1
|
Whitehead BJ, Corbin D, Alexander ML, Bumgarner J, Zhang N, Karelina K, Weil ZM. Cerebral hypoperfusion exacerbates traumatic brain injury in male but not female mice. Eur J Neurosci 2024; 60:4346-4361. [PMID: 38858126 PMCID: PMC11533132 DOI: 10.1111/ejn.16439] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 05/07/2024] [Accepted: 05/23/2024] [Indexed: 06/12/2024]
Abstract
Mild-moderate traumatic brain injuries (TBIs) are prevalent, and while many individuals recover, there is evidence that a significant number experience long-term health impacts, including increased vulnerability to neurodegenerative diseases. These effects are influenced by other risk factors, such as cardiovascular disease. Our study tested the hypothesis that a pre-injury reduction in cerebral blood flow (CBF), mimicking cardiovascular disease, worsens TBI recovery. We induced bilateral carotid artery stenosis (BCAS) and a mild-moderate closed-head TBI in male and female mice, either alone or in combination, and analyzed CBF, spatial learning, memory, axonal damage, and gene expression. Findings showed that BCAS and TBI independently caused a ~10% decrease in CBF. Mice subjected to both BCAS and TBI experienced more significant CBF reductions, notably affecting spatial learning and memory, particularly in males. Additionally, male mice showed increased axonal damage with both BCAS and TBI compared to either condition alone. Females exhibited spatial memory deficits due to BCAS, but these were not worsened by subsequent TBI. Gene expression analysis in male mice highlighted that TBI and BCAS individually altered neuronal and glial profiles. However, the combination of BCAS and TBI resulted in markedly different transcriptional patterns. Our results suggest that mild cerebrovascular impairments, serving as a stand-in for preexisting cardiovascular conditions, can significantly worsen TBI outcomes in males. This highlights the potential for mild comorbidities to modify TBI outcomes and increase the risk of secondary diseases.
Collapse
Affiliation(s)
- Bailey J. Whitehead
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Deborah Corbin
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Megan L. Alexander
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Jacob Bumgarner
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Ning Zhang
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Kate Karelina
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| | - Zachary M. Weil
- Department of Neuroscience and Rockefeller Neuroscience Institute, West Virginia University, Morgantown WV USA
| |
Collapse
|
2
|
Nguyen HD, Kim WK, Huong Vu G. Molecular mechanisms implicated in protein changes in the Alzheimer's disease human hippocampus. Mech Ageing Dev 2024; 219:111930. [PMID: 38554950 DOI: 10.1016/j.mad.2024.111930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Revised: 01/18/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024]
Abstract
This study aimed to elucidate the specific biochemical pathways linked to changes in proteins in the Alzheimer's disease (AD) human hippocampus. Our data demonstrate a constant rise in the expression of four proteins (VGF, GFAP, HSPB1, and APP) across all eleven studies. Notably, UBC was the most centrally involved and had increased expression in the hippocampus tissue of individuals with AD. Modified proteins in the hippocampal tissue were found to activate the innate immune system and disrupt communication across chemical synapses. Four hub proteins (CD44, APP, ITGB2, and APOE) are connected to amyloid plaques, whereas two hub proteins (RPL24 and RPS23) are related to neurofibrillary tangles (NFTs). The presence of modified proteins was discovered to trigger the activation of microglia and decrease the functioning of ribosomes and mitochondria in the hippocampus. Three significant microRNAs (hsa-miR-106b-5p, hsa-miR-17-5p, and hsa-miR-16-5p) and transcription factors (MYT1L, PIN1, and CSRNP3) have been discovered to improve our understanding of the alterations in proteins within the hippocampal tissues that lead to the progression of AD. These findings establish a path for possible treatments for AD to employ therapeutic strategies that specifically focus on the proteins or processes linked to the illness.
Collapse
Affiliation(s)
- Hai Duc Nguyen
- Department of Pharmacy, College of Pharmacy and Research Institute of Life and Pharmaceutical Sciences, Sunchon National University, Suncheon 57922, Republic of Korea; Division of Microbiology, Tulane National Primate Research Center, Tulane University, Louisiana, USA.
| | - Woong-Ki Kim
- Division of Microbiology, Tulane National Primate Research Center, Tulane University, Louisiana, USA; Department of Microbiology and Immunology, Tulane University School of Medicine, New Orleans, Louisiana, USA
| | - Giang Huong Vu
- Department of Public Health, Hong Bang Health Center, Hai Phong, Vietnam
| |
Collapse
|
3
|
Loan A, Syal C, Lui M, He L, Wang J. Promising use of metformin in treating neurological disorders: biomarker-guided therapies. Neural Regen Res 2024; 19:1045-1055. [PMID: 37862207 PMCID: PMC10749596 DOI: 10.4103/1673-5374.385286] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2023] [Revised: 04/25/2023] [Accepted: 07/29/2023] [Indexed: 10/22/2023] Open
Abstract
Neurological disorders are a diverse group of conditions that affect the nervous system and include neurodegenerative diseases (Alzheimer's disease, multiple sclerosis, Parkinson's disease, Huntington's disease), cerebrovascular conditions (stroke), and neurodevelopmental disorders (autism spectrum disorder). Although they affect millions of individuals around the world, only a limited number of effective treatment options are available today. Since most neurological disorders express mitochondria-related metabolic perturbations, metformin, a biguanide type II antidiabetic drug, has attracted a lot of attention to be repurposed to treat neurological disorders by correcting their perturbed energy metabolism. However, controversial research emerges regarding the beneficial/detrimental effects of metformin on these neurological disorders. Given that most neurological disorders have complex etiology in their pathophysiology and are influenced by various risk factors such as aging, lifestyle, genetics, and environment, it is important to identify perturbed molecular functions that can be targeted by metformin in these neurological disorders. These molecules can then be used as biomarkers to stratify subpopulations of patients who show distinct molecular/pathological properties and can respond to metformin treatment, ultimately developing targeted therapy. In this review, we will discuss mitochondria-related metabolic perturbations and impaired molecular pathways in these neurological disorders and how these can be used as biomarkers to guide metformin-responsive treatment for the targeted therapy to treat neurological disorders.
Collapse
Affiliation(s)
- Allison Loan
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Biology, Faculty of Science, University of Ottawa, Ottawa, ON, Canada
| | - Charvi Syal
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Margarita Lui
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Ling He
- Department of Pediatrics and Medicine, Johns Hopkins Medical School, Baltimore, MD, USA
| | - Jing Wang
- Regenerative Medicine Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Cellular and Molecular Medicine, Faculty of Medicine, University of Ottawa, Ottawa, ON, Canada
- University of Ottawa Brain and Mind Research Institute, Ottawa, ON, Canada
| |
Collapse
|
4
|
Yeganeh Markid T, Hosseinpour Feizi MA, Talebi M, Rezazadeh M, Khalaj-Kondori M. Gene expression investigation of four key regulators of polyadenylation and alternative adenylation in the periphery of late-onset Alzheimer's disease patients. Gene 2024; 895:148013. [PMID: 37981081 DOI: 10.1016/j.gene.2023.148013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 10/11/2023] [Accepted: 11/15/2023] [Indexed: 11/21/2023]
Abstract
BACKGROUND Alzheimer's disease (AD) is a genetic and sporadic neurodegenerative disease considered by an archetypal cognitive impairment and a decrease in less common cognitive impairment. Notably, the discovery of goals in this paradigm is still a challenge, and understanding basic mechanisms is an important step toward improving disease management. Polyadenylation (PA) and alternative polyadenylation (APA) are two of the most critical RNA processing stages in 3'UTRs that influence various AD-related genes. METHODS In this study, we assessed Cleavage and polyadenylation specificity factors 1 and 6 (CPSF1 and CPSF6), cleavage stimulation factor 1 (CSTF1), and WD Repeat Domain 33 (WDR33) genes expression in the periphery of 50 AD patients and 50 healthy individuals with age and gender-matched by quantitative real-time PCR. RESULTS Comparing AD patients with healthy people using expression analysis revealed a substantial increase in CSTF1 (posterior beta = 0.773, adjusted P-value = 0.042). Significant positive correlations were found between CSTF1 and CPSF1 (r = 0.365, P < 0.001), WDR33 (r = 0.506, P < 0.001), and CPSF6 (r = 0.446, P < 0.001) expression levels. CONCLUSION Although further research is required to determine their potential contribution to AD, our findings offer a fresh perspective on molecular regulatory pathways associated with AD pathogenic mechanisms associated with PA and APA.
Collapse
Affiliation(s)
- Tarlan Yeganeh Markid
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran
| | | | - Mahnaz Talebi
- Neurosciences Research Center (NSRC), Tabriz University of Medical Sciences, Tabriz, Iran
| | - Maryam Rezazadeh
- Clinical Research Development Unit of Tabriz Valiasr Hospital, Tabriz University of Medical Sciences, Iran; Department of Medical Genetics, Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
| | - Mohammad Khalaj-Kondori
- Department of Animal Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, Iran.
| |
Collapse
|
5
|
Wang Y. Erdr1 Drives Macrophage Programming via Dynamic Interplay with YAP1 and Mid1. Immunohorizons 2024; 8:198-213. [PMID: 38392560 PMCID: PMC10916360 DOI: 10.4049/immunohorizons.2400004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Accepted: 02/06/2024] [Indexed: 02/24/2024] Open
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely expressed, highly conserved secreted factor found in both humans and mice. Erdr1 is linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, Erdr1 emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in regulating T cells and NK cell function, its role in macrophage remains unclear. This study explored the function and mechanism of Erdr1 in macrophage inflammatory response. The data demonstrated that Erdr1 could promote anti-inflammatory cytokine production, a function that also has been reported by previous research. However, I found Erdr1 also could play a proinflammatory role. The function of Erdr1 in macrophages depends on its dose and cell density. I observed that Erdr1 expression was inhibited in M1 macrophages but was upregulated in M2 macrophages compared with unpolarized macrophages. I hypothesized that Erdr1 balances the inflammatory response by binding with distinct adaptors dependent on varying concentrations. Mechanistically, I demonstrated YAP1 and Mid1 as the two adaptor proteins of Erdr1. The Erdr1-YAP1 interaction promotes anti-inflammatory cytokine production when Erdr1 levels are elevated, whereas the Erdr1-Mid1 interaction induces proinflammatory cytokine production when Erdr1 levels are decreased. This study highlights the effects of Erdr1 on regulating cytokine production from polarized macrophages potentially by regulating YAP1 in the nonclassical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, IA City, IA
| |
Collapse
|
6
|
Wang Y. Erdr1 orchestrates macrophage polarization and determines cell fate via dynamic interplay with YAP1 and Mid1. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.17.557960. [PMID: 37781614 PMCID: PMC10541097 DOI: 10.1101/2023.09.17.557960] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Erythroid differentiation regulator 1 (Erdr1) is a stress-induced, widely distributed, extremely conserved secreted factor found in both humans and mice. Erdr1 is highly linked with the Hippo-YAP1 signaling. Initially identified as an inducer of hemoglobin synthesis, it has emerged as a multifunctional protein, especially in immune cells. Although Erdr1 has been implicated in T cells and NK cell function, its role in macrophage remains unclear. This study aims to explore the function and mechanism of Erdr1 in IL-1β production in macrophages. Data manifest Erdr1 could play an inhibition role in IL-1β production, which also has been reported by previous research. What significance is we discovered Erdr1 can promote IL-1β production which is associated with Erdr1 dose and cell density. We observed that Erdr1 was inhibited in pro-inflammatory (M1) macrophages but was upregulated in anti-inflammatory (M2) macrophages compared to naive macrophages. We hypothesized that Erdr1 dual drives and modulates IL-1β production by binding with distinct adaptors via concentration change. Mechanistically, we demonstrated that Erdr1 dual regulates IL-1β production by dynamic interaction with YAP1 and Mid1 by distinct domains. Erdr1-YAP1 interplay mediates macrophage M2 polarization by promoting an anti-inflammatory response, enhancing catabolic metabolism, and leading to sterile cell death. Whereas, Erdr1-Mid1 interplay mediates macrophage M1 polarization by initiating a pro-inflammatory response, facilitating anabolic metabolism, and causing inflammatory cell death. This study highlights Erdr1 orchestrates macrophage polarization and determines cell date by regulating YAP1 through non-classical Hippo pathway.
Collapse
Affiliation(s)
- Yuhang Wang
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA 52242, USA
- Department of Pathology, University of Iowa, Iowa City, IA 52242, USA (Current)
| |
Collapse
|
7
|
Dudley-Fraser J, Rittinger K. It's a TRIM-endous view from the top: the varied roles of TRIpartite Motif proteins in brain development and disease. Front Mol Neurosci 2023; 16:1287257. [PMID: 38115822 PMCID: PMC10728303 DOI: 10.3389/fnmol.2023.1287257] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 11/13/2023] [Indexed: 12/21/2023] Open
Abstract
The tripartite motif (TRIM) protein family members have been implicated in a multitude of physiologies and pathologies in different tissues. With diverse functions in cellular processes including regulation of signaling pathways, protein degradation, and transcriptional control, the impact of TRIM dysregulation can be multifaceted and complex. Here, we focus on the cellular and molecular roles of TRIMs identified in the brain in the context of a selection of pathologies including cancer and neurodegeneration. By examining each disease in parallel with described roles in brain development, we aim to highlight fundamental common mechanisms employed by TRIM proteins and identify opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jane Dudley-Fraser
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| | - Katrin Rittinger
- Molecular Structure of Cell Signalling Laboratory, The Francis Crick Institute, London, United Kingdom
| |
Collapse
|
8
|
Liang Y, Song C, Li J, Li T, Zhang C, Zou Y. Morphometric analysis of the size-adjusted linear dimensions of the skull landmarks revealed craniofacial dysmorphology in Mid1-cKO mice. BMC Genomics 2023; 24:68. [PMID: 36759768 PMCID: PMC9912615 DOI: 10.1186/s12864-023-09162-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 01/31/2023] [Indexed: 02/11/2023] Open
Abstract
BACKGROUND The early craniofacial development is a highly coordinated process involving neural crest cell migration, proliferation, epithelial apoptosis, and epithelial-mesenchymal transition (EMT). Both genetic defects and environmental factors can affect these processes and result in orofacial clefts. Mutations in MID1 gene cause X-linked Opitz Syndrome (OS), which is a congenital malformation characterized by craniofacial defects including cleft lip/palate (CLP). Previous studies demonstrated impaired neurological structure and function in Mid1 knockout mice, while no CLP was observed. However, given the highly variable severities of the facial manifestations observed in OS patients within the same family carrying identical genetic defects, subtle craniofacial malformations in Mid1 knockout mice could be overlooked in these studies. Therefore, we propose that a detailed morphometric analysis should be necessary to reveal mild craniofacial dysmorphologies that reflect the similar developmental defects seen in OS patients. RESULTS In this research, morphometric study of the P0 male Mid1-cKO mice were performed using Procrustes superimposition as well as EMDA analysis of the size-adjusted three-dimensional coordinates of 105 skull landmarks, which were collected on the bone surface reconstructed using microcomputed tomographic images. Our results revealed the craniofacial deformation such as the increased dimension of the frontal and nasal bone in Mid1-cKO mice, in line with the most prominent facial features such as hypertelorism, prominent forehead, broad and/or high nasal bridge seen in OS patients. CONCLUSION While been extensively used in evolutionary biology and anthropology in the last decades, geometric morphometric analysis was much less used in developmental biology. Given the high interspecies variances in facial anatomy, the work presented in this research suggested the advantages of morphometric analysis in characterizing animal models of craniofacial developmental defects to reveal phenotypic variations and the underlining pathogenesis.
Collapse
Affiliation(s)
- Yaohui Liang
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chao Song
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Jieli Li
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Ting Li
- grid.258164.c0000 0004 1790 3548The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chunlei Zhang
- grid.258164.c0000 0004 1790 3548First Affiliated Hospital, Jinan University, Guangzhou, 510632 China
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China. .,Department of Biology, School of Life Science and Technology, Jinan University, Guangzhou, China.
| |
Collapse
|
9
|
Kipper K, Mansour A, Pulk A. Neuronal RNA granules are ribosome complexes stalled at the pre-translocation state. J Mol Biol 2022; 434:167801. [PMID: 36038000 DOI: 10.1016/j.jmb.2022.167801] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Revised: 06/20/2022] [Accepted: 08/22/2022] [Indexed: 11/30/2022]
Abstract
The polarized cell morphology of neurons dictates many neuronal processes, including the axodendridic transport of specific mRNAs and subsequent translation. mRNAs together with ribosomes and RNA-binding proteins form RNA granules that are targeted to axodendrites for localized translation in neurons. It has been established that localized protein synthesis in neurons is essential for long-term memory formation, synaptic plasticity, and neurodegeneration. We have used proteomics and electron microscopy to characterize neuronal RNA granules (nRNAg) isolated from rat brain tissues or human neuroblastoma. We show that ribosome containing RNA granules are morula-like structures when visualized by electron microscopy. Crosslinking-coupled mass-spectrometry identified potential G3BP2 binding site on the ribosome near the eIF3d-binding site on the 40S ribosomal subunit. We used cryo-EM to resolve the structure of the ribosome-component of nRNAg. The cryo-EM reveals that predominant particles in nRNAg are 80S ribosomes, resembling the pre-translocation state where tRNA's are in the hybrid A/P and P/E site. We also describe a new kind of principal motion of the ribosome, which we call the rocking motion.
Collapse
Affiliation(s)
- Kalle Kipper
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Abbas Mansour
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia
| | - Arto Pulk
- Structural Biology Unit, Institute of Technology, University of Tartu, Tartu 50411, Estonia.
| |
Collapse
|
10
|
Fang M, Zhang A, Du Y, Lu W, Wang J, Minze LJ, Cox TC, Li XC, Xing J, Zhang Z. TRIM18 is a critical regulator of viral myocarditis and organ inflammation. J Biomed Sci 2022; 29:55. [PMID: 35909127 PMCID: PMC9339186 DOI: 10.1186/s12929-022-00840-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/19/2022] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND Infections by viruses including severe acute respiratory syndrome coronavirus 2 could cause organ inflammations such as myocarditis, pneumonia and encephalitis. Innate immunity to viral nucleic acids mediates antiviral immunity as well as inflammatory organ injury. However, the innate immune mechanisms that control viral induced organ inflammations are unclear. METHODS To understand the role of the E3 ligase TRIM18 in controlling viral myocarditis and organ inflammation, wild-type and Trim18 knockout mice were infected with coxsackievirus B3 for inducing viral myocarditis, influenza A virus PR8 strain and human adenovirus for inducing viral pneumonia, and herpes simplex virus type I for inducing herpes simplex encephalitis. Mice survivals were monitored, and heart, lung and brain were harvested for histology and immunohistochemistry analysis. Real-time PCR, co-immunoprecipitation, immunoblot, enzyme-linked immunosorbent assay, luciferase assay, flow cytometry, over-expression and knockdown techniques were used to understand the molecular mechanisms of TRIM18 in regulating type I interferon (IFN) production after virus infection in this study. RESULTS We find that knockdown or deletion of TRIM18 in human or mouse macrophages enhances production of type I IFN in response to double strand (ds) RNA and dsDNA or RNA and DNA virus infection. Importantly, deletion of TRIM18 protects mice from viral myocarditis, viral pneumonia, and herpes simplex encephalitis due to enhanced type I IFN production in vivo. Mechanistically, we show that TRIM18 recruits protein phosphatase 1A (PPM1A) to dephosphorylate TANK binding kinase 1 (TBK1), which inactivates TBK1 to block TBK1 from interacting with its upstream adaptors, mitochondrial antiviral signaling (MAVS) and stimulator of interferon genes (STING), thereby dampening antiviral signaling during viral infections. Moreover, TRIM18 stabilizes PPM1A by inducing K63-linked ubiquitination of PPM1A. CONCLUSIONS Our results indicate that TRIM18 serves as a negative regulator of viral myocarditis, lung inflammation and brain damage by downregulating innate immune activation induced by both RNA and DNA viruses. Our data reveal that TRIM18 is a critical regulator of innate immunity in viral induced diseases, thereby identifying a potential therapeutic target for treatment.
Collapse
Affiliation(s)
- Mingli Fang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Molecular Biology, College of Basic Medical Sciences, Jilin University, Changchun, 130021, China
| | - Ao Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Laboratory Medicine, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, China
| | - Yong Du
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Wenting Lu
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Junying Wang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Laurie J Minze
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
| | - Timothy C Cox
- Department of Oral & Craniofacial Sciences, School of Dentistry & Department of Pediatrics, School of Medicine, University of Missouri-Kansas City, Kansas City, MO, 64108, USA
| | - Xian Chang Li
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA
| | - Junji Xing
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.
| | - Zhiqiang Zhang
- Department of Surgery and Immunobiology and Transplant Science Center, Houston Methodist Research Institute, Houston Methodist Hospital, Houston, TX, 77030, USA.
- Department of Surgery, Weill Cornell Medical College, Cornell University, New York, NY, 10065, USA.
| |
Collapse
|
11
|
Luo A, Ning P, Lu H, Huang H, Shen Q, Zhang D, Xu F, Yang L, Xu Y. Association Between Metformin and Alzheimer's Disease: A Systematic Review and Meta-Analysis of Clinical Observational Studies. J Alzheimers Dis 2022; 88:1311-1323. [PMID: 35786654 DOI: 10.3233/jad-220180] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
BACKGROUND As one of the widely used drugs for the management of type 2 diabetes mellites (T2DM), metformin is increasingly believed to delay cognitive deterioration and therapeutically for Alzheimer's disease (AD) patients especially those with T2DM. However, studies of the potential neuroprotective effects of metformin in AD patients have reported contradictory results. OBJECTIVE This study aimed to evaluate the association between metformin and the risk of developing AD. METHODS We systematically searched the PubMed, EMBASE, Web of Science, Cochrane Central Register of Controlled Trials, and ClinicalTrials.gov databases to identify clinical observational studies on the relationship between AD risk and metformin use published before December 20, 2021. Two investigators independently screened records, extracted data, and assessed the quality of the studies. Pooled odds ratios (ORs) and corresponding 95% confidence intervals (CIs) were calculated using random-effect models. RESULTS After screening a total of 1,670 records, we included 10 studies involving 229,110 participants. The meta-analysis showed no significant association between AD incidence and metformin exposure (OR 1.17, 95% CI 0.88-1.56, p = 0.291). However, subgroup analysis showed that among Asians, the risk of AD was significantly higher among metformin users than those who did not (OR 1.71, 95% CI 1.24-2.37, p = 0.001). CONCLUSION The available evidence does not support the idea that metformin reduces risk of AD, and it may, in fact, increase the risk in Asians. Further well-designed randomized controlled trials are required to understand the role played by metformin and other antidiabetic drugs in the prevention of AD and other neurodegenerative diseases.
Collapse
Affiliation(s)
- Anling Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Haitao Lu
- Department of Neurology, Third People's Hospital of Chengdu, Chengdu, Sichuan Province, P.R. China
| | - Hongyan Huang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Qiuyan Shen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Dan Zhang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Fang Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Li Yang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan Province, P.R. China
| |
Collapse
|
12
|
Trujillo-Del Río C, Tortajada-Pérez J, Gómez-Escribano AP, Casterá F, Peiró C, Millán JM, Herrero MJ, Vázquez-Manrique RP. Metformin to treat Huntington disease: a pleiotropic drug against a multi-system disorder. Mech Ageing Dev 2022; 204:111670. [DOI: 10.1016/j.mad.2022.111670] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 03/24/2022] [Accepted: 03/25/2022] [Indexed: 12/17/2022]
|
13
|
Ning P, Luo A, Mu X, Xu Y, Li T. Exploring the dual character of metformin in Alzheimer's disease. Neuropharmacology 2022; 207:108966. [PMID: 35077762 DOI: 10.1016/j.neuropharm.2022.108966] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 12/17/2021] [Accepted: 01/17/2022] [Indexed: 02/07/2023]
Abstract
Alzheimer's disease (AD) is the most common neurodegenerative disease, which results in dementia typically in the elderly. The disease is mainly characterized by the deposition of amyloid beta (Aβ) plaques and neurofibrillary tangles (NFTs) in the brain. However, only few drugs are available for AD because of its unknown pathological mechanism which limits the development of new drugs. Therefore, it is urgent to identify potential therapeutic strategies for AD. Moreover, research have showed that there is a significant association between Type 2 diabetes mellites (T2DM) and AD, suggesting that the two diseases may share common pathophysiological mechanisms. Such mechanisms include impaired insulin signaling, altered glucose metabolism, inflammation, oxidative stress, and premature aging, which strongly affect cognitive function and increased risk of dementia. Consequently, as a widely used drug for T2DM, metformin also has therapeutic potential for AD in vivo. It has been confirmed that metformin is beneficial on the brain of AD animal models. The mechanisms underlying the effects of metformin in Alzheimer's disease are complex and multifaceted. Metformin may work through mechanisms involving homeostasis of glucose metabolism, decrease of amyloid plaque deposition, normalization of tau protein phosphorylation and enhancement of autophagy. However, in clinical trials, metformin had little effects on patients with mild cognitive impairment or mild AD. Pathological effects and negative clinical results of metformin on AD make the current topic quite controversial. By reviewing the latest progress of related research, this paper summarizes the possible role of metformin in AD. The purpose of this study is not only to determine the potential treatment of AD, but also other related neurodegenerative diseases.
Collapse
Affiliation(s)
- Pingping Ning
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Anling Luo
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Xin Mu
- Department of Neurology, Chengdu First People's Hospital, 18 Wanxiang North Road, Chengdu, Sichuan Province, 610041, PR China.
| | - Yanming Xu
- Department of Neurology, West China Hospital, Sichuan University, 37 Guo Xue Xiang, Chengdu, Sichuan Province, 610041, PR China.
| | - Tian Li
- School of Basic Medicine, Fourth Military Medical University/Air Force Medical University, No. 169 Changle West Rd, Xi'an, 710032, PR China.
| |
Collapse
|
14
|
Eastman G, Sharlow ER, Lazo JS, Bloom GS, Sotelo-Silveira JR. Transcriptome and Translatome Regulation of Pathogenesis in Alzheimer's Disease Model Mice. J Alzheimers Dis 2022; 86:365-386. [PMID: 35034904 DOI: 10.3233/jad-215357] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Defining cellular mechanisms that drive Alzheimer's disease (AD) pathogenesis and progression will be aided by studies defining how gene expression patterns change during pre-symptomatic AD and ensuing periods of declining cognition. Previous studies have emphasized changes in transcriptome, but not translatome regulation, leaving the ultimate results of gene expression alterations relatively unexplored in the context of AD. OBJECTIVE To identify genes whose expression might be regulated at the transcriptome and translatome levels in AD, we analyzed gene expression in cerebral cortex of two AD model mouse strains, CVN (APPSwDI;NOS2 -/- ) and Tg2576 (APPSw), and their companion wild type (WT) strains at 6 months of age by tandem RNA-Seq and Ribo-Seq (ribosome profiling). METHODS Identical starting pools of bulk RNA were used for RNA-Seq and Ribo-Seq. Differential gene expression analysis was performed at the transcriptome, translatome, and translational efficiency levels. Regulated genes were functionally evaluated by gene ontology tools. RESULTS Compared to WT mice, AD model mice had similar levels of transcriptome regulation, but differences in translatome regulation. A microglial signature associated with early stages of Aβ accumulation was upregulated at both levels in CVN mice. Although the two mice strains did not share many regulated genes, they showed common regulated pathways related to AβPP metabolism associated with neurotoxicity and neuroprotection. CONCLUSION This work represents the first genome-wide study of brain translatome regulation in animal models of AD and provides evidence of a tight and early translatome regulation of gene expression controlling the balance between neuroprotective and neurodegenerative processes in brain.
Collapse
Affiliation(s)
- Guillermo Eastman
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Department of Biology, University of Virginia, Charlottesville, VA, USA
| | - Elizabeth R Sharlow
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA
| | - John S Lazo
- Department of Pharmacology, University of Virginia, Charlottesville, VA, USA.,Department of Chemistry, University of Virginia, Charlottesville, VA, USA
| | - George S Bloom
- Department of Biology, University of Virginia, Charlottesville, VA, USA.,Department of Cell Biology, University of Virginia, Charlottesville, VA, USA.,Department of Neuroscience, University of Virginia, Charlottesville, VA, USA
| | - José R Sotelo-Silveira
- Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable, Ministerio de Educación y Cultura, Montevideo, Uruguay.,Sección Biología Celular, Facultad de Ciencias, Universidad de la República, Montevideo, Uruguay
| |
Collapse
|
15
|
Posttranscriptional regulation of Nrf2 through miRNAs and their role in Alzheimer's disease. Pharmacol Res 2021; 175:106018. [PMID: 34863823 DOI: 10.1016/j.phrs.2021.106018] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2021] [Revised: 10/27/2021] [Accepted: 11/29/2021] [Indexed: 12/18/2022]
Abstract
The nuclear factor erythroid-derived 2-related factor 2 (NFE2L2/Nrf2) is a pivotal facilitator of cytoprotective responses against the oxidative/electrophilic insults. Upon activation, Nrf2 induces transcription of a wide range of cytoprotective genes having antioxidant response element (ARE) in their promoter region. Dysfunction in Nrf2 signaling has been linked to the pathogenesis of AD and several studies have suggested that boosting Nrf2 expression/activity by genetic or pharmacological approaches is beneficial in AD. Among the diverse mechanisms that regulate the Nrf2 signaling, miRNAs-mediated regulation of Nrf2 has gained much attention in recent years. Several miRNAs have been reported to directly repress the post-transcriptional expression of Nrf2 and thereby negatively regulate the Nrf2-dependent cellular cytoprotective response in AD. Moreover, several Nrf2 targeting miRNAs are misregulated in AD brains. This review is focused on the role of misregulated miRNAs that directly target Nrf2, in AD pathophysiology. Here, alongside a general description of functional interactions between miRNAs and Nrf2, we have reviewed the evidence indicating the possible role of these miRNAs in AD pathogenesis.
Collapse
|
16
|
Heinz A, Schilling J, van Roon-Mom W, Krauß S. The MID1 Protein: A Promising Therapeutic Target in Huntington's Disease. Front Genet 2021; 12:761714. [PMID: 34659371 PMCID: PMC8517220 DOI: 10.3389/fgene.2021.761714] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 09/21/2021] [Indexed: 11/13/2022] Open
Abstract
Huntington's disease (HD) is caused by an expansion mutation of a CAG repeat in exon 1 of the huntingtin (HTT) gene, that encodes an expanded polyglutamine tract in the HTT protein. HD is characterized by progressive psychiatric and cognitive symptoms associated with a progressive movement disorder. HTT is ubiquitously expressed, but the pathological changes caused by the mutation are most prominent in the central nervous system. Since the mutation was discovered, research has mainly focused on the mutant HTT protein. But what if the polyglutamine protein is not the only cause of the neurotoxicity? Recent studies show that the mutant RNA transcript is also involved in cellular dysfunction. Here we discuss the abnormal interaction of the mutant HTT transcript with a protein complex containing the MID1 protein. MID1 aberrantly binds to CAG repeats and this binding increases with CAG repeat length. Since MID1 is a translation regulator, association of the MID1 complex stimulates translation of mutant HTT mRNA, resulting in an overproduction of polyglutamine protein. Thus, blocking the interaction between MID1 and mutant HTT mRNA is a promising therapeutic approach. Additionally, we show that MID1 expression in the brain of both HD patients and HD mice is aberrantly increased. This finding further supports the concept of blocking the interaction between MID1 and mutant HTT mRNA to counteract mutant HTT translation as a valuable therapeutic strategy. In line, recent studies in which either compounds affecting the assembly of the MID1 complex or molecules targeting HTT RNA, show promising results.
Collapse
Affiliation(s)
- Annika Heinz
- University of Siegen, Institute of Biology, Human Biology / Neurobiology, Siegen, Germany
| | - Judith Schilling
- German Center for Neurodegenerative Diseases (DZNE), Bonn, Germany
| | - Willeke van Roon-Mom
- Leiden University Medical Center, Department of Human Genetics, Leiden, Netherlands
| | - Sybille Krauß
- University of Siegen, Institute of Biology, Human Biology / Neurobiology, Siegen, Germany
| |
Collapse
|
17
|
Carlyle BC, Kandigian SE, Kreuzer J, Das S, Trombetta BA, Kuo Y, Bennett DA, Schneider JA, Petyuk VA, Kitchen RR, Morris R, Nairn AC, Hyman BT, Haas W, Arnold SE. Synaptic proteins associated with cognitive performance and neuropathology in older humans revealed by multiplexed fractionated proteomics. Neurobiol Aging 2021; 105:99-114. [PMID: 34052751 PMCID: PMC8338777 DOI: 10.1016/j.neurobiolaging.2021.04.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2020] [Revised: 03/18/2021] [Accepted: 04/14/2021] [Indexed: 12/16/2022]
Abstract
Alzheimer's disease (AD) is defined by the presence of abundant amyloid-β (Aβ) and tau neuropathology. While this neuropathology is necessary for AD diagnosis, it is not sufficient for causing cognitive impairment. Up to one third of community dwelling older adults harbor intermediate to high levels of AD neuropathology at death yet demonstrate no significant cognitive impairment. Conversely, there are individuals who exhibit dementia with no gross explanatory neuropathology. In prior studies, synapse loss correlated with cognitive impairment. To understand how synaptic composition changes in relation to neuropathology and cognition, multiplexed liquid chromatography mass-spectrometry was used to quantify enriched synaptic proteins from the parietal association cortex of 100 subjects with contrasting levels of AD pathology and cognitive performance. 123 unique proteins were significantly associated with diagnostic category. Functional analysis showed enrichment of serotonin release and oxidative phosphorylation categories in normal (cognitively unimpaired, low neuropathology) and "resilient" (unimpaired despite AD pathology) individuals. In contrast, frail individuals, (low pathology, impaired cognition) showed a metabolic shift towards glycolysis and increased presence of proteasome subunits.
Collapse
Affiliation(s)
- Becky C Carlyle
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Savannah E Kandigian
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Johannes Kreuzer
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Sudeshna Das
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Bianca A Trombetta
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Yikai Kuo
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Cardiology Division, Charlestown, MA, USA
| | | | | | | | - Robert R Kitchen
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital, Cardiology Division, Charlestown, MA, USA
| | - Robert Morris
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | | | - Bradley T Hyman
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| | - Wilhelm Haas
- Harvard Medical School, Boston, MA, USA; Massachusetts General Hospital Cancer Center, Charlestown, MA, USA
| | - Steven E Arnold
- Massachusetts General Hospital Department of Neurology, Charlestown, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
18
|
Chen Q, Gao C, Wang M, Fei X, Zhao N. TRIM18-Regulated STAT3 Signaling Pathway via PTP1B Promotes Renal Epithelial-Mesenchymal Transition, Inflammation, and Fibrosis in Diabetic Kidney Disease. Front Physiol 2021; 12:709506. [PMID: 34434118 PMCID: PMC8381599 DOI: 10.3389/fphys.2021.709506] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 07/15/2021] [Indexed: 01/15/2023] Open
Abstract
Diabetic kidney disease (DKD) has become a key cause of end-stage renal disease worldwide. Inflammation and fibrosis have been shown to play important roles in the pathogenesis of DKD. MID1, also known as TRIM18, is an E3 ubiquitin ligase of the tripartite motif (TRIM) subfamily of RING-containing proteins and increased in renal tubule in patients with DKD. However, the function and molecular mechanism of TRIM18 in DKD remain unexplored. Herein we report that TRIM18 expression levels were increased in patients with DKD. An animal study confirms that TRIM18 is involved in kidney injury and fibrosis in diabetic mice. TRIM18 knockdown inhibits high glucose (HG)-induced epithelial–mesenchymal transition (EMT), inflammation, and fibrosis of HK-2 cells. This is accompanied by decreased levels of tumor necrosis factor alpha, interleukin-6, hydroxyproline (Hyp), connective tissue growth factor, and α-smooth muscle actin. Additionally, TRIM18 knockdown inhibits HG-induced increase in the phosphorylated-/total signal transducer and activator of transcription (STAT3). Treatment with niclosamide (STAT3 inhibitor) or protein tyrosine phosphatase-1B (PTP1B) overexpression blocked the TRIM18 induced EMT, inflammation and fibrosis. Co-immunoprecipitation and Western blot assays showed that TRIM18 promoted the ubiquitination of PTP1B. These findings highlight the importance of the TRIM18/PTP1B/STAT3 signaling pathway in DKD and can help in the development of new therapeutics for DKD treatment.
Collapse
Affiliation(s)
- Qi Chen
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Chan Gao
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ming Wang
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiao Fei
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ning Zhao
- Department of Nephrology, Affiliated Hangzhou First People's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
19
|
Kumar A, Doan VM, Kunkli B, Csősz É. Construction of Unified Human Antimicrobial and Immunomodulatory Peptide Database and Examination of Antimicrobial and Immunomodulatory Peptides in Alzheimer's Disease Using Network Analysis of Proteomics Datasets. Front Genet 2021; 12:633050. [PMID: 33995478 PMCID: PMC8113759 DOI: 10.3389/fgene.2021.633050] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 03/17/2021] [Indexed: 12/26/2022] Open
Abstract
The reanalysis of genomics and proteomics datasets by bioinformatics approaches is an appealing way to examine large amounts of reliable data. This can be especially true in cases such as Alzheimer's disease, where the access to biological samples, along with well-defined patient information can be challenging. Considering the inflammatory part of Alzheimer's disease, our aim was to examine the presence of antimicrobial and immunomodulatory peptides in human proteomic datasets deposited in the publicly available proteomics database ProteomeXchange (http://www.proteomexchange.org/). First, a unified, comprehensive human antimicrobial and immunomodulatory peptide database, containing all known human antimicrobial and immunomodulatory peptides was constructed and used along with the datasets containing high-quality proteomics data originating from the examination of Alzheimer's disease and control groups. A throughout network analysis was carried out, and the enriched GO functions were examined. Less than 1% of all identified proteins in the brain were antimicrobial and immunomodulatory peptides, but the alterations characteristic of Alzheimer's disease could be recapitulated with their analysis. Our data emphasize the key role of the innate immune system and blood clotting in the development of Alzheimer's disease. The central role of antimicrobial and immunomodulatory peptides suggests their utilization as potential targets for mechanistic studies and future therapies.
Collapse
Affiliation(s)
- Ajneesh Kumar
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Vo Minh Doan
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Balázs Kunkli
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Doctoral School of Molecular Cell and Immune Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| | - Éva Csősz
- Proteomics Core Facility, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
- Biomarker Research Group, Department of Biochemistry and Molecular Biology, Faculty of Medicine, University of Debrecen, Debrecen, Hungary
| |
Collapse
|
20
|
Qiao Y, Zhou Y, Song C, Zhang X, Zou Y. MID1 and MID2 regulate cell migration and epithelial-mesenchymal transition via modulating Wnt/β-catenin signaling. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1021. [PMID: 32953821 PMCID: PMC7475493 DOI: 10.21037/atm-20-5583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background The ubiquitin E3 ligase activity has been ascribed to MID1, the causative gene of X-linked OS, and its homologue, MID2. Both alpha4, the common MID protein partner, and PP2Ac in MID-alpha4-PP2Ac complexes can be ubiquitylated. Ubiquitylation of alpha4 converted its function toward PP2Ac from protective to destructive, while PP2A also affected MID protein phosphorylation and their subsequent trafficking on microtubules. It was believed that disruption of the function of MID1-alpha4-PP2A complex was vital to the pathogenesis of craniofacial malformation, the most prominent clinical manifestation of OS, although the detailed molecular mechanisms was not unravelled. Methods The cellular level of PP2A and phosphor-PP2A in cells overexpressing MID1/MID2 or in cells with siRNA mediated MID1/MID2 gene silencing was analyzed using Western blot. The Wnt signaling in these cells was further monitored using TCF/LEF luciferase reporter assay and the cellular level of β-catenin was also verified using western blot. Given the crosstalk of E-cadherin and Wnt via the common effector β-catenin, the potential influences of MID1/MID2 on the cell migration and epithelial-mesenchymal transition (EMT) were investigated using wound healing assay and immunofluorescence for E-cadherin and vimentin, respectively. Results Here, we presented the increased phosphorylation of PP2Ac in cells overexpressing MID1/MID2, and vice versa, in vitro, while the cellular level of total PP2Ac was unaffected. In addition, β-catenin, the effector of canonical Wnt signaling, was downregulated in cells overexpressing MID1/MID2 and upregulated in cells with siRNA mediated MID1/MID2 gene silencing. Down-regulated Wnt/β-catenin signaling by Okadaic acid, a specific inhibitor of PP2A, was partially rescued by siRNA mediated MID1/MID2 gene silencing. In consistent, an activated EMT and accelerated cell migration in cells with MID1/MID2 gene silencing were observed, and vice versa. Conclusions The results in this study indicated roles for MID1 and MID2 in regulating cell migration/EMT via modulating Wnt/β-catenin signaling, which might help to understand the molecular etiology of the facial abnormalities that are usually the consequences of defective neural crest cells migration and EMT at the early stage of craniofacial development.
Collapse
Affiliation(s)
- Yingying Qiao
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Yuan Zhou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Chao Song
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Xin Zhang
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| | - Yi Zou
- The Key Laboratory of Virology of Guangzhou, Jinan University, Guangzhou, China
| |
Collapse
|
21
|
Soo SK, Rudich PD, Traa A, Harris-Gauthier N, Shields HJ, Van Raamsdonk JM. Compounds that extend longevity are protective in neurodegenerative diseases and provide a novel treatment strategy for these devastating disorders. Mech Ageing Dev 2020; 190:111297. [PMID: 32610099 PMCID: PMC7484136 DOI: 10.1016/j.mad.2020.111297] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 12/13/2022]
Abstract
While aging is the greatest risk factor for the development of neurodegenerative disease, the role of aging in these diseases is poorly understood. In the inherited forms of these diseases, the disease-causing mutation is present from birth but symptoms appear decades later. This indicates that these mutations are well tolerated in younger individuals but not in older adults. Based on this observation, we hypothesized that changes taking place during normal aging make the cells in the brain (and elsewhere) susceptible to the disease-causing mutations. If so, then delaying some of these age-related changes may be beneficial in the treatment of neurodegenerative disease. In this review, we examine the effects of five compounds that have been shown to extend longevity (metformin, rapamycin, resveratrol, N-acetyl-l-cysteine, curcumin) in four of the most common neurodegenerative diseases (Alzheimer's disease, Parkinson's disease, Huntington's disease, amyotrophic lateral sclerosis). While not all investigations observe a beneficial effect of these compounds, there are multiple studies that show a protective effect of each of these lifespan-extending compounds in animal models of neurodegenerative disease. Combined with genetic studies, this suggests the possibility that targeting the aging process may be an effective strategy to treat neurodegenerative disease.
Collapse
Affiliation(s)
- Sonja K Soo
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Paige D Rudich
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Annika Traa
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Namasthée Harris-Gauthier
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Hazel J Shields
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada
| | - Jeremy M Van Raamsdonk
- Department of Neurology and Neurosurgery, McGill University, Montreal, QC, H4A 3J1, Canada; Metabolic Disorders and Complications Program, and Brain Repair and Integrative Neuroscience Program, Research Institute of the McGill University Health Centre, Montreal, QC, H4A 3J1, Canada; Division of Experimental Medicine, Department of Medicine, McGill University, Montreal, QC, H4A 3J1, Canada; Department of Genetics, Harvard Medical School, Boston, MA, 02115, USA.
| |
Collapse
|
22
|
Baldini R, Mascaro M, Meroni G. The MID1 gene product in physiology and disease. Gene 2020; 747:144655. [PMID: 32283114 PMCID: PMC8011326 DOI: 10.1016/j.gene.2020.144655] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2019] [Revised: 02/22/2020] [Accepted: 04/06/2020] [Indexed: 12/23/2022]
Abstract
MID1 is an E3 ubiquitin ligase of the Tripartite Motif (TRIM) subfamily of RING-containing proteins, hence also known as TRIM18. MID1 is a microtubule-binding protein found in complex with the catalytic subunit of PP2A (PP2Ac) and its regulatory subunit alpha 4 (α4). To date, several substrates and interactors of MID1 have been described, providing evidence for the involvement of MID1 in a plethora of essential biological processes, especially during embryonic development. Mutations in the MID1 gene are responsible of the X-linked form of Opitz syndrome (XLOS), a multiple congenital disease characterised by defects in the development of midline structures during embryogenesis. Here, we review MID1-related physiological mechanisms as well as the pathological implication of the MID1 gene in XLOS and in other clinical conditions.
Collapse
Affiliation(s)
- Rossella Baldini
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, Trieste, Italy
| | - Germana Meroni
- Department of Life Sciences, University of Trieste, Trieste, Italy.
| |
Collapse
|
23
|
Chaudhari K, Wang J, Xu Y, Winters A, Wang L, Dong X, Cheng EY, Liu R, Yang SH. Determination of metformin bio-distribution by LC-MS/MS in mice treated with a clinically relevant paradigm. PLoS One 2020; 15:e0234571. [PMID: 32525922 PMCID: PMC7289415 DOI: 10.1371/journal.pone.0234571] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 05/27/2020] [Indexed: 12/18/2022] Open
Abstract
Metformin, an anti-diabetes drug, has been recently emerging as a potential “anti-aging” intervention based on its reported beneficial actions against aging in preclinical studies. Nonetheless, very few metformin studies using mice have determined metformin concentrations and many effects of metformin have been observed in preclinical studies using doses/concentrations that were not relevant to therapeutic levels in human. We developed a liquid chromatography-tandem mass spectrometry protocol for metformin measurement in plasma, liver, brain, kidney, and muscle of mice. Young adult male and female C57BL/6 mice were voluntarily treated with metformin of 4 mg/ml in drinking water which translated to the maximum dose of 2.5 g/day in humans. A clinically relevant steady-state plasma metformin concentrations were achieved at 7 and 30 days after treatment in male and female mice. Metformin concentrations were slightly higher in muscle than in plasma, while, ~3 and 6-fold higher in the liver and kidney than in plasma, respectively. Low metformin concentration was found in the brain at ~20% of the plasma level. Furthermore, gender difference in steady-state metformin bio-distribution was observed. Our study established steady-state metformin levels in plasma, liver, muscle, kidney, and brain of normoglycemic mice treated with a clinically relevant dose, providing insight into future metformin preclinical studies for potential clinical translation.
Collapse
Affiliation(s)
- Kiran Chaudhari
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Jianmei Wang
- Pharmaceutical analysis core lab, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Yong Xu
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Ali Winters
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Linshu Wang
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Xiaowei Dong
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Eric Y. Cheng
- Pharmaceutical Sciences, College of Pharmacy, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Ran Liu
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
| | - Shao-Hua Yang
- Department of Pharmacology and Neuroscience, Institute for Healthy Aging, University of North Texas Health Science Center, Fort Worth, Texas, United States of America
- * E-mail:
| |
Collapse
|
24
|
Tang BL. Could metformin be therapeutically useful in Huntington's disease? Rev Neurosci 2020; 31:297-317. [PMID: 31751298 DOI: 10.1515/revneuro-2019-0072] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Accepted: 09/09/2019] [Indexed: 12/15/2022]
Abstract
Emerging evidence suggest that dimethylbiguanide (metformin), a first-line drug for type 2 diabetes mellitus, could be neuroprotective in a range of brain pathologies, which include neurodegenerative diseases and brain injury. However, there are also contraindications that associate metformin treatment with cognitive impairment as well as adverse outcomes in Alzheimer's disease and Parkinson's disease animal models. Recently, a beneficial effect of metformin in animal models of Huntington's disease (HD) has been strengthened by multiple reports. In this brief review, the findings associated with the effects of metformin in attenuating neurodegenerative diseases are discussed, focusing on HD-associated pathology and the potential underlying mechanisms highlighted by these studies. The mechanism of action of metformin is complex, and its therapeutic efficacy is therefore expected to be dependent on the disease context. The key metabolic pathways that are effectively affected by metformin, such as AMP-activated protein kinase activation, may be altered in the later decades of the human lifespan. In this regard, metformin may nonetheless be therapeutically useful for neurological diseases with early pathological onsets, such as HD.
Collapse
Affiliation(s)
- Bor Luen Tang
- Department of Biochemistry, Yong Loo Lin School of Medicine, National University Health System, Singapore 117596, Singapore.,NUS Graduate School for Integrative Sciences and Engineering, National University of Singapore, Medical Drive, Singapore 119077, Singapore
| |
Collapse
|
25
|
Metformin and cognition from the perspectives of sex, age, and disease. GeroScience 2020; 42:97-116. [PMID: 31897861 DOI: 10.1007/s11357-019-00146-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
Metformin is the safest and the most widely prescribed first-line therapy for managing hyperglycemia due to different underlying causes, primarily type 2 diabetes mellitus. In addition to its euglycemic properties, metformin has stimulated a wave of clinical trials to investigate benefits on aging-related diseases and longevity. Such an impact on the lifespan extension would undoubtedly expand the therapeutic utility of metformin regardless of glycemic status. However, there is a scarcity of studies evaluating whether metformin has differential cognitive effects across age, sex, glycemic status, metformin dose, and duration of metformin treatment and associated pathological conditions. By scrutinizing the available literature on animal and human studies for metformin and brain function, we expect to shed light on the potential impact of metformin on cognition across age, sex, and pathological conditions. This review aims to provide readers with a broader insight of (a) how metformin differentially affects cognition and (b) why there is a need for more translational and clinical studies examining multifactorial interactions. The outcomes of such comprehensive studies will streamline precision medicine practices, avoiding "fit for all" approach, and optimizing metformin use for longevity benefit irrespective of hyperglycemia.
Collapse
|
26
|
Zhou X, Liu S, Lin X, Xu L, Mao X, Liu J, Zhang Z, Jiang W, Zhou H. Metformin Inhibit Lung Cancer Cell Growth and Invasion in Vitro as Well as Tumor Formation in Vivo Partially by Activating PP2A. Med Sci Monit 2019; 25:836-846. [PMID: 30693913 PMCID: PMC6362762 DOI: 10.12659/msm.912059] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study was to investigate whether PP2A activation is involved in the anti-cancer activity of metformin. Material/Methods A549 and H1651 human lung cancer cells were constructed with stable α4 overexpression (O/E α4) or knockdown of PP2A catalytic subunit A/B(sh-PP2Ac). Influences of okadaic acid (OA) treatment, O/E α4 or sh-PP2Ac on metformin treated cells were investigated by cell viability, proliferation, apoptosis, and Transwell invasion assay in vitro. Protein expression levels of Bax, Bcl-2, Myc, and Akt as well as serine phosphorylation level of Bax, Myc, and Akt were examined by western blot. For in vivo assays, wild type (WT) or modified A549 cells were subcutaneously injected in nude mice, and metformin treatment on these xenografted tumors were assayed by tumor formation assay and western blot detecting cell proliferation marker PCNA (proliferating cell nuclear antigen) as well as protein expression level and serine phosphorylation level of Akt and Myc. Results Metformin treatment significantly reduced A549 or H1651 cell growth and invasive capacity in vitro as well as Ser184 phosphorylation of Bax, Ser62 phosphorylation of Myc, and Ser473 phosphorylation of Akt, all of which could be partially attenuated by OA treatment, O/E α4 or sh-PP2Ac. Metformin treatment also significantly reduced tumor formation in vivo as well as protein expression of PCNA, Akt, Myc, and serine phosphorylation of the latter 2, which can be partially blocked by O/E α4 or sh-PP2Ac. Conclusions Metformin reduced lung cancer cell growth and invasion in vitro as well as tumor formation in vivo partially by activating PP2A.
Collapse
Affiliation(s)
- Xiaohu Zhou
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Shanshan Liu
- Department of Internal Medicine, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xuemei Lin
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Liping Xu
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Xiaoming Mao
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Jun Liu
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Zixing Zhang
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Wenhong Jiang
- Department of Respiration, Jiangshan People's Hospital, Hangzhou, Zhejiang, China (mainland)
| | - Hua Zhou
- Department of Respiration, The First Affiliated Hospital of Zhejiang University, Hangzhou, Zhejiang, China (mainland)
| |
Collapse
|
27
|
Yang Q, Lin J, Zhang H, Liu Y, Kan M, Xiu Z, Chen X, Lan X, Li X, Shi X, Li N, Qu X. Ginsenoside Compound K Regulates Amyloid β via the Nrf2/Keap1 Signaling Pathway in Mice with Scopolamine Hydrobromide-Induced Memory Impairments. J Mol Neurosci 2018; 67:62-71. [PMID: 30535776 DOI: 10.1007/s12031-018-1210-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 11/08/2018] [Indexed: 12/14/2022]
Abstract
The objective of this study was to investigate the neuroprotective and antioxidant effects of ginsenoside compound K (CK) in a model of scopolamine hydrobromide-induced, memory-impaired mice. The role of CK in the regulation of amyloid β (Aβ) and its capacity to activate the Nrf2/Keap1 signaling pathway were also studied due to their translational relevance to Alzheimer's disease. The Morris water maze was used to assess spatial memory functions. Levels of superoxide dismutase, glutathione peroxidase, and malondialdehyde in brain tissues were tested. Cell morphology was detected by hematoxylin and eosin staining and terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end labeling assay. Immunohistochemistry and western blotting were used to determine expression levels of Nrf2/Keap1 signaling pathway-related factors and Aβ. Ginsenoside CK was found to enhance memory function, normalize neuronal morphology, decrease neuronal apoptosis, increase superoxide dismutase and glutathione peroxidase levels, reduce malondialdehyde levels, inhibit Aβ expression, and activate the Nrf2/Keap1 signaling pathway in scopolamine-exposed animals. Based on these results, we conclude that CK may improve memory function in scopolamine-injured mice by regulating Aβ aggregation and promoting the transduction of the Nrf2/Keap1 signaling pathway, thereby reducing oxidative damage to neurons and inhibiting neuronal apoptosis. This study suggests that CK may serve as a future preventative agent or treatment for Alzheimer's disease.
Collapse
Affiliation(s)
- Qing Yang
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Jianan Lin
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Huiyuan Zhang
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Yingna Liu
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Mo Kan
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Zhiru Xiu
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xijun Chen
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xingcheng Lan
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaohua Li
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Xiaozheng Shi
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China
| | - Na Li
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| | - Xiaobo Qu
- Laboratory of Molecular Pharmacology, Jilin Provincial Key Laboratory of BioMacromolecules of Chinese Medicine, Jilin Ginseng Academy, Changchun University of Chinese Medicine, Changchun, 130117, Jilin, China.
| |
Collapse
|
28
|
Unterbruner K, Matthes F, Schilling J, Nalavade R, Weber S, Winter J, Krauß S. MicroRNAs miR-19, miR-340, miR-374 and miR-542 regulate MID1 protein expression. PLoS One 2018; 13:e0190437. [PMID: 29293623 PMCID: PMC5749791 DOI: 10.1371/journal.pone.0190437] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2017] [Accepted: 12/14/2017] [Indexed: 12/13/2022] Open
Abstract
The MID1 ubiquitin ligase activates mTOR signaling and regulates mRNA translation. Misregulation of MID1 expression is associated with various diseases including midline malformation syndromes, cancer and neurodegenerative diseases. While this indicates that MID1 expression must be tightly regulated to prevent disease states specific mechanisms involved have not been identified. We examined miRNAs to determine mechanisms that regulate MID1 expression. MicroRNAs (miRNA) are small non-coding RNAs that recognize specific sequences in their target mRNAs. Upon binding, miRNAs typically downregulate expression of these targets. Here, we identified four miRNAs, miR-19, miR-340, miR-374 and miR-542 that bind to the 3'-UTR of the MID1 mRNA. These miRNAs not only regulate MID1 expression but also mTOR signaling and translation of disease associated mRNAs and could therefore serve as potential drugs for future therapy development.
Collapse
Affiliation(s)
- Kristoffer Unterbruner
- Regulatory RNA-protein interactions in neurodegenerative diseases, German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
| | - Frank Matthes
- Regulatory RNA-protein interactions in neurodegenerative diseases, German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
| | - Judith Schilling
- Regulatory RNA-protein interactions in neurodegenerative diseases, German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
| | - Rohit Nalavade
- Regulatory RNA-protein interactions in neurodegenerative diseases, German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
| | - Stephanie Weber
- Regulatory RNA-protein interactions in neurodegenerative diseases, German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
| | - Jennifer Winter
- Institute of Human Genetics, University Medical Center, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
- Focus Program of Translational Neurosciences, Johannes Gutenberg University Mainz, Mainz, Rhineland-Palatinate, Germany
| | - Sybille Krauß
- Regulatory RNA-protein interactions in neurodegenerative diseases, German Center for Neurodegenerative Diseases (DZNE), Bonn, North Rhine-Westphalia, Germany
| |
Collapse
|