1
|
Nedomova M, Haberecht-Müller S, Möller S, Venz S, Prochazkova M, Prochazka J, Sedlak F, Chawengsaksophak K, Hammer E, Kasparek P, Adamek M, Sedlacek R, Konvalinka J, Krüger E, Grantz Saskova K. DDI2 protease controls embryonic development and inflammation via TCF11/NRF1. iScience 2024; 27:110893. [PMID: 39328932 PMCID: PMC11424978 DOI: 10.1016/j.isci.2024.110893] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 03/25/2024] [Accepted: 09/03/2024] [Indexed: 09/28/2024] Open
Abstract
DDI2 is an aspartic protease that cleaves polyubiquitinated substrates. Upon proteotoxic stress, DDI2 activates the transcription factor TCF11/NRF1 (NFE2L1), crucial for maintaining proteostasis in mammalian cells, enabling the expression of rescue factors, including proteasome subunits. Here, we describe the consequences of DDI2 ablation in vivo and in cells. DDI2 knock-out (KO) in mice caused embryonic lethality at E12.5 with severe developmental failure. Molecular characterization of embryos showed insufficient proteasome expression with proteotoxic stress, accumulation of high molecular weight ubiquitin conjugates and induction of the unfolded protein response (UPR) and cell death pathways. In DDI2 surrogate KO cells, proteotoxic stress activated the integrated stress response (ISR) and induced a type I interferon (IFN) signature and IFN-induced proliferative signaling, possibly ensuring survival. These results indicate an important role for DDI2 in the cell-tissue proteostasis network and in maintaining a balanced immune response.
Collapse
Affiliation(s)
- Monika Nedomova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Stefanie Haberecht-Müller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Sophie Möller
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Simone Venz
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Michaela Prochazkova
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Jan Prochazka
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Frantisek Sedlak
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- First Faculty of Medicine, Charles University in Prague, Katerinska 32, 121 08 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Kallayanee Chawengsaksophak
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Elke Hammer
- Department of Functional Genomics, Universitätsmedizin Greifswald, Felix-Hausdorff-Str. 8, 17475 Greifswald, Germany
| | - Petr Kasparek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Michael Adamek
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| | - Radislav Sedlacek
- Institute of Molecular Genetics of the Czech Academy of Sciences, Czech Centre for Phenogenomics and Laboratory of Transgenic Models of Diseases, BIOCEV, 25242 Vestec, Czech Republic
| | - Jan Konvalinka
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
| | - Elke Krüger
- Institute of Medical Biochemistry and Molecular Biology, Universitätsmedizin Greifswald, Ferdinand-Sauerbruch-Straße, Klinikum DZ 7, 17475 Greifswald, Germany
| | - Klara Grantz Saskova
- Institute of Organic Chemistry and Biochemistry of the Academy of Sciences of the Czech Republic, Flemingovo n. 2, 166 10 Prague, Czech Republic
- Department of Genetics and Microbiology, Faculty of Science, Charles University, BIOCEV, 25242 Vestec, Czech Republic
| |
Collapse
|
2
|
Mótyán JA, Tőzsér J. The human retroviral-like aspartic protease 1 (ASPRV1): From in vitro studies to clinical correlations. J Biol Chem 2024; 300:107634. [PMID: 39098535 PMCID: PMC11402058 DOI: 10.1016/j.jbc.2024.107634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/25/2024] [Accepted: 07/27/2024] [Indexed: 08/06/2024] Open
Abstract
The human retroviral-like aspartic protease 1 (ASPRV1) is a retroviral-like protein that was first identified in the skin due to its expression in the stratum granulosum layer of the epidermis. Accordingly, it is also referred to as skin-specific aspartic protease. Similar to the retroviral polyproteins, the full-length ASPRV1 also undergoes self-proteolysis, the processing of the precursor is necessary for the autoactivation of the protease domain. ASPRV1's functions are well-established at the level of the skin: it is part of the epidermal proteolytic network and has a significant contribution to skin moisturization via the limited proteolysis of filaggrin; it is only natural protein substrate identified so far. Filaggrin and ASPRV1 are also specific for mammalians, these proteins provide unique features for the skins of these species, and the importance of filaggrin processing in hydration is proved by the fact that some ASPRV1 mutations are associated with skin diseases such as ichthyosis. ASPRV1 was also found to be expressed in macrophage-like neutrophil cells, indicating that its functions are not limited to the skin. In addition, differential expression of ASPRV1 was detected in many diseases, with yet unknown significance. The currently known enzymatic characteristics-that had been revealed mainly by in vitro studies-and correlations with pathogenic phenotypes imply potentially important functions in multiple cell types, which makes the protein a promising target of functional studies. In this review we describe the currently available knowledge and future perspective in regard to ASPRV1.
Collapse
Affiliation(s)
- János András Mótyán
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary.
| | - József Tőzsér
- Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
3
|
Ibtisam I, Kisselev AF. Early recovery of proteasome activity in cells pulse-treated with proteasome inhibitors is independent of DDI2. eLife 2024; 12:RP91678. [PMID: 38619391 PMCID: PMC11018354 DOI: 10.7554/elife.91678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/16/2024] Open
Abstract
Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.
Collapse
Affiliation(s)
- Ibtisam Ibtisam
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn UniversityAuburnUnited States
| | - Alexei F Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn UniversityAuburnUnited States
| |
Collapse
|
4
|
Sogabe K, Nakamura S, Higa Y, Miki H, Oda A, Maruhashi T, Sumitani R, Oura M, Takahashi M, Nakamura M, Maeda Y, Hara T, Yamagami H, Fujii S, Kagawa K, Ozaki S, Kurahashi K, Endo I, Aihara KI, Nakaue E, Hiasa M, Teramachi J, Harada T, Abe M. Acute accumulation of PIM2 and NRF2 and recovery of β5 subunit activity mitigate multiple myeloma cell susceptibility to proteasome inhibitors. Int J Hematol 2024; 119:303-315. [PMID: 38245883 DOI: 10.1007/s12185-023-03705-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2023] [Revised: 12/25/2023] [Accepted: 12/27/2023] [Indexed: 01/23/2024]
Abstract
Resistance to proteasome inhibitors (PIs) has emerged as an important clinical issue. We investigated the mechanisms underlying multiple myeloma (MM) cell resistance to PIs. To mimic their pharmacokinetic/pharmacodynamic (PK/PD) profiles, MM cells were treated with bortezomib and carfilzomib for 1 h at concentrations up to 400 and 1,000 nM, respectively. Susceptibility to these PIs markedly varied among MM cell lines. Pulsatile treatments with PIs suppressed translation, as demonstrated by incorporation of puromycin at 24 h in PI-susceptible MM.1S cells, but not PI-resistant KMS-11 cells. Inhibition of β5 subunit activity decreased at 24 h in KMS-11 cells, even with the irreversible PI carfilzomib, but not under suppression of protein synthesis with cycloheximide. Furthermore, the proteasome-degradable pro-survival factors PIM2 and NRF2 acutely accumulated in MM cells subjected to pulsatile PI treatments. Accumulated NRF2 was trans-localized into the nucleus to induce the expression of its target gene, HMOX1, in MM cells. PIM and Akt inhibition restored the anti-MM effects of PIs, even against PI-resistant KMS-11 cells. Collectively, these results suggest that increased synthesis of β5 proteasome subunit and acute accumulation of PIM2 and NRF2 reduce the anti-MM effects of PIs.
Collapse
Affiliation(s)
- Kimiko Sogabe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shingen Nakamura
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan.
| | - Yoshiki Higa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hirokazu Miki
- Division of Transfusion Medicine and Cell Therapy, Tokushima University Hospital, Tokushima, Japan
| | - Asuka Oda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoko Maruhashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ryohei Sumitani
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Oura
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Mamiko Takahashi
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masafumi Nakamura
- Department of Internal Medicine, Tokushima Prefecture Naruto Hospital, Tokushima, Japan
| | - Yusaku Maeda
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Tomoyo Hara
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Hiroki Yamagami
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Shiro Fujii
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Kumiko Kagawa
- Department of Hematology, Tokushima Prefectural Central Hospital, Tokushima, Japan
| | - Shuji Ozaki
- Department of Hematology, Tokushima Prefectural Central Hospital, Tokushima, Japan
| | - Kiyoe Kurahashi
- Department of Community Medicine for Respirology, Hematology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Itsuro Endo
- Department of Bioregulatory Sciences, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Ken-Ichi Aihara
- Department of Community Medicine and Medical Science, Tokushima University Graduate School of Biomedical Sciences, 3-18-15 Kuramoto-Cho, Tokushima, 770-8503, Japan
| | - Emiko Nakaue
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Hiasa
- Department of Orthodontics and Dentofacial Orthopedics, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Jumpei Teramachi
- Department of Oral Function and Anatomy, Graduate School of Medicine Dentistry and Pharmaceutical Sciences, Okayama University, Okayama, Japan
| | - Takeshi Harada
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan
| | - Masahiro Abe
- Department of Hematology, Endocrinology and Metabolism, Tokushima University Graduate School of Biomedical Sciences, Tokushima, Japan.
- Department of Hematology, Kawashima Hospital, 6-1 Kitasakoichiban-Cho, Tokushima, 770-0011, Japan.
| |
Collapse
|
5
|
Roy PK, Majumder R, Mandal M. In-silico identification of novel DDI2 inhibitor in glioblastoma via repurposing FDA approved drugs using molecular docking and MD simulation study. J Biomol Struct Dyn 2024; 42:2270-2281. [PMID: 37139547 DOI: 10.1080/07391102.2023.2204371] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 04/11/2023] [Indexed: 05/05/2023]
Abstract
Glioblastoma, the most severe form of brain tumor and a leading cause of death within a year of diagnosis, is characterized by excessive protein synthesis and folding in the lumen of the endoplasmic reticulum (ER), leading to increased ER stress in the cells of GBM tissues. To mitigate this stress the cancer cells have intelligently adopted a plethora of response mechanisms and Unfolded Protein Response (UPR) is one of those. To bear with this exhaustive situation cells upregulate a strong protein degradation system in form of 26S proteasome and blocking of proteasomal gene synthesis may be a potential therapeutic action against GBM. Proteasomal gene synthesis is exclusively dependent on the transcription factor Nuclear respiratory factor 1 (NRF1) and its activating enzyme DNA damage inducible 1 homolog 2 (DDI2). Here in this study, we performed molecular docking against DDI2 with the 20 FDA-approved drugs and identified Alvimopan and Levocabastine as the top two compounds with the best binding score along with the standard drug Nelfinavir. MD simulation (100 ns) of these protein-ligand docked complexes reveals that the stability and compactness of Alvimopan are high in comparison with Nelfinavir. Our in-silico (Molecular docking and Molecular dynamics simulation) studies pointed out that Alvimopan may be repurposed as a DDI2 inhibitor and can be used as a potential anticancer agent for the treatment of brain tumors.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Pritam Kumar Roy
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Ranabir Majumder
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| | - Mahitosh Mandal
- School of Medical Science and Technology, Indian Institute of Technology, Kharagpur, West Bengal, India
| |
Collapse
|
6
|
Ibtisam I, Kisselev AF. Early recovery of proteasome activity in cells pulse-treated with proteasome inhibitors is independent of DDI2. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.03.550647. [PMID: 37577495 PMCID: PMC10418215 DOI: 10.1101/2023.08.03.550647] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/15/2023]
Abstract
Rapid recovery of proteasome activity may contribute to intrinsic and acquired resistance to FDA-approved proteasome inhibitors. Previous studies have demonstrated that the expression of proteasome genes in cells treated with sub-lethal concentrations of proteasome inhibitors is upregulated by the transcription factor Nrf1 (NFE2L1), which is activated by a DDI2 protease. Here, we demonstrate that the recovery of proteasome activity is DDI2-independent and occurs before transcription of proteasomal genes is upregulated but requires protein translation. Thus, mammalian cells possess an additional DDI2 and transcription-independent pathway for the rapid recovery of proteasome activity after proteasome inhibition.
Collapse
Affiliation(s)
- Ibtisam Ibtisam
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr. Auburn AL 36849 USA
| | - Alexei F. Kisselev
- Department of Drug Discovery and Development, Harrison College of Pharmacy, Auburn University, 720 S. Donahue Dr. Auburn AL 36849 USA
| |
Collapse
|
7
|
Chavarria C, Zaffalon L, Ribeiro ST, Op M, Quadroni M, Iatrou MS, Chapuis C, Martinon F. ER-trafficking triggers NRF1 ubiquitination to promote its proteolytic activation. iScience 2023; 26:107777. [PMID: 37720101 PMCID: PMC10502413 DOI: 10.1016/j.isci.2023.107777] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 08/15/2023] [Accepted: 08/28/2023] [Indexed: 09/19/2023] Open
Abstract
The transcription factor NRF1 resides in the endoplasmic reticulum (ER) and is constantly transported to the cytosol for proteasomal degradation. However, when the proteasome is defective, NRF1 escapes degradation and undergoes proteolytic cleavage by the protease DDI2, generating a transcriptionally active form that restores proteostasis, including proteasome function. The mechanisms that regulate NRF1 proteolytic activation and transcriptional potential remain poorly understood. This study demonstrates that the ER is a crucial regulator of NRF1 function by orchestrating its ubiquitination through the E3 ubiquitin ligase HRD1. We show that HRD1-mediated NRF1 ubiquitination is necessary for DDI2-mediated processing in cells. Furthermore, we found that deficiency in both RAD23A and RAD23B impaired DDI2-mediated NRF1 processing, indicating that these genes are essential components of the DDI2 proteolytic machinery. Our findings highlight the intricate mechanism by which the ER activates NRF1 to coordinate the transcriptional activity of an adaptation response in cells.
Collapse
Affiliation(s)
- Claire Chavarria
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | - Léa Zaffalon
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | - Sérgio T. Ribeiro
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | - Mélanie Op
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | - Manfredo Quadroni
- Protein Analysis Facility, Center for Integrative Genomics, University of Lausanne, 1015 Lausanne, Switzerland
| | - Maria Sofia Iatrou
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | - Chloé Chapuis
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| | - Fabio Martinon
- Department of Immunobiology, University of Lausanne, 155 Ch. des Boveresses, 1066 Epalinges, Switzerland
| |
Collapse
|
8
|
Hatanaka A, Nakada S, Matsumoto G, Satoh K, Aketa I, Watanabe A, Hirakawa T, Tsujita T, Waku T, Kobayashi A. The transcription factor NRF1 (NFE2L1) activates aggrephagy by inducing p62 and GABARAPL1 after proteasome inhibition to maintain proteostasis. Sci Rep 2023; 13:14405. [PMID: 37658135 PMCID: PMC10474156 DOI: 10.1038/s41598-023-41492-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Accepted: 08/28/2023] [Indexed: 09/03/2023] Open
Abstract
The ubiquitin‒proteasome system (UPS) and autophagy are the two primary cellular pathways of misfolded or damaged protein degradation that maintain cellular proteostasis. When the proteasome is dysfunctional, cells compensate for impaired protein clearance by activating aggrephagy, a type of selective autophagy, to eliminate ubiquitinated protein aggregates; however, the molecular mechanisms by which impaired proteasome function activates aggrephagy remain poorly understood. Here, we demonstrate that activation of aggrephagy is transcriptionally induced by the transcription factor NRF1 (NFE2L1) in response to proteasome dysfunction. Although NRF1 has been previously shown to induce the expression of proteasome genes after proteasome inhibition (i.e., the proteasome bounce-back response), our genome-wide transcriptome analyses identified autophagy-related p62/SQSTM1 and GABARAPL1 as genes directly targeted by NRF1. Intriguingly, NRF1 was also found to be indispensable for the formation of p62-positive puncta and their colocalization with ULK1 and TBK1, which play roles in p62 activation via phosphorylation. Consistently, NRF1 knockdown substantially reduced the phosphorylation rate of Ser403 in p62. Finally, NRF1 selectively upregulated the expression of GABARAPL1, an ATG8 family gene, to induce the clearance of ubiquitinated proteins. Our findings highlight the discovery of an activation mechanism underlying NRF1-mediated aggrephagy through gene regulation when proteasome activity is impaired.
Collapse
Affiliation(s)
- Atsushi Hatanaka
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
- Research Fellow of Japan Society for the Promotion of Science, Tokyo, Japan
| | - Sota Nakada
- Laboratory for Genetic Code, Department of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Gen Matsumoto
- Department of Anatomy and Neurobiology, Nagasaki University School of Medicine, Nagasaki, Japan
| | - Katsuya Satoh
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Iori Aketa
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan
| | - Akira Watanabe
- Graduate School of Medicine, Kyoto University, Kyoto, Japan
| | - Tomoaki Hirakawa
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Tadayuki Tsujita
- Laboratory of Biochemistry, Faculty of Agriculture, Saga University, Saga, Japan
- The United Graduate School of Agricultural Sciences, Kagoshima University, Kagoshima, Japan
| | - Tsuyoshi Waku
- Laboratory for Genetic Code, Department of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan
| | - Akira Kobayashi
- Laboratory for Genetic Code, Graduate School of Life and Medical Sciences, Doshisha University, 1-3 Tatara Miyakodani, Kyotanabe, Kyoto, 610-0394, Japan.
- Laboratory for Genetic Code, Department of Life and Medical Sciences, Doshisha University, Kyotanabe, Kyoto, Japan.
| |
Collapse
|
9
|
Liu X, Xu C, Xiao W, Yan N. Unravelling the role of NFE2L1 in stress responses and related diseases. Redox Biol 2023; 65:102819. [PMID: 37473701 PMCID: PMC10404558 DOI: 10.1016/j.redox.2023.102819] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2023] [Revised: 07/02/2023] [Accepted: 07/13/2023] [Indexed: 07/22/2023] Open
Abstract
The nuclear factor erythroid 2 (NF-E2)-related factor 1 (NFE2L1, also known as Nrf1) is a highly conserved transcription factor that belongs to the CNC-bZIP subfamily. Its significance lies in its control over redox balance, proteasome activity, and organ integrity. Stress responses encompass a series of compensatory adaptations utilized by cells and organisms to cope with extracellular or intracellular stress initiated by stressful stimuli. Recently, extensive evidence has demonstrated that NFE2L1 plays a crucial role in cellular stress adaptation by 1) responding to oxidative stress through the induction of antioxidative responses, and 2) addressing proteotoxic stress or endoplasmic reticulum (ER) stress by regulating the ubiquitin-proteasome system (UPS), unfolded protein response (UPR), and ER-associated degradation (ERAD). It is worth noting that NFE2L1 serves as a core factor in proteotoxic stress adaptation, which has been extensively studied in cancer and neurodegeneration associated with enhanced proteasomal stress. In these contexts, utilization of NFE2L1 inhibitors to attenuate proteasome "bounce-back" response holds tremendous potential for enhancing the efficacy of proteasome inhibitors. Additionally, abnormal stress adaptations of NFE2L1 and disturbances in redox and protein homeostasis contribute to the pathophysiological complications of cardiovascular diseases, inflammatory diseases, and autoimmune diseases. Therefore, a comprehensive exploration of the molecular basis of NFE2L1 and NFE2L1-mediated diseases related to stress responses would not only facilitate the identification of novel diagnostic and prognostic indicators but also enable the identification of specific therapeutic targets for NFE2L1-related diseases.
Collapse
Affiliation(s)
- Xingzhu Liu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Chang Xu
- Queen Mary College, Nanchang University, Nanchang, Jiangxi, 330031, China; School of Biological and Biomedical Sciences, Queen Mary University of London, London, United Kingdom
| | - Wanglong Xiao
- Department of Liver Surgery, Renji Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, 200127, China
| | - Nianlong Yan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Science, Nanchang University, Nanchang, Jiangxi, 330006, China.
| |
Collapse
|
10
|
Ishii K, Hido M, Sakamura M, Virgona N, Yano T. α-Tocotrienol and Redox-Silent Analogs of Vitamin E Enhances Bortezomib Sensitivity in Solid Cancer Cells through Modulation of NFE2L1. Int J Mol Sci 2023; 24:ijms24119382. [PMID: 37298331 DOI: 10.3390/ijms24119382] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2023] [Revised: 05/23/2023] [Accepted: 05/24/2023] [Indexed: 06/12/2023] Open
Abstract
Proteasome inhibitors (PIs) have emerged as an attractive novel cancer therapy. However, most solid cancers are seemingly resistant to PIs. The activation of transcription factor Nuclear factor erythroid 2 related factor-1 (NFE2L1) has been characterized as a potential resistance response to protect and restore proteasome activity in cancer cells. In this study, we demonstrated that α-Tocotrienol (T3) and redox-silent analogs of vitamin E (TOS, T3E) enhanced the sensitivity of bortezomib (BTZ), a proteasome inhibitor, in solid cancers through modulation of NFE2L1. In BTZ treatment, all of T3, TOS, and T3E inhibited an increase in the protein levels of NFE2L1, the expression levels of proteasome-related proteins, as well as the recovery of proteasome activity. Moreover, the combination of one of T3, TOS, or T3E and BTZ induced a significant decrease in cell viability in solid cancer cell lines. These findings suggested that the inactivation of NFE2L1 by T3, TOS, and T3E is essential to potentiate the cytotoxic effect of the proteasome inhibitor, BTZ, in solid cancers.
Collapse
Affiliation(s)
- Kyota Ishii
- Laboratory of Molecular Bromacology, Graduate School of Sports Health, Toyo University, Akabane City 115-8650, Japan
| | - Mayuko Hido
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura 374-0193, Japan
| | - Misaki Sakamura
- Department of Food and Nutritional Sciences, Faculty of Food and Nutritional Sciences, Toyo University, Itakura 374-0193, Japan
| | - Nantiga Virgona
- Research Institute of Life Innovation, Toyo University, Akabane City 115-8650, Japan
| | - Tomohiro Yano
- Research Institute of Life Innovation, Toyo University, Akabane City 115-8650, Japan
| |
Collapse
|