdown markedly promoted lysosome biogenesis and the accumulation of ferrous ion (Fe2+), whereas decreased the release of glutathione (GSH). Besides, PTPRC knockdown significantly promoted autophagy and downregulated mRNA expression of FTH1 and ferritin light chain (FTL). Additionally, TFEB transcriptionally inactivated FTH1. PTPRC knockdown significantly promoted the ferroptosis of OS cells, which was markedly alleviated by TFEB shRNA. Taken together, PTPRC knockdown-mediated TFEB phosphorylation and translocation dramatically promoted lysosome biogenesis, ferritinophagy, as well as the ferroptosis of OS cells via regulating FTH1/FTL signaling. Therefore, PTPRC/TFEB/FTH1 signaling may be a potential target for OS.
Collapse
Affiliation(s)
- Yan Shao
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China.
| | - Xiao Zuo
- Jingzhou Hospital Affiliated to Yangtze University, No.26 Chuyuan Avenue, Jingzhou District, Jingzhou City, 434020, Hubei Province, China
| |
Collapse
|
4
|
Li M, Sun F, Wang J, Lu S, Que Y, Song M, Chen H, Xiong X, Xie W, Zhu J, Huang J, Zhang Y, Zhang Y. SUV39H1 epigenetically modulates the MCPIP1-AURKA signaling axis to enhance neuroblastoma tumorigenesis. Oncogene 2024:10.1038/s41388-024-03164-4. [PMID: 39300256 DOI: 10.1038/s41388-024-03164-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2023] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/22/2024]
Abstract
Epigenetic regulation is a pivotal factor during neuroblastoma (NB) pathogenesis and investigations into cancer epigenetics are actively underway to identify novel therapeutic strategies for NB patients. SUV39H1, a member of the H3K9 methyltransferase family, contributing to tumorigenesis across multiple malignancies. However, its specific role in NB remains unexplored. In this study, we conducted a high-throughput screen utilizing a compound library containing 288 epigenetic drugs, leading to the identification of chaetocin as the most potent NB inhibitor by targeting SUV39H1. Genetic manipulation and therapeutic inhibition of SUV39H1 significantly impacted proliferation, migration, cell cycle phases, and apoptosis in NB cells. Concurrently, chaetocin demonstrated robust anti-tumor efficacy in vivo with tolerable toxicity. RNA-seq unveiled that SUV39H1 knockdown and inhibition down-regulated cell cycle pathways, impacting vital genes such as AURKA. Besides, MCPIP1 emerged as a novel tumor suppressor following SUV39H1 inhibition, which decreased AURKA expression in NB. In detail, SUV39H1 mediated the enrichment of H3K9me3 at the promoter region of MCPIP1, repressing the MCPIP1-mediated degradation of AURKA and facilitating the subsequent accumulation of AURKA, which revealed the oncogenic role of SUV39H1 via the SUV39H1-MCPIP1-AURKA signaling axis in NB. Therapeutic inhibition of SUV39H1 using chaetocin emerges as an effective and safe strategy for NB patients. Illustration of the oncogenic pathway regulated by SUV39H1 in NB.
Collapse
Affiliation(s)
- Mengzhen Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Mengjia Song
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Huimou Chen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Oncology, Sun Yat-sen Memorial Hospital of Sun Yat-sen University, No. 107 Yanjiang Road, Guangzhou, 510120, China
| | - Xiangyu Xiong
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Weiji Xie
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
5
|
Nian Z, Wang D, Wang H, Liu W, Ma Z, Yan J, Cao Y, Li J, Zhao Q, Liu Z. Single-cell RNA-seq reveals the transcriptional program underlying tumor progression and metastasis in neuroblastoma. Front Med 2024; 18:690-707. [PMID: 39014137 DOI: 10.1007/s11684-024-1081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Accepted: 04/18/2024] [Indexed: 07/18/2024]
Abstract
Neuroblastoma (NB) is one of the most common childhood malignancies. Sixty percent of patients present with widely disseminated clinical signs at diagnosis and exhibit poor outcomes. However, the molecular mechanisms triggering NB metastasis remain largely uncharacterized. In this study, we generated a transcriptomic atlas of 15 447 NB cells from eight NB samples, including paired samples of primary tumors and bone marrow metastases. We used time-resolved analysis to chart the evolutionary trajectory of NB cells from the primary tumor to the metastases in the same patient and identified a common 'starter' subpopulation that initiates tumor development and metastasis. The 'starter' population exhibited high expression levels of multiple cell cycle-related genes, indicating the important role of cell cycle upregulation in NB tumor progression. In addition, our evolutionary trajectory analysis demonstrated the involvement of partial epithelial-to-mesenchymal transition (p-EMT) along the metastatic route from the primary site to the bone marrow. Our study provides insights into the program driving NB metastasis and presents a signature of metastasis-initiating cells as an independent prognostic indicator and potential therapeutic target to inhibit the initiation of NB metastasis.
Collapse
Affiliation(s)
- Zhe Nian
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Dan Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Hao Wang
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Wenxu Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China
| | - Zhenyi Ma
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Jie Yan
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Yanna Cao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Jie Li
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China
| | - Qiang Zhao
- Department of Pediatric Oncology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin's Clinical Research Center for Cancer, Tianjin, 300060, China.
| | - Zhe Liu
- Department of Immunology, School of Basic Medical Sciences, Tianjin Medical University, Tianjin, 300070, China.
- Zhejiang Key Laboratory of Medical Epigenetics, Department of Cell Biology, School of Basic Medical Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, Nanjing, 211166, China.
| |
Collapse
|
6
|
Wang J, Wang J, Lu C, Wang Y, Bi H, Zheng J, Ding X. ISL1-overexpressing BMSCs attenuate renal ischemia-reperfusion injury by suppressing apoptosis and oxidative stress through the paracrine action. Cell Mol Life Sci 2024; 81:312. [PMID: 39066917 PMCID: PMC11335236 DOI: 10.1007/s00018-024-05354-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/29/2024] [Accepted: 07/07/2024] [Indexed: 07/30/2024]
Abstract
Ischemia-reperfusion injury (IRI) is a major event in renal transplantation, leading to adverse outcomes. Bone marrow mesenchymal stem cells (BMSCs) are novel promising therapeutics for repairing kidney injuries. The therapeutic efficacy of BMSCs with ISL1 overexpression in renal IRI and its underlying mechanism need to be investigated. The unilateral renal IRI rat model was established to mimic clinical acute kidney injury. Rats were injected with PBS, BMSCs-Scrambled or BMSCs-ISL1 via the tail vein at the timepoint of reperfusion, and then sacrificed after 24 h of reperfusion. The administration of BMSCs-ISL1 significantly improved renal function, inhibited tubular cells apoptosis, inflammation, oxidative stress in rats. In vitro, HKC cells subjected to H2O2 stimulation were pretreated with the conditioned medium (CM) of BMSCs-Scrambled or BMSCs-ISL1. The pretreatment of ISL1-CM attenuated apoptosis and oxidative stress induced by H2O2 in HKC cells. Our proteomic data suggested that haptoglobin (Hp) was one of the secretory proteins in ISL1-CM. Subsequent experiments confirmed that Hp was the important paracrine factor from BMSCs-ISL1 that exerted anti-apoptotic and antioxidant functions. Mechanistically, Hp played a cytoprotective role via the inhibition of ERK signaling pathway, which could be abrogated by Ro 67-7476, the ERK phosphorylation agonist. The results suggested that paracrine action may be the main mechanism for BMSCs-ISL1 to exert protective effects. As an important anti-apoptotic and antioxidant factor in ISL1-CM, Hp may serve as a new therapeutic agent for treating IRI, providing new insights for overcoming the long-term adverse effects of stem cell therapy.
Collapse
Affiliation(s)
- Jiale Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jingwen Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Cuinan Lu
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Ying Wang
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Huanjing Bi
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Jin Zheng
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China
| | - Xiaoming Ding
- Department of Renal Transplantation, Hospital of Nephrology, The First Affiliated Hospital of Xi'an Jiaotong University, 277 Yanta Western Rd, Xi'an, Shaanxi, 710061, China.
| |
Collapse
|
7
|
Zheng M, Kumar A, Sharma V, Behl T, Sehgal A, Wal P, Shinde NV, Kawaduji BS, Kapoor A, Anwer MK, Gulati M, Shen B, Singla RK, Bungau SG. Revolutionizing pediatric neuroblastoma treatment: unraveling new molecular targets for precision interventions. Front Cell Dev Biol 2024; 12:1353860. [PMID: 38601081 PMCID: PMC11004261 DOI: 10.3389/fcell.2024.1353860] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 03/13/2024] [Indexed: 04/12/2024] Open
Abstract
Neuroblastoma (NB) is the most frequent solid tumor in pediatric cases, contributing to around 15% of childhood cancer-related deaths. The wide-ranging genetic, morphological, and clinical diversity within NB complicates the success of current treatment methods. Acquiring an in-depth understanding of genetic alterations implicated in the development of NB is essential for creating safer and more efficient therapies for this severe condition. Several molecular signatures are being studied as potential targets for developing new treatments for NB patients. In this article, we have examined the molecular factors and genetic irregularities, including those within insulin gene enhancer binding protein 1 (ISL1), dihydropyrimidinase-like 3 (DPYSL3), receptor tyrosine kinase-like orphan receptor 1 (ROR1) and murine double minute 2-tumor protein 53 (MDM2-P53) that play an essential role in the development of NB. A thorough summary of the molecular targeted treatments currently being studied in pre-clinical and clinical trials has been described. Recent studies of immunotherapeutic agents used in NB are also studied in this article. Moreover, we explore potential future directions to discover new targets and treatments to enhance existing therapies and ultimately improve treatment outcomes and survival rates for NB patients.
Collapse
Affiliation(s)
- Min Zheng
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Ankush Kumar
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Vishakha Sharma
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Tapan Behl
- Amity School of Pharmaceutical Sciences, Amity University, Mohali, Punjab, India
| | - Aayush Sehgal
- GHG Khalsa College of Pharmacy, Ludhiana, Punjab, India
| | - Pranay Wal
- Pranveer Singh Institute of Technology, Pharmacy, Kanpur, Uttar Pradesh, India
| | | | | | - Anupriya Kapoor
- School of Pharmaceutical Sciences, Chhatrapati Shahu Ji Maharaj University, Kanpur, Uttar Pradesh, India
| | - Md. Khalid Anwer
- Department of Pharmaceutics, College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia
| | - Monica Gulati
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
- Australian Research Consortium in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, Australia
| | - Bairong Shen
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
| | - Rajeev K. Singla
- Joint Laboratory of Artificial Intelligence for Critical Care Medicine, Department of Critical Care Medicine and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, China
- School of Pharmaceutical Sciences, Lovely Professional University, Phagwara, Punjab, India
| | - Simona Gabriela Bungau
- Department of Pharmacy, Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
- Doctoral School of Biomedical Sciences, University of Oradea, Oradea, Romania
| |
Collapse
|
8
|
Guan J, Li M, Wang Y, Zhang Y, Que Y, Lu S, Wang J, Zhu J, Huang J, Zhen Z, Sun F, Song M, Zhang Y. MTHFD1 regulates the NADPH redox homeostasis in MYCN-amplified neuroblastoma. Cell Death Dis 2024; 15:124. [PMID: 38336749 PMCID: PMC10858228 DOI: 10.1038/s41419-024-06490-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2023] [Revised: 01/19/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
MYCN amplification is an independent poor prognostic factor in patients with high-risk neuroblastoma (NB). Further exploring the molecular regulatory mechanisms in MYCN-amplified NB will help to develop novel therapy targets. In this study, methylenetetrahydrofolate dehydrogenase 1 (MTHFD1) was identified as the differentially expressed gene (DEG) highly expressed in MYCN-amplified NB, and it showed a positive correlation with MYCN and was associated with a poor prognosis of NB patients. Knockdown of MTHFD1 inhibited proliferation and migration, and induced apoptosis of NB cells in vitro. Mouse model experiments validated the tumorigenic effect of MTHFD1 in NB in vivo. In terms of the mechanism, ChIP-qPCR and dual-luciferase reporter assays demonstrated that MTHFD1 was directly activated by MYCN at the transcriptional level. As an important enzyme in the folic acid metabolism pathway, MTHFD1 maintained the NADPH redox homeostasis in MYCN-amplified NB. Knockdown of MTHFD1 reduced cellular NADPH/NADP+ and GSH/GSSG ratios, increased cellular reactive oxygen species (ROS) and triggered the apoptosis of NB cells. Moreover, genetic knockdown of MTHFD1 or application of the anti-folic acid metabolism drug methotrexate (MTX) potentiated the anti-tumor effect of JQ1 both in vitro and in vivo. Taken together, MTHFD1 as an oncogene is a potential therapeutic target for MYCN-amplified NB. The combination of MTX with JQ1 is of important clinical translational significance for the treatment of patients with MYCN-amplified NB.
Collapse
Affiliation(s)
- Jinqiu Guan
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengzhen Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yu Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Mengjia Song
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China.
| |
Collapse
|
9
|
Li M, Hu Y, Wang J, Xu Y, Hong Y, Zhang L, Luo Q, Zhen Z, Lu S, Huang J, Zhu J, Zhang Y, Que Y, Sun F. The dual HDAC and PI3K inhibitor, CUDC‑907, inhibits tumor growth and stem‑like properties by suppressing PTX3 in neuroblastoma. Int J Oncol 2024; 64:14. [PMID: 38063204 PMCID: PMC10783937 DOI: 10.3892/ijo.2023.5602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 11/01/2023] [Indexed: 12/18/2023] Open
Abstract
Neuroblastoma (NB) is one of the common solid tumors in childhood and poses a threat to the lives of children. Patients with advanced‑stage or recurrent NB have a poor prognosis. CUDC‑907, as a novel dual‑target inhibitor of histone deacetylase (HDAC) and phosphatidylinositol‑3‑kinase (PI3K), has been proven to play an antitumor role in several types of tumors. However, the exact role of CUDC‑907 in NB remains unclear. In the present study, in vivo and in vitro assays were performed to investigate the anti‑NB activity of CUDC‑907. Pentraxin 3 (PTX3) small interfering RNA (siRNA) and PTX3 overexpression plasmid were transfected into cells to define the underlying mechanisms of CUDC‑907. Tumor tissues and clinical information were collected and immunohistochemistry (IHC) was conducted to analyze the association between the expression of HDAC1, HDAC2, HDAC3 and CD44, and the prognosis of patients with NB. The results indicated that CUDC‑907 significantly inhibited the proliferation and migration, and induced the apoptosis of NB cells, downregulating the expression level of MYCN, and suppressing the PI3K/AKT and MAPK/ERK pathways. Furthermore, CUDC‑907 suppressed the stem‑like properties of NB cells by inhibiting PTX3, a ligand and upstream protein of CD44. IHC revealed that the high expression of HDAC1, 2, 3 and CD44 was associated with a poor prognosis of patients with NB. On the whole, these findings indicate that CUDC‑907 may be developed into a possible therapeutic approach for patients with NB.
Collapse
Affiliation(s)
- Mengzhen Li
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yang Hu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Juan Wang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yanjie Xu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Ye Hong
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Li Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Qiuyun Luo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Zijun Zhen
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Suying Lu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Junting Huang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Jia Zhu
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yizhuo Zhang
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Yi Que
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| | - Feifei Sun
- Department of Pediatric Oncology, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong 510060, P.R. China
| |
Collapse
|
10
|
Shafi O, Siddiqui G, Jaffry HA. The benign nature and rare occurrence of cardiac myxoma as a possible consequence of the limited cardiac proliferative/ regenerative potential: a systematic review. BMC Cancer 2023; 23:1245. [PMID: 38110859 PMCID: PMC10726542 DOI: 10.1186/s12885-023-11723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 12/05/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND Cardiac Myxoma is a primary tumor of heart. Its origins, rarity of the occurrence of primary cardiac tumors and how it may be related to limited cardiac regenerative potential, are not yet entirely known. This study investigates the key cardiac genes/ transcription factors (TFs) and signaling pathways to understand these important questions. METHODS Databases including PubMed, MEDLINE, and Google Scholar were searched for published articles without any date restrictions, involving cardiac myxoma, cardiac genes/TFs/signaling pathways and their roles in cardiogenesis, proliferation, differentiation, key interactions and tumorigenesis, with focus on cardiomyocytes. RESULTS The cardiac genetic landscape is governed by a very tight control between proliferation and differentiation-related genes/TFs/pathways. Cardiac myxoma originates possibly as a consequence of dysregulations in the gene expression of differentiation regulators including Tbx5, GATA4, HAND1/2, MYOCD, HOPX, BMPs. Such dysregulations switch the expression of cardiomyocytes into progenitor-like state in cardiac myxoma development by dysregulating Isl1, Baf60 complex, Wnt, FGF, Notch, Mef2c and others. The Nkx2-5 and MSX2 contribute predominantly to both proliferation and differentiation of Cardiac Progenitor Cells (CPCs), may possibly serve roles based on the microenvironment and the direction of cell circuitry in cardiac tumorigenesis. The Nkx2-5 in cardiac myxoma may serve to limit progression of tumorigenesis as it has massive control over the proliferation of CPCs. The cardiac cell type-specific genetic programming plays governing role in controlling the tumorigenesis and regenerative potential. CONCLUSION The cardiomyocytes have very limited proliferative and regenerative potential. They survive for long periods of time and tightly maintain the gene expression of differentiation genes such as Tbx5, GATA4 that interact with tumor suppressors (TS) and exert TS like effect. The total effect such gene expression exerts is responsible for the rare occurrence and benign nature of primary cardiac tumors. This prevents the progression of tumorigenesis. But this also limits the regenerative and proliferative potential of cardiomyocytes. Cardiac Myxoma develops as a consequence of dysregulations in these key genes which revert the cells towards progenitor-like state, hallmark of CM. The CM development in carney complex also signifies the role of TS in cardiac cells.
Collapse
Affiliation(s)
- Ovais Shafi
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan.
| | - Ghazia Siddiqui
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| | - Hassam A Jaffry
- Sindh Medical College - Jinnah Sindh Medical University / Dow University of Health Sciences, Karachi, Pakistan
| |
Collapse
|
11
|
Liu Q, Liu X, Wang G, Wu F, Hou Y, Liu H. Genome-wide DNA methylation analysis of Astragalus and Danshen on the intervention of myofibroblast activation in idiopathic pulmonary fibrosis. BMC Pulm Med 2023; 23:325. [PMID: 37667288 PMCID: PMC10478235 DOI: 10.1186/s12890-023-02601-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Accepted: 08/09/2023] [Indexed: 09/06/2023] Open
Abstract
BACKGROUND Idiopathic pulmonary fibrosis (IPF), a chronic progressive interstitial lung disease of unknown etiology, is characterized by continuous damage to alveolar epithelial cells, abnormal repair of alveolar tissue, and alveolar wall scar formation. Currently, the recommended treatment for IPF in Western medicine is relatively limited. In contrast, traditional Chinese medicine and compound prescriptions show advantages in the diagnosis and treatment of IPF, which can be attributed to their multi-channel and multi-target characteristics and minimal side-effects. The purpose of this study was to further corroborate the effectiveness and significance of the traditional Chinese medications Astragalus and Danshen in IPF treatment. METHODS We performed whole-genome methylation analysis on nine rat lung tissue samples to determine the epigenetic variation between IPF and non-fibrotic lungs using Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses and quantitative reverse transcription polymerase chain reactions. RESULTS We identified differentially methylated regions and 105 associated key functional genes in samples related to IPF and Chinese medicine treatment. Based on the methylation levels and gene expression profiles between the Chinese medicine intervention and pulmonary fibrosis model groups, we speculated that Astragalus and Salvia miltiorrhiza (traditionally known as Danshen) act on the Isl1, forkhead box O3, and Sonic hedgehog genes via regulation at transcriptional and epigenetic levels during IPF. CONCLUSIONS These findings provide novel insights into the epigenetic regulation of IPF, indicate the effectiveness of Astragalus and Danshen in treating IPF, and suggest several promising therapeutic targets for preventing and treating IPF.
Collapse
Affiliation(s)
- Qingyin Liu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Xue Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Guoyu Wang
- Capital Medical University, No. 10, Xizhang Road, Youanmenwai, Fengtai District, Beijing, 100069, China
| | - Fan Wu
- Shandong University of Traditional Chinese Medicine, No. 4655, Daxue Road, University Science Park, Changqing District, Jinan City, 250355, China
| | - Yuan Hou
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China
| | - Huaman Liu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, No. 16369, Jing Shi Road, Jinan City, 250013, China.
| |
Collapse
|
12
|
Chetverina D, Vorobyeva NE, Gyorffy B, Shtil AA, Erokhin M. Analyses of Genes Critical to Tumor Survival Reveal Potential 'Supertargets': Focus on Transcription. Cancers (Basel) 2023; 15:cancers15113042. [PMID: 37297004 DOI: 10.3390/cancers15113042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/26/2023] [Accepted: 05/31/2023] [Indexed: 06/12/2023] Open
Abstract
The identification of mechanisms that underlie the biology of individual tumors is aimed at the development of personalized treatment strategies. Herein, we performed a comprehensive search of genes (termed Supertargets) vital for tumors of particular tissue origin. In so doing, we used the DepMap database portal that encompasses a broad panel of cell lines with individual genes knocked out by CRISPR/Cas9 technology. For each of the 27 tumor types, we revealed the top five genes whose deletion was lethal in the particular case, indicating both known and unknown Supertargets. Most importantly, the majority of Supertargets (41%) were represented by DNA-binding transcription factors. RNAseq data analysis demonstrated that a subset of Supertargets was deregulated in clinical tumor samples but not in the respective non-malignant tissues. These results point to transcriptional mechanisms as key regulators of cell survival in specific tumors. Targeted inactivation of these factors emerges as a straightforward approach to optimize therapeutic regimens.
Collapse
Affiliation(s)
- Darya Chetverina
- Group of Epigenetics, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Nadezhda E Vorobyeva
- Group of Dynamics of Transcriptional Complexes, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| | - Balazs Gyorffy
- Departments of Bioinformatics and Pediatrics, Semmelweis University, H-1094 Budapest, Hungary
- Cancer Biomarker Research Group, Research Centre for Natural Sciences, Institute of Enzymology, H-1117 Budapest, Hungary
| | - Alexander A Shtil
- Blokhin National Medical Research Center of Oncology, 24 Kashirskoye Shosse, Moscow 115522, Russia
| | - Maksim Erokhin
- Group of Chromatin Biology, Institute of Gene Biology, Russian Academy of Sciences, 34/5 Vavilov Street, Moscow 119334, Russia
| |
Collapse
|
13
|
Liu Z, Hu W, Qin Y, Sun L, Jing L, Lu M, Li Y, Qu J, Yang Z. Isl1 promotes gene transcription through physical interaction with Set1/Mll complexes. Eur J Cell Biol 2023; 102:151295. [PMID: 36758343 DOI: 10.1016/j.ejcb.2023.151295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 01/31/2023] [Accepted: 02/01/2023] [Indexed: 02/10/2023] Open
Abstract
Histone H3 lysine 4 (H3K4) methylation is generally recognized as a prominent marker of gene activation. While Set1/Mll complexes are major methyltransferases that are responsible for H3K4 methylation, the mechanism of how these complexes are recruited into the target gene promotor is still unclear. Here, starting with an affinity purification-mass spectrometry approach, we have found that Isl1, a highly tissue-specific expressed LIM/homeodomain transcription factor, is physically associated with Set1/Mll complexes. We then show that Wdr5 directly binds to Isl1. And this binding is likely mediated by the homeodomain of Isl1. Functionally, using mouse β-cell and human neuroblastoma tumor cell lines, we show that both Wdr5 binding and H3K4 methylation level at promoters of some Isl1 target genes are significantly reduced upon depletion of Isl1, suggesting Isl1 is required for efficient locus-specific H3K4 methylation. Taken together, our results establish a critical role of Set1/Mll complexes in regulating the target gene expression of Isl1.
Collapse
Affiliation(s)
- Zhe Liu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Weijing Hu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yali Qin
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Li Sun
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Lingyun Jing
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Manman Lu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Yan Li
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China
| | - Jing Qu
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| | - Zhenhua Yang
- School of Basic Medicine, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, China.
| |
Collapse
|
14
|
Jiang C, Yang Y, He S, Yue Z, Xing T, Chu P, Yang W, Chen H, Zhao X, Yu Y, Zhang X, Su Y, Guo Y, Ma X. BPTF in bone marrow provides a potential progression biomarker regulated by TFAP4 through the PI3K/AKT pathway in neuroblastoma. Biol Proced Online 2023; 25:11. [PMID: 37170211 PMCID: PMC10176855 DOI: 10.1186/s12575-023-00200-7] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/18/2023] [Indexed: 05/13/2023] Open
Abstract
BACKGROUND Neuroblastoma (NB) is the most common extracranial malignant solid tumor in children, which is highly prone to bone marrow (BM) metastasis. BM can monitor early signs of mild disease and metastasis. Existing biomarkers are insufficient for the diagnosis and treatment of NB. Bromodomain PHD finger transcription factor (BPTF) is an important subunit of the chromatin-remodeling complex that is closely associated with tumors. Here, we evaluated whether BPTF in BM plays an important role in predicting NB progression, and explore the molecular mechanism of BPTF in NB. METHODS The clinical relevance of the BPTF was predicted in the GEO (GSE62564) and TARGET database. The biological function of BPTF in NB was investigated by constructing cell lines and employing BPTF inhibitor AU1. Western blot was used to determine the changes of BPTF, TFAP4, PI3K/AKT signaling and Epithelial-mesenchymal transition (EMT) related markers. A total of 109 children with newly diagnosed NB in Beijing Children's Hospital from January 2018 to March 2021 were included in this study. RT-PCR was used to measure the BPTF and TFAP4 expression in BM. The cut-off level was set at the median value of BPTF expression levels. RESULTS Databases suggested that BPTF expression was higher in NB and was significantly associated with stage and grade. Proliferation and migration of NB cells were slowed down when BPTF was silenced. Mechanistically, TFAP4 could positively regulate BPTF and promotes EMT process through activating the PI3K/AKT signaling pathway. Moreover, detection of the newly diagnosed BM specimens showed that BPTF expression was significantly higher in high-risk group, stage IV group and BM metastasis group. Children with high BPTF at initial diagnosis were considered to have high risk for disease progression and recurrence. BPTF is an independent risk factor for predicting NB progression. CONCLUSIONS A novel and convenient BPTF-targeted humoral detection that can prompt minimal residual and predict NB progression in the early stages of the disease were identified. BPTF inhibitor AU1 is expected to become a new targeted drug for NB therapy. It's also reveal previously unknown mechanisms of BPTF in NB cell proliferation and metastasis through TFAP4 and PI3K/AKT pathways.
Collapse
Affiliation(s)
- Chiyi Jiang
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Yeran Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Sidou He
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Zhixia Yue
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Tianyu Xing
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Ping Chu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Wenfa Yang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Hui Chen
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Xiaoxi Zhao
- Hematologic Disease LaboratoryKey Laboratory of Pediatric Hematology OncologyNational Key Discipline of Pediatrics (Capital Medical University)Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, Hematology Center, Beijing, China
| | - Yongbo Yu
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Xuan Zhang
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China
| | - Yan Su
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China.
| | - Yongli Guo
- Beijing Key Laboratory for Pediatric Diseases of Otolaryngology, Head and Neck Surgery, MOE Key Laboratory of Major Diseases in Children, Beijing Pediatric Research Institute, Beijing Children's Hospital, Capital Medical University, National Center for Children's Health, 56 Nanlishi Road, Beijing, Xicheng District, China.
| | - Xiaoli Ma
- Medical Oncology Department, Pediatric Oncology CenterNational Center for Children's HealthKey Laboratory of Pediatric Hematology Oncology, Key Laboratory of Major Diseases in Children, Ministry of Education, Beijing Children's Hospital, Capital Medical University, 56 Nanlishi Road, Beijing, Xicheng District, China.
| |
Collapse
|
15
|
Nectin2 influences cell apoptosis by regulating ANXA2 expression in neuroblastoma. Acta Biochim Biophys Sin (Shanghai) 2023; 55:356-366. [PMID: 36916296 PMCID: PMC10160223 DOI: 10.3724/abbs.2023020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/18/2023] Open
Abstract
Neuroblastoma (NB) is a pediatric cancer of the peripheral sympathetic nervous system and represents the most frequent solid malignancy in infants. Nectin2 belongs to the immunoglobulin superfamily and has been shown to play a role in tumorigenesis. In the current study, we demonstrate that serum Nectin2 level is increased in NB patients compared with that in healthy controls and Nectin2 level is correlated with neuroblastoma international neuroblastoma staging system (INSS) classification. There is a positive correlation between Nectin2 level and shorter overall survival in NB patients. Knockdown of Nectin2 reduces the migration of SH-SY5Y and SK-N-BE2 cells and induces their apoptosis and cell cycle arrest. RNA-seq analysis demonstrates that Nectin2 knockdown affects the expressions of 258 genes, including 240 that are upregulated and 18 that are downregulated compared with negative controls. qRT-PCR and western blot analysis confirm that ANXA2 expression is decreased in Nectin2-knockdown SH-SY5Y cells, consistent with the RNA-seq results. ANXA2 overexpression rescues the percentage of apoptotic NB cells induced by Nectin2 knockdown and compensates for the impact of Nectin2 knockdown on cleaved caspase3 and bax expressions. In addition, western blot analysis results show that ANXA2 overexpression rescues the effect of Nectin2 knockdown on MMP2 and MMP9 expressions. The current data highlight the importance of Nectin2 in NB progression and the potential of Nectin2 as a novel candidate target for gene therapy.
Collapse
|
16
|
Fatma H, Siddique HR. AURORA KINASE A and related downstream molecules: A potential network for cancer therapy. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2023; 134:115-145. [PMID: 36858732 DOI: 10.1016/bs.apcsb.2022.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Aurora-A kinase (AURKA) belongs to the serine/threonine kinase family specific to cell division. In normal cells, activation of the AURKA protein is essential for regulating chromosomal segregation and centrosome maturation. The physiological concentration of AURKA accumulation has utmost importance during cell division. AURKA starts accumulating during the S phase of the cell cycle, gets functionally activated during the G2/M phase, attaches to the microtubule, and gets degraded during mitotic exit. Overexpression of AURKA could lead to deregulated cell cycle division, which is intrinsic to numerous cancers. Moreover, dysregulated AURKA affects various downstream molecules that aid in cancer pathogenesis. AURKA phosphorylates its substrates, including oncoproteins, transcriptional factors, tumor suppressor proteins, or other kinases central to various oncogenic signaling pathways critical to cancer. Considering the central role of AURKA in cell proliferation and tumorigenesis, targeting AURKA can be a novel alternative to cancer management. Several AURKA inhibitors have shown promising responses against different cancers either as a single agent or combined with various therapies. This chapter briefly discusses the role of AURKA and its downstream molecules in cancer vis-à-vis the role of AURKA inhibitor in chemoprevention.
Collapse
Affiliation(s)
- Homa Fatma
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India
| | - Hifzur R Siddique
- Molecular Cancer Genetics & Translational Research Laboratory, Section of Genetics, Department of Zoology, Aligarh Muslim University, Aligarh, Uttar Pradesh, India.
| |
Collapse
|
17
|
Boi D, Rubini E, Breccia S, Guarguaglini G, Paiardini A. When Just One Phosphate Is One Too Many: The Multifaceted Interplay between Myc and Kinases. Int J Mol Sci 2023; 24:4746. [PMID: 36902175 PMCID: PMC10003727 DOI: 10.3390/ijms24054746] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2023] [Revised: 02/19/2023] [Accepted: 02/21/2023] [Indexed: 03/06/2023] Open
Abstract
Myc transcription factors are key regulators of many cellular processes, with Myc target genes crucially implicated in the management of cell proliferation and stem pluripotency, energy metabolism, protein synthesis, angiogenesis, DNA damage response, and apoptosis. Given the wide involvement of Myc in cellular dynamics, it is not surprising that its overexpression is frequently associated with cancer. Noteworthy, in cancer cells where high Myc levels are maintained, the overexpression of Myc-associated kinases is often observed and required to foster tumour cells' proliferation. A mutual interplay exists between Myc and kinases: the latter, which are Myc transcriptional targets, phosphorylate Myc, allowing its transcriptional activity, highlighting a clear regulatory loop. At the protein level, Myc activity and turnover is also tightly regulated by kinases, with a finely tuned balance between translation and rapid protein degradation. In this perspective, we focus on the cross-regulation of Myc and its associated protein kinases underlying similar and redundant mechanisms of regulation at different levels, from transcriptional to post-translational events. Furthermore, a review of the indirect effects of known kinase inhibitors on Myc provides an opportunity to identify alternative and combined therapeutic approaches for cancer treatment.
Collapse
Affiliation(s)
- Dalila Boi
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Elisabetta Rubini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Sara Breccia
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| | - Giulia Guarguaglini
- Institute of Molecular Biology and Pathology, National Research Council of Italy, Sapienza University of Rome, 00185 Rome, Italy
| | - Alessandro Paiardini
- Department of Biochemical Sciences, Sapienza University of Rome, 00185 Rome, Italy
| |
Collapse
|
18
|
Guan S, Yu YN, Li B, Gu H, Chen L, Wang N, Wang B, Liu X, Liu J, Wang Z. Discovery of Drug-Responsive Phenomic Alteration-Related Driver Genes in the Treatment of Coronary Heart Disease. Pharmgenomics Pers Med 2023; 16:201-217. [PMID: 36945217 PMCID: PMC10024908 DOI: 10.2147/pgpm.s398522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 02/25/2023] [Indexed: 03/17/2023] Open
Abstract
Background The Xueyu Zheng (XYZ) phenome is central to coronary heart disease (CHD), but efforts to detect genetic associations in the XYZ phenome have been disappointing. Methods The phenomic alteration-related genes (PARGs) for the XYZ phenome were screened using |ρ| > 0.4 and p < 0.05 after treatment with Danhong injection at day 14 and day 30. Then, the driver genes for the Protein-Protein Interaction (PPI) networks of the PARGs established using STRING 11.0 were detected using a personalized network control algorithm (PNC). Finally, the molecular correlations of the driver genes with the XYZ phenome were analyzed with the Gene Ontology (GO) biological processes and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways from a holistic viewpoint. Results A total of 525 and 309 PARGs in the XYZ phenome at day 14 and day 30 were identified. These genes were separately enriched in 48 and 35 pathways. Furthermore, five driver genes were detected. These genes were mainly correlated with endoplasmic reticulum stress-mediated apoptosis and autophagy regulation, which could suppress atherosclerosis progression. Conclusion Our study detected the drug-responsive PARGs of the XYZ phenome in CHD and provides an exemplary strategy to investigate the genetic associations among this common phenome and its component symptoms in patients with CHD. Trial Registration ClinicalTrials.gov, NCT01681316; registered on September 7, 2012.
Collapse
Affiliation(s)
- Shuang Guan
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Ya-Nan Yu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bing Li
- Institute of Chinese Materia Medica, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Hao Gu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Lin Chen
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Nian Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Bo Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Xi Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Jun Liu
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
| | - Zhong Wang
- Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, Beijing, People’s Republic of China
- Correspondence: Zhong Wang; Jun Liu, Institute of Basic Research in Clinical Medicine, China Academy of Chinese Medical Sciences, No. 16 Nanxiaojie, Dongzhimennei, Beijing, People’s Republic of China, Email ;
| |
Collapse
|
19
|
Wan Z, Xiong H, Tan X, Su T, Xia K, Wang D. Integrative Multi-Omics Analysis Reveals Candidate Biomarkers for Oral Squamous Cell Carcinoma. Front Oncol 2022; 11:794146. [PMID: 35096593 PMCID: PMC8795899 DOI: 10.3389/fonc.2021.794146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 12/17/2021] [Indexed: 01/10/2023] Open
Abstract
Oral squamous cell carcinoma (OSCC) is one of the most common types of cancer worldwide. Due to the lack of early detection and treatment, the survival rate of OSCC remains poor and the incidence of OSCC has not decreased during the past decades. To explore potential biomarkers and therapeutic targets for OSCC, we analyzed differentially expressed genes (DEGs) associated with OSCC using RNA sequencing technology. Methylation-regulated and differentially expressed genes (MeDEGs) of OSCC were further identified via an integrative approach by examining publicly available methylomic datasets together with our transcriptomic data. Protein-protein interaction (PPI) networks of MeDEGs were constructed and highly connected hub MeDEGs were identified from these PPI networks. Subsequently, expression and survival analyses of hub genes were performed using The Cancer Genome Atlas (TCGA) database and the Gene Expression Profiling Interactive Analysis (GEPIA) online tool. A total of 56 upregulated MeDEGs and 170 downregulated MeDEGs were identified in OSCC. Eleven hub genes with high degree of connectivity were picked out from the PPI networks constructed by those MeDEGs. Among them, the expression level of four hub genes (CTLA4, CDSN, ACTN2, and MYH11) were found to be significantly changed in the head and neck squamous carcinoma (HNSC) patients. Three hypomethylated hub genes (CTLA4, GPR29, and TNFSF11) and one hypermethylated hub gene (ISL1) were found to be significantly associated with overall survival (OS) of HNSC patients. Therefore, these hub genes may serve as potential DNA methylation biomarkers and therapeutic targets of OSCC.
Collapse
Affiliation(s)
- Zhengqing Wan
- Hengyang Medical School, University of South China, Hengyang, China.,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China.,Postdoctoral Station for Basic Medicine, Hengyang Medical School, University of South China, Hengyang, China
| | - Haofeng Xiong
- Xiangya Hospital, Central South University, Changsha, China.,Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Xian Tan
- Hengyang Medical School, University of South China, Hengyang, China
| | - Tong Su
- Xiangya Hospital, Central South University, Changsha, China
| | - Kun Xia
- Center for Medical Genetics, School of Life Sciences, Central South University, Changsha, China
| | - Danling Wang
- Hengyang Medical School, University of South China, Hengyang, China.,The Affiliated Changsha Central Hospital, Hengyang Medical School, University of South China, Changsha, China
| |
Collapse
|