1
|
Jia W, Yuan J, Zhang J, Li S, Lin W, Cheng B. Bioactive sphingolipids as emerging targets for signal transduction in cancer development. Biochim Biophys Acta Rev Cancer 2024; 1879:189176. [PMID: 39233263 DOI: 10.1016/j.bbcan.2024.189176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 08/28/2024] [Accepted: 08/28/2024] [Indexed: 09/06/2024]
Abstract
Sphingolipids, crucial components of cellular membranes, play a vital role in maintaining cellular structure and signaling integrity. Disruptions in sphingolipid metabolism are increasingly implicated in cancer development. Key bioactive sphingolipids, such as ceramides, sphingosine-1-phosphate (S1P), ceramide-1-phosphate (C1P), and glycosphingolipids, profoundly impact tumor biology. They influence the behavior of tumor cells, stromal cells, and immune cells, affecting tumor aggressiveness, angiogenesis, immune modulation, and extracellular matrix remodeling. Furthermore, abnormal expression of sphingolipids and their metabolizing enzymes modulates the secretion of tumor-derived extracellular vesicles (TDEs), which are key players in creating an immunosuppressive tumor microenvironment, remodeling the extracellular matrix, and facilitating oncogenic signaling within in situ tumors and distant pre-metastatic niches (PMNs). Understanding the role of sphingolipids in the biogenesis of tumor-derived extracellular vesicles (TDEs) and their bioactive contents can pave the way for new biomarkers in cancer diagnosis and prognosis, ultimately enhancing comprehensive tumor treatment strategies.
Collapse
Affiliation(s)
- Wentao Jia
- Department of General Practice, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China
| | - Jiaying Yuan
- Department of Pulmonary and Critical Care Medicine, Tongji Hospital, School of Medicine, Tongji University, Shanghai 200065, China
| | - Jinbo Zhang
- Department of Pharmacy, Tianjin Rehabilitation and Recuperation Center, Joint Logistics Support Force, Tianjin 300000, China
| | - Shu Li
- Department of Gastroenterology, Baoshan Hospital of Integrated Traditional Chinese and Western Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 201900, China
| | - Wanfu Lin
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| | - Binbin Cheng
- Oncology Department of Traditional Chinese Medicine, The First Affiliated Hospital of Naval Medical University, Shanghai 200433, China; Faculty of Traditional Chinese Medicine, Naval Medical University, Shanghai 200043, China.
| |
Collapse
|
2
|
Zhou M, Li R, Hua H, Dai Y, Yin Z, Li L, Zeng J, Yang M, Zhao J, Tan R. The role of tetrahydrocurcumin in disease prevention and treatment. Food Funct 2024; 15:6798-6824. [PMID: 38836693 DOI: 10.1039/d3fo05739a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/06/2024]
Abstract
In recent decades, natural compounds derived from herbal medicine or dietary sources have played important roles in prevention and treatment of various diseases and have attracted more and more attention. Curcumin, extracted from the Curcumae Longae Rhizoma and widely used as food spice and coloring agent, has been proven to possess high pharmacological value. However, the pharmacological application of curcumin is limited due to its poor systemic bioavailability. As a major active metabolite of curcumin, tetrahydrocurcumin (THC) has higher bioavailability and stability than curcumin. Increasing evidence confirmed that THC had a wide range of biological activities and significant treatment effects on diseases. In this paper, we reviewed the research progress on the biological activities and therapeutic potential of THC on different diseases such as neurological disorders, metabolic syndromes, cancers, and inflammatory diseases. The extensive pharmacological effects of THC involve the modulation of various signaling transduction pathways including MAPK, JAK/STAT, NF-κB, Nrf2, PI3K/Akt/mTOR, AMPK, Wnt/β-catenin. In addition, the pharmacokinetics, drug combination and toxicology of THC were discussed, thus providing scientific basis for the safe application of THC and the development of its dietary supplements and drugs.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Rui Li
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, China
| | - Hua Hua
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Ying Dai
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Jin Zeng
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, China
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| | - Junning Zhao
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
- National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan Province, State Key Laboratory of Quality Evaluation of Traditional Chinese Medicine, Sichuan Engineering Technology Research Center of Genuine Regional Drug, Sichuan Provincial Engineering Research Center of Formation Principle and Quality Evaluation of Genuine Medicinal Materials, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, China.
| |
Collapse
|
3
|
Xu X, Li S, Wang T, Zhen P, Wei Q, Yu F, Tong J. Mitigation of myocardial ischemia/reperfusion-induced chronic heart failure via Shexiang Baoxin Pill-mediated regulation of the S1PR1 signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2024; 128:155390. [PMID: 38569296 DOI: 10.1016/j.phymed.2024.155390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 01/12/2024] [Accepted: 01/24/2024] [Indexed: 04/05/2024]
Abstract
BACKGROUND Well-defined and effective pharmacological interventions for clinical management of myocardial ischemia/reperfusion (MI/R) injury are currently unavailable. Shexiang Baoxin Pill (SBP), a traditional Chinese medicine Previous research on SBP has been confined to single-target treatments for MI/R injury, lacking a comprehensive examination of various aspects of MI/R injury and a thorough exploration of its underlying mechanisms. PURPOSE This study aimed to investigate the therapeutic potential of SBP for MI/R injury and its preventive effects on consequent chronic heart failure (CHF). Furthermore, we elucidated the specific mechanisms involved, contributing valuable insights into the potential pharmacological interventions for the clinical treatment of MI/R injury. METHODS We conducted a comprehensive identification of SBP components using high-performance liquid chromatography. Subsequently, we performed a network pharmacology analysis based on the identification results, elucidating the key genes influenced by SBP. Thereafter, through bioinformatics analysis of the key genes and validation through mRNA and protein assays, we ultimately determined the centralized upstream targets. Lastly, we conducted in vitro experiments using myocardial and endothelial cells to elucidate and validate potential underlying mechanisms. RESULTS SBP can effectively mitigate cell apoptosis, oxidative stress, and inflammation, as well as promote vascular regeneration following MI/R, resulting in improved cardiac function and reduced CHF risk. Mechanistically, SBP treatment upregulates sphingosine-1-phosphate receptor 1 (S1PR1) expression and activates the S1PR1 signaling pathway, thereby regulating the expression of key molecules, including phosphorylated Protein Kinase B (AKT), phosphorylated signal transducer and activator of transcription 3, epidermal growth factor receptor, vascular endothelial growth factor A, tumor necrosis factor-α, and p53. CONCLUSION This study elucidated the protective role of SBP in MI/R injury and its potential to reduce the risk of CHF. Furthermore, by integrating downstream effector proteins affected by SBP, this research identified the upstream effector protein S1PR1, enhancing our understanding of the pharmacological characteristics and mechanisms of action of SBP. The significance of this study lies in providing compelling evidence for the use of SBP as a traditional Chinese medicine for MI/R injury and consequent CHF prevention.
Collapse
Affiliation(s)
- Xuan Xu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Shengnan Li
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Tao Wang
- Department of Cardiology, The First Affiliated Hospital of Soochow University, 899 Pinghai Road, Suzhou 215006, PR China
| | - Penghao Zhen
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China
| | - Qin Wei
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China
| | - Fuchao Yu
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China.
| | - Jiayi Tong
- Department of Cardiology, Zhongda Hospital Affiliated to Southeast University, 87 Dingjiaqiao, Nanjing 210096, PR China; School of medicine, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
4
|
Jia L, Zhu S, Zhu M, Nie R, Huang L, Xu S, Luo Y, Su H, Huang S, Tan Q. Celastrol inhibits angiogenesis and the biological processes of MDA-MB-231 cells via the DEGS1/S1P signaling pathway. Biol Chem 2024; 405:267-281. [PMID: 38081222 DOI: 10.1515/hsz-2023-0324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 11/25/2023] [Indexed: 04/02/2024]
Abstract
Celastrol (Cel) shows potent antitumor activity in various experimental models. This study examined the relationship between Cel's antivascular and antitumor effects and sphingolipids. CCK-8 assay, transwell assay, Matrigel, PCR-array/RT-PCR/western blotting/immunohistochemistry assay, ELISA and HE staining were used to detect cell proliferation, migration and invasion, adhesion and angiogenesis, mRNA and protein expression, S1P production and tumor morphology. The results showed that Cel could inhibit proliferation, migration or invasion, adhesion and angiogenesis of human umbilical vein endothelial cells (HUVECs) and MDA-MB-231 cells by downregulating the expression of degenerative spermatocyte homolog 1 (DEGS1). Transfection experiments showed that downregulation of DEGS1 inhibited the above processes and sphingosine-1-phosphate (S1P) production of HUVECs and MDA-MB-231 cells, while upregulation of DEGS1 had the opposite effects. Coculture experiments showed that HUVECs could promote proliferation, migration and invasion of MDA-MB-231 cells through S1P/sphingosine-1-phosphate receptor (S1PR) signaling pathway, while Cel inhibited these processes in MDA-MB-231 cells induced by HUVECs. Animal experiments showed that Cel could inhibit tumor growth in nude mice. Western blotting, immunohistochemistry and ELISA assay showed that Cel downregulated the expression of DEGS1, CD146, S1PR1-3 and S1P production. These data confirm that DEGS1/S1P signaling pathway may be related to the antivascular and antitumor effects of cel.
Collapse
Affiliation(s)
- Lulu Jia
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Shengnan Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Mingfei Zhu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Rongrong Nie
- Rehabilitation Department, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Lingyue Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Siyuan Xu
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Yuqin Luo
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Huazhen Su
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Shaoyuan Huang
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
| | - Qinyou Tan
- Clinical Pharmacy & Pharmacology Research Institute, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Key Laboratory of Molecular Medicine in Liver Injury and Repair, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Laboratory of Hepatobiliary and Pancreatic Surgery, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- Guangxi Health Commission Key Laboratory of Basic Research in Sphingolipid Metabolism Related Diseases, Affiliated Hospital of Guilin Medical University, 541001 Guilin, Guangxi Province, China
- China-USA Lipids in Health and Disease Research Center, Guilin Medical University, 541001 Guilin, Guangxi Province, China
| |
Collapse
|
5
|
Yao X, Liu Y, Mao M, Yang L, Zhan Q, Xiao J. Calorie restriction mimetic, resveratrol, attenuates hepatic ischemia and reperfusion injury through enhancing efferocytosis of macrophages via AMPK/STAT3/S1PR1 pathway. J Nutr Biochem 2024; 126:109587. [PMID: 38262562 DOI: 10.1016/j.jnutbio.2024.109587] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Revised: 01/09/2024] [Accepted: 01/17/2024] [Indexed: 01/25/2024]
Abstract
Calorie restriction (CR) mimetic, resveratrol (RSV), has the capacity of promoting phagocytosis. However, its role in hepatic ischemia and reperfusion injury (HIRI) remains poorly understood. This study aimed to investigate the effect of RSV on alleviating HIRI and explore the underlying mechanisms. RSV was intraperitoneally injected in mice HIRI model, while RSV was co-incubated with culture medium for 24 h in RAW 264.7 cells and kupffer cells. Macrophage efferocytosis was assessed by immunostaining of PI and F4/80. The clearance of apoptotic neutrophils in the liver was determined by immunostaining of Ly6-G and cleaved-caspase-3. HE staining, Suzuki's score, serum levels of ALT, AST, TNF-α and IL-1β were analyzed to evaluate HIRI. The efferocytosis inhibitor, Cytochalasin D, was utilized to investigate the effect of RSV on HIRI. Western blot was employed to measure the levels of AMPKα, phospho-AMPKα, STAT3, phospho-STAT3 and S1PR1. SiSTAT3 and inhibitors targeting AMPK, STAT3 and S1PR1, respectively, were used to confirm the involvement of AMPK/STAT3/S1PR1 pathway in RSV-mediated efferocytosis and HIRI. RSV facilitated the clearance of apoptotic neutrophils and attenuated HIRI, which was impeded by Cytochalasin D. RSV boosted macrophage efferocytosis by up-regulating the levels of phospho-AMPKα, phospho-STAT3 and S1PR1, which was reversed by AMPK, STAT3 and S1PR1 inhibitors, respectively. Inhibition of STAT3 suppressed RSV-induced clearance of apoptotic neutrophils and exacerbated HIRI. CR mimetic, RSV, alleviates HIRI by promoting macrophages efferocytosis through AMPK/STAT3/S1PR1 pathway, providing valuable insights into the mechanisms underlying the protective effects of CR on attenuating HIRI.
Collapse
Affiliation(s)
- Xueya Yao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Yingxiang Liu
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Menghan Mao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China
| | - Liqun Yang
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Qionghui Zhan
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| | - Jie Xiao
- Department of Anesthesiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China; Key Laboratory of Anesthesiology (Shanghai Jiao Tong University), Ministry of Education, Shanghai, China.
| |
Collapse
|
6
|
Mu J, Lam SM, Shui G. Emerging roles and therapeutic potentials of sphingolipids in pathophysiology: emphasis on fatty acyl heterogeneity. J Genet Genomics 2024; 51:268-278. [PMID: 37364711 DOI: 10.1016/j.jgg.2023.06.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 05/29/2023] [Accepted: 06/15/2023] [Indexed: 06/28/2023]
Abstract
Sphingolipids not only exert structural roles in cellular membranes, but also act as signaling molecules in various physiological and pathological processes. A myriad of studies have shown that abnormal levels of sphingolipids and their metabolic enzymes are associated with a variety of human diseases. Moreover, blood sphingolipids can also be used as biomarkers for disease diagnosis. This review summarizes the biosynthesis, metabolism, and pathological roles of sphingolipids, with emphasis on the biosynthesis of ceramide, the precursor for the biosynthesis of complex sphingolipids with different fatty acyl chains. The possibility of using sphingolipids for disease prediction, diagnosis, and treatment is also discussed. Targeting endogenous ceramides and complex sphingolipids along with their specific fatty acyl chain to promote future drug development will also be discussed.
Collapse
Affiliation(s)
- Jinming Mu
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China
| | - Sin Man Lam
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; Lipidall Technologies Company Limited, Changzhou, Jiangsu 213000, China.
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
7
|
Nojima H, Shimizu H, Murakami T, Shuto K, Koda K. Critical Roles of the Sphingolipid Metabolic Pathway in Liver Regeneration, Hepatocellular Carcinoma Progression and Therapy. Cancers (Basel) 2024; 16:850. [PMID: 38473211 DOI: 10.3390/cancers16050850] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 02/14/2024] [Accepted: 02/19/2024] [Indexed: 03/14/2024] Open
Abstract
The sphingolipid metabolic pathway, an important signaling pathway, plays a crucial role in various physiological processes including cell proliferation, survival, apoptosis, and immune regulation. The liver has the unique ability to regenerate using bioactive lipid mediators involving multiple sphingolipids, including ceramide and sphingosine 1-phosphate (S1P). Dysregulation of the balance between sphingomyelin, ceramide, and S1P has been implicated in the regulation of liver regeneration and diseases, including liver fibrosis and hepatocellular carcinoma (HCC). Understanding and modulating this balance may have therapeutic implications for tumor proliferation, progression, and metastasis in HCC. For cancer therapy, several inhibitors and activators of sphingolipid signaling, including ABC294640, SKI-II, and FTY720, have been discussed. Here, we elucidate the critical roles of the sphingolipid pathway in the regulation of liver regeneration, fibrosis, and HCC. Regulation of sphingolipids and their corresponding enzymes may considerably influence new insights into therapies for various liver disorders and diseases.
Collapse
Affiliation(s)
- Hiroyuki Nojima
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Hiroaki Shimizu
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Takashi Murakami
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Kiyohiko Shuto
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| | - Keiji Koda
- Department of Surgery, Teikyo University Chiba Medical Center, 3426-3, Anesaki, Ichihara, Chiba 299-0011, Japan
| |
Collapse
|
8
|
Yao X, Zhao Z, Zhang W, Liu R, Ni T, Cui B, Lei Y, Du J, Ai D, Jiang H, Lv H, Li X. Specialized Retinal Endothelial Cells Modulate Blood-Retina Barrier in Diabetic Retinopathy. Diabetes 2024; 73:225-236. [PMID: 37976214 DOI: 10.2337/db23-0368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Endothelial cells (EC) play essential roles in retinal vascular homeostasis. This study aimed to characterize retinal EC heterogeneity and functional diversity using single-cell RNA sequencing. Systematic analysis of cellular compositions and cell-cell interaction networks identified a unique EC cluster with high inflammatory gene expression in diabetic retina; sphingolipid metabolism is a prominent aspect correlated with changes in retinal function. Among sphingolipid-related genes, alkaline ceramidase 2 (ACER2) showed the most significant increase. Plasma samples of patients with nonproliferative diabetic retinopathy (NPDR) with diabetic macular edema (DME) or without DME (NDME) and active proliferative DR (PDR) were collected for mass spectrometry analysis. Metabolomic profiling revealed that the ceramide levels were significantly elevated in NPDR-NDME/DME and further increased in active PDR compared with control patients. In vitro analyses showed that ACER2 overexpression retarded endothelial barrier breakdown induced by ceramide, while silencing of ACER2 further disrupted the injury. Moreover, intravitreal injection of the recombinant ACER2 adeno-associated virus rescued diabetes-induced vessel leakiness, inflammatory response, and neurovascular disease in diabetic mouse models. Together, this study revealed a new diabetes-specific retinal EC population and a negative feedback regulation pathway that reduces ceramide content and endothelial dysfunction by upregulating ACER2 expression. These findings provide insights into cell-type targeted interventions for diabetic retinopathy. ARTICLE HIGHLIGHTS
Collapse
Affiliation(s)
- Xuyang Yao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Ziyan Zhao
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Wenhui Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Ruixin Liu
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Tianwen Ni
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| | - Bohao Cui
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Yi Lei
- Department of Ophthalmology, Tianjin Medical University General Hospital, Tianjin, China
| | - Jie Du
- Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ding Ai
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Hongfeng Jiang
- Experimental Research Center, Beijing Institute of Heart Lung and Blood Vessel Disease, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Huizhen Lv
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, China
| | - Xiaorong Li
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Centre for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin Medical University, Tianjin, China
| |
Collapse
|
9
|
Bai X, Wang R, Hu X, Dai Q, Guo J, Cao T, Du W, Cheng Y, Xia S, Wang D, Yang L, Teng L, Chen D, Liu Y. Two-Dimensional Biodegradable Black Phosphorus Nanosheets Promote Large Full-Thickness Wound Healing through In Situ Regeneration Therapy. ACS NANO 2024; 18:3553-3574. [PMID: 38226901 PMCID: PMC10832999 DOI: 10.1021/acsnano.3c11177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2023] [Revised: 12/16/2023] [Accepted: 12/18/2023] [Indexed: 01/17/2024]
Abstract
Large full-thickness skin lesions have been one of the most challenging clinical problems in plastic surgery repair and reconstruction. To achieve in situ skin regeneration and perfect clinical outcomes, we must address two significant obstacles: angiogenesis deficiency and inflammatory dysfunction. Recently, black phosphorus has shown great promise in wound healing. However, few studies have explored the bio-effects of BP to promote in situ skin regeneration based on its nanoproperties. Here, to investigate whether black phosphorus nanosheets have positive bio-effects on in situ skin repair, we verified black phosphorus nanosheets' positive effects on angiogenic and anti-inflammatory abilities in vitro. Next, the in vivo evaluation performed on the rat large full-thickness excisional wound splinting model more comprehensively showed that the positive bio-effects of black phosphorus nanosheets are multilevel in wound healing, which can effectively enhance anti-inflammatory ability, angiogenesis, collagen deposition, and skin re-epithelialization. Then, multiomics analysis was performed to explore further the mechanism of black phosphorus nanosheets' regulation of endothelial cells in depth. Molecular mechanistically, black phosphorus nanosheets activated the JAK-STAT-OAS signaling pathway to promote cellular function and mitochondrial energy metabolism in endothelial cells. This study can provide a theoretical basis for applying two-dimensional black phosphorus nanosheets as nanomedicine to achieve in situ tissue regeneration in complex human pathological microenvironments, guiding the subsequent optimization of black phosphorus.
Collapse
Affiliation(s)
- Xueshan Bai
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Renxian Wang
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
- JST
sarcopenia Research Centre, National Center for Orthopaedics, Beijing
Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan
Hospital, Capital Medical University, Beijing 100035, China
| | - Xiaohua Hu
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Qiang Dai
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Jianxun Guo
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Tongyu Cao
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Weili Du
- Department
of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yuning Cheng
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Songxia Xia
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Dingding Wang
- JST
sarcopenia Research Centre, National Center for Orthopaedics, Beijing
Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan
Hospital, Capital Medical University, Beijing 100035, China
| | - Liya Yang
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Li Teng
- Cranio-Maxillo-Facial
Surgery Department, Plastic Surgery Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100144, China
| | - Dafu Chen
- Laboratory
of Bone Tissue Engineering, Beijing Laboratory of Biomedical Materials,
National Center for Orthopaedics, Beijing Research Institute of Traumatology
and Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yajun Liu
- JST
sarcopenia Research Centre, National Center for Orthopaedics, Beijing
Research Institute of Traumatology and Orthopaedics, Beijing Jishuitan
Hospital, Capital Medical University, Beijing 100035, China
- Department
of Spine Surgery, Beijing Jishuitan Hospital, National Center for
Orthopaedics, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| |
Collapse
|
10
|
Huang X, Wang M, Zhang D, Zhang C, Liu P. Advances in Targeted Drug Resistance Associated with Dysregulation of Lipid Metabolism in Hepatocellular Carcinoma. J Hepatocell Carcinoma 2024; 11:113-129. [PMID: 38250308 PMCID: PMC10799627 DOI: 10.2147/jhc.s447578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Accepted: 12/20/2023] [Indexed: 01/23/2024] Open
Abstract
Hepatocellular carcinoma is the prevailing malignant neoplasm affecting the liver, often diagnosed at an advanced stage and associated with an unfavorable overall prognosis. Sorafenib and Lenvatinib have emerged as first-line therapeutic drugs for advanced hepatocellular carcinoma, improving the prognosis for these patients. Nevertheless, the issue of tyrosine kinase inhibitor (TKI) resistance poses a substantial obstacle in the management of advanced hepatocellular carcinoma. The pathogenesis and advancement of hepatocellular carcinoma exhibit a close association with metabolic reprogramming, yet the attention given to lipid metabolism dysregulation in hepatocellular carcinoma development remains relatively restricted. This review summarizes the potential significance and research progress of lipid metabolism dysfunction in Sorafenib and Lenvatinib resistance in hepatocellular carcinoma. Targeting hepatocellular carcinoma lipid metabolism holds promising potential as an effective strategy to overcome hepatocellular carcinoma drug resistance in the future.
Collapse
Affiliation(s)
- Xiaoju Huang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Mengmeng Wang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Dan Zhang
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| | - Chen Zhang
- Liver Transplant Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
| | - Pian Liu
- Cancer Center, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Institute of Radiation Oncology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430022, People’s Republic of China
- Hubei Key Laboratory of Precision Radiation Oncology, Wuhan, 430022, People’s Republic of China
| |
Collapse
|
11
|
Ma Y, Zhang X, Xuan B, Li D, Yin N, Ning L, Zhou YL, Yan Y, Tong T, Zhu X, Huang X, Hu M, Wang Z, Cui Z, Li H, Wang J, Fang JY, Liu R, Chen H, Hong J. Disruption of CerS6-mediated sphingolipid metabolism by FTO deficiency aggravates ulcerative colitis. Gut 2024; 73:268-281. [PMID: 37734910 DOI: 10.1136/gutjnl-2023-330009] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 09/05/2023] [Indexed: 09/23/2023]
Abstract
BACKGROUND AND AIMS Deregulation of RNA N6-methyladenosine (m6A) modification in intestinal epithelial cells (IECs) influences intestinal immune cells and leads to intestinal inflammation. We studied the function of fat mass-and obesity-associated protein (FTO), one of the m6A demethylases, in patients with ulcerative colitis (UC). METHODS We analysed colon tissues of Ftoflox/flox; Villin-cre mice and their Ftoflox/flox littermates with dextran sulfate sodium (DSS) using real-time PCR and 16s rRNA sequencing. RNA and methylated RNA immunoprecipitation sequencing were used to analyse immunocytes and IECs. Macrophages were treated with conditioned medium of FTO-knockdown MODE-K cells or sphingosine-1-phosphate (S1P) and analysed for gene expression. Liquid chromatograph mass spectrometry identified C16-ceramide. RESULTS FTO downregulation was identified in our in-house cohort and external cohorts of UC patients. Dysbiosis of gut microbiota, increased infiltration of proinflammatory macrophages, and enhanced differentiation of Th17 cells were observed in Ftoflox/flox;Villin-cre mice under DSS treatment. FTO deficiency resulted in an increase in m6A modification and a decrease in mRNA stability of CerS6, the gene encoding ceramide synthetase, leading to the downregulation of CerS6 and the accumulation of S1P in IECs. Subsequentially, the secretion of S1P by IECs triggered proinflammatory macrophages to secrete serum amyloid A protein 1/3, ultimately inducing Th17 cell differentiation. In addition, through bioinformatic analysis and experimental validation, we identified UC patients with lower FTO expression might respond better to vedolizumab treatment. CONCLUSIONS FTO downregulation promoted UC by decreasing CerS6 expression, leading to increased S1P accumulation in IECs and aggravating colitis via m6A-dependent mechanisms. Lower FTO expression in UC patients may enhance their response to vedolizumab treatment.
Collapse
Affiliation(s)
- Yanru Ma
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinyu Zhang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Baoqin Xuan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Danjie Li
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Nan Yin
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Lijun Ning
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi-Lu Zhou
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuqing Yan
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianying Tong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaoqiang Zhu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaowen Huang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Muni Hu
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhenhua Wang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhe Cui
- Department of Gastrointestinal Surgery, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Huabin Li
- Shanghai Institute of Immunology, State Key Laboratory of Systems Medicine for Cancer, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China
| | - Jiqiu Wang
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Jing-Yuan Fang
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ruixin Liu
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China. Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai National Center for Translational Medicine, Shanghai, People's Republic of China
| | - Haoyan Chen
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jie Hong
- State Key Laboratory of Systems Medicine for Cancer; Key Laboratory of Gastroenterology & Hepatology, Ministry of Health; Division of Gastroenterology and Hepatology; Shanghai Cancer Institute; Shanghai Institute of Digestive Disease; Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
12
|
Zhang J, Wang J, Li Y, Pan X, Qu J, Zhang J. A patent perspective of antiangiogenic agents. Expert Opin Ther Pat 2023; 33:821-840. [PMID: 38084667 DOI: 10.1080/13543776.2023.2294808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
INTRODUCTION Angiogenesis plays a crucial role in the development of numerous vascular structures and is involved in a variety of physiologic and pathologic processes, including psoriasis, diabetic retinopathy, and especially cancer. By obstructing the process of angiogenesis, these therapies effectively inhibit the progression of the disease. Consequently, anti-angiogenic agents were subsequently developed. AREAS COVERED This review provides a comprehensive summary of the anti-angiogenic inhibitors developed in the past five years in terms of chemical structure, biochemical/pharmacological activity and potential clinical applications. A literature search was conducted using utilizing the databases Web of Science, SciFinder and PubMed with the key word 'anti-angiogenic agents' and 'angiogenesis inhibitor.' EXPERT OPINION This is despite the fact that the concept of antiangiogenesis has been proposed for more than 50 years and angiogenesis inhibitors are extensively employed in clinical practice. However, significant challenges continue to confront them. In recent years, there has been a significant increase in the number of patents focusing on angiogenesis inhibitors. These patents aim to enhance the selectivity of drugs against VEGF/VEGFR, explore new targets to overcome drug resistance, and explore potential drug combinations, thereby expanding the therapeutic possibilities in this field.
Collapse
Affiliation(s)
- Junyu Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jin Wang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Yanchen Li
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Xiaoyan Pan
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| | - Jingkun Qu
- Department of Oncology, the Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jie Zhang
- School of Pharmacy, Health Science Center, Xi'an Jiaotong University, Xi'an, China
| |
Collapse
|
13
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. Biol Reprod 2023; 109:586-600. [PMID: 37561446 PMCID: PMC10651076 DOI: 10.1093/biolre/ioad096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/11/2023] Open
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing datasets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes, but not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature gonad.
Collapse
Affiliation(s)
- Michelle E Kossack
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Lucy Tian
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Kealyn Bowie
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| | - Jessica S Plavicki
- Pathology and Laboratory Medicine Department, Brown University, Providence, RI, USA
| |
Collapse
|
14
|
Chang YC, Liu HP, Chuang HL, Liao JW, Kao PL, Chan HL, Chen TH, Wang YC. Feline mammary carcinoma-derived extracellular vesicle promotes liver metastasis via sphingosine kinase-1-mediated premetastatic niche formation. Lab Anim Res 2023; 39:27. [PMID: 37941082 PMCID: PMC10634095 DOI: 10.1186/s42826-023-00180-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 10/26/2023] [Accepted: 11/03/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Feline mammary carcinoma (FMC) is one of the most prevalent malignancies of female cats. FMC is highly metastatic and thus leads to poor disease outcomes. Among all metastases, liver metastasis occurs in about 25% of FMC patients. However, the mechanism underlying hepatic metastasis of FMC remains largely uncharacterized. RESULTS Herein, we demonstrate that FMC-derived extracellular vesicles (FMC-EVs) promotes the liver metastasis of FMC by activating hepatic stellate cells (HSCs) to prime a hepatic premetastatic niche (PMN). Moreover, we provide evidence that sphingosine kinase 1 (SK1) delivered by FMC-EV was pivotal for the activation of HSC and the formation of hepatic PMN. Depletion of SK1 impaired cargo sorting in FMC-EV and the EV-potentiated HSC activation, and abolished hepatic colonization of FMC cells. CONCLUSIONS Taken together, our findings uncover a previously uncharacterized mechanism underlying liver-metastasis of FMC and provide new insights into prognosis and treatment of this feline malignancy.
Collapse
Affiliation(s)
- Yi-Chih Chang
- Department of Medical Laboratory Science & Biotechnology, College of Medical and Health Science, Asia University, Taichung, Taiwan
| | - Hao-Ping Liu
- Department of Veterinary Medicine, National Chung Hsing University, Taichung, Taiwan
| | - Hsiao-Li Chuang
- National Laboratory Animal Center, National Applied Research Laboratories, Taipei, Taiwan
| | - Jiunn-Wang Liao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Pei-Ling Kao
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Hsun-Lung Chan
- Veterinary Research Institute, Ministry of Agriculture, Zhunan, Taiwan
| | - Ter-Hsin Chen
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan
| | - Yu-Chih Wang
- Graduate Institute of Veterinary Pathobiology, National Chung Hsing University, 145 Xingda Rd., South Dist., Taichung, 40227, Taiwan.
| |
Collapse
|
15
|
Li J, Huang Y, Zhang Y, Liu P, Liu M, Zhang M, Wu R. S1P/S1PR signaling pathway advancements in autoimmune diseases. BIOMOLECULES & BIOMEDICINE 2023; 23:922-935. [PMID: 37504219 PMCID: PMC10655875 DOI: 10.17305/bb.2023.9082] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 07/06/2023] [Accepted: 07/06/2023] [Indexed: 07/29/2023]
Abstract
Sphingosine-1-phosphate (S1P) is a versatile sphingolipid that is generated through the phosphorylation of sphingosine by sphingosine kinase (SPHK). S1P exerts its functional effects by binding to the G protein-coupled S1P receptor (S1PR). This lipid mediator plays a pivotal role in various cellular activities. The S1P/S1PR signaling pathway is implicated in the pathogenesis of immune-mediated diseases, significantly contributing to the functioning of the immune system. It plays a crucial role in diverse physiological and pathophysiological processes, including cell survival, proliferation, migration, immune cell recruitment, synthesis of inflammatory mediators, and the formation of lymphatic and blood vessels. However, the full extent of the involvement of this signaling pathway in the development of autoimmune diseases remains to be fully elucidated. Therefore, this study aims to comprehensively review recent research on the S1P/S1PR axis in diseases related to autoimmunity.
Collapse
Affiliation(s)
- Jianbin Li
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yiping Huang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Yueqin Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Pengcheng Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Mengxia Liu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Min Zhang
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| | - Rui Wu
- Department of Rheumatology and Immunology, The First Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
16
|
Ye F, Xie L, Liang L, Zhou Z, He S, Li R, Lin L, Zhu K. Mechanisms and therapeutic strategies to combat the recurrence and progression of hepatocellular carcinoma after thermal ablation. J Interv Med 2023; 6:160-169. [PMID: 38312128 PMCID: PMC10831380 DOI: 10.1016/j.jimed.2023.10.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2023] [Revised: 10/11/2023] [Accepted: 10/11/2023] [Indexed: 02/06/2024] Open
Abstract
Thermal ablation (TA), including radiofrequency ablation (RFA) and microwave ablation (MWA), has become the main treatment for early-stage hepatocellular carcinoma (HCC) due to advantages such as safety and minimal invasiveness. However, HCC is prone to local recurrence, with more aggressive malignancies after TA closely related to TA-induced changes in epithelial-mesenchymal transition (EMT) and remodeling of the tumor microenvironment (TME). According to many studies, various components of the TME undergo complex changes after TA, such as the recruitment of innate and adaptive immune cells, the release of tumor-associated antigens (TAAs) and various cytokines, the formation of a hypoxic microenvironment, and tumor angiogenesis. Changes in the TME after TA can partly enhance the anti-tumor immune response; however, this response is weak to kill the tumor completely. Certain components of the TME can induce an immunosuppressive microenvironment through complex interactions, leading to tumor recurrence and progression. How the TME is remodeled after TA and the mechanism by which the TME promotes HCC recurrence and progression are unclear. Thus, in this review, we focused on these issues to highlight potentially effective strategies for reducing and preventing the recurrence and progression of HCC after TA.
Collapse
Affiliation(s)
| | | | | | - Zhimei Zhou
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Siqin He
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Rui Li
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Liteng Lin
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| | - Kangshun Zhu
- Laboratory of Interventional Radiology, Department of Minimally Invasive Interventional Radiology and Department of Radiology, The Second Affiliated Hospital of Guangzhou Medical University, 250 East Changgang Road, Guangzhou, Guangdong Province, 510260, China
| |
Collapse
|
17
|
Ma L, Zhang S, Liang Q, Huang W, Wang H, Pan E, Xu P, Zhang S, Tao F, Tang J, Qing R. CrMP-Sol database: classification, bioinformatic analyses and comparison of cancer-related membrane proteins and their water-soluble variant designs. BMC Bioinformatics 2023; 24:360. [PMID: 37743473 PMCID: PMC10518928 DOI: 10.1186/s12859-023-05477-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Accepted: 09/12/2023] [Indexed: 09/26/2023] Open
Abstract
Membrane proteins are critical mediators for tumor progression and present enormous therapeutic potentials. Although gene profiling can identify their cancer-specific signatures, systematic correlations between protein functions and tumor-related mechanisms are still unclear. We present here the CrMP-Sol database ( https://bio-gateway.aigene.org.cn/g/CrMP ), which aims to breach the gap between the two. Machine learning was used to extract key functional descriptions for protein visualization in the 3D-space, where spatial distributions provide function-based predictive connections between proteins and cancer types. CrMP-Sol also presents QTY-enabled water-soluble designs to facilitate native membrane protein studies despite natural hydrophobicity. Five examples with varying transmembrane helices in different categories were used to demonstrate the feasibility. Native and redesigned proteins exhibited highly similar characteristics, predicted structures and binding pockets, and slightly different docking poses against known ligands, although task-specific designs are still required for proteins more susceptible to internal hydrogen bond formations. The database can accelerate therapeutic developments and biotechnological applications of cancer-related membrane proteins.
Collapse
Affiliation(s)
- Lina Ma
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Sitao Zhang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Qi Liang
- Zhejiang Lab, Research Center for Intelligent Computing Platforms, Hangzhou, 311121, Zhejiang, China
| | - Wenting Huang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Hui Wang
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Emily Pan
- The Lawrenceville School, 2500 Main Street, Lawrenceville, NJ, 08648, USA
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Shuguang Zhang
- Media Lab, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA, 02139, USA
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| | - Jin Tang
- Zhejiang Lab, Research Center for Intelligent Computing Platforms, Hangzhou, 311121, Zhejiang, China.
| | - Rui Qing
- State Key Laboratory of Microbial Metabolism, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, China.
| |
Collapse
|
18
|
Kossack ME, Tian L, Bowie K, Plavicki JS. Defining the cellular complexity of the zebrafish bipotential gonad. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.01.18.524593. [PMID: 36712047 PMCID: PMC9882255 DOI: 10.1101/2023.01.18.524593] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Zebrafish are routinely used to model reproductive development, function, and disease, yet we still lack a clear understanding of the fundamental steps that occur during early bipotential gonad development, including when endothelial cells, pericytes, and macrophage cells arrive at the bipotential gonad to support gonad growth and differentiation. Here, we use a combination of transgenic reporters and single-cell sequencing analyses to define the arrival of different critical cell types to the larval zebrafish gonad. We determined that blood initially reaches the gonad via a vessel formed from the swim bladder artery, which we have termed the gonadal artery. We find that vascular and lymphatic development occurs concurrently in the bipotential zebrafish gonad and our data suggest that similar to what has been observed in developing zebrafish embryos, lymphatic endothelial cells in the gonad may be derived from vascular endothelial cells. We mined preexisting sequencing data sets to determine whether ovarian pericytes had unique gene expression signatures. We identified 215 genes that were uniquely expressed in ovarian pericytes that were not expressed in larval pericytes. Similar to what has been shown in the mouse ovary, our data suggest that pdgfrb+ pericytes may support the migration of endothelial tip cells during ovarian angiogenesis. Using a macrophage-driven photoconvertible protein, we found that macrophage established a nascent resident population as early as 12 dpf and can be observed removing cellular material during gonadal differentiation. This foundational information demonstrates that the early bipotential gonad contains complex cellular interactions, which likely shape the health and function of the mature, differentiated gonad.
Collapse
|
19
|
Feng Y, Luo S, Fan D, Guo X, Ma S. The role of vascular endothelial cells in tumor metastasis. Acta Histochem 2023; 125:152070. [PMID: 37348328 DOI: 10.1016/j.acthis.2023.152070] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 06/24/2023]
Abstract
Vascular endothelial cells (VECs) are an integral component of the inner lining of blood vessels, and their functions are essential for the proper functioning of the vascular system. The tight junctions formed by VECs act as a significant barrier to the intravasation and extravasation of tumor cells (TCs). In addition to that, the proliferation, activation, and migration of VECs play a vital role in the growth of new blood vessels, a process known as tumor angiogenesis, which is closely related to the malignant progression of tumors. However, during tumor progression, VECs undergo endothelial-to-mesenchymal transition (EndMT), which further promotes tumor progression. Furthermore, VECs act as the first line of defense against effector immune cells and help prevent immune cells from infiltrating into tumor tissues. VECs also secrete various cytokines that can contribute to regulating the stemness of tumor stem cells. Thus, it has been increasingly recognized that dysfunction of VECs is one of the key driving forces behind tumor metastasis, and therapeutic strategies targeting VECs have the potential to be an effective means of antitumor therapy. This review aims to present a comprehensive overview of the role and mechanisms of VECs in regulating tumor progression and metastasis, providing insights into the possibilities for the development of novel antitumor therapies that target VECs.
Collapse
Affiliation(s)
- Ying Feng
- Department of Critical Care Medicine, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China
| | - Shan Luo
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Dandan Fan
- Hubei Key Laboratory of Embryonic Stem Cell Research, School of Biomedical Engineering, Hubei University of Medicine, Shiyan, Hubei 442000, China
| | - Xingrong Guo
- Department of Critical Care Medicine, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| | - Shinan Ma
- Department of Critical Care Medicine, Hubei Clinical Research Center for Umbilical Cord Blood Hematopoietic Stem Cells, Taihe Hospital, Hubei University of Medicine, Shiyan 442000, Hubei, China; Hubei Key Laboratory of Embryonic Stem Cell Research, School of Basic Medical Sciences, Taihe Hospital, Hubei University of Medicine, Shiyan, Hubei 442000, China.
| |
Collapse
|
20
|
Zhou F, Sun J, Ye L, Jiang T, Li W, Su C, Ren S, Wu F, Zhou C, Gao G. Fibronectin promotes tumor angiogenesis and progression of non-small-cell lung cancer by elevating WISP3 expression via FAK/MAPK/ HIF-1α axis and activating wnt signaling pathway. Exp Hematol Oncol 2023; 12:61. [PMID: 37468964 DOI: 10.1186/s40164-023-00419-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 06/02/2023] [Indexed: 07/21/2023] Open
Abstract
BACKGROUND Fibronectin, an extracellular matrix protein, has been reported to be associated with heterogeneous cancer stemness, angiogenesis and progression in multiple cancer types. However, the roles and the underlying mechanism of fibronectin on the progression NSCLC need to be further elucidated. METHODS Public dataset such as Kaplan-Meier Plotter was used to determine the prognostic significance of genes. The correlation of different protein expression in clinical and xenograft tissues was tested by immunohistochemistry experiment. Both in vitro and in vivo experiments were performed to determine the role of fibronectin on the tumor growth, metastasis, and angiogenesis in NSCLC. The activation of key signaling pathway under fibronectin was examined by WB assay. RNA-seq was applicated to screening the target gene of fibronectin. Rescue experiment was performed to confirm the role of target gene in fibronectin-mediated function in NSCLC. Finally, luciferase and CHIP assays were used to elucidate the mechanism by which fibronectin regulated the target gene. RESULTS Our results revealed that fibronectin was up-regulated in cancer tissues compared with the normal ones in NSCLC patients. Dish- coated fibronectin enhanced the tumor growth, metastasis, and angiogenesis of NSCLC in vitro and in vivo by promoting EMT and maintaining stemness of NSCLC cells. As expected, fibronectin activated FAK and its downstream MAPK/ERK signaling pathway. WISP3 was screened as a potential target gene of fibronectin. Interestingly, WISP3 effectively activated Wnt signaling pathway, and knockdown of WISP3 effectively blocked the influence of fibronectin on the migration, invasion and vascular structure formation potential of NSCLC cells. Our data also manifested that fibronectin elevated the transcription of WISP3 gene by promoting the binding of HIF-1α to the promoter region of WISP3 in NSCLC cells. CONCLUSIONS Our findings sketched the outline of the route for fibronectin exert its role in NSCLC, in which fibronectin activated downstream FAK and MAPK/ERK signaling pathways, and mediated the accumulation of HIF-1α. Then, HIF-1α enabled the transcription of WISP3, and subsequently promoted the activation of Wnt signaling pathway, and finally enhanced the tumor growth, metastasis, and angiogenesis in NSCLC.
Collapse
Affiliation(s)
- Fei Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Jianguo Sun
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, Zhejiang, P R China
| | - Lingyun Ye
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Tao Jiang
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Wei Li
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Chunxia Su
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Shengxiang Ren
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China
| | - Fengying Wu
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Caicun Zhou
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| | - Guanghui Gao
- Department of Oncology, Shanghai Pulmonary Hospital & Thoracic Cancer Institute, Tongji University School of Medicine, Shanghai, China.
| |
Collapse
|
21
|
Alqurashi YE, Al-Hetty HRAK, Ramaiah P, Fazaa AH, Jalil AT, Alsaikhan F, Gupta J, Ramírez-Coronel AA, Tayyib NA, Peng H. Harnessing function of EMT in hepatocellular carcinoma: From biological view to nanotechnological standpoint. ENVIRONMENTAL RESEARCH 2023; 227:115683. [PMID: 36933639 DOI: 10.1016/j.envres.2023.115683] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 03/08/2023] [Accepted: 03/11/2023] [Indexed: 05/08/2023]
Abstract
Management of cancer metastasis has been associated with remarkable reduction in progression of cancer cells and improving survival rate of patients. Since 90% of mortality are due to cancer metastasis, its suppression can improve ability in cancer fighting. The EMT has been an underlying cause in increasing cancer migration and it is followed by mesenchymal transformation of epithelial cells. HCC is the predominant kind of liver tumor threatening life of many people around the world with poor prognosis. Increasing patient prognosis can be obtained via inhibiting tumor metastasis. HCC metastasis modulation by EMT and HCC therapy by nanoparticles are discussed here. First of all, EMT happens during progression and advanced stages of HCC and therefore, its inhibition can reduce tumor malignancy. Moreover, anti-cancer compounds including all-trans retinoic acid and plumbaging, among others, have been considered as inhibitors of EMT. The EMT association with chemoresistance has been evaluated. Moreover, ZEB1/2, TGF-β, Snail and Twist are EMT modulators in HCC and enhancing cancer invasion. Therefore, EMT mechanism and related molecular mechanisms in HCC are evaluated. The treatment of HCC has not been only emphasized on targeting molecular pathways with pharmacological compounds and since drugs have low bioavailability, their targeted delivery by nanoparticles promotes HCC elimination. Moreover, nanoparticle-mediated phototherapy impairs tumorigenesis in HCC by triggering cell death. Metastasis of HCC and even EMT mechanism can be suppressed by cargo-loaded nanoparticles.
Collapse
Affiliation(s)
- Yaser E Alqurashi
- Department of Biology, College of Science Al-zulfi, Majmaah University, Al-Majmaah, 11952, Saudi Arabia
| | | | | | | | - Abduladheem Turki Jalil
- Medical Laboratories Techniques Department, Al-Mustaqbal University College, Babylon, Hilla, 51001, Iraq
| | - Fahad Alsaikhan
- College of Pharmacy, Prince Sattam Bin Abdulaziz University, Alkharj, Saudi Arabia.
| | - Jitendra Gupta
- Institute of Pharmaceutical Research, GLA University, Mathura, Pin Code 281406, U. P., India
| | - Andrés Alexis Ramírez-Coronel
- Azogues Campus Nursing Career, Health and Behavior Research Group (HBR), Psychometry and Ethology Laboratory, Catholic University of Cuenca, Ecuador; Epidemiology and Biostatistics Research Group, CES University, Colombia; Educational Statistics Research Group (GIEE), National University of Education, Ecuador
| | - Nahla A Tayyib
- Faculty of Nursing, Umm Al- Qura University, Makkah, Saudi Arabia
| | - Hu Peng
- Department of Emergency, Shanghai Tenth People's Hospital, Tongji University, Shanghai, 200072, China.
| |
Collapse
|
22
|
Wang N, Li JY, Zeng B, Chen GL. Sphingosine-1-Phosphate Signaling in Cardiovascular Diseases. Biomolecules 2023; 13:biom13050818. [PMID: 37238688 DOI: 10.3390/biom13050818] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 05/07/2023] [Accepted: 05/10/2023] [Indexed: 05/28/2023] Open
Abstract
Sphingosine-1-phosphate (S1P) is an important sphingolipid molecule involved in regulating cardiovascular functions in physiological and pathological conditions by binding and activating the three G protein-coupled receptors (S1PR1, S1PR2, and S1PR3) expressed in endothelial and smooth muscle cells, as well as cardiomyocytes and fibroblasts. It exerts its actions through various downstream signaling pathways mediating cell proliferation, migration, differentiation, and apoptosis. S1P is essential for the development of the cardiovascular system, and abnormal S1P content in the circulation is involved in the pathogenesis of cardiovascular disorders. This article reviews the effects of S1P on cardiovascular function and signaling mechanisms in different cell types in the heart and blood vessels under diseased conditions. Finally, we look forward to more clinical findings with approved S1PR modulators and the development of S1P-based therapies for cardiovascular diseases.
Collapse
Affiliation(s)
- Na Wang
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Jing-Yi Li
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Bo Zeng
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| | - Gui-Lan Chen
- Key Laboratory of Medical Electrophysiology, Ministry of Education & Medical Electrophysiological Key Laboratory of Sichuan Province, Institute of Cardiovascular Research, Southwest Medical University, Luzhou 646000, China
| |
Collapse
|
23
|
Feng XC, Liu FC, Chen WY, Du J, Liu H. Lipid metabolism of hepatocellular carcinoma impacts targeted therapy and immunotherapy. World J Gastrointest Oncol 2023; 15:617-631. [PMID: 37123054 PMCID: PMC10134209 DOI: 10.4251/wjgo.v15.i4.617] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 01/09/2023] [Accepted: 03/08/2023] [Indexed: 04/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is a common malignant tumor that affecting many people's lives globally. The common risk factors for HCC include being overweight and obese. The liver is the center of lipid metabolism, synthesizing most cholesterol and fatty acids. Abnormal lipid metabolism is a significant feature of metabolic reprogramming in HCC and affects the prognosis of HCC patients by regulating inflammatory responses and changing the immune microenvironment. Targeted therapy and immunotherapy are being explored as the primary treatment strategies for HCC patients with unresectable tumors. Here, we detail the specific changes of lipid metabolism in HCC and its impact on both these therapies for HCC. HCC treatment strategies aimed at targeting lipid metabolism and how to integrate them with targeted therapy or immunotherapy rationally are also presented.
Collapse
Affiliation(s)
- Xiao-Chen Feng
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Fu-Chen Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Wu-Yu Chen
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Jin Du
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| | - Hui Liu
- The Third Department of Hepatic Surgery, Eastern Hepatobiliary Surgery Hospital, Shanghai 200082, China
| |
Collapse
|
24
|
Pei S, Zhang P, Yang L, Kang Y, Chen H, Zhao S, Dai Y, Zheng M, Xia Y, Xie H. Exploring the role of sphingolipid-related genes in clinical outcomes of breast cancer. Front Immunol 2023; 14:1116839. [PMID: 36860848 PMCID: PMC9968761 DOI: 10.3389/fimmu.2023.1116839] [Citation(s) in RCA: 20] [Impact Index Per Article: 20.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Accepted: 01/30/2023] [Indexed: 02/15/2023] Open
Abstract
Background Despite tremendous advances in cancer research, breast cancer (BC) remains a major health concern and is the most common cancer affecting women worldwide. Breast cancer is a highly heterogeneous cancer with potentially aggressive and complex biology, and precision treatment for specific subtypes may improve survival in breast cancer patients. Sphingolipids are important components of lipids that play a key role in the growth and death of tumor cells and are increasingly the subject of new anti-cancer therapies. Key enzymes and intermediates of sphingolipid metabolism (SM) play an important role in regulating tumor cells and further influencing clinical prognosis. Methods We downloaded BC data from the TCGA database and GEO database, on which we performed in depth single-cell sequencing analysis (scRNA-seq), weighted co-expression network analysis, and transcriptome differential expression analysis. Then seven sphingolipid-related genes (SRGs) were identified using Cox regression, least absolute shrinkage, and selection operator (Lasso) regression analysis to construct a prognostic model for BC patients. Finally, the expression and function of the key gene PGK1 in the model were verified by in vitro experiments. Results This prognostic model allows for the classification of BC patients into high-risk and low-risk groups, with a statistically significant difference in survival time between the two groups. The model is also able to show high prediction accuracy in both internal and external validation sets. After further analysis of the immune microenvironment and immunotherapy, it was found that this risk grouping could be used as a guide for the immunotherapy of BC. The proliferation, migration, and invasive ability of MDA-MB-231 and MCF-7 cell lines were dramatically reduced after knocking down the key gene PGK1 in the model through cellular experiments. Conclusion This study suggests that prognostic features based on genes related to SM are associated with clinical outcomes, tumor progression, and immune alterations in BC patients. Our findings may provide insights for the development of new strategies for early intervention and prognostic prediction in BC.
Collapse
Affiliation(s)
- Shengbin Pei
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Pengpeng Zhang
- Department of Thoracic Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lili Yang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yakun Kang
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Huilin Chen
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuhan Zhao
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yuhan Dai
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Mingjie Zheng
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yiqin Xia
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Hui Xie, ; Yiqin Xia,
| | - Hui Xie
- Department of Breast Surgery, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China,*Correspondence: Hui Xie, ; Yiqin Xia,
| |
Collapse
|