1
|
Zha X, Zheng G, Skutella T, Kiening K, Unterberg A, Younsi A. Microglia: a promising therapeutic target in spinal cord injury. Neural Regen Res 2025; 20:454-463. [PMID: 38819048 PMCID: PMC11317945 DOI: 10.4103/nrr.nrr-d-23-02044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 02/23/2024] [Accepted: 03/22/2024] [Indexed: 06/01/2024] Open
Abstract
Microglia are present throughout the central nervous system and are vital in neural repair, nutrition, phagocytosis, immunological regulation, and maintaining neuronal function. In a healthy spinal cord, microglia are accountable for immune surveillance, however, when a spinal cord injury occurs, the microenvironment drastically changes, leading to glial scars and failed axonal regeneration. In this context, microglia vary their gene and protein expression during activation, and proliferation in reaction to the injury, influencing injury responses both favorably and unfavorably. A dynamic and multifaceted injury response is mediated by microglia, which interact directly with neurons, astrocytes, oligodendrocytes, and neural stem/progenitor cells. Despite a clear understanding of their essential nature and origin, the mechanisms of action and new functions of microglia in spinal cord injury require extensive research. This review summarizes current studies on microglial genesis, physiological function, and pathological state, highlights their crucial roles in spinal cord injury, and proposes microglia as a therapeutic target.
Collapse
Affiliation(s)
- Xiaowei Zha
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Guoli Zheng
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Thomas Skutella
- Department of Neuroanatomy, Institute for Anatomy and Cell Biology, Heidelberg University, Heidelberg, Germany
| | - Karl Kiening
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Andreas Unterberg
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| | - Alexander Younsi
- Department of Neurosurgery, Heidelberg University Hospital, Heidelberg, Germany
| |
Collapse
|
2
|
Wu X, Zhu H, Liu J, Ouyang S, Lyu Z, Jin Y, Chen X, Meng Q. Jagged1-Notch1 Signaling Pathway Induces M1 Microglia to Disrupt the Barrier Function of Retinal Microvascular Endothelial Cells. Curr Eye Res 2024; 49:1098-1106. [PMID: 38783634 DOI: 10.1080/02713683.2024.2357601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 04/28/2024] [Accepted: 05/14/2024] [Indexed: 05/25/2024]
Abstract
PURPOSE Microglia-related inflammation is closely linked to the pathogenesis of retinal diseases. The primary objective of this research was to investigate the impact and mechanism of M1 phenotype microglia on the barrier function of retina microvascular endothelial cells. METHODS Quantitative polymerase chain reactions and western blot techniques were utilized to analysis the mRNA and protein expressions of M1 and M2 markers of human microglial clone 3 cell line (HMC3), as well as the levels of Notch ligands and receptors under the intervention of lipopolysaccharide (LPS) or interleukin (IL)-4. ELISA was utilized to detect the pro-inflammatory and anti-inflammatory cytokines from HMC3 cells. The cellular tight junction and apoptosis of human retinal microvascular endothelial cells (HRMECs) were assessed by western blot and fluorescein isothiocyanate-dextran permeability assay. The inhibitors of Notch1 and RNA interference (RNAi) targeting Jagged1 were used to assess their contribution to the barrier function of vascular endothelial cells. RESULTS Inducible nitric oxide synthase (iNOS) and IL-1β were considerably elevated in LPS-treated HMC3, while CD206 and Arg-1 markedly elevated under IL-4 stimulation. The conditioned medium derived from LPS-treated HMC3 cells promoted permeability, diminished the expression of zonula occludens-1 and Occludin, and elevated the expression of Cleaved caspase-3 in HRMECs. RNAi targeting Jagged1 or Notch1 inhibitor could block M1 HMC3 polarization and maintain barrier function of HRMECs. CONCLUSION Our findings suggest that Jagged1-Notch1 signaling pathway induces M1 microglial cells to disrupt the barrier function of HRMECs, which may lead to retinal diseases.
Collapse
Affiliation(s)
- Xiyu Wu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Haoxian Zhu
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Junbin Liu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Shuyi Ouyang
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Zheng Lyu
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Yeanqi Jin
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Xinyu Chen
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| | - Qianli Meng
- School of Medicine, South China University of Technology, Guangzhou, China
- Guangdong Eye Institute, Department of Ophthalmology, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, China
| |
Collapse
|
3
|
Wu X, Zhong L, Yu J, Wang N, Bu S, Wang H, Zhang J, Luo X, Liu Y, Nie C. MDSCs promote pathological angiogenesis in ocular neovascular disease. Biomed Pharmacother 2024; 178:117222. [PMID: 39088968 DOI: 10.1016/j.biopha.2024.117222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2024] [Revised: 07/25/2024] [Accepted: 07/26/2024] [Indexed: 08/03/2024] Open
Abstract
BACKGROUND Ocular neovascular diseases, which contribute significantly to vision loss, lack effective preventive treatments. Recent studies have highlighted the significant involvement of immune cells in neovascular retinopathy. Myeloid-derived suppressor cells (MDSCs) promote the development of neovascularization, but it is unknown whether they participate in pathological neovascularization and whether they are expected to be a therapeutic target. METHOD We investigated the role of MDSCs in promoting pathological angiogenesis using an oxygen-induced retinopathy (OIR) model, employing flow cytometry, immunofluorescence, and smart-seq analysis. Then, we evaluated the proportion of MDSCs in patient blood samples using flow cytometry. Additionally, we assessed the effect of MDSC depletion using an anti-Gr-1 monoclonal antibody on retinal vasculopathy and alterations in retinal microglia. RESULTS In the OIR model, an elevated ratio of MDSCs was observed in both blood and retinal tissue during phase II (Neovascularization). The depletion of MDSCs resulted in reduced retinal neovascularization and vaso-obliteration, along with a decrease in microglia within the neovascularization area. Furthermore, analysis of gene transcripts associated with MDSCs indicated activation of vascular endothelial growth factor (VEGF) regulation and inflammation. Importantly, infants with ROP exhibited a higher proportion of MDSCs in their blood samples. CONCLUSION Our results suggested that excessive MDSCs represent an unrecognized feature of ocular neovascular diseases and be responsible for the retinal vascular inflammation and angiogenesis, providing opportunities for new therapeutic approaches to ocular neovascular disease.
Collapse
Affiliation(s)
- Xiaojun Wu
- Neonatology Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China; National Key Clinical Specialty Construction Project/Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, Guangdong 510000, China; Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510005, China
| | - Limei Zhong
- Department of Laboratory Medicine, Guangdong Second Provincial General Hospital, Guangzhou, Guangdong 510317, China
| | - Jun Yu
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510005, China
| | - Ning Wang
- Neonatology Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China; National Key Clinical Specialty Construction Project/Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, Guangdong 510000, China
| | - Shimiao Bu
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510005, China
| | - Huijuan Wang
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510005, China
| | - Jie Zhang
- Department of Rehabilitation, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China
| | - Xianqiong Luo
- Neonatology Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China; National Key Clinical Specialty Construction Project/Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, Guangdong 510000, China
| | - Yufeng Liu
- Center for Medical Research on Innovation and Translation, Guangzhou First People's Hospital, the Second Affiliated Hospital of South China University of Technology, Guangzhou, Guangdong 510005, China.
| | - Chuan Nie
- Neonatology Department, Guangdong Women and Children Hospital, Guangzhou, Guangdong 510000, China; National Key Clinical Specialty Construction Project/Guangdong Neonatal ICU Medical Quality Control Center, Guangzhou, Guangdong 510000, China.
| |
Collapse
|
4
|
Lozinski BM, Ta K, Dong Y. Emerging role of galectin 3 in neuroinflammation and neurodegeneration. Neural Regen Res 2024; 19:2004-2009. [PMID: 38227529 DOI: 10.4103/1673-5374.391181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Accepted: 11/15/2023] [Indexed: 01/17/2024] Open
Abstract
Neuroinflammation and neurodegeneration are key processes that mediate the development and progression of neurological diseases. However, the mechanisms modulating these processes in different diseases remain incompletely understood. Advances in single cell based multi-omic analyses have helped to identify distinct molecular signatures such as Lgals3 that is associated with neuroinflammation and neurodegeneration in the central nervous system (CNS). Lgals3 encodes galectin-3 (Gal3), a β-galactoside and glycan binding glycoprotein that is frequently upregulated by reactive microglia/macrophages in the CNS during various neurological diseases. While Gal3 has previously been associated with non-CNS inflammatory and fibrotic diseases, recent studies highlight Gal3 as a prominent regulator of inflammation and neuroaxonal damage in the CNS during diseases such as multiple sclerosis, Alzheimer's disease, and Parkinson's disease. In this review, we summarize the pleiotropic functions of Gal3 and discuss evidence that demonstrates its detrimental role in neuroinflammation and neurodegeneration during different neurological diseases. We also consider the challenges of translating preclinical observations into targeting Gal3 in the human CNS.
Collapse
Affiliation(s)
- Brian M Lozinski
- Department of Clinical Neuroscience, University of Calgary, Calgary, AB, Canada
| | - Khanh Ta
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Yifei Dong
- Deparment of Biochemistry, Microbiology & Immunology, University of Saskatchewan, Saskatoon, SK, Canada
| |
Collapse
|
5
|
Hu A, Schmidt MHH, Heinig N. Microglia in retinal angiogenesis and diabetic retinopathy. Angiogenesis 2024; 27:311-331. [PMID: 38564108 PMCID: PMC11303477 DOI: 10.1007/s10456-024-09911-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 02/18/2024] [Indexed: 04/04/2024]
Abstract
Diabetic retinopathy has a high probability of causing visual impairment or blindness throughout the disease progression and is characterized by the growth of new blood vessels in the retina at an advanced, proliferative stage. Microglia are a resident immune population in the central nervous system, known to play a crucial role in regulating retinal angiogenesis in both physiological and pathological conditions, including diabetic retinopathy. Physiologically, they are located close to blood vessels and are essential for forming new blood vessels (neovascularization). In diabetic retinopathy, microglia become widely activated, showing a distinct polarization phenotype that leads to their accumulation around neovascular tufts. These activated microglia induce pathogenic angiogenesis through the secretion of various angiogenic factors and by regulating the status of endothelial cells. Interestingly, some subtypes of microglia simultaneously promote the regression of neovascularization tufts and normal angiogenesis in neovascularization lesions. Modulating the state of microglial activation to ameliorate neovascularization thus appears as a promising potential therapeutic approach for managing diabetic retinopathy.
Collapse
Affiliation(s)
- Aiyan Hu
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany
| | - Mirko H H Schmidt
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| | - Nora Heinig
- Institute of Anatomy, Medical Faculty Carl Gustav Carus, Technische Universität Dresden School of Medicine, Fetscherstr 74, 01307, Dresden, Germany.
| |
Collapse
|
6
|
Shi Q, Xue C, Zeng Y, Yuan X, Chu Q, Jiang S, Wang J, Zhang Y, Zhu D, Li L. Notch signaling pathway in cancer: from mechanistic insights to targeted therapies. Signal Transduct Target Ther 2024; 9:128. [PMID: 38797752 PMCID: PMC11128457 DOI: 10.1038/s41392-024-01828-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 03/31/2024] [Accepted: 04/15/2024] [Indexed: 05/29/2024] Open
Abstract
Notch signaling, renowned for its role in regulating cell fate, organ development, and tissue homeostasis across metazoans, is highly conserved throughout evolution. The Notch receptor and its ligands are transmembrane proteins containing epidermal growth factor-like repeat sequences, typically necessitating receptor-ligand interaction to initiate classical Notch signaling transduction. Accumulating evidence indicates that the Notch signaling pathway serves as both an oncogenic factor and a tumor suppressor in various cancer types. Dysregulation of this pathway promotes epithelial-mesenchymal transition and angiogenesis in malignancies, closely linked to cancer proliferation, invasion, and metastasis. Furthermore, the Notch signaling pathway contributes to maintaining stem-like properties in cancer cells, thereby enhancing cancer invasiveness. The regulatory role of the Notch signaling pathway in cancer metabolic reprogramming and the tumor microenvironment suggests its pivotal involvement in balancing oncogenic and tumor suppressive effects. Moreover, the Notch signaling pathway is implicated in conferring chemoresistance to tumor cells. Therefore, a comprehensive understanding of these biological processes is crucial for developing innovative therapeutic strategies targeting Notch signaling. This review focuses on the research progress of the Notch signaling pathway in cancers, providing in-depth insights into the potential mechanisms of Notch signaling regulation in the occurrence and progression of cancer. Additionally, the review summarizes pharmaceutical clinical trials targeting Notch signaling for cancer therapy, aiming to offer new insights into therapeutic strategies for human malignancies.
Collapse
Affiliation(s)
- Qingmiao Shi
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Chen Xue
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yifan Zeng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Xin Yuan
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Qingfei Chu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Shuwen Jiang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Jinzhi Wang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Yaqi Zhang
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China
| | - Danhua Zhu
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| | - Lanjuan Li
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, National Clinical Research Center for Infectious Diseases, National Medical Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310003, China.
| |
Collapse
|
7
|
Zhou Z, Feng Z, Sun X, Wang Y, Dou G. The Role of Galectin-3 in Retinal Degeneration and Other Ocular Diseases: A Potential Novel Biomarker and Therapeutic Target. Int J Mol Sci 2023; 24:15516. [PMID: 37958500 PMCID: PMC10649114 DOI: 10.3390/ijms242115516] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Revised: 10/17/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Galectin-3 is the most studied member of the Galectin family, with a large range of mediation in biological activities such as cell growth, proliferation, apoptosis, differentiation, cell adhesion, and tissue repair, as well as in pathological processes such as inflammation, tissue fibrosis, and angiogenesis. As is known to all, inflammation, aberrant cell apoptosis, and neovascularization are the main pathophysiological processes in retinal degeneration and many ocular diseases. Therefore, the review aims to conclude the role of Gal3 in the retinal degeneration of various diseases as well as the occurrence and development of the diseases and discuss its molecular mechanisms according to research in systemic diseases. At the same time, we summarized the predictive role of Gal3 as a biomarker and the clinical application of its inhibitors to discuss the possibility of Gal3 as a novel target for the treatment of ocular diseases.
Collapse
Affiliation(s)
| | | | | | - Yusheng Wang
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| | - Guorui Dou
- Department of Ophthalmology, Eye Institute of Chinese PLA, Xijing Hospital, Fourth Military Medical University, Xi’an 710032, China; (Z.Z.); (Z.F.); (X.S.)
| |
Collapse
|