1
|
Huang Y, Gao Y, Lin Z, Miao H. Involvement of the ubiquitin-proteasome system in the regulation of the tumor microenvironment and progression. Genes Dis 2025; 12:101240. [PMID: 39759114 PMCID: PMC11697063 DOI: 10.1016/j.gendis.2024.101240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 10/11/2023] [Accepted: 12/05/2023] [Indexed: 01/07/2025] Open
Abstract
The tumor microenvironment is a complex environment comprising tumor cells, non-tumor cells, and other critical non-cellular components. Some studies about tumor microenvironment have recently achieved remarkable progress in tumor treatment. As a substantial part of post-translational protein modification, ubiquitination is a crucial player in maintaining protein stability in cell signaling, cell growth, and a series of cellular life activities, which are also essential for regulating tumor cells or other non-tumor cells in the tumor microenvironment. This review focuses on the role and function of ubiquitination and deubiquitination modification in the tumor microenvironment while discussing the prospect of developing inhibitors targeting ubiquity-related enzymes, thereby providing ideas for future research in cancer therapy.
Collapse
Affiliation(s)
- Yulan Huang
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Yuan Gao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
| | - Zhenghong Lin
- School of Life Sciences, Chongqing University, Chongqing 401331, China
| | - Hongming Miao
- Department of Pathophysiology, College of High Altitude Military Medicine, Army Medical University, Chongqing 400038, China
- School of Life Sciences, Chongqing University, Chongqing 401331, China
- Jinfeng Laboratory, Chongqing 401329, China
| |
Collapse
|
2
|
Hu X, Wu Y, Yao M, Chen Z, Li Q. The other side of the coin: protein deubiquitination by Ubiquitin-Specific Protease 1 in cancer progression and therapy. Future Med Chem 2025; 17:329-345. [PMID: 39819213 PMCID: PMC11792837 DOI: 10.1080/17568919.2025.2453414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2024] [Accepted: 01/06/2025] [Indexed: 01/19/2025] Open
Abstract
Reversible protein ubiquitination is a crucial factor in cellular homeostasis, with Ubiquitin-Specific Protease 1 (USP1) serving as a key deubiquitinase involved in DNA damage response (DDR) and repair mechanisms in cancer. While ubiquitin ligases have been extensively studied, research on the reverse process of ubiquitination, particularly the mechanisms involving USP1, remains relatively limited. USP1 is overexpressed in various cancers, influencing tumor initiation and progression by regulating multiple associated proteins. Inhibiting USP1 effectively suppresses tumor proliferation and migration and may help overcome resistance to cisplatin and PARP inhibitors. As a potential synthetic lethal target, USP1 demonstrates significant research potential. This review highlights the biological mechanisms of USP1 in cancer progression, the signaling pathways it regulates, and the latest advancements in USP1 inhibitors, while also analyzing the opportunities and challenges of targeting USP1. By adopting the perspective of "the other side of the coin," this review aims to underscore the crucial yet often overlooked role of the deubiquitinase USP1, contrasting it with the extensively studied ubiquitin ligases, and emphasizing its therapeutic potential in cancer treatment.
Collapse
Affiliation(s)
- Xinlan Hu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Yan Wu
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Mengmeng Yao
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Zhuo Chen
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| | - Qianbin Li
- Department of Medicinal Chemistry, Xiangya School of Pharmaceutical Sciences, Central South University, Hunan, China
- Hunan Key Laboratory of Diagnostic and Therapeutic Drug Research for Chronic Diseases, Changsha, Hunan, China
- Hunan Key Laboratory of Organ Fibrosis, Changsha, Hunan, China
| |
Collapse
|
3
|
Shuai C, Lin C, He C, Tan W, Peng S, Yang W. Exchange-coupled bi-magnetic nanoparticles enhance magnetothermal/chemodynamic antibacterial therapy of poly-l-lactide scaffold. J Colloid Interface Sci 2025; 685:1131-1142. [PMID: 39889395 DOI: 10.1016/j.jcis.2025.01.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/03/2025]
Abstract
Bone implant-associated bacterial infection is a common cause of transplant failure. Chemodynamic therapy (CDT) has significant antibacterial efficacy by producing reactive oxygen species (ROS). However, the ROS permeability is restricted by the natural barrier of bacterial biofilms. Herein, a hard-soft magnetic biphasic nanoparticle (CF@MF) was synthesized by in-situ growth of the soft MnFe2O4 shell on the hard CoFe2O4 core. Then, the CF@MF was incorporated into poly-l-lactide powders to prepare porous scaffolds by selective laser sintering. The scaffold exhibited superior magnetothermal conversion efficiency, which was attributed to the interfacial exchange coupling of CF@MF. Importantly, the scaffold effectively dispersed biofilms by magnetothermal therapy (MTT), favoring numerous ROS pre-generated by CDT to enter the interior to kill bacteria. This study provided a synergistic MTT/CDT strategy to eradicate deep bacterial infections in biomedical application.
Collapse
Affiliation(s)
- Cijun Shuai
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Chong Lin
- State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China; College of Mechanical and Electrical Engineering, Jiangxi University of Science and Technology, Ganzhou 341000, China
| | - Chongxian He
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China
| | - Wei Tan
- Department of Spine Surgery, The Third Xiangya Hospital of Central South University, No.138, Tongzipo Road, Changsha 410013, Hunan, China
| | - Shuping Peng
- The Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of Education, Xiangya Hospital, Central South University, Changsha, Hunan 410078, China; NHC Key Laboratory of Carcinogenesis, Cancer Research Institute, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, China
| | - Wenjing Yang
- Jiangxi Province Key Laboratory of Additive Manufacturing of Implantable Medical Device, Jiangxi University of Science and Technology, Nanchang 330013, China.
| |
Collapse
|
4
|
Li L, Fan Z, Liu M, Dong H, Li J, Li Y, Song Z, Liu Y, Zhang Z, Gu X, Zhang T. USP1 promotes pancreatic cancer progression and autophagy by deubiquitinating ATG14. J Biol Chem 2025:108190. [PMID: 39814232 DOI: 10.1016/j.jbc.2025.108190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Revised: 12/24/2024] [Accepted: 01/08/2025] [Indexed: 01/18/2025] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is characterized by extremely poor prognosis, high mortality and limited therapeutic strategy. Autophagy is hyperactivated in PDAC and targeting autophagy are emerging as promising therapeutic strategies. The dysfunction of deubiquitinase USP1 results in tumorigenesis and chemotherapy resistance. However, little is known about how USP1 regulates autophagy and its mechanism in tumor progression and drug sensitivity in PDAC. In this study, we found USP1 elevated in pancreatic cancer and USP1 expression inversely correlated with overall survival. USP1 depletion inhibited cell proliferation, epithelial-mesenchymal transition (EMT) and migration in PDAC cells. Interestingly, USP1 knockdown or inhibition reduced autophagy initiation and autophagy flux. By screening of interacting protein using co-Immunoprecipitation, we identified that USP1 interacted with ATG14 protein, acting as a core component in autophagy initiation. Furthermore, USP1 overexpression deubiquitinated and enhanced ATG14 protein stability by reduced binding ubiquitin levels, whereas USP1 inhibition promoted its proteasome-dependent degradation. Notably, USP1 depletion or a novel USP1 inhibitor I-138 dramatically delayed tumor growth in xenograft model. USP1 inhibitor synergistically enhanced the anti-cancer efficiency of cisplatin in PDAC cells. Collectively, our study identifies USP1 as the first deubiquitinase in the modulation of ATG14 deubiquitination and unveils a regulatory role for USP1 in autophagy and PDAC progression. Targeting USP1 using a selective inhibitor I-138 may provide an effective strategy for chemotherapy treatment and combating drug resistance in autophagy-activated pancreatic cancer.
Collapse
Affiliation(s)
- Leilei Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhili Fan
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Mengfei Liu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Hao Dong
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Jing Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Yu Li
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zan Song
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Ying Liu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Zhicheng Zhang
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Xinyu Gu
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China
| | - Tao Zhang
- Institute of Immunopharmaceutical Sciences, NMPA Key Laboratory for Technology Research and Evaluation of Drug Products, Key Laboratory of Chemical Biology, School of Pharmaceutical Sciences, Cheeloo College of Medicine, Shandong University, Jinan, Shandong, China; State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, Guangxi Normal University, Guilin, Guangxi, China.
| |
Collapse
|
5
|
Ning L, Chen D, Han J, Xie G, Sun J. Global research trends and frontiers in ferroptosis in hepatocellular carcinoma: a bibliometric and visualization study. Front Oncol 2024; 14:1474496. [PMID: 39723378 PMCID: PMC11668663 DOI: 10.3389/fonc.2024.1474496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 11/26/2024] [Indexed: 12/28/2024] Open
Abstract
Background Since the emergence of the hot topic of "ferroptosis," numerous studies have explored its role in hepatocellular carcinoma (HCC), revealing its significance in the disease's pathogenesis, progression, and treatment. However, there remains a significant gap in the quantitative analysis of ferroptosis in HCC. Therefore, this study aims to comprehensively assess the research progress and evolution in this field through bibliometric and citation analysis. Method On June 27, 2024, the author conducted a literature search, extracting relevant publications from the Web of Science Core Collection (WOSCC) Science Citation Index Expanded (SCIE) spanning from January 2010 to December 2023. Subsequently, the compiled documents were subjected to bibliometric evaluation and analysis using visualization tools such as R package "bibliometrix", CiteSpace and VOSviewer. Result The search yielded 576 papers by 3,925 authors, encompassing contributions from 34 countries and 685 institutions, published across 250 journals, including 25,889 co-cited references from 2,600 journals. Notably, China leads with a significant publication count of 481 articles (accounting for 83.5%) and demonstrates the strongest collaboration with the United States. The multifaceted role of ferroptosis in hepatocellular carcinoma (HCC) has garnered considerable attention. In recent years, research into disease prognosis, the tumor microenvironment, and targeted therapies involving immunology has become key themes and emerging frontiers in this field. Conclusion This study meticulously compiled and analyzed the current discourse and emerging perspectives on ferroptosis in HCC. Identifying research trends and hotspots offers valuable guidance for future investigations and provides a basis for the development of novel therapeutic strategies to improve HCC prognosis and treatment outcomes.
Collapse
Affiliation(s)
- Lin Ning
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Di Chen
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jie Han
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Guanyue Xie
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Department of Hepatobiliary Medicine, Jinan, China
| | - Jianguang Sun
- The First Clinical Medical College, Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
6
|
Brooke G, Wendel S, Banerjee A, Wallace N. Opportunities to advance cervical cancer prevention and care. Tumour Virus Res 2024; 18:200292. [PMID: 39490532 PMCID: PMC11566706 DOI: 10.1016/j.tvr.2024.200292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2024] [Revised: 10/21/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
Cervical cancer (CaCx) is a major public health issue, with over 600,000 women diagnosed annually. CaCx kills someone every 90 s, mostly in low- and middle-income countries. There are effective yet imperfect mechanisms to prevent CaCx. Since human papillomavirus (HPV) infections cause most CaCx, they can be prevented by vaccination. Screening methodologies can identify premalignant lesions and allow interventions before a CaCx develops. However, these tools are less feasible in resource-poor environments. Additionally, current screening modalities cannot triage lesions based on their relative risk of progression, which results in overtreatment. CaCx care relies heavily on genotoxic agents that cause severe side effects. This review discusses ways that recent technological advancements could be leveraged to improve CaCx care and prevention.
Collapse
Affiliation(s)
- Grant Brooke
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Sebastian Wendel
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA
| | - Abhineet Banerjee
- Division of Biology, Kansas State University, Manhattan, KS 66506, USA
| | - Nicholas Wallace
- Department of Kinesiology, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
7
|
Xue XC, Zhou YY, Xu LY, Wei LY, Hu YJ, Yang J, Zhang XQ, Wang MY, Han YL, Chen JJ. Tongguanteng injection exerts anti-osteosarcoma effects through the ER stress-associated IRE1/CHOP pathway. BMC Complement Med Ther 2024; 24:400. [PMID: 39550552 PMCID: PMC11568601 DOI: 10.1186/s12906-024-04689-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 10/25/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND In China, Tongguanteng injection (TGT) is widely used in the treatment or adjuvant treatment of various types of cancer. However, the effect and mechanism of TGT in osteosarcoma is not clear. METHODS The 143B and MG-63 cells were treated with different concentrations of TGT. Cell proliferation, migration, invasion and apoptosis were detected using CCK8 assay, transwell assay and flow cytometry. Differentially expressed genes (DEGs) were screened using RNA sequencing (RNA-seq). The identified mRNA and protein expression associated with the IRE1/CHOP pathway was validated by RT-PCR and western blot assay. To explore the underlying mechanisms, 4-phenylbutyric acid (4-PBA) was selected as a specific endoplasmic reticulum (ER) stress inhibitor. Small interfering RNA (siRNA) or pEX-3-ERN1 plasmid was transfected into 143B cells to silence or overexpress IRE1, respectively. The potential downstream proteins, including CHOP, and apoptosis associated proteins, caspase-3 and PARP1 were determined. Furthermore, the effect of TGT was demonstrated in 143B cell tumor-bearing mice in vivo. H&E staining, TUNEL staining and immunohistochemistry were conducted in tumor tissues obtained from the xenograft mouse model. RESULTS TGT was shown to dramatically suppress the proliferation, migration and invasion, and induce apoptosis of osteosarcoma 143B and MG-63 cells in vitro. The identified DEGs included HSPA5 (encoding BiP) and ERN1 (encoding the IRE1 protein), as well as apoptosis-associated gene DDIT3 (encoding the CHOP protein). The term "IRE1-mediated unfolded protein response" was screened to be the most enriched biological process GO term. The expression of ER stress-associated proteins including ATF6, BiP, p-IRE1, XBP1s and CHOP, as well as apoptosis-associated cleaved caspase-3 and cleaved PARP1 proteins, was significantly upregulated by TGT treatment in osteosarcoma 143B cells, suggesting that TGT might promote the apoptosis of osteosarcoma 143B cells through the IRE1/CHOP pathway. Furthermore, knocking down IRE1 with si-IRE1 or inhibiting of ER stress with 4-PBA suppressed the expression of ATF6, BiP, XBP1s and CHOP induced by TGT, as well as the expression of cleaved caspase-3 and cleaved PARP1. On the contrary, overexpressing IRE1 promoted CHOP expression and induced osteosarcoma cell apoptosis. Consistent with in vitro results, TGT dramatically inhibited the tumor growth and promoted the expression of p-IRE1 and CHOP in tumor-bearing mice. CONCLUSION The findings suggest that TGT exerts an anti-osteosarcoma effect in vitro and in vivo. The underlying mechanism might be associated with the activation of IRE1/CHOP pathway in ER stress. Our findings suggest that targeting IRE1/CHOP pathway might be a potential novel approach for osteosarcoma treatment.
Collapse
Affiliation(s)
- Xiao-Chuan Xue
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
- College of Food Science and Technology, Shanghai Ocean University, Shanghai, 201306, China
| | - Yang-Yun Zhou
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Ling-Yan Xu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Lan-Yi Wei
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Yu-Jie Hu
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Jiao Yang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Xiang-Qi Zhang
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China
| | - Meng-Yue Wang
- School of Pharmacy, Shanghai Jiao Tong University, Shanghai, 200240, China
| | - Yong-Long Han
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| | - Jun-Jun Chen
- Department of Pharmacy, Shanghai Sixth People's Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, 200030, China.
| |
Collapse
|
8
|
Xiao L, Xu H, Li M, Lin L, Zhu Y. CXCR4 up-regulation mediated by USP1 deubiquitination promotes the tumorigenesis and immune escape in esophageal squamous-cell carcinoma. J Biochem Mol Toxicol 2024; 38:e70004. [PMID: 39440461 DOI: 10.1002/jbt.70004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 09/03/2024] [Accepted: 10/02/2024] [Indexed: 10/25/2024]
Abstract
CXC chemokine receptor 4 (CXCR4) and ubiquitin specific protease 1 (USP1) have been reported to involve in the tumorigenesis of esophageal squamous-cell carcinoma (ESCC). Here, we investigated whether USP1 induced CXCR4 deubiquitination in regulating ESCC progression. MTT assay, 5-ethynyl-2'-deoxyuridine assay, flow cytometry, transwell assay and ELISA analysis were used to detect cell oncogenic phenotypes, macrophage phenotypes, inflammatory cytokines production, the cytotoxicity of cytokine-induced killer (CIK) cells and CD8 + T cell apoptosis. Protein interaction was determined by immunoprecipitation assay. Cellular ubiquitination detected the ubiquitination effect on CXCR4. A mouse xenograft model was established for in vivo experiments. CXCR4 was highly expressed in ESCC tissues and cells. Functionally, CXCR4 silencing suppressed ESCC cell proliferation, invasion, and induced cell apoptosis. Moreover, CXCR4 deficiency suppressed cancer cell immune escape by suppressing macrophage M2 polarization, elevating inflammatory cytokines produced by PBMCs, enhancing the cytotoxicity of CIK cells, and suppressing CD8 + T cell apoptosis. A high USP1 expression was observed in ESCC, USP1 interacted with CXCR4 and enhanced its protein stability through deubiquitination. USP1 silencing suppressed ESCC cell proliferation, invasion, and immune escape, which were reversed by CXCR4 overexpression. In vivo assay showed that USP1 deficiency impeded tumor growth by regulating CXCR4. Besides, fused in sarcoma (FUS) was confirmed to bind to USP1 and stabilized its mRNA expression, and could regulate CXCR4 via USP1. In conclusion, USP1 stabilized CXCR4 by removing ubiquitination on CXCR4, thereby promoting ESCC cell proliferation, invasion, and immune escape in vitro, and tumor growth in vivo.
Collapse
Affiliation(s)
- Liang Xiao
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Haixia Xu
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Meixiang Li
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Lin Lin
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Yan Zhu
- Department of Surgery and Oncology, The First Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
9
|
Zhang X, Peng P, Bao LW, Zhang AQ, Yu B, Li T, Lei J, Zhang HH, Li SZ. Ubiquitin-Specific Protease 1 Promotes Bladder Cancer Progression by Stabilizing c-MYC. Cells 2024; 13:1798. [PMID: 39513905 PMCID: PMC11545376 DOI: 10.3390/cells13211798] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Revised: 10/26/2024] [Accepted: 10/28/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Ubiquitination is an important post-transcriptional modification crucial for maintaining cell homeostasis. As a deubiquitination enzyme, ubiquitin-specific protease 1 (USP1) is associated with tumor progression; however, its role in bladder cancer is unknown. This study aimed to analyze USP1 expression and study its roles in bladder cancer. METHODS The web server GEPIA was used to analyze the USP1 expression. To explore USP1's function in bladder cancer, we constructed USP1-knockout cell lines in UMUC3 cells. A FLAG-USP1 (WT USP1) plasmid and a plasmid FLAG-USP1 C90S (catalytic-inactive mutant) were used to overexpress USP1 in T24 cells. CCK8, colony formation, and Transwell assays were used to assess cell viability, proliferation, and migration. RNA-sequencing (RNA-seq) and dual-luciferase reporter assays were performed to screen the pathway. Co-immunoprecipitation and immunofluorescence were used to explore the interaction between USP1 and c-MYC. A xenograft mouse model was used to study the role of USP1 in bladder cancer. RESULTS USP1 expression was upregulated in human bladder cancer cells and correlated with poor patient prognosis. USP1 overexpression promoted cell proliferation, clone formation, and migration, and this was attenuated by genetic ablation of USP1. Furthermore, we observed that USP1 deficiency inhibited tumor formation in vivo. Mechanistically, the c-MYC pathway was remarkably activated compared with the other pathways. Furthermore, USP1 could interact with c-MYC and increase c-MYC's stability depending on the catalytic activity of USP1. CONCLUSIONS Our results suggested that high expression of USP1 promotes bladder cancer progression by stabilizing c-MYC; hence, USP1 may serve as a novel therapeutic target for treating bladder cancer.
Collapse
Affiliation(s)
- Xia Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Peng Peng
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Li-Wei Bao
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - An-Qi Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Bo Yu
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Tao Li
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Jing Lei
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Hui-Hui Zhang
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
| | - Shang-Ze Li
- Department of Laboratory Medicine, School of Medicine, Hunan Normal University, Changsha 410013, China; (X.Z.)
- School of Medicine, Chongqing University, Chongqing 400030, China
| |
Collapse
|
10
|
Yang Y, Yuan F, Xiang D, Wang P, Yang R, Li X. Spotlight on endoplasmic reticulum stress in acute kidney injury: A bibliometric analysis and visualization from 1997 to 2024. Medicine (Baltimore) 2024; 103:e39567. [PMID: 39252224 PMCID: PMC11384828 DOI: 10.1097/md.0000000000039567] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Accepted: 08/14/2024] [Indexed: 09/11/2024] Open
Abstract
BACKGROUND Endoplasmic reticulum (ER) stress, a protective stress response of body and play important role in maintain ER stability. Acute kidney injury (AKI) is a severe syndrome, and the molecular mechanisms of AKI has not been fully elucidated. With an increasing understanding of ER stress, ER stress has been investigated and considered a potential and novel therapeutic target in AKI. This study aims to employ a bibliometric approach to analyze research trends and focal points in ER stress associated with AKI over 3 decades. METHODS Data were retrieved from the Web of Science Core Collection on April 15, 2024. CiteSpace and VOSviewer bibliometric software were mainly used to measure bibliometrics and analyze knowledge graphs to predict the latest research trends in the field. RESULTS There were 452 "ER stress in AKI" articles in the Web of Science Core Collection. According to the report, China and the United States were the leading research drivers in this field. Central South University was the most active academic institution, contributing the most documents. In this field, Dong Zheng was the most prolific author. The American Journal of Physiology-Renal Physiology was the journal with the most records among all journals. The keywords "NLRP3 inflammasome," "redox signaling," and novel forms of cell death such as "ferroptosis" may represent current research trends and directions. CONCLUSION The bibliometric analysis comprehensively examines the trends and hotspots on "ER stress and AKI." Studies on AKI related to stress in the ER are still in their infancy. Research should focus on understanding the relationship between ER stress and inflammasome, redox signal pathways and new forms of cell death such as ferroptosis.
Collapse
Affiliation(s)
- Yuan Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Fang Yuan
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Debiao Xiang
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Pengkai Wang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Rui Yang
- Hunan University of Chinese Medicine, Changsha, Hunan, China
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| | - Xin Li
- Department of Pharmacy, The Third Hospital of Changsha, Changsha, Hunan, China
- Hunan Provincial Key Laboratory of Anti-Resistance Microbial Drugs, Changsha, Hunan, China
- Institute of Clinical Application of Antibiotics, Changsha, Hunan, China
| |
Collapse
|
11
|
Zhao LY, Li SY, Zhou ZY, Han XY, Li K, Xue ST, Jiang JD. Substituted indole derivatives as UNC-51-like kinase 1 inhibitors: Design, synthesis and anti-hepatocellular carcinoma activity. Biomed Pharmacother 2024; 178:117260. [PMID: 39116788 DOI: 10.1016/j.biopha.2024.117260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/01/2024] [Accepted: 08/02/2024] [Indexed: 08/10/2024] Open
Abstract
The five-year survival rate for patients with hepatocellular carcinoma (HCC) is only 20 %, highlighting the urgent need to identify new therapeutic targets and develop potential therapeutic options to improve patient prognosis. One promising approach is inhibiting autophagy as a strategy for HCC treatment. In this study, we established a virtual docking conformation of the autophagy promoter ULK1 binding XST-14 derivatives. Based on this conformation, we designed and synthesized four series of derivatives. By evaluating their affinity and anti-HCC effects, we confirmed that these compounds exert anti-HCC activity by inhibiting ULK1. The structure-activity relationship was summarized, with derivative A4 showing 10 times higher activity than XST-14 and superior efficacy to sorafenib against HCC. A4 has excellent effect on reducing tumor growth and enhancing sorafenib activity in HepG2 and HCCLM3 cells. Moreover, we verified the therapeutic effect of A4 in sorafenib-resistant HCC cells both in vivo and in vitro. These results suggest that inhibiting ULK1 to regulate autophagy may become a new treatment method for HCC and that A4 will be used as a lead drug for HCC in further research. Overall, A4 shows good drug safety and efficacy, offering hope for prolonging the survival of HCC patients.
Collapse
Affiliation(s)
- Lu-Yao Zhao
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Si-Yan Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Zi-Ying Zhou
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Xiao-Yang Han
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China
| | - Ke Li
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Si-Tu Xue
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| | - Jian-Dong Jiang
- Institute of Medicinal Biotechnology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing 100050, China.
| |
Collapse
|
12
|
Shchaslyvyi AY, Antonenko SV, Telegeev GD. Comprehensive Review of Chronic Stress Pathways and the Efficacy of Behavioral Stress Reduction Programs (BSRPs) in Managing Diseases. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:1077. [PMID: 39200687 PMCID: PMC11353953 DOI: 10.3390/ijerph21081077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 08/08/2024] [Accepted: 08/10/2024] [Indexed: 09/02/2024]
Abstract
The connection between chronic psychological stress and the onset of various diseases, including diabetes, HIV, cancer, and cardiovascular conditions, is well documented. This review synthesizes current research on the neurological, immune, hormonal, and genetic pathways through which stress influences disease progression, affecting multiple body systems: nervous, immune, cardiovascular, respiratory, reproductive, musculoskeletal, and integumentary. Central to this review is an evaluation of 16 Behavioral Stress Reduction Programs (BSRPs) across over 200 studies, assessing their effectiveness in mitigating stress-related health outcomes. While our findings suggest that BSRPs have the potential to enhance the effectiveness of medical therapies and reverse disease progression, the variability in study designs, sample sizes, and methodologies raises questions about the generalizability and robustness of these results. Future research should focus on long-term, large-scale studies with rigorous methodologies to validate the effectiveness of BSRPs.
Collapse
Affiliation(s)
- Aladdin Y. Shchaslyvyi
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine, 150, Zabolotnogo Str., 03143 Kyiv, Ukraine; (S.V.A.); (G.D.T.)
| | | | | |
Collapse
|
13
|
Li YF, Zheng FY, Miao XY, Liu HL, Zhang YY, Chao NX, Mo FR. Cell division cyclin 25C knockdown inhibits hepatocellular carcinoma development by inducing endoplasmic reticulum stress. World J Gastroenterol 2024; 30:2564-2574. [PMID: 38817663 PMCID: PMC11135413 DOI: 10.3748/wjg.v30.i19.2564] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 04/05/2024] [Accepted: 04/18/2024] [Indexed: 05/20/2024] Open
Abstract
BACKGROUND Cell division cyclin 25C (CDC25C) is a protein that plays a critical role in the cell cycle, specifically in the transition from the G2 phase to the M phase. Recent research has shown that CDC25C could be a potential therapeutic target for cancers, particularly for hepatocellular carcinoma (HCC). However, the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood. AIM To explore the impact of CDC25C on cell proliferation and apoptosis, as well as its regulatory mechanisms in HCC development. METHODS Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences (LV-CDC25C shRNA) to knock down CDC25C. Subsequently, a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo. Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays, respectively. The expression of endoplasmic reticulum (ER) stress-related molecules (glucose-regulated protein 78, X-box binding protein-1, and C/EBP homologous protein) was measured in both cells and subcutaneous xenografts using quantitative real-time PCR (qRT-PCR) and western blotting. Additionally, apoptosis was investigated using flow cytometry, qRT-PCR, and western blotting. RESULTS CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction. A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice. CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response, ultimately promoting ER stress-induced apoptosis in HCC cells. CONCLUSION The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.
Collapse
Affiliation(s)
- Yan-Fei Li
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fang-Yuan Zheng
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xin-Yu Miao
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hai-Long Liu
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yao-Yao Zhang
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Nai-Xia Chao
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of Biological Molecular Medicine Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Fa-Rong Mo
- School of Basic Medical Sciences, Guangxi Medical University, Nanning 530021, Guangxi Zhuang Autonomous Region, China
- Key Laboratory of Human Development and Disease Research (Guangxi Medical University), Education Department of Guangxi Zhuang Autonomous Region, Nanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
14
|
Zhan X, Yang Y, Li Q, He F. The role of deubiquitinases in cardiac disease. Expert Rev Mol Med 2024; 26:e3. [PMID: 38525836 PMCID: PMC11062144 DOI: 10.1017/erm.2024.2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 12/10/2023] [Accepted: 12/28/2023] [Indexed: 03/26/2024]
Abstract
Deubiquitinases are a group of proteins that identify and digest monoubiquitin chains or polyubiquitin chains attached to substrate proteins, preventing the substrate protein from being degraded by the ubiquitin-proteasome system. Deubiquitinases regulate cellular autophagy, metabolism and oxidative stress by acting on different substrate proteins. Recent studies have revealed that deubiquitinases act as a critical regulator in various cardiac diseases, and control the onset and progression of cardiac disease through a board range of mechanism. This review summarizes the function of different deubiquitinases in cardiac disease, including cardiac hypertrophy, myocardial infarction and diabetes mellitus-related cardiac disease. Besides, this review briefly recapitulates the role of deubiquitinases modulators in cardiac disease, providing the potential therapeutic targets in the future.
Collapse
Affiliation(s)
- Xiaona Zhan
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Yi Yang
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Qing Li
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan He
- Department of Nephrology, Tongji Hospital Affiliated to Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
15
|
Zhang HX, Fan R, Chen QE, Zhang LJ, Hui Y, Xu P, Li SY, Chen GY, Chen WH, Shen DY. Trilobolide-6-O-isobutyrate exerts anti-tumor effects on cholangiocarcinoma cells through inhibiting JAK/STAT3 signaling pathway. Heliyon 2024; 10:e27217. [PMID: 38449612 PMCID: PMC10915568 DOI: 10.1016/j.heliyon.2024.e27217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 02/23/2024] [Accepted: 02/26/2024] [Indexed: 03/08/2024] Open
Abstract
Trilobolide-6-O-isobutyrate exhibits significant antitumor effects on cholangiocarcinoma (CCA) cells by effectively inhibiting the JAK/STAT3 signaling pathway. This study aims to investigate the mechanisms underlying the antitumor properties of trilobolide-6-O-isobutyrate, and to explore its potential as a therapeutic agent for CCA. This study illustrates that trilobolide-6-O-isobutyrate efficiently suppresses CCA cell proliferation in a dose- and time-dependent manner. Furthermore, trilobolide-6-O-isobutyrate stimulates the production of reactive oxygen species, leading to oxidative stress and initiation of apoptosis via the activation of the mitochondrial pathway. Data from xenograft tumor assays in nude mice confirms that TBB inhibits tumor growth, and that there are no obvious toxic effects or side effects in vivo. Mechanistically, trilobolide-6-O-isobutyrate exerts antitumor effects by inhibiting STAT3 transcriptional activation, reducing PCNA and Bcl-2 expression, and increasing P21 expression. These findings emphasizes the potential of trilobolide-6-O-isobutyrate as a promising therapeutic candidate for the treatment of CCA.
Collapse
Affiliation(s)
- Hao-Xuan Zhang
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Rui Fan
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Qian-En Chen
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Lin-Jun Zhang
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Yang Hui
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 570100, China
| | - Peng Xu
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Si-Yang Li
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| | - Guang-Ying Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 570100, China
| | - Wen-Hao Chen
- Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education, Hainan Normal University, Haikou, 570100, China
| | - Dong-Yan Shen
- School of Medicine, Xiamen University, The First Affiliated Hospital of Xiamen University, Xiamen, 361003, China
| |
Collapse
|
16
|
Liu X, Wang B, Chang M, Zhang X, Zou H, Zhang Z, Han G. USP12 regulates ER stress-associated osteogenesis in human periodontal ligament cells under tension stress. Cell Signal 2024; 114:111015. [PMID: 38113977 DOI: 10.1016/j.cellsig.2023.111015] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/29/2023] [Accepted: 12/13/2023] [Indexed: 12/21/2023]
Abstract
The bone formation (osteogenesis) of human periodontal ligament cells (hPDLCs) under tension stress is essential for alveolar bone remodeling during orthodontic tooth movement (OTM). Deubiquitinating enzymes (DUBs) remove ubiquitin from target proteins, affecting their function and mediating cell survival and differentiation. However, whether and how DUBs regulate hPDLC function under tension force is poorly understood. In this study, we first investigated the expression of DUBs in hPDLCs under cyclic tension stimulation (CTS). Up-regulation of USP12 was observed in hPDLCs and at the tension side of molar teeth in OTM C57BL6 mice models. Knockdown (KD) of USP12 led to enhanced osteogenesis of hPDLCs under CTS. RNA-seq analysis suggested that the unfolded protein response (UPR) was the prevailing biological process in hPDLCs with USP12 KD, indicating that USP12 depletion triggered endoplasmic reticulum (ER) stress. The three major UPR-related signaling branches, namely PERK/eIF2α/ATF4, IRE1α/XBP1s, and ATF6 axis, were activated in hPDLCs with USP12 KD. By utilizing specific inhibitors, we proved that the PERK/eIF2α/ATF4 axis predominantly mediated the enhanced osteogenesis in hPDLCs with USP12 KD under CTS. In summary, our study demonstrates that USP12 serves as a key regulator for CTS-induced osteogenesis in hPDLCs, suggesting that USP12 upregulation serves as an adaptive mechanism for hPDLCs to alleviate ER stress during OTM.
Collapse
Affiliation(s)
- Xiaoyu Liu
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Beike Wang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Maolin Chang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Xiaocen Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Hao Zou
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China
| | - Zhen Zhang
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China
| | - Guangli Han
- State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan, China; Orthodontic Department Division II, School & Hospital of Stomatology, Wuhan University, Wuhan, China.
| |
Collapse
|
17
|
Huang P, Wang Y, Zhang P, Li Q. Ubiquitin-specific peptidase 1: assessing its role in cancer therapy. Clin Exp Med 2023; 23:2953-2966. [PMID: 37093451 DOI: 10.1007/s10238-023-01075-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 04/11/2023] [Indexed: 04/25/2023]
Abstract
Reversible protein ubiquitination represents an essential determinator of cellular homeostasis, and the ubiquitin-specific enzymes, particularly deubiquitinases (DUBs), are emerging as promising targets for drug development. DUBs are composed of seven different subfamilies, out of which ubiquitin-specific proteases (USPs) are the largest family with 56 members. One of the well-characterized USPs is USP1, which contributes to several cellular biological processes including DNA damage response, immune regulation, cell proliferation, apoptosis, and migration. USP1 levels and activity are regulated by multiple mechanisms, including transcription regulation, phosphorylation, autocleavage, and proteasomal degradation, ensuring that the cellular function of USP1 is performed in a suitably modulated spatio-temporal manner. Moreover, USP1 with deregulated expression and activity are found in several human cancers, indicating that targeting USP1 is a feasible therapeutic approach in anti-cancer treatment. In this review, we highlight the essential role of USP1 in cancer development and the regulatory landscape of USP1 activity, which might provide novel insights into cancer treatment.
Collapse
Affiliation(s)
- Peng Huang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - YuHan Wang
- Department of Anorectal, Affiliated Hospital of Southwest Medical University, Luzhou, 646000, Sichuan, China
- School of Integrated Traditional Chinese and Western Medicine, Southwest Medical University, Luzhou, 646000, Sichuan, China
| | - PengFei Zhang
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China
| | - Qiu Li
- Department of Medical Oncology, Cancer Center, West China Hospital, Sichuan University, Chengdu, 610041, Sichuan, China.
- West China Biomedical Big Data Center, Sichuan University, Chengdu, 610041, Sichuan, China.
| |
Collapse
|
18
|
Zhang DY, Zhu Y, Wu Q, Ma S, Ma Y, Shen ZC, Wang Z, Sun W, Zhou YC, Wang D, Zhou S, Liu Z, Kwong LN, Lu Z. USP1 promotes cholangiocarcinoma progression by deubiquitinating PARP1 to prevent its proteasomal degradation. Cell Death Dis 2023; 14:669. [PMID: 37821462 PMCID: PMC10567853 DOI: 10.1038/s41419-023-06172-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 09/14/2023] [Accepted: 09/21/2023] [Indexed: 10/13/2023]
Abstract
Despite its involvement in various cancers, the function of the deubiquitinase USP1 (ubiquitin-specific protease 1) is unexplored in cholangiocarcinoma (CCA). In this study, we provide evidence that USP1 promotes CCA progression through the stabilization of Poly (ADP-ribose) polymerase 1 (PARP1), consistent with the observation that both USP1 and PARP1 are upregulated in human CCA. Proteomics and ubiquitylome analysis of USP1-overexpressing CCA cells nominated PARP1 as a top USP1 substrate. Indeed, their direct interaction was validated by a series of immunofluorescence, co-immunoprecipitation (CO-IP), and GST pull-down assays, and their interaction regions were identified using deletion mutants. Mechanistically, USP1 removes the ubiquitin chain at K197 of PARP1 to prevent its proteasomal degradation, with the consequent PARP1 stabilization being necessary and sufficient to promote the growth and metastasis of CCA in vitro and in vivo. Additionally, we identified the acetyltransferase GCN5 as acetylating USP1 at K130, enhancing the affinity between USP1 and PARP1 and further increasing PARP1 protein stabilization. Finally, both USP1 and PARP1 are significantly associated with poor survival in CCA patients. These findings describe PARP1 as a novel deubiquitination target of USP1 and a potential therapeutic target for CCA.
Collapse
Affiliation(s)
- Deng Yong Zhang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Anhui Medical university, Hefei, 230000, Anhui, China
| | - Yan Zhu
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
- Cancer Biology Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Qiong Wu
- Department of pathology, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Shuoshuo Ma
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
- Department of pharmacy, Bengbu Medical College, No.2600 Donghai Road, Bengbu, 233000, Anhui, China
| | - Yang Ma
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Zheng Chao Shen
- Department of General Surgery, The First Affiliated Hospital of Wannan Medical College, Wuhu, 241001, Anhui, China
| | - Zhonglin Wang
- Social Science Research Institute, Duke University, Durham, NC, 27708, USA
| | - Wanliang Sun
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Yong Chun Zhou
- Department of Radiotherapy, The First Affiliated Hospital of Bengbu Medical College, Anhui, China
| | - Dongdong Wang
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Shuo Zhou
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Zhong Liu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China
| | - Lawrence N Kwong
- Department of Translational Molecular Pathology, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
- Department of Genomic Medicine, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.
| | - Zheng Lu
- Department of General Surgery, The First Affiliated Hospital of Bengbu Medical College, Bengbu, 233000, Anhui, China.
- Anhui Medical university, Hefei, 230000, Anhui, China.
| |
Collapse
|
19
|
Park D, Lee S, Boo H. Metformin Induces Lipogenesis and Apoptosis in H4IIE Hepatocellular Carcinoma Cells. Dev Reprod 2023; 27:77-89. [PMID: 37529015 PMCID: PMC10390098 DOI: 10.12717/dr.2023.27.2.77] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/22/2023] [Accepted: 06/15/2023] [Indexed: 08/03/2023]
Abstract
Metformin is the most widely used anti-diabetic drug that helps maintain normal blood glucose levels primarily by suppressing hepatic gluconeogenesis in type II diabetic patients. We previously found that metformin induces apoptotic death in H4IIE rat hepatocellular carcinoma cells. Despite its anti-diabetic roles, the effect of metformin on hepatic de novo lipogenesis (DNL) remains unclear. We investigated the effect of metformin on hepatic DNL and apoptotic cell death in H4IIE cells. Metformin treatment stimulated glucose consumption, lactate production, intracellular fat accumulation, and the expressions of lipogenic proteins. It also stimulated apoptosis but reduced autophagic responses. These metformin-induced changes were clearly reversed by compound C, an inhibitor of AMP-activated protein kinase (AMPK). Interestingly, metformin massively increased the production of reactive oxygen species (ROS), which was completely blocked by compound C. Metformin also stimulated the phosphorylation of p38 mitogen-activated protein kinase (p38MAPK). Finally, inhibition of p38MAPK mimicked the effects of compound C, and suppressed the metformin-induced fat accumulation and apoptosis. Taken together, metformin stimulates dysregulated glucose metabolism, intracellular fat accumulation, and apoptosis. Our findings suggest that metformin induces excessive glucose-induced DNL, oxidative stress by ROS generation, activation of AMPK and p38MAPK, suppression of autophagy, and ultimately apoptosis.
Collapse
Affiliation(s)
- Deokbae Park
- Corresponding author Deokbae
Park, Department of Histology, Jeju National University College of Medicine,
Jeju 63243, Korea. Tel: +82-64-754-3827, Fax:
+82-64-702-2687, E-mail:
| | | | | |
Collapse
|