1
|
Zhou Q, You Y, Zhao Y, Xiao S, Song Z, Huang C, Qian J, Lu W, Tong H, Zhang Y, Wang Z, Li W, Zhang C, Guo X, Luo R, Hou Y, Cui J, Lu L, Zhou Y. TRPV4 drives the progression of leiomyosarcoma by promoting ECM1 generation and co-activating the FAK/PI3K/AKT/GSK3β pathway. Cell Oncol (Dordr) 2024:10.1007/s13402-024-01008-7. [PMID: 39612152 DOI: 10.1007/s13402-024-01008-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/22/2024] [Indexed: 11/30/2024] Open
Abstract
PURPOSE Leiomyosarcoma (LMS) is an aggressive mesenchymal malignant tumor with poor therapeutic options, but the molecular mechanisms underlying LMS remain largely unknown. Increasing evidence indicates that transient receptor potential vanilloid 4 (TRPV4) levels are closely related to the advancement of various malignant tumors through diverse molecular mechanisms. However, the roles and regulatory mechanisms of TRPV4 in LMS progression remain unclear. METHODS Immunohistochemistry, Western blot, and immunofluorescence were used to investigate the relationship between TRPV4 expression and LMS. Survival analysis was conducted to evaluate the association between TRPV4 levels and prognosis in LMS patients. Intracellular Ca2+ measurement, colony formation, CCK-8, wound healing and Transwell assays and peritoneal metastasis mouse model were used to verify the effect of TRPV4 activity and expression on LMS proliferation and metastasis. RNA-seq and proteomics were performed to explore the underlying mechanism. RESULTS TRPV4 was upregulated in LMS tissues and cells and served as a novel prognostic factor. Moreover, TRPV4 overexpression enhanced cell proliferation, cell migration and invasion of LMS cells in vitro, as well as promoted tumor metastasis in vivo, which could be blocked by HC067047 intervention or TRPV4 knockdown. Combined RNA-seq and proteomics analysis of KEGG pathway indicated that ECM receptor interaction was obviously activated. Extracellular matrix protein 1 (ECM1) was identified as downstream gene of TRPV4. Mechanistically, TRPV4 overexpression increased ECM1 level and activated the FAK/PI3K/AKT/GSK3β pathway, which could be reversed by TRPV4 knockdown or LY294002 treatment. Moreover, ECM1 overexpression enhanced the activation of FAK/PI3K/AKT/GSK3β pathway. And simultaneous overexpression of TRPV4 and ECM1 synergistically activated this pathway. CONCLUSION Our findings provide a novel mechanism by which TRPV4 directly activates Ca2+/FAK/PI3K/AKT/GSK3β pathway and further indirectly enhances the FAK/PI3K/AKT/GSK3β pathway through the promotion and secretion of ECM1 to promote LMS malignant progression. Targeting the TRPV4/FAK axis might be a promising potential strategy for prognosis and treatment of LMS.
Collapse
Affiliation(s)
- Qiwen Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang You
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingying Zhao
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
- Department of Oncology, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Suzhou, 215002, China
| | - Shuxiu Xiao
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhengqing Song
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chuxin Huang
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Jiali Qian
- Department of Endocrinology, Huashan Hospital, Fudan University, Shanghai, 200040, China
| | - Weiqi Lu
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Hanxing Tong
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yong Zhang
- Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Zhiming Wang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Wei Li
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chenlu Zhang
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Xi Guo
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Rongkui Luo
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yingyong Hou
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Jiefeng Cui
- Liver Cancer Institute, Zhongshan Hospital, Fudan University and Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Shanghai, 200032, China
| | - Lili Lu
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Xiamen Key Laboratory of Biotherapy, Xiamen, 361000, China.
| | - Yuhong Zhou
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Clinical Centre for Biotherapy, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
2
|
Colussi DM, Stathopulos PB. The mitochondrial calcium uniporter: Balancing tumourigenic and anti-tumourigenic responses. J Physiol 2024; 602:3315-3339. [PMID: 38857425 DOI: 10.1113/jp285515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2023] [Accepted: 05/20/2024] [Indexed: 06/12/2024] Open
Abstract
Increased malignancy and poor treatability associated with solid tumour cancers have commonly been attributed to mitochondrial calcium (Ca2+) dysregulation. The mitochondrial Ca2+ uniporter complex (mtCU) is the predominant mode of Ca2+ uptake into the mitochondrial matrix. The main components of mtCU are the pore-forming mitochondrial Ca2+ uniporter (MCU) subunit, MCU dominant-negative beta (MCUb) subunit, essential MCU regulator (EMRE) and the gatekeeping mitochondrial Ca2+ uptake 1 and 2 (MICU1 and MICU2) proteins. In this review, we describe mtCU-mediated mitochondrial Ca2+ dysregulation in solid tumour cancer types, finding enhanced mtCU activity observed in colorectal cancer, breast cancer, oral squamous cell carcinoma, pancreatic cancer, hepatocellular carcinoma and embryonal rhabdomyosarcoma. By contrast, decreased mtCU activity is associated with melanoma, whereas the nature of mtCU dysregulation remains unclear in glioblastoma. Furthermore, we show that numerous polymorphisms associated with cancer may alter phosphorylation sites on the pore forming MCU and MCUb subunits, which cluster at interfaces with EMRE. We highlight downstream/upstream biomolecular modulators of MCU and MCUb that alter mtCU-mediated mitochondrial Ca2+ uptake and may be used as biomarkers or to aid in the development of novel cancer therapeutics. Additionally, we provide an overview of the current small molecule inhibitors of mtCU that interact with the Asp residue of the critical Asp-Ile-Met-Glu motif or through other allosteric regulatory mechanisms to block Ca2+ permeation. Finally, we describe the relationship between MCU- and MCUb-mediating microRNAs and mitochondrial Ca2+ uptake that should be considered in the discovery of new treatment approaches for cancer.
Collapse
Affiliation(s)
- Danielle M Colussi
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| | - Peter B Stathopulos
- Department of Physiology and Pharmacology, Schulich School of Medicine and Dentistry, University of Western Ontario, London, ON, Canada
| |
Collapse
|
3
|
Sovilj D, Kelemen CD, Dvorakova S, Zobalova R, Raabova H, Kriska J, Hermanova Z, Knotek T, Anderova M, Klener P, Filimonenko V, Neuzil J, Andera L. Cell-specific modulation of mitochondrial respiration and metabolism by the pro-apoptotic Bcl-2 family members Bax and Bak. Apoptosis 2024; 29:424-438. [PMID: 38001340 DOI: 10.1007/s10495-023-01917-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2023] [Indexed: 11/26/2023]
Abstract
Proteins from the Bcl-2 family play an essential role in the regulation of apoptosis. However, they also possess cell death-unrelated activities that are less well understood. This prompted us to study apoptosis-unrelated activities of the Bax and Bak, pro-apoptotic members of the Bcl-2 family. We prepared Bax/Bak-deficient human cancer cells of different origin and found that while respiration in the glioblastoma U87 Bax/Bak-deficient cells was greatly enhanced, respiration of Bax/Bak-deficient B lymphoma HBL-2 cells was slightly suppressed. Bax/Bak-deficient U87 cells also proliferated faster in culture, formed tumours more rapidly in mice, and showed modulation of metabolism with a considerably increased NAD+/NADH ratio. Follow-up analyses documented increased/decreased expression of mitochondria-encoded subunits of respiratory complexes and stabilization/destabilization of the mitochondrial transcription elongation factor TEFM in Bax/Bak-deficient U87 and HBL-2 cells, respectively. TEFM downregulation using shRNAs attenuated mitochondrial respiration in Bax/Bak-deficient U87 as well as in parental HBL-2 cells. We propose that (post)translational regulation of TEFM levels in Bax/Bak-deficient cells modulates levels of subunits of mitochondrial respiratory complexes that, in turn, contribute to respiration and the accompanying changes in metabolism and proliferation in these cells.
Collapse
Affiliation(s)
- Dana Sovilj
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Cristina Daniela Kelemen
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
| | - Sarka Dvorakova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Renata Zobalova
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
| | - Helena Raabova
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jan Kriska
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Zuzana Hermanova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Tomas Knotek
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Miroslava Anderova
- Institute of Experimental Medicine, Czech Academy of Sciences, Prague, Czech Republic
| | - Pavel Klener
- First Faculty of Medicine, Institute of Pathological Physiology, Charles University, Prague, Czech Republic
| | - Vlada Filimonenko
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic
| | - Jiri Neuzil
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic
- Faculty of Science, Charles University, Prague, Czech Republic
- First Faculty of Medicine, Charles University, Prague, Czech Republic
- School of Pharmacy and Medical Science, Griffith University, Southport, QLD, Australia
| | - Ladislav Andera
- Institute of Biotechnology, Czech Academy of Sciences, Vestec, Prague, Czech Republic.
- Institute of Molecular Genetics, Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
4
|
An G, Park J, Song J, Hong T, Song G, Lim W. Relevance of the endoplasmic reticulum-mitochondria axis in cancer diagnosis and therapy. Exp Mol Med 2024; 56:40-50. [PMID: 38172597 PMCID: PMC10834980 DOI: 10.1038/s12276-023-01137-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/05/2023] [Accepted: 10/09/2023] [Indexed: 01/05/2024] Open
Abstract
Dynamic interactions between organelles are responsible for a variety of intercellular functions, and the endoplasmic reticulum (ER)-mitochondrial axis is recognized as a representative interorganelle system. Several studies have confirmed that most proteins in the physically tethered sites between the ER and mitochondria, called mitochondria-associated ER membranes (MAMs), are vital for intracellular physiology. MAM proteins are involved in the regulation of calcium homeostasis, lipid metabolism, and mitochondrial dynamics and are associated with processes related to intracellular stress conditions, such as oxidative stress and unfolded protein responses. Accumulating evidence has shown that, owing to their extensive involvement in cellular homeostasis, alterations in the ER-mitochondrial axis are one of the etiological factors of tumors. An in-depth understanding of MAM proteins and their impact on cell physiology, particularly in cancers, may help elucidate their potential as diagnostic and therapeutic targets for cancers. For example, the modulation of MAM proteins is utilized not only to target diverse intracellular signaling pathways within cancer cells but also to increase the sensitivity of cancer cells to anticancer reagents and regulate immune cell activities. Therefore, the current review summarizes and discusses recent advances in research on the functional roles of MAM proteins and their characteristics in cancers from a diagnostic perspective. Additionally, this review provides insights into diverse therapeutic strategies that target MAM proteins in various cancer types.
Collapse
Affiliation(s)
- Garam An
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Junho Park
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea
| | - Jisoo Song
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Taeyeon Hong
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea
| | - Gwonhwa Song
- Institute of Animal Molecular Biotechnology, Department of Biotechnology, College of Life Sciences and Biotechnology, Korea University, Seoul, 02841, Republic of Korea.
| | - Whasun Lim
- Department of Biological Sciences, College of Science, Sungkyunkwan University, Suwon, 16419, Republic of Korea.
| |
Collapse
|
5
|
Almasi S, SarmastiEmami S, Baird S, Ning Z, Figeys D, Côté J, Cowan KN, Jasmin BJ. Staufen1 controls mitochondrial metabolism via HIF2α in embryonal rhabdomyosarcoma and promotes tumorigenesis. Cell Mol Life Sci 2023; 80:328. [PMID: 37847286 PMCID: PMC11071833 DOI: 10.1007/s00018-023-04969-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2023] [Revised: 08/31/2023] [Accepted: 09/18/2023] [Indexed: 10/18/2023]
Abstract
Elevated mitochondrial metabolism promotes tumorigenesis of Embryonal Rhabdomyosarcomas (ERMS). Accordingly, targeting oxidative phosphorylation (OXPHOS) could represent a therapeutic strategy for ERMS. We previously demonstrated that genetic reduction of Staufen1 (STAU1) levels results in the inhibition of ERMS tumorigenicity. Here, we examined STAU1-mediated mechanisms in ERMS and focused on its potential involvement in regulating OXPHOS. We report the novel and differential role of STAU1 in mitochondrial metabolism in cancerous versus non-malignant skeletal muscle cells (NMSkMCs). Specifically, our data show that STAU1 depletion reduces OXPHOS and inhibits proliferation of ERMS cells. Our findings further reveal the binding of STAU1 to several OXPHOS mRNAs which affects their stability. Indeed, STAU1 depletion reduced the stability of OXPHOS mRNAs, causing inhibition of mitochondrial metabolism. In parallel, STAU1 depletion impacted negatively the HIF2α pathway which further modulates mitochondrial metabolism. Exogenous expression of HIF2α in STAU1-depleted cells reversed the mitochondrial inhibition and induced cell proliferation. However, opposite effects were observed in NMSkMCs. Altogether, these findings revealed the impact of STAU1 in the regulation of mitochondrial OXPHOS in cancer cells as well as its differential role in NMSkMCs. Overall, our results highlight the therapeutic potential of targeting STAU1 as a novel approach for inhibiting mitochondrial metabolism in ERMS.
Collapse
Affiliation(s)
- Shekoufeh Almasi
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Sahar SarmastiEmami
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Stephen Baird
- High Throughput Lab, CHEO, University of Ottawa, Ottawa, ON, K1H 8L1, Canada
| | - Zhibin Ning
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Daniel Figeys
- School of Pharmaceutical Sciences, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Jocelyn Côté
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
| | - Kyle N Cowan
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada
- Department of Surgery, Division of Paediatric Surgery, University of Ottawa, Children's Hospital of Eastern Ontario, Ottawa, ON, K1Y 4E9, Canada
- Molecular Biomedicine Program, Children's Hospital of Eastern Ontario, Ottawa, ON, K1H 8L1, Canada
| | - Bernard J Jasmin
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
- The Eric J. Poulin Centre for Neuromuscular Diseases, Faculty of Medicine, University of Ottawa, Ottawa, ON, K1H 8M5, Canada.
| |
Collapse
|
6
|
Chen S, Ma J, Xiao Y, Zhou D, He P, Chen Y, Zheng X, Lin H, Qiu F, Yuan Y, Zhong J, Li X, Pan X, Fang Z, Wang C. RNA Interference against ATP as a Gene Therapy Approach for Prostate Cancer. Mol Pharm 2023; 20:5214-5225. [PMID: 37733628 DOI: 10.1021/acs.molpharmaceut.3c00587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/23/2023]
Abstract
Chemotherapeutic agents targeting energy metabolism have not achieved satisfactory results in different types of tumors. Herein, we developed an RNA interference (RNAi) method against adenosine triphosphate (ATP) by constructing an interfering plasmid-expressing ATP-binding RNA aptamer, which notably inhibited the growth of prostate cancer cells through diminishing the availability of cytoplasmic ATP and impairing the homeostasis of energy metabolism, and both glycolysis and oxidative phosphorylation were suppressed after RNAi treatment. Further identifying the mechanism underlying the effects of ATP aptamer, we surprisingly found that it markedly reduced the activity of membrane ionic channels and membrane potential which led to the dysfunction of mitochondria, such as the decrease of mitochondrial number, reduction in the respiration rate, and decline of mitochondrial membrane potential and ATP production. Meanwhile, the shortage of ATP impeded the formation of lamellipodia that are essential for the movement of cells, consequently resulting in a significant reduction of cell migration. Both the downregulation of the phosphorylation of AMP-activated protein kinase (AMPK) and endoplasmic reticulum kinase (ERK) and diminishing of lamellipodium formation led to cell apoptosis as well as the inhibition of angiogenesis and invasion. In conclusion, as the first RNAi modality targeting the blocking of ATP consumption, the present method can disturb the respiratory chain and ATP pool, which provides a novel regime for tumor therapies..
Collapse
Affiliation(s)
- Shuangya Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jisheng Ma
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yunbei Xiao
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Dongyan Zhou
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Ping He
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yajing Chen
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xiaolu Zheng
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
- Pharmaceutical Department, Jinhua Central Hospital, Jinhua, Zhejiang 321000, China
| | - Hui Lin
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Feng Qiu
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Yuying Yuan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Jiaben Zhong
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Xiaokun Li
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Xuebo Pan
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| | - Zhiyuan Fang
- School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, Guangdong 510006, China
| | - Cong Wang
- School of Pharmaceutical Sciences, Wenzhou Medical University, Wenzhou, Zhejiang 325030, China
| |
Collapse
|
7
|
D’Angelo D, Rizzuto R. The Mitochondrial Calcium Uniporter (MCU): Molecular Identity and Role in Human Diseases. Biomolecules 2023; 13:1304. [PMID: 37759703 PMCID: PMC10526485 DOI: 10.3390/biom13091304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/22/2023] [Indexed: 09/29/2023] Open
Abstract
Calcium (Ca2+) ions act as a second messenger, regulating several cell functions. Mitochondria are critical organelles for the regulation of intracellular Ca2+. Mitochondrial calcium (mtCa2+) uptake is ensured by the presence in the inner mitochondrial membrane (IMM) of the mitochondrial calcium uniporter (MCU) complex, a macromolecular structure composed of pore-forming and regulatory subunits. MtCa2+ uptake plays a crucial role in the regulation of oxidative metabolism and cell death. A lot of evidence demonstrates that the dysregulation of mtCa2+ homeostasis can have serious pathological outcomes. In this review, we briefly discuss the molecular structure and the function of the MCU complex and then we focus our attention on human diseases in which a dysfunction in mtCa2+ has been shown.
Collapse
Affiliation(s)
- Donato D’Angelo
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
| | - Rosario Rizzuto
- Department of Biomedical Sciences, University of Padua, 35131 Padua, Italy;
- National Center on Gene Therapy and RNA-Based Drugs, 35131 Padua, Italy
| |
Collapse
|
8
|
Duvvuri B, Pachman LM, Hermanson P, Wang T, Moore R, Ding-Hwa Wang D, Long A, Morgan GA, Doty S, Tian R, Sancak Y, Lood C. Role of mitochondria in the myopathy of juvenile dermatomyositis and implications for skeletal muscle calcinosis. J Autoimmun 2023; 138:103061. [PMID: 37244073 PMCID: PMC10330803 DOI: 10.1016/j.jaut.2023.103061] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Revised: 04/21/2023] [Accepted: 05/08/2023] [Indexed: 05/29/2023]
Abstract
OBJECTIVES To elucidate mechanisms contributing to skeletal muscle calcinosis in patients with juvenile dermatomyositis. METHODS A well-characterized cohorts of JDM (n = 68), disease controls (polymyositis, n = 7; juvenile SLE, n = 10, and RNP + overlap syndrome, n = 12), and age-matched health controls (n = 17) were analyzed for circulating levels of mitochondrial (mt) markers including mtDNA, mt-nd6, and anti-mitochondrial antibodies (AMAs) using standard qPCR, ELISA, and novel-in-house assays, respectively. Mitochondrial calcification of affected tissue biopsies was confirmed using electron microscopy and energy dispersive X-ray analysis. A human skeletal muscle cell line, RH30, was used to generate an in vitro calcification model. Intracellular calcification is measured by flow cytometry and microscopy. Mitochondria were assessed for mtROS production and membrane potential by flow cytometry and real-time oxygen consumption rate by Seahorse bioanalyzer. Inflammation (interferon-stimulated genes) was measured by qPCR. RESULTS In the current study, patients with JDM exhibited elevated levels of mitochondrial markers associated with muscle damage and calcinosis. Of particular interest are AMAs predictive of calcinosis. Human skeletal muscle cells undergo time- and dose-dependent accumulation of calcium phosphate salts with preferential localization to mitochondria. Calcification renders skeletal muscle cells mitochondria stressed, dysfunctional, destabilized, and interferogenic. Further, we report that inflammation induced by interferon-alpha amplifies mitochondrial calcification of human skeletal muscle cells via the generation of mitochondrial reactive oxygen species (mtROS). CONCLUSIONS Overall, our study demonstrates the mitochondrial involvement in the skeletal muscle pathology and calcinosis of JDM and mtROS as a central player in the calcification of human skeletal muscle cells. Therapeutic targeting of mtROS and/or upstream inducers, such as inflammation, may alleviate mitochondrial dysfunction, leading to calcinosis. AMAs can potentially identify patients with JDM at risk for developing calcinosis.
Collapse
Affiliation(s)
- Bhargavi Duvvuri
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| | - Lauren M Pachman
- Division of Pediatric Rheumatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CureJM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago and the Stanley Manne Simpson-Quarrey Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Payton Hermanson
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Ting Wang
- Division of Rheumatology, University of Washington, Seattle, WA, USA
| | - Richard Moore
- Cedars Sinai Med Ctr, Division of Rheumatology, Los Angeles, CA, USA
| | | | - Aaron Long
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Gabrielle A Morgan
- Division of Pediatric Rheumatology, Department of Pediatrics, Ann & Robert H. Lurie Children's Hospital of Chicago, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA; CureJM Center of Excellence, Ann & Robert H. Lurie Children's Hospital of Chicago and the Stanley Manne Simpson-Quarrey Research Institute, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | | | - Rong Tian
- Mitochondria and Metabolism Center, University of Washington School of Medicine, Seattle, WA, USA
| | - Yasemin Sancak
- Department of Pharmacology, University of Washington, Seattle, WA, USA
| | - Christian Lood
- Division of Rheumatology, University of Washington, Seattle, WA, USA.
| |
Collapse
|
9
|
Zhou H, Dai Z, Li J, Wang J, Zhu H, Chang X, Wang Y. TMBIM6 prevents VDAC1 multimerization and improves mitochondrial quality control to reduce sepsis-related myocardial injury. Metabolism 2023; 140:155383. [PMID: 36603706 DOI: 10.1016/j.metabol.2022.155383] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/17/2022] [Accepted: 12/18/2022] [Indexed: 01/03/2023]
Abstract
BACKGROUND The regulatory mechanisms involved in mitochondrial quality control (MQC) dysfunction during septic cardiomyopathy (SCM) remain incompletely characterized. Transmembrane BAX inhibitor motif containing 6 (TMBIM6) is an endoplasmic reticulum protein with Ca2+ leak activity that modulates cellular responses to various cellular stressors. METHODS In this study, we evaluated the role of TMBIM6 in SCM using cardiomyocyte-specific TMBIM6 knockout (TMBIM6CKO) and TMBIM6 transgenic (TMBIM6TG) mice. RESULTS Myocardial TMBIM6 transcription and expression were significantly downregulated in wild-type mice upon LPS exposure, along with characteristic alterations in myocardial systolic/diastolic function, cardiac inflammation, and cardiomyocyte death. Notably, these alterations were further exacerbated in LPS-treated TMBIM6CKO mice, and largely absent in TMBIM6TG mice. In LPS-treated primary cardiomyocytes, TMBIM6 deficiency further impaired mitochondrial respiration and ATP production, while defective MQC was suggested by enhanced mitochondrial fission, impaired mitophagy, and disrupted mitochondrial biogenesis. Structural protein analysis, Co-IP, mutant TMBIM6 plasmid transfection, and molecular docking assays subsequently indicated that TMBIM6 exerts cardioprotection against LPS-induced sepsis by interacting with and preventing the oligomerization of voltage-dependent anion channel-1 (VDAC1), the major route of mitochondrial Ca2+ uptake. CONCLUSION We conclude that the TMBIM6-VDAC1 interaction prevents VDAC1 oligomerization and thus sustains mitochondrial Ca2+ homeostasis as well as MQC, contributing to improved myocardial function in SCM.
Collapse
Affiliation(s)
- Hao Zhou
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China; Department of Cardiology, The Sixth Medical Center of People's Liberation Army General Hospital, Beijing, China
| | - Zhe Dai
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jialei Li
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Jin Wang
- Department of Vascular Medicine, Peking University Shougang Hospital, Beijing 100144, China
| | - Hang Zhu
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China
| | - Xing Chang
- Guang'anmen Hospital of Chinese Academy of Traditional Chinese Medicine, Beijing, China
| | - Yijin Wang
- School of Medicine, Southern University of Science and Technology, Shenzhen, Guangdong, China.
| |
Collapse
|